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Abstract

We combine two research lines: preference reversal research (Lichtenstein and Slovic, 1971) and research on
lottery-based risk preference induction (Roth and Malouf, 1979). Our results are informative for both research
lines. We show that inducing risk preferences in preference reversal experiments has dramatic effects. First, while
our subjects still display reversals, they do not display the usual pattern of “predicted” reversals suggested by
the compatibility hypothesis. By inducing risk averse and risk loving preferences, we can dramatically reduce
reversal rates and even produce the opposite pattern of reversals. Our results are consistent with the assumption
that subjects maximize expected utility with error. This provides evidence that Camerer and Hogarth’s (1999)
framework for incentive effects can be extended to include the risk preference induction reward scheme.
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We combine the study of risk preference induction and preference reversal and generate
results that prove interesting for both areas of study. First, our results suggest that Camerer
and Hogarth’s (1999) framework for understanding incentive effects can be extended from
simple monetary payoff experiments to those that use binary lottery systems to induce risk
preferences.1 Second, preference reversals appear to be the result of preferences expressed
with random error rather than systematic error due to task-specific characteristics. These
results stand in contrast to work reported in Selten, Sadrieh, and Abbink (1999) where
induction did not appear to affect reversals. Our study suggests that this is due to subjects
being approximately indifferent between alternatives. In such cases, the opportunity cost of
error is small and reversals virtually costless.

In preference reversal experiments (beginning with Lichtenstein and Slovic, 1971), sub-
jects both compare gambles directly (in “paired choice tasks”) and reveal their preference
over gambles by pricing them separately (in “pricing tasks”). A reversal occurs when the
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implied preference ordering differs across these two tasks. If subjects have consistent prefer-
ences over gambles, are rational, understand the tasks and make no mistakes, we should see
no such reversals. However, reversals occur frequently, are surprisingly robust and appear
insensitive to incentives (see, for example, Grether and Plott, 1979). Moreover, reversals
seem to be the result of systematic error, with substantially more “p-bet” reversals than
“$-bet” reversals.2 Researchers argue that this pattern cannot be simple random noise.

We study reversals under a new incentive scheme where subjects are rewarded with lotter-
ies rather than dollars. In theory, this incentive scheme allows us to induce preferences that
eliminate any uncertainty about which gambles subjects should prefer. This would allow us
to disentangle strictly utility-based explanations of preference reversal from other explana-
tions that invoke task-specific preferences. But, “in theory” may not reflect actual subject
behavior. Camerer and Hogarth (1999) argue that complex relationships exist between in-
centives and behavior in economics experiments and that polar views on incentives (that
incentives never have an effect or that incentives always promote more rational behavior)
are too simplistic. They show that examining incentive effects by measuring mean behavior
frequently results in a different conclusion than when examining incentive effects by mea-
suring the variance in behavior. Why? Incentives can affect both the mean and variance of
subject responses, possibly in different manners and to different degrees. Though Camerer
and Hogarth (1999) do not address the efficacy of the binary lottery incentives used for risk
preference induction, one might suspect that similar complex relationships exist.

Our results, and their contrast with previous work by Selten, Sadrieh, and Abbink (1999),
provide a first step in integrating the study of preference induction into the framework
developed by Camerer and Hogarth (1999). In the preference reversal context, our results
shed light on causes of preference reversal. Our results are most consistent with the idea
that choices under incentives that induce risk preferences are the result of maximization
with errors, what we will call “noisy maximization.” In theory, inducing risk neutrality
should make subjects indifferent between the gambles we use, while inducing risk aversion
or risk loving preferences should result in a clear preference for one gamble or the other. On
average, observed choices and prices are consistent with this. However, there is apparent
noise, or response variance, that causes reversals. The rate and pattern of these reversals
change with the induced risk preferences in a manner consistent with noisy maximization.

In the next section, we describe risk preference induction, preference reversals and their
joint study. Then, we describe our experimental methods and procedures. Next, we present
our results and end with conclusions and discussion.

1. Risk preference induction and preference reversals

1.1. Inducing risk preferences

In theory, inducing risk preferences (Berg et al., 1986; Roth and Malouf, 1979) lets ex-
perimenters test virtually any prediction that is derived from expected utility theory.3 The
experimenter does not need to know each subject’s native utility function. Instead, the exper-
imenter pays subjects using an artificial commodity that is later converted into the probability
of winning a prize. If subjects make choices consistent with expected utility maximization
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and prefer more money to less, then this payoff scheme induces subjects to behave as if
they have the (predetermined) risk preferences defined by the conversion function. If the
conversion is concave (convex, linear), then risk aversion (loving, neutrality) is induced in
the artificial commodity.

Early studies on induction (e.g., Berg et al., 1986; Roth and Malouf, 1979) demonstrate
some success using the technique in bargaining games, individual choices and value elici-
tation. However, consistent with Camerer and Hogarth’s (1999) arguments, the relationship
between the technique and behavior appears to be complex. In two person bargaining games,
Roth and Malouf (1979) discuss how knowledge of the other player’s lottery prize levels
and expected values affect the equilibrium achieved. In an individual choice setting, Berg
et al. (1986) report a mean shift in preference that is consistent with predictions, but also
note that there is variation in subject behavior. In first price sealed bid auctions, the tech-
nique predicts well only if the predicted bids under risk induction are adjusted to capture
subjects’ desires to win the auction (Rietz, 1993) and the technique has more predictive
power at the auction price level than at the individual level (Cox and Oaxaca, 1995). In
a recent review article, Berg, Dickhaut, and Rietz (2003) suggest that the performance
of the technique is sensitive to the prior experience of subjects in the task as well as the
magnitude of payoffs: as the opportunity cost of error increases, the performance of the
technique improves. This observation is more fully examined in Prasnikar (2001), who
demonstrates a strong relationship between level of monetary payoffs and performance of
induction.

1.2. The preference reversal task

Figure 1 shows the timeline for the typical subject in a preference reversal experiment (for
example, Lichtenstein and Slovic, 1971). There are six pairs of gambles. First, three pairs
are presented to the subject who must state which gamble in each pair is preferred (in
some studies, indifference is admissible). Then, prices for each gamble in all six pairs are
elicited. Finally, the last three pairs are presented to the subject. The gambles in each pair
have approximately the same expected value as one another. One gamble, the “p-bet,” has a
high probability of winning a low amount while the other, the “$-bet,” has a low probability
of winning a large amount. Grether and Plott (1979) and many subsequent studies add actual
monetary payoffs to the task to accommodate typical economic concerns about the nature
of subject incentives, wealth effects, order effects and other potential confounds.
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states selling 

prices for each 
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Figure 1. Timeline for the typical subject in a preference reversal experiment.
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Reversals, or inconsistencies in the ranking of gambles across these two types of measure-
ment, are typically classified as “predicted” or “unpredicted” reversals. If, within a pair, a
subject chooses the p-bet over the $-bet, but prices the $-bet higher, it is called a “predicted”
reversal. If the $-bet is chosen over the p-bet while the p-bet is priced higher, it is called an
“unpredicted” reversal. Lichtenstein and Slovic (1971) first reported that predicted reversals
significantly outnumber unpredicted reversals. Others confirmed this finding (e.g., Hamm,
1979; Lichtenstein and Slovic, 1971; Schkade and Johnson, 1989). Simply adding real
dollar payoffs to the gambles has little effect (e.g., Lichtenstein and Slovic, 1973; Grether
and Plott, 1979; Reilly, 1982; Berg, Dickhaut, and O’Brien, 1985). Numerous studies have
sought an explanation of the phenomenon (e.g., Goldstein and Einhorn, 1987; Kahneman
and Tversky, 1979; Karni and Safra, 1987; Loomes, Starmer, and Sugden, 1989; Loomes
and Sugden, 1983; Segal, 1988). In addition to replicating and finding the preference rever-
sal result, several authors have tried to eliminate it by instituting a market-like mechanism,
such as arbitraging subjects (Berg, Dickhaut, and O’Brien, 1985) or employing an auction
structure (Cox and Grether, 1996). Such attempts have met with some success. Selten,
Sadrieh, and Abbink (1999) and our study, unlike market-based studies, are designed to
examine whether preference reversal phenomena can be mitigated by attempting to reduce
within and between subject variability by adopting the preference induction technique.

1.3. The preference reversal task with induced preferences

Because we induce risk preferences, our subjects choose between and price gambles with
payoffs in probabilities of winning yet another binary lottery. The second lottery (the in-
duction lottery) pays off in dollars. Induction lotteries can be designed so that all subjects
should choose the same gamble in each pair during the choice task. Further, for a given
gamble in the pricing task, all subjects should state the same value.

How will risk preference induction affect behavior in preference reversal experiments? We
start with the conclusions of Selten, Sadrieh, and Abbink (1999) who study risk preference
induction in settings where behavioral anomalies such as preference reversals are commonly
observed. They conclude:

“Our studies seem to indicate that the subjects’ attitudes towards binary lottery tickets
are not fundamentally different from those towards money. Both kinds of stimuli seem
to be processed in a similar way. This results in similar patterns of behavior. In as far as
there is a difference, it goes in the opposite direction from what would be expected on
the basis of von Neumann-Morgenstern utility theory.”

They draw this conclusion because they observe little or no change in traditional behavioral
biases including “the reference point effect,” “the preference reversal effect,” and “violations
of stochastic dominance” when they induce risk neutrality.

Our study takes a more systematic look at the preference reversal effect when risk pref-
erences are induced. We frame our investigation using three potential explanations for
preference reversals. The first is that subjects make errors, which creates noise that some-
times causes preference reversals. The idea is simple: subjects can make errors in either the
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choice task, the pricing task or both. When subjects are nearly indifferent between gambles,
even small errors could produce reversals. And, for a given propensity for error, the closer
subjects are to indifference, the greater the reversal rate. We call this explanation the “noisy
maximization” hypothesis.

A primary objection to the noisy maximization hypothesis is the commonly observed pat-
tern of more p-bet (“predicted”) than $-bet (“unpredicted”) reversals. To explain this pattern,
researchers (e.g., Bostic, Herrnstein, and Luce, 1990; Tversky, Slovic, and Kahneman, 1990)
have argued for the “compatibility hypothesis.” According to the argument, reversals result
from a tendency for the unit of assessment to influence the outcomes of judgment tasks. In
pricing tasks, subjects evaluate the gambles in terms of money, which is compatible with the
payoffs of the lottery and this compatibility focuses subjects on the possible payoffs of the
gambles. In choice tasks, no such compatibility exists.4 Thus, the compatibility hypothesis
predicts a stronger preference for $-bets in the pricing task than in the choice task, resulting
in systematic p-bet reversals.

Risk preference induction can help distinguish between these potential explanations. If
induction does create the intended preferences, then we can create either known indifference
across gambles or clear preferences across gambles. Inducing risk neutrality would then
allow us to investigate the pattern of reversals when there is no preference across gambles.
In contrast, inducing risk aversion would make all subjects prefer the lower variance p-bet.
Similarly, inducing risk loving would make all subjects prefer the higher variance $-bet. If
the noisy maximization hypothesis holds, moving subjects away from indifference should
decrease the probability that small errors will result in reversals.

However, risk preference induction could introduce more response variance (noise),
resulting in an increase in the reversal rate. Induction depends on the reduction of compound
lotteries, an assumption of expected utility theory. Luce (2000, pp. 46–47), among others,
argues that subject behavior does not conform to the compound lottery axiom. If so, or if
subjects find the increased complexity of induction burdensome, the frequency of errors
may rise. When subjects are nearly indifferent between gambles, this increase in error rate
could result in increased reversals. Further, if subjects cannot reduce compound lotteries,
inducing risk aversion and risk loving will not reliably create a preference for one gamble
or the other. Thus, induction may actually increase reversals arising from errors.

Finally, if the compatibility hypothesis captures the underlying cause of reversals, then
induction may have no effect on reversals at all. Tversky, Slovic, and Kahneman (1990,
p. 211) state the compatibility hypothesis as follows:

“The weight of any aspect (for example, probability, payoff) of an object of evaluation
is enhanced by compatibility with the response (for example, choice, pricing).”

Compatibility exists in the usual pricing task because gamble payoffs are expressed in
dollars and prices are also expressed in dollars. Thus, Tversky, Slovic, and Kahneman
(1990, p. 211) argue compatibility implies that “payoffs will be weighted more heavily
in pricing than in choice.” Under preference induction, gamble payoffs are expressed in
terms of “points” and prices are also expressed in terms of points. Thus, the payoff/pricing
compatibility effect should be the same under risk preference induction as under monetary
payoffs.
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To study the competing hypotheses, we induce risk averse, risk neutral and risk loving
preferences. Noisy maximization and the compatibility hypothesis make different predic-
tions under these three conditions. If the noisy maximization hypothesis accounts for pref-
erence reversals, inducing risk neutrality should result in a high reversal rate (because the
cost of error in the choice task is low when subjects are nearly indifferent between gambles),
but no systematic pattern of reversals. Inducing risk aversion results in a strict preference
for the p-bet, so reversal rates should decrease (the opportunity cost of error increases).
Further, the reversal rate conditional on choosing the p-bet should be low (because the p-bet
should be preferred) while the reversal rate conditional on choosing the $-bet should be high
(reflecting corrections of errors in choice). Inducing risk loving results in a strict preference
for the $-bet, so reversal rates should decrease (the opportunity cost of error increases).
Further, the reversal rate conditional on choosing the $-bet should be low (because the $-bet
should be preferred) while the reversal rate conditional on choosing the p-bet should be
high (reflecting corrections of errors in choice).

If the compatibility hypothesis explains preference reversals, we should observe little if
any effect on reversal rates or the pattern of reversals under all three conditions. However,
because the risk induction technique may affect preferences in the choice task, examining
the pattern of reversals will require that we examine conditional reversal rates rather than
absolute reversal rates. The compatibility hypothesis predicts that the reversal rate condi-
tional on choosing the p-bet will be higher than the reversal rate conditional on choosing
the $-bet across all of our conditions.

Finally, if subjects cannot reduce compound lotteries, we should find no systematic
results in our data. Error rates and, hence, reversals, could rise in all three of our settings,
consistent with the apparently less rational behavior documented in Selten, Sadrieh, and
Abbink (1999).

2. Methods and procedures

2.1. Task description

In our study, as in traditional preference reversal experiments, subjects make 18 decisions:
3 paired choice decisions, followed by 12 pricing decisions, followed by the 3 remaining
paired choice decisions. Traditionally, when the experiment incorporates monetary rewards,
one of the 18 decisions is picked randomly and payoffs are determined by the outcome of
that decision. In our experiments, each decision results in a payoff. The subject receives
points based on the outcome of the decision and those points determine a lottery that is
played immediately for a monetary prize.5

The payoffs for gambles in our study are stated in units of an artificial commodity, points,
which have no value outside the experiment. We use six pairs of gambles, where gambles
within a pair have the same expected point payoff. These gambles are shown in Table 1.

Value is induced on points via a transformation function (call this G) that converts points
into the probability of winning the monetary prize. Subjects do not see the algebraic form
of this function. Instead, as in Berg et al. (1986), the transformation function is presented
to subjects in the form of a “prize wheel” that is used to determine whether they win the
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Table 1. Pairs of gambles used in the experiment.

Expected Risk Risk
points (risk averse loving

Probability Points Points neutral certainty certainty certainty
Pair Type of winning if win if lose equivalent) equivalent equivalent

1 P

$

35/36

11/36

9

27

2

1

8.81

8.94

8.71

4.09

8.86

17.33

2 P

$

33/36

9/36

14

40

2

4

13.00

13.00

12.13

6.56

13.43
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$
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15
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14.89

14.67

14.88

7.55
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0
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39
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24.82
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25.15
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$
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3

5
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Figure 2. Timeline for the paired choice task with induced risk preferences.

monetary prize. In this way, all subjects see the transformation function before they make
any decisions.

Figure 2 shows the timeline for implementing the induction procedure in a paired choice
decision. Berg et al. (1986) have shown that, when this reward mechanism is used, a subject
who is an expected utility maximizer will act as if he has a utility function specified by G
for experimental points.6 Wealth effects do not affect the preferences induced. As long as
outcomes from choices are independent, the inducing technique will induce the same risk
preferences on each choice in a sequence.

In the paired choice task, the subject is predicted to choose the gamble that maximizes
the probability of winning the monetary prize given the transformation function specified
by the experimenter. If the transformation function converting points to the probability of
winning the preferred prize is concave, then the subject will behave as if risk averse in
experimental points. If the transformation function is convex, then the subject will behave
as if risk loving in experimental points. If the transformation function is linear, then the
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Figure 3. Timeline for the pricing task with induced risk preferences.

subject will behave as if risk neutral. Thus, our design creates three types of subjects: those
that are risk averse and should prefer the p-bet, those that are risk loving and should prefer
the $-bet and those that are risk neutral and should be indifferent between the two bets.

A similar modification of the traditional preference reversal task is made in the pricing
decision. Figure 3 shows the timeline for a typical pricing decision with induced risk
preferences.

As in the paired choice task, subjects are predicted to make a decision (in this case, state
a point value) that maximizes the probability of winning the monetary prize. In theory,
this stated value should be the certainty equivalent of the gamble under the utility function
induced by G. Because we restrict subjects to state an integer value, subjects in our experi-
ment are predicted to round prices to the highest integer less than the certainty equivalent
of the gamble.

2.2. Risk preferences induced

Our design varies both the risk preferences induced and the level of monetary incentives.
Subjects were induced to be either risk averse with G(w) = −e−0.11w, risk loving with
G(w) = e0.11w or risk neutral with G(w) = w, where w represents the number of points
earned in the task.7 The induced certainty equivalents for each gamble are shown in Ta-
ble 1. Monetary prizes were varied so that each risk group contained two subgroups: one
with low monetary incentives and one with high monetary incentives. In the low incen-
tives conditions, the risk averse group’s prizes were $1, the risk loving group’s prizes
were $3 and the risk neutral group’s prizes were $2. In the high incentives conditions,
monetary prizes were doubled: the risk averse group’s prizes were $2, the risk loving
group’s prizes were $6 and the risk neutral group’s prizes were $4. Within an incentive level
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treatment, these prizes result in approximately equal expected payoffs across induction
treatments.

Subjects in these experiments consisted primarily of undergraduate students enrolled in
business school classes at the University of Iowa and the University of Minnesota. The
experiments were run in several sessions with students randomly assigned to one of the six
treatment groups (high and low incentives with induced risk aversion, risk loving and risk
neutral preferences).

3. Predictions and results

3.1. Predictions

Because there are no wealth effects in experimental points associated with a reward structure
that transforms points to lotteries, whenever the same transformation function is used in
the paired choice task and the pricing task, choices in the paired choice task and stated
values in the pricing task should be consistent: subjects should choose the gamble with the
highest certainty equivalent in the pair and price the gambles according to their certainty
equivalents. Therefore, when risk averse or risk loving preferences are induced, subjects
should exhibit no preference reversals if they maximize expected utility (or other criteria
linear in probabilities, as discussed in footnote 6).

Camerer and Hogarth (1999) suggest that things will not be so simple. In general, incen-
tives have complex effects: sometimes affecting the mean response, sometimes response
variance, sometimes both, sometimes in complex ways. We hypothesize that induction will
display similar complexity.

First consider the noisy maximization hypothesis (that preference reversals are caused
by subjects who are nearly indifferent between gambles and make errors). For our gambles,
inducing risk neutrality should make the subjects nearly indifferent between gambles in a
pair because those gambles have nearly identical expected values. As a result, any choice
pattern is consistent with the induced preferences. While prices should be equal for gambles
in a pair, small random errors would lead to differences in prices and, as a result, possibly
high apparent reversal rates. Further, if these reversals do result from random error, then
there is no reason to expect that there will be more predicted than unpredicted reversals. In
contrast, inducing risk averse or risk loving preferences creates a clear difference between
the gambles, so we should see fewer reversals when such preferences are induced. Moreover,
those reversals should display clear patterns that differ across the two risk groups. When
risk aversion is induced, a stated preference for the $-bet is truly a response error. This
means that the conditional reversal rate for subjects who choose the $-bet should be high,
while the conditional reversal rate for subjects who choose the p-bet should be low. The
opposite is true for the risk loving group. In this case, a stated preference for the p-bet is a
response error, so the conditional reversal rate should be high for p-bet choices and low for
$-bet choices.

Now consider the compatibility hypothesis. Under this hypothesis, there will be a ten-
dency to overweight point payoffs in the pricing task, resulting in $-bets being priced
relatively higher. This will result in reversals, particularly if subjects are nearly indifferent
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in the paired choice task. So, we predict reversal rates in our risk neutral condition that
are consistent with other preference reversal experiments. Because risk aversion and risk
loving induce clear preferences across the gambles, we make no prediction about the over-
all level of reversals in those treatments. However, the compatibility hypothesis does make
predictions about the pattern of reversals that we should observe. Because $-bets tend to be
overpriced, we should observe higher conditional reversal rates for p-bet choices than for
$-bet choices in all three of our risk preference conditions.

Finally, consider the effect of a general failure of the compound lottery axiom. Such a
failure would increase response errors and, likely, increase reversal rates. Evidence of clear
shifts in preference across induction treatments would be evidence against the failure of the
compound lottery axiom.

3.2. Overview of results

Our evidence is most consistent with the noisy maximization hypothesis. Although inducing
risk neutral preferences results in reversal rates that are similar to the previous literature, the
systematic pattern of more “predicted” than “unpredicted” reversals is eliminated. Instead,
conditional error rates in this setting are nearly identical. Inducing risk averse preferences
not only significantly decreases the reversal rate, but it also produces a pattern of reversals
opposite of that predicted by the compatibility hypothesis. The conditional reversal rate
is higher for $-bet choices than for p-bet choices. Inducing risk loving preferences clearly
shifts preferences toward the $-bet. While reversal rates do not fall dramatically, risk lov-
ing results in more unpredicted than predicted reversals overall. Nevertheless, the condi-
tional reversal rate for p-bet choices is higher than for $-bet choices, as predicted by noisy
maximization.

3.3. Reversal rates

For comparison, we first present a subject level analysis summarizing reversal rates across
subjects (as in Selten, Sadrieh, and Abbink, 1999) and then present a decision level analysis
summarizing reversal rates across decisions (as in Lichtenstein and Slovic, 1971; Grether
and Plott, 1979).

3.3.1. Subject level data. Table 2 shows the comparison between the Selten, Sadrieh, and
Abbink (1999) data and our data when the subject is the unit of analysis.8 Selten, Sadrieh,
and Abbink classify subjects into one of four categories: (1) no reversals, (2) more predicted
than unpredicted reversals, (3) more unpredicted than predicted reversals, (4) equal number
of predicted and unpredicted reversals. We present our data summarized in the same way.
This results in four data sets under induced risk neutrality. Our data sets differ by the level
of payoffs. Selten, Sadrieh, and Abbink’s differ by the amount of information available to
subjects.9 We also have two data sets each under induced risk aversion and induced risk
loving, differing by the level of payoffs.

Table 2, Panel A, shows several striking differences between the sets of data. First, in-
ducing risk aversion significantly increases the number of subjects who display no reversals
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at all (43% of subjects overall under risk aversion versus 13 and 14% under risk neutrality
and risk loving preferences, respectively). Second, our data show significant reductions in
predicted reversals across the board. In our data, the percentage of subjects who display
more predicted than unpredicted reversals is 28% overall relative to Selten, Sadrieh, and
Abbink’s (1999) 72% overall. Third, inducing risk loving preferences significantly increases
the number of subjects who display more unpredicted than predicted reversals (57% overall
under risk loving versus 21% under risk neutrality10 and 17% under risk aversion). The χ2

tests in Table 2, Panel B show frequent significant differences across induction treatments
(risk neutral versus risk aversion versus risk loving) and show no significant differences
across the type of information presented to subjects (Selten, Sadrieh, and Abbink, 1999) or
the level of incentives alone (in our experiments). Thus, inducing different preferences has
a decided effect on the patterns of choice. Most striking is the reversal of the normal pattern
of reversals (from mostly predicted to mostly unpredicted) as one moves from inducing risk
aversion to inducing risk loving preferences.

3.3.2. Decision level data. Traditionally, psychologists and economists (e.g.,
Lichtenstein and Slovic, 1971; Grether and Plott, 1979) have reported overall response
rates. Specifically, using individual decisions for gamble pairs as the unit of measure,
they present the percentages of non-reversals, predicted reversals and unpredicted
reversals.

Table 3, Panel A contrasts results from the Lichtenstein and Slovic (1971) experiment
with incentives, the Grether and Plott (1979) experiments with incentives, Selten, Sadrieh,
and Abbink’s (1999) experiments and ours. Again, there are striking differences. First, the
overall reversal rate (the sum of the “predicted” and “unpredicted” reversal rates) across
the Lichtenstein and Slovic and Grether and Plott treatments remains remarkably constant
(ranging from 33 to 37%) across differences in value elicitation methods. The Selten,
Sadrieh, and Abbink treatments result in slightly lower reversal rates (from 21 to 33%).
The reversal rates in our risk neutral and risk loving treatments fall within the range of the
other research (ranging from 24 to 36%). However, the systematic pattern of “predicted”
reversals disappears when risk neutrality is induced. The pattern is reversed (with more
“unpredicted” than “predicted” reversals) when risk loving preferences are induced. Our
risk averse treatments result in significantly lower reversal rates (16% and 16%) compared
to all other treatments.

Table 3, Panel B presents χ2 tests for differences in reversal rates across the studies shown
in Panel A (the italicized cells indicate comparisons between treatments in the same study).
These tests show no significant differences as a result of implementing incentive compatible
monetary incentives (Grether and Plott, Experiment 1), changing the means of eliciting
values (Grether and Plott, Experiment 2), changing from monetary incentives to induced
risk neutrality (Selten, Sadrieh, and Abbink monetary versus binary lottery treatments)
or changing information structure (Selten, Sadrieh, and Abbink summary statistics versus
none). In our data, there is only one significant difference between high and low incentive
levels (under induced risk neutrality). The primary within study effect in our data is the
clear significance of changing from induced risk aversion, to risk neutrality, to induced risk
loving preferences.
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Across studies, we see that Lichtenstein and Slovic’s results do not differ from any of
the Grether and Plott treatments or from three of the four Selten, Sadrieh, and Abbink
treatments. However, there are also differences across studies. Some of these differences
are expected. For example, we expect other treatments to differ significantly from our
induced risk aversion and induced risk loving preferences. We cannot explain why
Selten, Sadrieh, and Abbink’s monetary treatments differ significantly from Grether
and Plott’s monetary treatments while their induced risk preference treatments do
not.

3.3.3. Conditional reversal rates. Even more striking evidence on the effects of induc-
tion comes from examining conditional reversal rates. Table 4 gives the entire pattern of
responses for our data and allows the calculation of conditional reversal rates.

In the risk neutral treatment, p-bet choices displayed reversals 27% of the time while
$-bet choices displayed reversals 37% of the time. These conditional rates do not differ
significantly from each other at the 95% level of confidence (Pearson’s χ2(1) = 3.31).
The data in this treatment are consistent with subjects being on average indifferent across
gambles. Consistent choice and pricing preference for the p-bet happens 36% of the time,
while consistent choice and pricing preferences for the $-bet happens 27% of the time.11

In addition, indifference between the gambles is indicated by one or both metrics 19%
of the time. This evidence is consistent with weak if any preferences across the bets.
With weak preferences, high reversal rates can be caused by relatively small response
variance.

In the risk averse treatment, p-bet choices displayed reversals 11% of the time while $-bet
choices displayed reversals 76% of the time. These conditional rates differ significantly from
each other at the 95% level of confidence (Pearson’s χ2(1) = 61.38). The p-bet was chosen
and priced (weakly) higher than the $-bet 82% of the time, while the $-bet was chosen and
priced (weakly) higher only 2% of the time. This evidence is consistent with preferences
for the p-bet and small error rates.

In the risk loving treatment, p-bet choices displayed reversals 59% of the time while $-bet
choices displayed reversals 30% of the time. These conditional rates differ significantly from
each other at the 95% level of confidence (Pearson’s χ2(1) = 13.03). Consistent choice and
pricing responses occurred just under 60% of the time for $-bets, compared to a rate of 6%
for p-bets. This evidence is consistent with preferences for the $-bet and somewhat larger
error rates than in the risk averse treatment.

Figure 4 shows the conditional error rates under each treatment along with confidence
intervals derived from the normal approximation to the binomial distribution for each.
Within treatment differences in conditional error rates are consistent with the χ2 statistics
discussed above.12 The reversal patterns across treatments also differ significantly from
each other. Consider the difference in conditional reversal rates defined as the reversal
rate conditional on choosing the p-bet (i.e., predicted reversals) minus the rate conditional
on choosing the $-bet (i.e., unpredicted reversals). The difference in conditional reversal
rates under risk loving (29.0%) is significantly higher than under risk neutrality (−10.2%,
with a z-statistic of 3.92) and significantly higher than under risk aversion (−65.1%, with
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Table 4. Choice task versus pricing task outcomes.

P-Bet $-Bet Indifference in
priced higher priced higher the pricing task

Panel A: Risk averse preferences
P-Bet chosen 226 29 6

80.1%* 10.3% 2.1%

(82.2%)∗ (10.5%)

$-Bet chosen 16 4 1

5.7% 1.4% 0.4%

(5.8%) (1.5%)

Indifference in the choice task 0 0 0

0.0% 0.0% 0.0%

Panel B: Risk neutral preferences

P-Bet chosen 95 40 12

31.7% 13.3% 4.0%

(38.9%) (16.4%)

$-Bet chosen 49 60 22

16.3% 20.0% 7.3%

(20.1%) (24.6%)

Indifference in the choice task 6 8 8

2.0% 2.7% 2.7%

Panel C: Risk loving preferences

P-Bet chosen 12 24 5

4.3% 8.7% 1.8%

(4.9%) (9.7%)

$-Bet chosen 68 143 19

24.6% 51.8% 6.9%

(27.5%) (57.9%)

Indifference in the choice task 1 3 1
0.4% 1.1% 0.4%

∗Percentages of total responses appear in italics.
∗∗Percentages of non-indifference responses appear in parentheses ().

a z-statistic of 7.47). The difference in conditional reversal rates under risk neutrality is
significantly higher than under risk aversion (−10.2% versus −65.1%, with a z-statistic of
4.98).

Thus, the conditional reversal rate evidence is consistent with the predictions of the noisy
maximization hypothesis and inconsistent with the compatibility hypothesis.
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Figure 4. Conditional reversal rates across treatments and 95% confidence intervals.

3.4. Evidence from certainty equivalents

Comparing the certainty equivalents of each gamble with the prices given by subjects
for the gambles provides additional evidence for the noisy maximization hypothesis. If
induction worked perfectly, then the price for each gamble should equal its certainty equiv-
alent. Figure 5 shows the 25th percentile, median and 75th percentile prices submitted
for each gamble along with that gamble’s certainty equivalent for each risk preference
treatment.13 With few exceptions, the graphs show distributions of prices that, on aver-
age, fall close to the induced certainty equivalents with some noise. Consistent with a
higher reversal rate, the noise appears greatest under risk loving. On average, subjects
over-priced gambles by 2.77 points under risk neutrality, over-priced by 1.44 points under
risk aversion and under-priced by 2.00 points under risk loving preferences. The average
(across gambles) standard deviation in stated prices was 5.95 points under risk aversion,
6.50 under risk neutrality and 8.57 under risk loving preferences. The average (across
gambles) absolute distance between the certainty equivalent and the average price was
0.44 standard deviations under risk aversion, 0.31 standard deviations under risk neu-
trality 0.40 standard deviations under risk loving preferences. Thus, overall, the prices
submitted by subjects are consistent with inducing the theoretical preferences with some
noise.
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Figure 5. Certainty equivalents and prices for gambles; Panel A: Risk averse treatment, Panel B: Risk neutral
treatment, and Panel C: Risk loving treatment. (Continued on next page.)
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Figure 5. (Continued ).

3.5. The two-error rate model

Perfect performance of the induction technique in the preference reversal task would imply
that there would be no reversals in the risk averse and risk loving data. Table 2 shows this
is not the case. The evidence presented so far suggests that individuals generally follow
an expected utility maximization model but are subject to response variance or noise.
Lichtenstein and Slovic (1971) first introduced this idea using a “two-error rate” formulation.
However, the model failed to fit their data, leading them to conclude that the reversals they
saw were systematic rather than random deviations from expected utility theory. If induction
eliminates the systematic nature of errors, we should be able to use their model to explain
our data.

To develop the model, let “q” represent the percentage of subjects who prefer the p-bet
according to their underlying preference ordering for gambles, “r” represent the error rate
in the choice task and “s” represent the error rate in the pricing task.14 If we assume that
errors in the choice task and the pricing task are random (that is, error rates do not differ
across bets or subjects) and independent (that is, making an error in the choice task does not
affect the probability of making an error in the pricing task), then the pattern of observations
generated in a preference reversal experiment should conform to Figure 6, where a, b, c and
d represent the percentage of observations that fall in each cell. The four cells represent all
combinations of preferences indicated by the choice and the pricing tasks for a particular
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where: 
q = percentage of subjects whose underlying 

preference ordering ranks the P-Bet higher 
r = error rate in the paired-choice task 
s = error rate in the pricing task 

Figure 6. Two-error rate model.

pair of gambles: (a) the proportion of comparisons where the p-bet was both chosen and
priced higher than the $-bet, (b) the proportion where the p-bet was chosen but the $-bet
was priced higher (c) the proportion where the $-bet was chosen but the p-bet was priced
higher and (d) the proportion where the $-bet was chosen and priced higher.

If behavior conforms to the two-error rate model, then these proportions are also functions
of q , r and s as defined in Figure 6. Solving for q, r and s gives the following equations.15

q(1 − q) = ad − bc

(a + d) − (b + c)
. (1)

r = (a + b − q)/(1 − 2q) (2)

and

s = (a + c − q)/(1 − 2q). (3)

There are at most two sets of parameters that satisfy these equations. In one set, the estimated
percentage of subjects that prefer the p-bet is consistent with risk aversion (that is, q̂ > .5).
The other set is consistent with risk loving (q̂ < .5).16 In our analysis, we assume when we
induce risk aversion (loving) q will be greater (less) than 0.5.

Table 5 shows the overall reversal rates for each data set along with estimates of q, r and
s. The Selten, Sadrieh, and Abbink (1999) data differs a bit from the rest of the data because
half of their p-bets have a significantly higher expected value than the $-bets and half have
a significantly lower expected value. So, we would hypothesize q’s close to 0.5 for this
data. The two-error-rate model estimates are consistent with this hypothesis. The estimate
of q is 0.5 when q(1 − q) = (ad − bc)/(a − b − c + d) = 0.25. In Selten, Sadrieh, and
Abbink’s binary lottery treatment with feedback on statistics, q cannot be estimated because
q(1 − q) = 0.28. In their other treatments q is estimated to be 0.68, 0.69 and 0.50 exactly.
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Table 5. Reversal rates, estimated preference rates and estimated error rates from the two-error rate model∗.

Estimated q Estimated r Estimated s
Data set Reversal (Preference (Error rate in (Error rate in

Study description rate∗ (%) for p-bet) choice task) pricing task)

Lichtenstein and
Slovic (1971)

Experiment 3 Incentives 37 No real root NA NA

Grether and Plott
(1979)

Experiment 1 Incentives 35 0.88 0.68 0.92

Experiment 2 Selling Prices 37 0.84 0.68 0.87

Experiment 2 Equivalents 38 0.90 0.65 0.90

Selten, Sadrieh, and
Abbink (1999)

Monetary 22 0.68 0.77 1.03

Monetary with summary 25 0.50 NA** NA**
statistics

Risk neutral 30 0.69 0.67 1.10

Risk neutral with 34 No real root NA** NA**
summary statistics

Berg, Dickhaut, and
Rietz

Risk averse high incentives 16 0.99 0.07 0.11

Risk averse low incentives 17 0.99 0.06 0.12

Risk neutral high incentives 40 0.66 0.34 0.18

Risk neutral low incentives 32 0.61 0.24 0.15

Risk loving high incentives 33 0.07 0.11 0.28

Risk loving low incentives 41 −0.10∗∗∗ 0.19 0.36

∗For experiments in which subjects were permitted to respond “indifferent,” percentage reversals is calculated
using only non-indifference responses.
∗∗Estimates for r and s are undefined when the estimated q is 0.50.
∗∗∗Sampling error can produce negative estimated probability values outside of the valid zero to one range when
the true q is close to the limits.

In our risk neutral treatment, we would expect q to be close to 0.5 if subjects choose
randomly because the gambles have approximately the same expected value (a maximum
difference of $0.011 after taking the induction lottery into account). As in the Selten, Sadrieh,
and Abbink data, subjects show a slight preference for the p-bet, with estimated q’s of 0.66
and 0.61.

In our risk averse and risk loving treatments, the model’s estimates suggest that subjects
have a strong preference for one type of bet or another (all the estimates of q are near 0 or
1). If the induction technique worked perfectly, q should be 1 for risk averse preferences
(in our data it is estimated at 0.99 and 0.99) and q should be 0 for risk loving preferences
(in our data it is estimated at −0.10 and 0.07).17

The implied task error rates are striking.18 With induced risk neutrality, the subjects are
essentially indifferent between gambles. We would expect any randomness due to errors or
biases to generate high reversal rates because small effects can easily swing preferences of
nearly indifferent subjects between gambles. In the data without induction or when Selten,
Sadrieh, and Abbink induce risk neutrality, the choice task error rate (r ), the pricing task
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error rate (s) or both need to exceed 67% to fit the data. In stark contrast, when we induce risk
neutrality on equal expected value gambles, the estimated task error rates fall dramatically
(to 34% or below).19 When we induce risk loving, estimated error rates are 36% or below.
Most dramatically, when we induce risk averse preferences, both error rates fall to 12% or
below.

4. Conclusions

Preference reversal tasks traditionally have been used to demonstrate the failure of expected
utility theory. We show that, by altering the incentive mechanism, it is possible to alter the
preference reversal phenomenon, providing data that suggests subjects maximize expected
utility with errors. This is accomplished by using the risk preference induction technique,
which itself depends on expected utility maximization (or at least the ability to reduce
compound lotteries).

What is the best interpretation of these results along with those from the prior literature?
We believe that extending Camerer and Hogarth’s (1999) ideas to inducing preferences
provides an explanation. Camerer and Hogarth differentiate the effects of incentives on mean
behavior from the effect on variance of behavior. A similar distinction helps differentiate the
effects of induction. The intended effect of induction is to create uniformly risk neutral, risk
averse or risk loving preferences. That is, induction is intended to change mean behavior. But,
the induction process increases the number of steps subjects must undertake to perform the
task and therefore increases task difficulty. With induction, subjects must reduce compound
lotteries as well as make choices in the economic context under study. This can add noise to
responses. Selten, Sadrieh, and Abbink (1999) argue that “background risk” (the increased
variance of ultimate payoffs resulting from using a lottery) increases the number of expected
utility violations. Again, the argument is that the lottery mechanism can add noise. In other
words, induction can also change the response variance in the data.

If subjects are already approximately risk neutral, then the observable effects of inducing
risk neutrality could all lie in the increase in response variance. Inducing risk neutrality
should result in near indifference across gambles and, in fact, subjects do not display strong
preferences across gambles. Subjects should price each gamble in a pair the same. While
they do so on average, there is considerable variance. This response “noise” results in
reversals at about the same rate as in prior literature. However, the usual pattern of more
predicted than unpredicted reversals disappears under induced risk neutrality. Choices and
reversal patterns seem consistent with purely random errors.

If one induces risk aversion in subjects who are largely risk neutral, then one should
observe a change in the typical responses (i.e., a change in mean behavior) that can swamp
any increase in response variance that results. That is, inducing risk aversion should result in
a strong preference for the less risky p-bet and higher prices for the p-bet. Indeed, subjects
generally choose the p-bet. While prices equal the induced certainty equivalents on average,
there is noise. The strength of preference overcomes the noise on average leading to few
reversals. When reversals occur, conditional rates are consistent with noise causing them.
When subjects choose the less risky p-bet (which they should prefer), they seldom reverse.
When they choose the more risky $-bet (an apparent mistake) they frequently reverse.
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Similarly, if one induces risk loving in subjects who are largely risk neutral, then one
should observe a change in the typical responses (i.e., a change in mean behavior) that can
swamp any increase in response variance that results. That is, inducing risk loving should
result in a strong preference for the more risky $-bet and higher prices for the $-bet. Indeed,
subjects generally choose the $-bet. While prices equal the induced certainty equivalents
on average, there is noise. The strength of preference does not overcome the noise as easily
as in the risk averse case. The result is a higher reversal rate. Nevertheless, when reversals
occur, conditional rates are consistent with noise causing them. When subjects choose the
more risky $-bet (which they should prefer), they seldom reverse. When they choose the
less risky p-bet (an apparent mistake) they frequently reverse.

Far from dismissing preference induction, as Selten, Sadrieh, and Abbink (1999) would
have us do, the evidence calls for much more research to fully understand the tradeoffs
and expected effects of using risk preference induction in experiments. Further study
on incentive levels, types of induced risk preferences and other variations of the risk
preference technique will be useful in understanding the tradeoffs involved in using the
technique.

Appendix: Instructions20

This is an experiment in individual decision making. As a participant in this experiment,
you will have opportunities to play for eighteen $4.00 prizes. Whether or not you receive
a particular $4.00 prize will be determined by spinning the spinner on your prize wheel. If
the spinner stops in the area designated as the WIN area on your prize wheel, then you will
receive the $4.00 prize. If the spinner stops in the area outside the WIN area, then you will
receive nothing.

For example, suppose the WIN area of your prize wheel is designated as 0 through 5.
Then, if the spinner stops on a number less than or equal to 5, you will receive the $4.00
prize. If the spinner stops on a number greater than 5, you will receive nothing. Although
the WIN area on your prize wheel will vary, it will always be determined by starting at zero
and moving clockwise.

Now suppose that the WIN area on your prize wheel is designated as 0 through 30. Please
spin the spinner to determine whether you would have received the $4.00 prize or not.

So far, you have discovered that a spin on your prize wheel will determine whether or
not you receive a $4.00 prize. However, you need to know how the WIN area on your
prize wheel is determined before you can complete the experiment. The markings on the
circumference of your prize wheel denote points, and you will receive points for making
decisions. There are 18 decision items in this experiment. When a decision is made, the
WIN area on your prize wheel will be designated as the area between 0 and the number of
points you receive as a result of the decision. Then the spinner on your prize wheel will
be spun to determine whether you receive the $4.00 prize. Points do not accumulate from
decision to decision.

Each decision you make will involve one or more bets. These bets will be indicated by pie
charts as shown below. When a bet is played, one ball will be drawn from a bingo cage that
contains 36 red balls numbered 1, 2, . . . , 36. The ball drawn determines the point outcome
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of the bet. This point outcome will designate the upper boundary of the WIN area on your
prize wheel. For example, suppose you are playing the bet below. If the red ball drawn was
less than or equal to 10, you would receive 30 points. If the red ball drawn was greater than
10, you would receive 5 points.

Now let’s use the bet shown below as a practice item.

5 
points

30 
points

9

18

10

27

36

The number that the experimenter drew from the cage of red balls is .
This means that I would receive points as a result of this bet.
Therefore the WIN area on my prize wheel is designated as 0 through .
Now, spin the spinner. As a result of my spin I would have received $4.00/nothing (circle

the correct word).
{Page break.}

Part 1:
In this part you will be asked to consider several pairs of bets. For each pair you should

indicate which bet you prefer to play or indicate that you are indifferent between them. After
each decision, you will have an opportunity to play for a $4.00 prize using the following
procedure:

1. The bet you indicate as preferred will be played and you will receive the points indicated
by its outcome. If you check “Indifferent” the bet you play will be determined by a coin
toss.

2. The WIN area of your prize wheel will be designated as the area from 0 through the
number of points which you have received. You will spin the spinner to determine
whether you win the $4.00 prize.

{Three paired choice tasks follow.}
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Part 2:
In this part you are given several opportunities to play bets to obtain points. For each bet

you must indicate the smallest number of points for which you would give up the opportunity
to play the bet.

After each decision, you will have an opportunity to play for a $4.00 prize using the
following procedure:

1. A ball will be drawn from a bingo cage containing 41 green balls numbered 0, 1, 2, . . . , 40.
If the number on this green ball is less than or equal to the number you have specified,
you will keep the bet and play it. You will receive the points indicated by the outcome of
the bet. If the number on the green ball is greater than the number you have specified, you
will give up the bet and in exchange receive the points equal to the number on the ball.

2. The WIN area of your prize wheel will be designated as the area from 0 through the num-
ber of points which you have received. You will spin the spinner to determine whether
you win the $4.00 prize.

It is in your best interest to be accurate; that is, the best thing you can do is be honest. If
the number of points you state is too high or too low, then you are passing up opportunities
that you prefer. For example, suppose you would be willing to give up the bet for 20 points
but instead you say that the lowest amount for which you would give it up is 30 points. If
the green ball drawn at random is between the two (for example 25) you would be forced
to play the bet even though you would rather have given it up for 25 points.

On the other hand, suppose that you would give it up for 20 points but not for less, but
instead you state your amount as 10 points. If the green ball drawn at random is between
the two (for example 15) you would be forced to give up the bet for 15 points even though
at that amount you would prefer to play it. {Page break.}
Practice Item 1: Suppose you have the opportunity to play the bet shown below. What is
the smallest number of points for which you would give up this opportunity? Remember
that the WIN area on your prize wheel will be designated as the area from 0 through the
number of points you receive as a result of your decision.

5 
points

30 
points

9

18

10

27

36
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Decision .
In order to determine the WIN area on your prize wheel which results from this decision,

you need to know two things:

(1) The ball drawn from the cage of green balls.
(2) The ball drawn from the cage of red balls.

The two examples in this practice item fix these draws so that you can concentrate on how
your decision and the results of the draws will determine your WIN area.

{Page break.}
Example 1: Use your decision in the Practice Item 1 and suppose the green ball drawn at
random is 2.

The number on the green ball is (a) greater than my indicated amount.
(b) less than or equal to my indicated amount.

Therefore, I would (a) receive points equal to the number on the ball and
not play the bet.

(b) play the bet and receive points according to its
outcome.

Will you be playing the bet? (yes/no) If your answer is YES, you will need to know
the outcome of the bet before you can determine the WIN area of your prize wheel. If
your answer is NO, you do not need to know the outcome of the bet to determine the
WIN area. Suppose the red ball drawn to determine the outcome of the bet was 18.

Based on my point decision above, and the results of the draws from the bingo cages, the
number of points I would have is .

This means that the WIN area of my prize wheel would cover the numbers 0 through .
If the spinner stopped on the number 5, I would (circle the correct words) win/not win the

$4.00 prize.
If the spinner stopped on the number 40, I would (circle the correct words) win/not win

the $4.00 prize.
{Page break.}

Complete this page only if you would have been playing the bet to receive points.
Suppose the red ball drawn to determine the outcome of the bet was 10 instead of 18.
Based on my point decision above, and the results of the draws from the bingo cages, the

number of points I would have is .
This means that the WIN area of my prize wheel would cover the numbers 0 through .
If the spinner stopped on the number 5, I would (circle the correct words) win/not win the

$4.00 prize.
If the spinner stopped on the number 40, I would (circle the correct words) win/not win

the $4.00 prize.
Stop here and wait for the experimenter to tell you to go on to Example 2.

{Page break.}
Example 2: Now use your decision in the Practice Item 1 and suppose instead that the green
ball drawn at random is 38.
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The number on the green ball is (a) greater than my indicated amount.
(b) less than or equal to my indicated amount.

Therefore, I would (a) receive points equal to the number on the ball and
not play the bet.

(b) play the bet and receive points according to its
outcome.

Will you be playing the bet? (yes/no) If your answer is YES, you will need to know
the outcome of the bet before you can determine the WIN area of your prize wheel. If
your answer is NO, you do not need to know the outcome of the bet to determine the
WIN area. Suppose the red ball drawn to determine the outcome of the bet was 18.

Based on my point decision above, and the results of the draws from the bingo cages, the
number of points I would have is .

This means that the WIN area of my prize wheel would cover the numbers 0 through .
If the spinner stopped on the number 5, I would (circle the correct words) win/not win the

$4.00 prize.
If the spinner stopped on the number 40, I would (circle the correct words) win/not win

the $4.00 prize. {Page break.}
Complete this page only if you would have been playing the bet to receive points.
Suppose the red ball drawn to determine the outcome of the bet was 10 instead of 18.
Based on my point decision above, and the results of the draws from the bingo cages, the

number of points I would have is .
This means that the WIN area of my prize wheel would cover the numbers 0 through .
If the spinner stopped on the number 5, I would (circle the correct words) win/not win the

$4.00 prize.
If the spinner stopped on the number 40, I would (circle the correct words) win/not win

the $4.00 prize.
Stop here and wait for the experimenter to tell you to go on to the next practice item.

{Page break.}
Practice Item 2: Suppose you have the opportunity to play the bet shown below. What is
the smallest number of points for which you would give up this opportunity? Remember
that the WIN area on your prize wheel will be designated as the area from 0 through the
number of points you receive as a result of your decision.

0 
points

38 
points 9

18

27

36
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Decision .
The green ball drawn at random is .
The number on this green ball is (a) greater than my indicated amount.

(b) less than or equal to my indicated amount.
Therefore, I would (a) receive points equal to the number on the ball and

not play the bet.
(b) play the bet and receive points according to the

outcome.
The red ball drawn to determine the outcome of the bet was .
Based on my decision above, and the results of the draws from the bingo cages, the number

of points I would have is .
This means that the WIN area of my prize wheel would cover the numbers 0 through .
My spinner stopped on the number .
Therefore I would have (circle the correct words) won/not won the $4.00 prize.

{Page break.}
Practice Item 3: Suppose you have the opportunity to play the bet shown below. What is
the smallest number of points for which you would give up this opportunity? Remember
that the WIN area on your prize wheel will be designated as the area from 0 through the
number of points you receive as a result of your decision.

9 
points

39 
points

9

18

14

27

36

Decision .
The green ball drawn at random is .
The number on this green ball is (a) greater than my indicated amount.

(b) less than or equal to my indicated amount.
Therefore, I would (a) receive points equal to the number on the ball and

not play the bet.
(b) play the bet and receive points according to the

outcome.
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The red ball drawn to determine the outcome of the bet was .
Based on my decision above, and the results of the draws from the bingo cages, the number

of points I would have is .
This means that the WIN area of my prize wheel would cover the numbers 0 through .
My spinner stopped on the number .
Therefore I would have (circle the correct words) won/not won the $4.00 prize.

{Twelve pricing tasks follow.}
Part 3:

This part is exactly like Part 1. You will be asked to consider several pairs of bets, and for
each pair you should indicate which bet you prefer to play or indicate that you are indifferent
between them. After each decision, you will then have an opportunity to play for a $4.00
prize using the following procedure:

1. The bet you indicate as preferred will be played and you will receive the points indicated
by its outcome. If you check “Indifferent” the bet you play will be determined by a coin
toss.

2. The WIN area of your prize wheel will be designated as the area from 0 through the
number of points which you have received. You will spin the spinner to determine
whether you win the $4.00 prize.

{Three paired choice tasks follow.}
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Notes

1. The binary lottery risk preference induction mechanism is an alternative means of giving subjects incentives
that allows control of risk preferences. It was introduced by Roth and Malouf (1979) and extended by Berg
et al. (1986).

2. In preference reversal studies, subjects are typically presented with two gambles that have the same expected
value: a low variance gamble that has a high probability of getting a high payoff but a small high payoff dollar
amount (the p-bet) and a high variance gamble that has a low probability of getting a high payoff, but a big
high payoff dollar amount (the $-bet). Preferences are elicited through two tasks: a paired-choice task and
an individual-bet pricing task. A p-bet reversal occurs when a subject chooses the p-bet in the choice task,
but prices the same bet lower in the pricing task. A $-bet reversal occurs when the opposite happens. These
reversals are often termed “predicted” and “unpredicted,” respectively.

3. We note that Schotter and Braunstein (1981) introduce a different means of manipulating subjects’ risk
preferences. They pay subjects in points and transform the point payoffs into dollars using a concave function
to increase subjects’ risk aversion in points. We do not study this method here because, unlike the lottery
method, wealth effects and native preferences can confound results.
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4. Bostic, Herrnstein, and Luce (1990) demonstrate that by making the pricing task more like a choice task (using
the PEST procedure), they can reduce the number of observed reversals.

5. We do this to maintain consistency with other experiments that investigate risk preference induction, for
instance, Berg et al. (1986). This differs from the payoff frequency in Selten, Sadrieh, and Abbink (1999)
where subjects receive points after every decision, but those points accumulate for two decisions with the
induction lottery played only after every second decision.

6. The set of assumptions needed are actually a subset of those required for expected utility maximization.
Non-expected utility specifications in which subjects display preferences that are linear in probabilities will
also lead to this result.

7. The functions used to map points into the 360 degrees of the prize wheel were:

Risk Averse: Degrees = 364.4784 − 364.4784 × e(−0.11×W )

Risk Loving: Degrees = −4.47478 + 4.47478 × e(0.11×W )

Risk Neutral: Degrees = 9w

8. We have excluded observations with reported indifference across pairs in choices but reported different
valuations in the pricing task because it is unclear whether these are predicted or unpredicted reversals
according to Selten, Sadrieh, and Abbink’s (1999) classification scheme.

9. In one treatment, Selten, Sadrieh, and Abbink’s (1999) subjects were allowed to see mean and variance
statistics on each gamble if they requested them. In the other, these statistics were not available.

10. The risk neutral percentage comes from aggregating across all risk neutral treatments in our data and Selten,
Sadrieh, and Abbink (1999).

11. Indifference in the pricing task is counted as a consistent choice because the pricing grid may not be fine
enough to capture small differences in valuations.

12. The difference in reversal rates under risk neutrality is −0.10, which is insignificant at the 95% level of
confidence (z-statistic = −1.82). The difference in reversal rates under risk aversion is −0.65 with “predicted”
reversals significantly exceeding “unpredicted” reversals (z-statistic = −6.85). The difference in reversal rates
under risk loving is 0.29 with “unpredicted” reversals significantly exceeding “predicted” reversals (z-statistic
= 3.51).

13. In the risk neutral treatment, certainty equivalents for the two gambles in a pair are approximately equal. To
avoid overlapping lines and an uninterpretable graph, we perturbed the certainty equivalents for each pair by
+/−.25 points from the average of the certainty equivalents for the pair.

14. Technically, s is the chance that deviations from true values revealed in the pricing tasks are sufficiently large
to cause a reversal of the ordering of the gambles from true preferences.

15. We will be unable to calculate q whenever the denominator in Eq. (1) is zero. This occurs only when r = 1/2
or s = 1/2. Similarly, when q = 1/2, the denominators in Eq. (2) and Eq. (3) are zero, so r and s cannot be
calculated. As long as q 	= 1/2, r 	= 1/2, and s 	= 1/2, then all three parameters can be calculated from a, b,
c, and d.

16. These sets of parameters are related as follows. Let {q1, r1, s1} represent the parameter set obtained when we
choose the solution to Eq. (1) that is consistent with risk aversion (that is, q1 >.5). Then the second set of
parameters, {q2, r2, s2}, satisfies:

q2 = 1 − q1

r2 = 1 − r1 and

s2 = 1 − s1.

If q̂ = .5, then there is no second solution to Eq. (1). In this case, we cannot estimate error rates since the
denominators in Eqs. (2) and (3) are zero.

17. Sampling error can produce negative estimated q’s (outside of the valid zero to one range) when the true q is
close to the limits.

18. As noted earlier, no real root exists for the Lichtenstein and Slovic experiment. In related work (Berg, Dickhaut,
and Rietz, 2002), we attribute this to the nature of incentives used in this experiment.

19. Note that even though task error rates fell, preference reversal rates in this condition did not fall.
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20. These are the risk neutral, high incentives instructions. Only the amounts of the prizes and the prize wheels
changed for other treatments.
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