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Abstract 

We study the forecast accuracy and efficiency of popular “binary” prediction markets.  Such markets 

forecast probabilities for future states of the world (e.g., election winners) by paying off $0 or $1 

depending on the realized state (e.g., who actually won).  To assess accuracy, forecast probabilities must 

be compared to realization frequencies, not individual realizations.  We use Iowa Electronic Market 

(IEM) data to test efficiency against two alternative propositions from behavioral finance:  the longshot 

bias and the overconfidence bias (which yield opposing predictions).  No longshot bias appears in IEM 

markets.  Nor does overconfidence influence prices at short horizons.  However, overconfident traders 

may bias prices at intermediate horizons.  While the markets are efficient at short horizons, non-market 

data indicate some intermediate-horizon inefficiency.  We calculate Sharpe ratios for static trading 

strategies and document returns for dynamic trading strategies to assess the economic content of the 

inefficiencies. 
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Longshots, Overconfidence and Efficiency  

on the Iowa Electronic Market 

Prediction markets have become a popular means of forecasting (Berg, Forsythe, Nelson and 

Rietz, 2008; Tziralis and Tatsiopoulos, 2007), largely because of accuracy evidence from “linear” markets 

(Berg, Nelson and Rietz, 2008).  The Iowa Electronic Markets (IEM) “vote-share” markets typify linear 

markets: contracts payoff as a linear function of a continuous variable, the vote-shares taken by 

candidates or parties in upcoming elections.  Accuracy is measured directly by comparing actual vote 

shares to forecasts.  Berg, Nelson and Rietz (2008) show a 1.33 percentage point average absolute 

difference between election-eve forecasts and outcomes across 14 US Presidential Election contracts.  

Further, in advance of elections, vote-share market prices outperform polls as forecasts 74% of the time.   

However, the most popular prediction markets today are “binary” markets, where prices forecast 

discrete outcome probabilities. The IEM “winner-takes-all” markets typify binary markets: contracts 

associated with a candidate who “wins” the election pay off $1 and other contracts pay off $0.  Prices 

should reflect probabilities of $1 payoffs which then would equal probabilities that associated candidates 

will “win.” In addition to being the most popular IEM markets, binary contracts form most markets on 

other prediction markets such as PredictIt, InTrade (now defunct) and others.   

 In binary contract markets, people often have the mistaken belief that the market is “right” if the 

outcome forecast as most likely actually occurs.  If not, the market is “wrong.”  For example, in the 2004 

US Presidential Election, InTrade ran 51 markets on the election winner in each individual State and the 

District of Columbia.  They famously claimed to have predicted every race correctly (e.g., Authors, 

2013). Authors  goes on, illustrating the interpretation of “right” and “wrong” stating, “Last year, 

[InTrade] showed it was not flawless by getting Florida wrong. Mr Obama held the state, but Intrade had 

put a 69 per cent chance on a Republican victory there.”  This does not indicate that the market was 

“wrong” or inefficient.  In fact, if the market was perfectly efficient, we should observe Obama taking 

Florida nearly 1/3 of the time.  Unless all forecasts were at or near 100% in the 2004 election (they 
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weren’t), getting every state “right” in this sense actually indicates that the markets are strikingly 

inefficient: the winning frequencies do not match up with the forecast probabilities.  

 Herein lies the challenge of assessing efficiency in binary perdition markets: one has to compare 

forecast probabilities to outcome frequencies.  True, pre-election prediction markets only gave Trump an 

18% chance of winning (Silver, 2016) and pre-Brexit prediction markets forecast about an 85% 

probability that Great Britain would stay in the Economic Union (The Economist, 2016).1  But, that 

means that, if we could observe 100 Brexit votes under identical circumstances, 15 of them should result 

in Britain leaving the EU.  Trump should win 18 in 100 elections.  Were the outcomes we saw simply one 

of those 15 or 18?  Or, were there biases in prices?  If so, how large were the biases and what caused 

them?  The question isn’t whether prediction markets “miss” from time to time, but whether they “miss” 

at the right rate.  One Trump election or one Brexit vote cannot answer these questions. We can only 

answer them by aggregating across many, essentially similar, markets. 

 Fortunately, the IEM ran a unique long series of essentially similar markets based on monthly 

stock prices and returns.  While these are not exact replications, they are similar enough to credibly test 

binary market efficiency by comparing forecasts to outcome frequencies.  This allows us to study both 

when and why biases might arise in binary market prices.  Specifically, we use frequency and logistic 

analysis on these markets to test whether market prices appear efficient against two competing alternative 

biases postulated by behavioral finance:  the longshot bias and the overconfidence bias.  In binary 

prediction markets, a longshot bias would result in over-pricing low probability contracts and under-

pricing high probability contracts.  In contrast, an overconfidence bias would result in under-pricing low 

probability contracts and over-pricing high probability contracts.2  

                                                           
1 We note that the IEM differs from most markets in that “winning” is based on who takes the majority of the 

popular vote.  The election eve forecast was that Clinton would win the popular vote with a 0.775 probability and an 

expected vote share of 53.7%.  She actually did win the popular vote with 51.1%. 
2 Over-pricing can arise from traders in search of large, but unlikely, returns driving up prices of low priced 

contracts, similar to “over-betting” on longshots documented in the racetrack betting literature (e.g., Ziemba and 

Hausch, 1986) or by traders overestimating the probably of unlikely outcomes (as in prospect theory, Kahneman and 

Tversky, 1979). Under-pricing can be driven by traders either over estimating probabilities for events they deem 

likely (e.g., Lichtenstein, Fischhoff and Phillips, 1982) or by overreacting to information that makes an event more 

likely (e.g., Daniel, Hirshleifer and Subrahmanyam, 1998). We note that there are other effects of overconfidence 
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 Testing for longshot or overconfidence biases is very difficult using prices from naturally 

occurring financial markets.   There is no definitive point in time when the value of a stock is known with 

certainty making it challenging to assess whether prices at any point in time are actually biased.  In 

addition, stocks, indices, “regular” options and futures are much more complex than simple binary 

options.  Stock values depend on the distribution of dividends over the infinite horizon. Index values 

depend on values of underlying component stocks.  Future and option values depend on future 

distributions of values for underlying stocks or indices.  This complexity makes it difficult to detect the 

effects of simple biases even if we knew the “true” values of the underlying assets.   

 In contrast, the IEM is a good testing ground to assess whether behavioral biases affect market 

prices.  The IEM structure closely resembles naturally occurring financial markets and increasing 

evidence shows that IEM market prices behave like any other financial market.3  Traders buy and sell 

contracts in a double auction, can reverse their positions any time and can synthetically short sell.  The 

traded contracts are particularly simple and, at the close of each market, their values are known with 

certainty. The markets we examine are intermediate horizon markets (running up to 5 weeks each) and are 

repeated under essentially identical conditions.  The market structure and contracts traded imply that the 

price of a particular contract at any point in time should equal the market consensus probability that the 

contract will pay off $1 on the liquidation date.  Thus, prices can be compared to objective estimates of 

payoff probabilities (from frequency or logit analysis) to determine whether biases exist.  At any given 

point in time, prices should be sufficient statistics for estimating payoff probabilities.  This allows us to 

test for price efficiency by adding past IEM prices and outside information to our analyses. 

While there is ample evidence that IEM traders have biases and sometimes behave irrationally 

(e.g., Forsythe, Rietz and Ross, 1999; Oliven and Rietz, 2004; and Berg and Rietz, 2006), there is also 

                                                           

that we do not investigate.  As examples, traders may trade more than they should (Barber and Odean, 2001), they 

may think they know more than they actually do (Russo and Schoemaker, 1992), or they may over- or under-react 

information based on its type (Odean, 1998).  
3 For example, Bonderanko and Bossaerts (2000) show that IEM prices evolve consistently with rational learning 

and updating.  Majumder, Diermeier, Rietz and Amaral (2009) show that the distribution of returns in IEM markets 

mirror closely return distributions in other financial and derivatives markets.  
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reason to believe that financial markets may be efficient in spite of these biases.  First, a few rational 

traders can arbitrage biases out of existence in markets.  However, if all traders are affected by the same 

pervasive bias (e.g., overweighting low probability events), no traders may recognize or act to eliminate 

the bias.  Even if they do, Grossman and Stiglitz (1980) argue that traders will never want to drive out all 

arbitrage opportunities because to do so would eliminate all profits for information collection and 

arbitrage activities.  Second, the market structure may reduce biases.  In particular, there are account 

limits in the IEM so no trader is large relative to the market, there are no trading fees and there is a 

particularly simple arbitrage structure that allows traders to easily exploit arbitrage opportunities and 

allows synthetic short-selling.  These features are intentionally designed to promote price efficiency.  

Third, evidence suggests that the existence of a two-sided dynamic market itself will mitigate the effects 

of irrational or biased traders.  Gode and Sunder (1993) show that markets can price efficiently even when 

populated with “zero-intelligence” robot traders.  Primarily using linear markets, Forsythe, Nelson, 

Neuman and Wright (1992) and Forsythe, Rietz and Ross (1999) document biases in many traders yet 

show that prices are driven to efficient levels by more rational, price-setting traders.   

 Our frequency analysis results are consistent with an overconfidence bias in which the highest 

priced contracts pay off with a lower frequency than the prices would indicate and vice versa for the 

lowest priced contracts.  However, contracts with intermediate prices appear relatively efficiently priced.  

Further, even the effect at the extremes is transitory. In fact, price-frequency relationships move exactly 

as predicted by Daniel, Hirshleifer and Subrahmanyam (1998).  Initial trading prices in IEM markets 

appear relatively noisy, but unbiased as one would expect from a market with little information.  Prices 

display an overconfidence bias at intermediate horizons, when some time has passed and some 

information has come in, but considerable uncertainty about outcomes remains. The bias disappears as 

more information arrives and the liquidation date approaches. 

 Our baseline logit results mirror the frequency analysis.  In addition, the logit models show that 

past IEM prices to not improve predictive accuracy.  However, at intermediate horizons, adding outside 

information can improve accuracy in a manner that is also consistent with Daniel, Hirshleifer and 
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Subrahmanyam (1998).  Traders appear to have a transitory overreaction to outside information at 

intermediate horizons.   

 We show the economic significance of the transitory overconfidence.  A trader can achieve a 

significant positive Sharpe ratio for a static strategy of buying and holding the lowest priced contracts at 

intermediate horizons.  Dynamic trading strategies may also lead to significant profits.  However, traders 

engaging in either strategy would drive prices toward more efficient levels and reduce the profits from the 

strategies.   

Our evidence informs research on prediction markets by providing systematic tests of efficiency 

for binary prediction markets.  Our method contributes to measuring accuracy in discrete outcome 

forecasting.  Any model that (1) predicts a probability of an outcome and (2) can be used under similar 

repeated conditions can be tested in the manner we develop in this paper.  Our evidence informs research 

on behavioral finance by showing clear evidence (1) against a longshot bias affecting prices, (2) against 

overweighting of low probability events affecting prices and (3) for a transitory, information based 

overconfidence bias.  Finally, evidence on the IEM suggest the markets behave very similarly to naturally 

occurring markets, bolstering the case for the external validity of our results.   

 In the next section, we discuss the IEM in more detail and show how biases would manifest 

themselves in these markets.  Then, we describe the testing procedure in detail, give the results and end 

with conclusions and discussion. 

I. Biases, Efficiency and Market Price Predictions 

A. The Iowa Electronic Markets and Contracts 

 The Iowa Electronic Markets (IEM) are real-money, real-time, futures markets operated as a not-

for-profit teaching and research tool by the University of Iowa Tippie College of Business.  Traders invest 

their own money to trade, bearing the real-money risks and reaping the real-money rewards of their 
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activity.4  The markets discussed here have thousands of registered traders and, often, hundreds of active 

traders.  They run from four to five weeks each and were liquidated and reinitialized monthly for more 

than five years. 

 The IEM market structure closely parallels naturally occurring financial markets.  It operates as a 

continuous electronic double auction that traders access through the Internet.  Traders can place both limit 

and market orders.  Outstanding bids and asks are maintained in price and time ordered queues which 

function as continuous electronic limit order books with the best price in each queue made public.    

 We study the Microsoft Price Level and Computer Industry Returns Markets.  Prospectuses for 

these markets appear in the on-line appendices. We describe them briefly here.  Each market runs either 

four or five weeks (from the Monday after the third Friday of one month to the Monday after the third 

Friday of the next month).5  Each market contains a complete “slate” of binary contracts, one of which 

will liquidate at $1 depending on the state of the world on the liquidation date.  Other contracts expire 

worthless.  Thus, all contracts are simple state-contingent claims, similar to bets that either pay off or not, 

depending on the state of the world.   

 In the Microsoft Price Level Market, initial slates consist of two contracts.  One of these contracts 

(the “H” contract, denoted generically as “MSH”) will liquidate at $1 if Microsoft’s actual stock price 

closes above a pre-determined “cutoff” value on the third Friday of the month.  The other contract (the 

“L” contract, denoted “MSL”) will liquidate at $1 if Microsoft’s price closes less than or equal to the 

cutoff.6  Thus, these contracts are simple binary options. 

                                                           
4 Because IEM contracts are real futures contracts, the IEM is under the regulatory purview of the Commodity 

Futures Trading Commission (CFTC). The CFTC issued “no-action” letters to the IEM stating that as long as the 

IEM conforms to certain restrictions (related to limiting risk and conflict of interest), the CFTC will take no action 

against it. Under this no-action letter, IEM does not file reports that are required by regulation and therefore it is not 

formally regulated by, nor are its operators registered with, the CFTC. 
5These dates were chosen because the contract values are linked to underlying values of stocks on option expiration 

dates (the third Fridays of each month). 
6Cutoffs are chosen to be the strike price of the closest-to-the-money traded option for the stock (i.e., the closest $5 

increment to the current stock price).  This insures that, at least at the outset, both contracts have intermediate 

values.  Contracts can be split when stock prices deviate significantly from the cutoff and contract prices reach 

extreme levels (close to 0 or 1).  Only one split occurred in the data set used here.  This split created a “middle” 

range contract in addition to the “L” and “H” contracts.  For consistency, only the original “L” and “H” contracts are 

used in the data analysis here.  Making a different choice or omitting data from this month does not change results. 
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 In the Computer Industry Returns Market, a slate consists of four contracts.  Each contract 

corresponds to an underlying security.  The underlying securities are Apple Computer (AAPL), IBM 

(IBM), Microsoft (MSFT) and the Standard and Poor's 500 Index (SP500).  A contract liquidates for $1 if 

its underlying security has the highest return from third Friday to third Friday.7  Thus, these contracts are 

also simple state contingent claims, though with a somewhat more complex interrelationship than the 

contracts in the Microsoft Price Level Market. 

B. Prices, Predictions and Models 

 In each market, the complete slate of contracts is a risk-free portfolio.  One of the contracts will 

always liquidate at $1 while the others expire worthless.  Cash holdings are also risk-free. Both of these 

risk-free assets earn a zero return.  There are no transaction fees.  Complete slates can be purchased from 

or sold to the exchange at any time for a fixed price of $1.  This implies that the numbers of contracts of 

each type in a slate are always the same.  Thus, there is no aggregate uncertainty in this market.  Because 

of these features, contract prices should always equal expected values of the contracts regardless of risk 

preferences and time remaining to liquidation.8  Let 
j

tp  be the price of contract j on date t and 

j
tt

j
T q):|Iq(V  1 be the probability that contract j will liquidate at $1 )1( j

TV on date T given 

information available on date t (It).  In theory, we should observe: 

      j
tt

j
Tt

j
T

j
t qIVqIVqpTtJj  0111121 |$|  :},,...,,{  (1) 

                                                           
7We use dividend-adjusted returns for the stocks and the capital gains returns for the index.  If two or more securities 

tie, the payoffs are evenly split among the tied contracts.  This has never happened. 
8See Malinvaud (1974) for a general equilibrium proof of this proposition.  It also results from CAPM or APT along 

the following lines of argument: According to each theory, the equilibrium return of any security (including our 

contracts) should equal the risk-free rate plus a risk premium associated with each aggregate risk factor.  Since there 

is zero aggregate risk, the risk premiums will be zero.  Since the risk-free rate is also zero, the expected return for 

each contract will be zero.  This will only be true if, at every point in time, the price of each contract equals its 

expected future value.  Technically, these will be risk-neutral probabilities and hedging demand may drive them 

away from true probabilities.  However, the markets are restricted to students and set the maximum investment 

amount at $500 per trader.  This should minimize any such effects.  Further, work from the political markets on the 

IEM suggests that traders do not hedge against their own political preferences (see Forsythe, Rietz and Ross, 1999). 
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where j indexes the slate of J contracts that pay off in different states of the world and t represents any 

date up to the date T when liquidation values are determined.9 

 Testing will be very simple.  First, following the existing racetrack literature, we use a simple 

frequency analysis.  Then, we refine and expand the analysis using logit models10 to estimate the true 

probabilities of $1 liquidations (i.e., the q’s) and see whether they deviate systematically from market 

prices (i.e., the p’s).  To see how this works, consider the multinomial logit model: 

 





J

i

bX

bX
j

t
i
tt

j
tt

e

e
qTtJj

1

21   :},,...,,{   (2) 

where, in addition to the variables defined above, Xt is a vector of independent variables at date t and 
j

tb  

is a coefficient vector for contract j at date t. 

To identify the model, 
J

tb  is arbitrarily set to 0 and contract J becomes the base contract.11  Then, the 

probabilities of all other contracts are computed relative to the base contract as: 

 
j

ttbX

J
t

j
t e

q

q
TtJj    :},,...,,{ 121  (3) 

 Now consider using log ratios of contract prices as independent variables.12  Since the contract 

price should represent the probability that a contract will liquidate at $1 conditional on all available 

                                                           
9 Some readers may have difficulty with a zero risk-free rate.  One might speculate that a positive risk free rate 

would result in 
t

j
tj

t
r

q
p




1
, where r is the (positive) risk-free rate for t days.  (Since there is still no aggregate risk, 

there will still be no risk premium.)  However, this would violate arbitrage restrictions since this implies that 






J

j

j
t

J

j

j
t qp

11

1 .  If this were so, traders could buy the portfolio from other traders at a combined price of less 

that $1 and sell it back to the exchange for $1, making a sure profit.  This activity would drive the discount rate on 

each contract to zero.  Even if traders ignored this arbitrage opportunity, the discount rates would fall out of the 

analysis discussed later because normalized prices and price ratios, not raw prices, are used. 
10 We use standard logit models for the two-contract Microsoft Price Level Market and four-state multinomial logit 

models for the four-contract Computer Industry Returns Markets. 
11The selection of the particular base contract is irrelevant.  It has no effect on the estimates or predictions. 
12We will actually use “closing normalized” contract prices.  Closing prices are the last trade before midnight 

because the IEM operates 24 hours a day.  To control for non-synchronous trading, normalized contract prices are 
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information, price ratios should be sufficient statistics for forecasting probabilities of payoffs.  In 

particular, consider using as independent variables: 
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If prices do indeed equal probabilities, then it should be the case that 0
j

t  and 1
jj

t
,

  for all j and 

0
ji

t
,

  for all ij.  Only in this case does 
j

t
j

t pq  for all j.  Further, if prices incorporate all available 

information about the probabilities of payoffs (as implied by efficient markets), then, apart from co-

linearity issues, coefficients on any other independent variables will be zero.  Even if co-linearity creates 

the appearance of significance, adding other variables should not increase explanatory power of the 

model.  This serves as the means for detecting any biases and inefficiencies that exist. 

C.  Biases, Efficiency and the Logit Model Estimates 

Testing for the longshot bias and overconfidence will take a particularly simple form: run logit 

models with logged price ratios as the independent variables and check the resulting coefficients.  If 

prices are unbiased and efficient, we should observe estimates consistent with 0
j

t  and 1
jj

t
,

  for 

all j and 0
ji

t
,

  for all ij in the logit model equation (4).  If we graph the logit model estimated 

probabilities against prices in this case, we would get a 45-degree line labeled “beta=1” in Figure 1.   

In the two-state case, a longshot bias would show up if 1
jj

t
,

 .  This leads to the “beta>1” 

mapping in Figure 1 where prices exceed the probability of payoff for low payoff probabilities and fall 

short of the probability of payoff for high payoff probabilities. 13,14  Paying too much for a low-payoff-

                                                           

computed as the closing price of a contract divided by the sum of closing prices for all contracts in a complete slate.  

This insures that prices can be interpreted as probabilities because they will sum to one. 
13 To see how the graph works, consider first the >1, two-contract case for small and large probabilities of $1 

payoffs.  If p<1-p, then p/(1-p)<1 and ln(p/(1-p))<0.  Taking logs of both sides of the logit relationship,  

ln(q/(1-q))=ln(p/(1-p))< ln(p/(1-p))  q/(1-q) < p/(1-p)  q<p.  Similarly, if p>1-p, then q>p.  The opposite 

relationships hold for <1.  The functions “wrap back” to 0 and 1 because of the nature of log price ratios and the 

“crossover” point is affected by  (crossing at 0.5 if  is zero). 
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probability contract here corresponds to betting too much on the longshot in a horse race.  This also 

accords with Kahneman and Tversky's (1979) proposition from Prospect Theory that people over-weight 

the likelihood of low probability events.   

In contrast, an overconfidence bias would show up if 1
jj

t
,

 .  This leads to the “beta<1” 

mapping in Figure 1 where prices fall below the probability of payoff for low payoff probabilities and 

exceed the probability of payoff for high payoff probabilities.  This effect, which is the opposite of a 

longshot bias, can easily result from traders being overconfident in their forecasts (e.g., the 

overconfidence bias of Lichtenstein, Fischhoff and Phillips, 1982).  For example, when the rational 

probability of payoff is actually 90%, overconfident traders may assess the probability at an even higher 

level and be willing to pay, say, 95 cents for the contract.15   

 Testing for efficiency is also simple.  If a contract's log price ratio is sufficient for explaining its 

own probability of payoff, there should be no difference in explanatory power between an unrestricted 

logit model and a logit model with the restrictions that cross-price ratio coefficients are zero 

( jiji

t    0, ).  If markets are weak-form efficient, adding recent prices or price changes should not 

increase explanatory power.  Finally, if markets are semi-strong-form efficient, adding additional 

                                                           
14 One can easily show that using the other contract as the base contract in the two contract case results in no change 

in the estimated price ratio coefficient.  Consider the logit specification: 
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Thus, the price ratio coefficient is invariant to changing the base contract.  Typically, the multinomial case mirrors 

this result.  If the coefficients on all price ratios relative to the base contract equal 1, there is no bias.  Generally, 

ratios greater than one give price to probability maps that reflects a longshot bias.  However, for some cases, a 

longshot bias can arise even though not all of the coefficients exceed one and vice versa for the overconfidence bias.  

In the analysis below, we will rely on joint tests that all coefficients equal one and direct inspections of the price to 

probability maps to determine what kind of bias exists. 
15This effect could also result from overreaction.  For instance, when the rational forecast of the payoff probability 

from the current information state is actually 90%, this is “good news” for the contract.  If traders overreact to this 

information in assessing the probability of payoff, they may be willing to pay, say, 95 cents for this contract.  We do 

not attempt to distinguish between these two possible causes for this effect and simply refer to it as an 

overconfidence  bias. 
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information (e.g., stock market returns or prices) should not increase explanatory power.  On the other 

hand, if traders over- or under-react to the information embodied in market prices of the underlying 

securities, then stock market returns and prices will add significant explanatory power.  We test these 

propositions using likelihood ratio tests in a series of nested logit models (though the quantity of data 

available restricts the amount of testing that can be done). 

 We also ask whether the time horizon affects any biases that exist.  Rubinstein (1985) shows a 

“time-to-expiration” bias in out-of-the money call options.  The racetrack betting literature suggests that 

the “smart” money is bet late and that this mitigates the longshot bias somewhat late in the betting process 

(see Thaler and Ziemba, 1988 and Asch and Quandt, 1986).  Daniel, Hirshleifer and Subrahmanyam 1998 

suggest that the impact of overconfidence on prices is transitory.  They argue that overconfident traders 

will over-estimate the precision of private information.  Prices are unaffected by the bias before 

information arrives, over-react to it temporarily and move to (new) unbiased values as the information is 

fully incorporated into prices.  In context, if private information implies that a particular contract is more 

likely to pay off in the IEM, then the price should rise more than the information justifies and return to 

efficient levels as uncertainty is resolved. We argue that this dynamic can occur in response to the public 

information embodied in the market prices of the securities underlying IEM contracts.  This is consistent 

with Daniel, Hirshleifer and Subrahmanyam’s (1998) idea if either (1) marginal traders over-estimate the 

precision of public signals or (2) private signals are correlated with the public signals.16  These ideas 

would create horizon effects in any biases or inefficiencies that exist.  By looking at different horizons 

(numbers of days to liquidation value determination), we can study whether horizon effects exist.  We use 

1 to 21 day horizons to study these issues.17 

                                                           
16 This remains consistent with overconfidence in probability assessments documented in Lichtenstein, Fischhoff 

and Phillips (1982) but adds a dynamic element.  We observe a dynamic consistent with this.  Shortly after each 

monthly IEM market opens, prices are noisy and relatively unbiased.  As information about the underlying security 

prices comes in over the month, a price bias develops.  As liquidation approaches and uncertainty is resolved, the 

price bias is mitigated.  
17While the markets run either 28 or 35 days, the liquidation values are determined with three days left in the 

market.  We will calculate the horizon from this date (the third Friday of each month).  Thus, markets run with either 

a 25- or a 32-day initial horizon.  However, volume in the initial days is often low or absent, spreads are high and 

the amount of data for analysis drops off significantly. 
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II. Tests for Biases and Efficiency 

A. Frequency Tests 

 To compare to previous research, we sort the data into cells according to observed prices and 

compare the average price in each cell to the objective probability determined by the actual payoff rate 

within the cell.  This is analogous to the analysis in much of the racetrack literature where researchers 

aggregate bets (contracts) across odds (prices) and compare average bets within each cell (average prices) 

to average payoffs (liquidation values). 

 Table 1 shows the average price of contracts in $0.20 ranges aggregating across all contracts and 

markets at different horizons (1, 2, 4, 7, 14 and 21 days to liquidation determination).  The table also 

shows average payoffs for contracts in each range, differences between average payoffs and prices, 

numbers of observations, and t-tests for differences between payoffs and prices.  The data is consistent 

with overconfidence.  Prices fall significantly below payoffs for contracts in the $0.0 to $0.2 range at 

most horizons longer than one day.  Prices are significantly above payoffs for contracts in the $0.8 to $1.0 

range at 4- and 14-day horizons.  Table 2 aggregates across price quintiles (i.e., the lowest 20% of prices, 

next lowest 20%, etc).  Aggregating this way shows clearly that the effect at the low end is driven 

primarily by very low priced contracts.  In the lowest quintile, the average price and probability of payoff 

were $0.0016 and $0.0135, respectively. Prices corresponding to the Trump election and Brexit vote 

discussed in the introduction typically would fall in the 2nd or 3rd quintile, where there are no significant 

effects.  Intermediate contracts appear to be priced efficiently.   

 There are several limitations inherent in this simple frequency analysis.  It raises aggregation 

issues and is not a particularly efficient use of the data.  Frequency analysis ignores the interdependent 

nature of the contract payoffs: it fails to take into account the fact that only one contract in a multiple-

contract market can payoff at $1.  This creates a negative correlation across outcomes that can be 

addressed by logit and multinomial models.  In addition, regression models allow us to analyze possible 

sources of inefficiency and search for data that may provide better predictions.  Nevertheless, the 
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frequency analysis serves as a quick summary of the data.  In spite of weaknesses, its results mirror the 

logit models that follow . 

B. Logit Models for the Microsoft Price Level Market 

For the two-contract Microsoft Price Level Market, the model becomes a simple logit model.  It 

accounts for the perfect negative correlation between the MSH and MSL contracts by recognizing that the 

normalized price of the MSL contract is one minus the price of the MSH contract and using the logged 

price ratio for analysis. 

 The “Model I” rows in Table 3 give the results of a simple logit model with the log price ratio as 

the only explanatory variable.  Table 3 shows several sample horizons while Figure 2 summarizes 

estimated  coefficients at all horizons.  Recall that, if prices are unbiased estimates of true payoff 

probabilities, then the coefficient on the log price variable should be 1 and the intercept should be zero.  

As Figure 2 shows, estimated slope coefficients generally fall below one.  At one and two day horizons, 

this null is not rejected.  However, at all horizons of three days and longer (including the 4, 7, 14 and 21 

day sample horizons shown in Table 3), the coefficients on the logged price ratio fall significantly below 

one (at the 95% level of confidence), indicating an overconfidence bias.  Thus, the results from simple 

logit models mirror the results from the simple frequency analysis. 

 If markets are efficient in incorporating all relevant information into prices, then adding 

additional information should not improve the ability to predict payoffs.  Model II asks whether adding 

the most recent change in log price ratios adds to the explanatory power of prices.18  Likelihood ratio tests 

for Model II against the (restricted) Model I show that adding the change in log price ratios seldom adds 

explanatory power.  As shown in Figure 2, the only significant likelihood ratio statistics (at the 95% level 

of confidence) are at the 2-, 6- and 20-day horizons. 

                                                           
18Using simple logit models to predict the probability of winning for all horses without considering the multinomial 

nature of each individual race, Asch and Quandt (1986) suggest that late changes in odds help predict winning 

frequencies at racetracks.  In financial markets, short-horizon “momentum” effects are observed in stock market data 

(e.g., Jegadeesh and Titman, 1993).  This might carry over the IEM if traders over- or under-react to news, 

creating serial correlations in prices. 
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 Finally, if markets are efficient, then adding information about the current Microsoft stock price 

relative to the cutoff should not increase explanatory power.  On the other hand, if the market is over- or 

under-reacting to this particular information, then adding it should significantly increase explanatory 

power.  In Model III, we add the ratio of the current Microsoft stock price to the cutoff.  This represents 

the percentage change in Microsoft’s stock price required to change the payoff outcome in the IEM 

market.  Table 3 (at sample horizons) and Figure 2 (at all horizons) give the results of likelihood ratio 

tests for Model III against (the restricted) Model I.  The results are mixed.  At several intermediate 

horizons (5, 7, 8, 10, 12, 14, 15, 16, 17 days), it appears that adding this information increases power.  

This implies, a trader at these horizons could do better at predicting the chances of payoff by knowing the 

current Microsoft price relative to the cutoff in addition to knowing only the “H” contract price on the 

IEM.19  Thus, Model III provides limited evidence against market efficiency.  In Section III, we discuss 

the risks and return to investment strategies designed to exploit these inefficiencies.   

C. Multinomial Logit Models for the Computer Industry Returns Market 

 Since there are four contracts in the Computer Industry Returns Market, we use a four-state 

multinomial logit model for estimation.  Table 4 lists three models for this market and shows results for 

sample horizons.  Figure 3 summarizes this information for all horizons.  In each model, the “base” 

contract is the S&P500 and log price ratios are relative to the price of this contract.20  Each model has 

three component equations: one to estimate the probability of an AAPL payoff (relative to S&P500), one 

for IBM and one for MSFT.  The simplest version (Model I) restricts the coefficients to zero on all terms 

except the contract’s own log price ratio.  This model is the multinomial analog of Model I for the 

Microsoft Price Level Market.  It recognizes the multinomial nature of the payoffs, but assumes that each 

contract's own log price ratio is sufficient for forecasting its probability ratio.  The table lists individual t-

tests for the null that each individual own price ratio coefficient equals one.  It also lists joint 2 test 

statistics for the null that all three own-price coefficients equal one for each horizon.  The upper part of 

                                                           
19This is information that the traders should have had before closing prices are determined because the closing prices 

in the IEM are measured at midnight. 
20The selection of the particular base contract is irrelevant.  It has no effect on the estimates or predictions. 
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Figure 3 shows the own log price ratio coefficients for all contracts.  The results mirror the Microsoft 

market results.  At horizons of 2 or more days, all joint tests for all own-price coefficients equaling one 

are rejected at the 95% level of confidence with one exception: the 10-day horizon (with a 94% level of 

confidence).  Individual coefficients often fall significantly below one.  The coefficients generally fall as 

the horizon increases.  As one would expect from Table 1, inspection of the mappings between prices and 

probabilities show overconfidence biases.  Thus, the evidence for an overconfidence bias from the 

Microsoft market is paralleled in the more complex Computer Industry Returns Market. 

 Model II asks if removing the cross-price restrictions imposed in Model I can significantly 

increase explanatory power.  Likelihood ratio tests of Model II against (restricted) Model I show no 

significant effects of relaxing these restrictions at any horizon.  (Table 4 shows sample horizons and 

Figure 3 shows the likelihood ratio test statistics across all horizons relative to the critical value.) 

 Model III asks whether the markets fully incorporate the information about the relative returns of 

the underlying stocks by adding relative return standings to the Model I regressions.  The additional 

variable is the return on the stock underlying a given contract minus the maximum of the other underlying 

returns.21  Cross-price restrictions are kept in light of the Model II results.  Likelihood ratio tests of Model 

III against (the restricted) Model I show that at all horizons adding relative return information increases 

explanatory power.  (Again, Table 4 and Figure 3 show these results.)  Thus, the markets are not making 

fully efficient use of all of the available information. 

 In summary, the IEM markets appear quite efficient at short horizons, but prices seem affected by 

an overconfidence bias at longer horizons.  Further, typically at intermediate or long horizons, additional 

information can help improve explanatory power in logit models for predicting payoffs.  Next, we discuss 

the risks and return to investment strategies designed to exploit these inefficiencies.   

                                                           
21Again, this is information that the traders should have had before closing prices are determined because the closing 

prices in the IEM are measured at midnight. 
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III.  Investment Strategies 

 Given the overconfidence bias evident in the IEM, one might conjecture that there are profitable 

investment opportunities based on price alone.  To evaluate risk and returns for different contracts, we 

assume that the logit models give the best prediction of the actual probability of payoff.22  We go beyond 

simply observing a bias by extending results to the risk-return tradeoff of dynamic trading strategies. 

A. Sharpe Ratios for Buy and Hold Strategies 

 The relationships between price, expected return and risk for the Microsoft Price Level Market 

under Model I are particularly simple and can be graphed easily.  Figure 4 shows the predicted 

probabilities versus the prices for the MSH contracts at various horizons.23  The under-pricing of low-

priced contracts and over-pricing of high-priced contracts is apparent.  This results in extremely high-

return profit opportunities at low prices, but also high risk.  Figure 5 shows Sharpe ratios for contract 

purchases at available prices and various horizons given the payoff probability predictions of Model I.  It 

shows how much a trader could profit relative to the risk undertaken by buying contracts at available 

prices and holding until liquidation.  The highest ratios are attained by purchasing contracts in the $0.10 

range at two-week or four-day horizons.  

 Graphs for the Computer Industry Returns Market are somewhat more complicated because of 

the inter-dependent, multinomial nature of the contracts.  Nevertheless, similar patterns can be seen at 

similar horizons.  Figure 6 shows the Sharpe Ratios for contracts in the Computer Industry Returns 

Market for a 14-day horizon.  Across most prices, the highest ratios are for AAPL.  For any given 

contract, the highest ratios are in the $0.15 and under range.  At this 14-day horizon, the average AAPL 

Sharpe ratio was 0.267.  Its median was 0.342 and the 75th percentile was 0.389.  The same statistics for 

IBM were -0.142, -0.317, and 1.29, respectively.  For MSFT they were -0.028, 0.055 and 0.181.  Finally, 

                                                           
22This is analogous to observing that betting heavy favorites at the horse track can generate positive expected 

returns.  In fact, profitability should be easier to attain in the IEM because there are no explicit transactions costs 

(i.e., there is no track “take” or trading commission).  Assuming that the logit models give the best predictions is 

similar to the usual assumption in the racetrack literature that ex-post winning frequencies are the best estimate of 

the ex-ante actual probabilities. 
23This is similar to Figure 3 in Borghesi (2009), but shows the evolution of price deviations from frequencies 

through time. 
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for SP500, they were -0.015, 0.059 and 0.127.   For comparison purposes, the Sharpe ratios computed on 

third-Friday to third-Friday returns for AAPL stock, IBM stock, MSFT stock and the S&P500 index from 

January 1996 to December 2000 were 0.079, 0.276, 0.295 and 0.305, respectively. 

 In summary, Sharp ratios show a positive reward and, often, a high reward relative to risk for 

static buy-and-hold trading strategies for low-priced contracts across intermediate to long-term horizons. 

B. Dynamic Trading Strategies 

 Suppose a hypothetical investor knew how to forecast payoff probabilities according to the logit 

model estimates before the markets started.  How would such an investor trade and how much would she 

earn if she could trade each night at closing market prices conditional on these payoff probability 

assessments?  This calculation provides a measure of the maximum possible economic significance of the 

bias documented here.  To determine this, consider an investor with a mean-variance utility function 

given by U(x) = E(x) - Var(x), where x is the level of payoffs at the date of liquidation and  measures 

the investor’s risk aversion.  Suppose that the investor maximized her utility at each date from 21 days to 

one day before liquidation value determination given current prices and forecast payoff probabilities.  

Given an initial budget of, say $100, it is easy to determine the holdings and return for such an investor at 

any given point in time given the constraints that cash and contract holdings may never fall below zero 

and contract holdings must be in integer values.  Because this strategy requires the investor to know more 

than she possibly could have known at the time of trading and it allows the trader to trade any desired 

quantities at closing market prices without adverse price effects, it could not actually have been 

implemented.  Nevertheless, it provides a measure of the potential for profitability of dynamic trading 

strategies in these markets. 

 Table 5 summarizes the holdings and returns for such an investor in the Microsoft Price Level 

Market.  Using Model I, the trader would have generated returns that average 0.31% to 1.2% a month for 

risk aversion parameters ranging from 0.5 to 0.1.  These returns are generated with surprisingly low 

volumes of 0.21 to 1.22 contracts traded per day on average and a maximum of 10 contracts traded.  Over 

all of the markets, the trader's portfolio would have increased in value from an initial $100 to final values 
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in the $120 to $207 range depending on risk aversion.  If the trader used the current price of Microsoft 

stock relative to the cutoff as extra-market information in Model III, returns would increase dramatically.  

For the most part, volumes remain small, ranging from 1 to 5 contracts daily on average.  However, on 

one trading day, the trader would have wanted volumes ranging from 366 to 1,826 contracts depending on 

the risk aversion parameter.  Much of the return to this strategy, which ranges from 4.76% to 11.32% per 

month on average and gives final portfolio values ranging from $411 to $1,655, result from this day’s 

trading.  If the trader were not able to trade on this day, returns still would have averaged 0.80%, 1.31% 

and 2.31% per month for risk aversion parameters of 0.5, 0.25 and 0.1, respectively.   Final portfolio 

values still would have ranged up to $404.   

 Table 6 summarizes the holdings and returns for such an investor in the Computer Industry 

Returns Market.  Using Model I, the trader would have generated returns that average 0.16% to 0.84% a 

month for risk aversion parameters ranging from 0.5 to 0.1.  These, somewhat lower, returns require 

higher volumes than the Microsoft Price Level Market strategy (averaging 0.94 to 4.77 contracts per day).  

Over all the markets, the trader's initial $100 portfolio would have increased in value to $109 to $166 

depending on risk aversion.  If the trader used current relative returns as extra-market information in 

Model III, returns would have increased dramatically as in the Microsoft Price Level Market.  The trader 

would have frequently hit the budget constraint and volumes would often be high.  Hypothetical returns 

range from 2.09% to 3.96% per month on average and result in final portfolio values ranging from $430 

to $1,299.   To attain these returns, the trader would have had to trade from 24.64 to 73.52 contracts per 

day on average.  Because the trader would frequently hit short sale and budget constraints, returns could 

have been even higher with a larger initial endowment.  In contrast to the Microsoft Price Level Market, 

high volumes and returns occurred on numerous days. 

 Overall, the overconfidence bias in the market had the potential for generating considerable 

excess returns for traders using dynamic trading strategies designed to exploit these biases.  However, 

implementable strategies would likely have achieved lower profits for two reasons:  (1) high trading 
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volumes would have resulted in adverse price movements and (2) the strategies effectively required 

foresight that would have been unattainable at the time.   

IV. Summary and Discussion 

We systematically test the predictive accuracy of binary prediction markets.  The question is 

more challenging than simply asking whether the most likely forecast outcome actually occurs or not.  

The question is important because, while binary prediction markets have become the most popular 

prediction markets, the evidence for efficiency to date rests largely on evidence from linear markets. 

Our evidence shows a transitory overconfidence bias at intermediate horizons.  At intermediate 

horizons, the most likely events will occur somewhat less often than predicted.  The least likely events 

will occur slightly more often than predicted.  However, especially at the low-probability end, this effect 

is especially concentrated on very low priced contracts.  Even this effect disappears as the event 

approaches.  Recent high-profile “misses” by prediction markets have forecast probabilities in ranges 

where, on election eve, there is still a considerable amount of residual uncertainty.  On election eves, 

there was still about a 15% chance Britain would vote to leave the EU and an 18% chance that Trump 

would win the election.  For three reasons, it is likely that these realizations arise from the residual 

uncertainty inherent in any election. First, while low, these prices are in the range where we observe no 

significant difference between forecast probabilities and observed frequencies according to Table 2.  

Second, these were election eve forecasts, when the evidence suggests transitory biases have gone away 

even in Table 1.  Third, the IEM ran both binary and linear prediction markets in the 2016 Presidential 

Election.  The linear market indicated a close race and was fairly accurate (predicting the vote shares with 

a 2.57 percentage point average absolute prediction error).24  

The implication for prediction markets is that well designed markets produce relatively efficient 

forecasts for mid-range probabilities and at short horizons.  However, some transitory overconfidence 

                                                           
24 As noted in footnote 1, the IEM differs from most markets in that “winning” is based on who takes the majority of 

the popular vote.  On election eve, the IEM forecast a 0.775 probability that Clinton would win the popular vote.  

The fact that she did win the popular vote doesn’t make the IEM “right” any more than the fact that Trump won the 

Electoral College made “wrong” the markets based on the Electoral College (e.g. those discussed in Silver, 2016). 
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may affect market prices, especially at intermediate horizons and for very low or high priced contracts.  

We find no evidence for a longshot bias or overweighting low probability events affecting prices.  The 

idea of supplementing frequency analysis with logit models and adding outside information can be 

applied whenever researchers need to test forecast efficiencies for repeated discrete events. Because the 

IEM is a real-money market with price dynamics that mirror naturally occurring markets, we believe our 

results are externally valid. 

Three issues should give forecasters using binary prediction markets some caution.  First, 

researchers need to guard against the temptation to conclude that observing the most likely forecast 

outcome means the forecast was “correct” and observing a less likely outcome means the forecast was 

“incorrect.”  In fact, if the markets are producing efficient probability forecasts, we should observe such 

outcomes with frequencies that parallel the forecast probabilities.  Second, market and contract design can 

be very important.  Markets that impose transaction and/or profit fees can lead to mis-pricing.  Markets 

where there is no clear arbitrage restrictions limiting prices to valid probability measures can lead to mis-

pricing.  Third, mis-specified contracts (e.g., contracts with poorly defined state-space/payoff 

correspondences) can lead to misinterpretation of the results.   

While prediction markets as forecasting tools now have a thirty year history, there are still vast 

opportunities for future research.  One area where there is little research is identifying distributions of 

possible outcomes associated with combinations of prediction market forecasts.  While some researchers, 

most notably Nate Silver, aggregate prediction markets with other sources of information, most still only 

work with point forecasts.  Only Berg, Geweke and Rietz (2010) have investigated outcome distributions 

that would be consistent with prices of contracts that forecast different parts of the distribution.  This 

would be valuable in trying to understand the amount of residual uncertainty in advance of an event.  

Another promising area of research is to look at individual trader activity to identify which traders drive 

the overconfidence bias and how they do so.  This may yield ways of mitigating and/or adjusting for the 

bias in future markets. Finally, it would be interesting to determine whether even the transitory bias 

remains in future prediction markets.  If future traders engage in dynamic trading strategies designed to 
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exploit the bias, these strategies themselves should counter the bias.  In fact, traders acting in this manner 

could be the reason for prices converging to efficient levels near liquidation dates.   
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On-Line Appendix I: Microsoft Price Level Market Prospectus 

At noon (central time), Monday, January 18, 1999, the Iowa Electronic Markets (IEM) opened trade in a 

series of contracts based on price levels of securities in the computer industry. This document describes these 

contracts. Except as specified in this prospectus, trading rules for the computer these contracts are the same as those 

specified in the Trader's Manual for the Iowa Electronic Markets.  

 

CONTRACTS 

Each month, a new set of winner-takes-all contracts will be offered in this market. Contract liquidation 

values will determined by closing stock price levels on the third Friday of the month after contracts are created (see 

note 1 below).  

The liquidation values for these contracts are determined solely by closing prices of Microsoft Corp. 

Common Stock (MSFT). Each month, an initial pair of contracts will consist of “MSxxxmH” and “MSxxxmL,” 

where “xxx” corresponds to a “cutoff” price of $xxx and “m” corresponds to the liquidation month as given in the 

following table:  

Month  Code  Month  Code  Month  Code 

 January  a  May  e  September i 

 February b  June  f  October  j 

March  c  July  g  November k 

April  d  August  h  December l 

 

The payoff for the “H” contract will equal $1.00 if the Wall Street Journal closing price for Microsoft 

Common Stock on the third Friday month “m” exceeds $xxx. It will equal $0.00 otherwise. The payoff for the “L” 

contract will equal $1.00 if the Wall Street Journal closing price for Microsoft Common Stock on the third Friday 

month “m” is less than or equal to $xxx. It will equal $0.00 otherwise.  

We will choose $xxx to correspond to the strike price of the exchange traded option that lies closest to the 

price of Microsoft Common Stock on the date we create the contracts.  

Thus, the initial contracts are:  

Contract  Underlying Fundamental  Liquidation Value 

MsxxxmH Microsoft Common Stock  $1.00 if MSFT closing price>$xxx 

MsxxxmL Microsoft Common Stock  $1.00 if MSFT closing price<=$xxx 
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CONTRACT SPLITS 

If the trading price of a particular contract becomes unusually high, the Directors of the IEM may authorize 

a contract split. The decision to split a contract will be announced at least two days in advance of the split, and the 

new contract names and the timing of the split will be included in the announcement. This announcement will 

appear as a News Bulletin on your screen.  

 When a split occurs, the original contract will be split into two contracts. If the MSxxxmH contract is split, 

all traders holding an MSxxxmH contract will receive in its place two “new” contracts:  An MSxxx-yyym contract 

and an MSyyymH contract where yyy is a new, higher cutoff price level. After the split, MSxxx-yyym contracts will 

pay $1.00 if the MSFT closing price on the third Friday of the liquidation month is higher than $xxx and lower than 

or equal to $yyy. MSyyymH contracts will pay $1.00 if the MSFT closing price on the third Friday of the liquidation 

month is higher than $yyy. Thus, splits determine mutually exclusive ranges of prices over which each contract 

pays. Since the value of the two new contracts differ, outstanding bids and asks for MSxxxmH will be canceled at 

the time of the split. Since the payoffs to MSxxxmL are unaffected by the split, bids and offers for this contract will 

remain.  

 If the MSxxxmL contract is split, all traders holding an MSxxxmL contract will receive in its place two 

“new” contracts:  MSzzz-xxxm contract and a MSzzzmL contract where zzz is a new, lower cutoff price level. 

Similar splits of any other contracts may also occur. All other aspects of these splits and the payoffs from the 

resulting contracts are analogous to those described above. Again, splits determine mutually exclusive ranges of 

prices over which each contract pays.  

NOTE:  On April 27, 2000 the naming convention was updated to make the meaning of contract names 

clearer after splits.  All other aspects of splits remain unchanged.  

 

CONTRACT LIQUIDATION 

Existing contracts will be liquidated by the IEM on the Monday after the third Friday of each month (see 

note 1). The Midwest Edition of the Wall Street Journal will be the official source of closing prices.  

 If Microsoft stock is de-listed, the last available closing price will be used as the closing price for 

determining liquidation values.  

 If Microsoft stock undergoes a stock split during the trading period, the closing price of its stock used to 

calculate payoffs will be adjusted to take account of this split. Specifically if each existing share is split into M 
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shares, then the closing price used to calculate payoffs will be multiplied by M since this represents the value of one 

pre-split share in the company. Stock dividends will be treated in the same manner.  

 

LISTING NEW CONTRACTS 

New contracts will be created by the IEM on the Monday after the third Friday of each month (see note 1 

below). Contracts may be moved across and within market display windows to facilitate access. However, once 

trading commences in any contract, it will remain listed until the liquidation value is determined.  

 

UNIT PORTFOLIOS 

For each month's contracts, unit portfolios consisting of bundles of contracts whose payoff is guaranteed to 

be $1.00 and can be purchased from or sold to the IEM system at any time. The price of each unit portfolio is $1.00. 

To buy and sell bundles, select the appropriate bundle from the “Market Order” drop down menu on the market 

trading screen. Unit portfolio bundle names are Msft_1$m for month “m” liquidation.  

 

ACCESS 

Current and newly enrolled IEM traders with academic affiliation will automatically be given access rights 

to the MSFT (Microsoft) Price Level Market. Access to the contracts is achieved via the “Market Selection” pull 

down menu. Funds in a trader's cash account are fungible across all contracts so new investment deposits are not 

required. Additional investments up to the maximum of $500 can be made at any time. With five days' advance 

notice, funds may be withdrawn on the 15th of any month.  

 

Note 1: Generally, exchange traded options for the underlying stocks expire on the Saturday following the 

third Friday of each month. In the event that the options' expiration dates change for any reason, we will change the 

dates used to determine contract creations, liquidations, returns and payoffs accordingly.  
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On-Line Appendix II: Computer Industry Returns Market 

Prospectus 

At noon (central time), Monday, August 28, 1995, the Iowa Electronic Markets (IEM) will open trade in a 

series of contracts based on the returns of securities in the computer industry. This document describes these 

contracts. Except as specified in this prospectus, trading rules for these contracts are the same as those specified in 

the Trader's Manual for the Iowa Electronic Markets.  

 

CONTRACTS 

Each month, a new set of winner-takes-all contracts will be offered in this market. Contract liquidation 

values will determined by rates of return measured from the third Friday of one month to the third Friday of the next 

month (see note 1 below).  

The liquidation values for these contracts are determined solely by the dividend adjusted rates of return of 

Apple Computer, Inc. Common Stock (AAPL, listed on NASDAQ), International Business Machines Corporation 

Common Stock (IBM, listed on the NYSE) and Microsoft Corporation Common Stock (MSFT, listed on 

NASDAQ); and the capital gains rate of return on the Standard and Poor's 500 Index. Whichever of these has the 

highest rate of return as specified below will pay off $1.00 per contract. All other contracts will pay off zero (see 

note 2 below).  

Contracts will be designated by a ticker symbol and a letter denoting the month of contract liquidation. 

Thus, the contracts traded in this market for liquidation in month “m” are:  

Code      Contract Description Liquidation Value 

AAPLm  Apple Computer  $1.00 if AAPL  return is highest 

 IBMm  IBM   $1.00 if IBM   return is highest 

MSFTm  Microsoft  $1.00 if MSFT  return is highest 

SP500m  S&P 500 Market Index $1.00 if SP500 return is highest 

 

The month code, “m,” refers to the month of liquidation as given by the following table:  

Month  Code  Month  Code  Month  Code 

 January  a  May  e  September i 

 February b  June  f  October  j 

March  c  July  g  November k 

April  d  August  h  December l 
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COMPUTING RETURNS 

For AAPLm, IBMm and MSFTm, we will compute the dividend adjusted rate of return based on closing 

stock prices of the underlying listed firm between the third Friday in the liquidation month and the third Friday in 

the previous month. For these purposes, we will use closing prices as reported in the Midwest edition of the Wall 

Street Journal.  

The Dividend Adjusted Rate of Return is calculated as follows: First, we compute the raw return on the 

underlying stock (the closing price on the third Friday of the liquidation month, minus the closing price from the 

third Friday of the previous month, plus any dividends on ex-dividend dates). Then, we divide the raw return by the 

closing stock price from the previous month to arrive at the dividend-adjusted rate of return.  

For the SP500 contract, we compute the capital gains rate of return by subtracting the closing index value 

on the third Friday of the previous month from the closing index value on the third Friday of the liquidation month 

and then divide by the previous month's closing index value.  

 

CONTRACT LIQUIDATION 

Existing contracts will be liquidated by the IEM on the Monday after the third Friday of each month (see 

note 1 below). The Midwest Edition of the Wall Street Journal will be the official source of closing prices.  

If one of the companies is de-listed, the last available closing price will be used as the closing price for 

determining liquidation values.  

If one of the companies undergoes a stock split during the trading period, the closing price of its stock used 

to calculate payoffs will be adjusted to take account of this split. Specifically if each existing share is split into M 

shares, then the closing price used to calculate payoffs will be multiplied by M since this represents the value of one 

pre-split share in the company. Stock dividends will be treated in the same manner.  

 

LISTING NEW CONTRACTS 

New contracts will be created by the IEM on the Monday after the third Friday of each month (see note 1 

below).  

Contracts may be moved across and within market display windows to facilitate access. However, once 

trading commences in any contract, it will remain listed until the liquidation value is determined.  
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UNIT PORTFOLIOS 

For each month's contracts, unit portfolios consisting of bundles of contracts whose payoff is guaranteed to 

be $1.00 and can be purchased from or sold to the IEM system at any time. The price of each unit portfolio is $1.00. 

To buy and sell bundles, select the appropriate bundle from the “Market Order” drop down menu on the market 

trading screen. Unit portfolio bundle names are Comp_1$m for month “m” liquidation.  

 

ACCESS 

Current and newly enrolled IEM traders with academic affiliations will automatically be given access rights 

to the Computer Industry Returns Market. Access to the contracts is achieved via the “Market Selection” pull down 

menu. Funds in a trader's cash account are fungible across all contracts so new investment deposits are not required. 

Additional investments up to the maximum of $500 can be made at any time. With five days' advance notice, funds 

may be withdrawn on the 15th of any month.  

 

Note 1: Generally, exchange traded options for the underlying stocks expire on the Saturday following the 

third Friday of each month. In the event that the options' expiration dates change for any reason, we will change the 

dates used to determine contract creations, liquidations, returns and payoffs accordingly.  

Note 2: If two or more contracts tie for the highest return, the $1.00 will be divided as evenly as possible 

among the tied contracts with any residual $0.001's allocated in order of the highest to lowest final values.  
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Figure 1:  Mapping between IEM contract payoff probabilities (q) and IEM contract prices (p) under a longshot bias (beta>1), unbiased pricing (beta=1) and 

overconfidence (beta<1).  Betas correspond to own log price ratio coefficients in the logit regressions designed to predict the actual payoff probability for a contract 

from its log price ratio. 
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Figure 2:  Microsoft Price Level Market Logit Model I coefficients and Likelihood Ratio Test Statistics to test differences between Model I and Model II and between 

Model I and Model III.  The dependent variable in all models is the likelihood of a contract payoff.  All models use the contract’s log price ratio as an independent 

variable.  Model II adds the one-day change in the log price ratio to the log price ratio.  Model III adds the current ratio of Microsoft’s stock price to the payoff-

determining cutoff to the log price ratio. 
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Figure 3:  Computer Industry Returns Market Logit Model I coefficients and Likelihood Ratio Test Statistics to test differences between Model I and Model II and 

between Model I and Model III.  The dependent variable in all models is the likelihood of a contract payoff.  All models use the contracts’ own log price ratios to the 

S&P500 contract as independent variables.  Model I restricts cross log price ratio coefficients to zero.  Model II allows cross log price ratio coefficients different from 

zero.  Model III adds the current return lead/lag for the contract (return to date on the contract’s underlying stock minus the maximum return on the other three 

stocks) to Model I while restricting cross log price ratio and lead/lag coefficients to zero. 



 32 

Figure 4:  Logit Model I predicted payoff probabilities versus contract prices for the MSH contract in the Microsoft Price Level Market.  Logit Model I uses the log 

price ratio as the only independent variable to explain the payoff probability. 
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Figure 5:  Logit Model I predicted Sharpe ratios versus contract prices for the MSH contract in the Microsoft Price Level Market.  Logit Model I uses the log price 

ratio as the only independent variable to explain the payoff probability. 
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Figure 6:  Logit Model I predicted Sharpe ratios versus contract prices for contracts in the Computer Industry Returns Market at a 14-day horizon with 4th order 

polynomial trend lines.  Logit Model I uses the own log price ratios as the only independent variables (with cross-price coefficients restricted to zero) to explain the 

payoff probability. 
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Tables  

Table 1:  Average Prices, Payoffs and Dollar Returns to Purchases 

(Aggregated by Price Range across all Contracts and Markets) 

Price Range Item 

 

Days to Liquidation Determination 

1 2 4 7 14 21 

$0.0-$0.2 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.0372 

$0.0300 

$0.0072 

215 

0.5884 

$0.0825 

$0.0342 

$0.0482 

206 

2.5921* 

$0.1256 

$0.0510 

$0.0746 

199 

3.2098* 

$0.1170 

$0.0588 

$0.0582 

188 

2.529* 

$0.1622 

$0.0804 

$0.0818 

148 

2.6724* 

$0.1504 

$0.0896 

$0.0608 

133 

1.9294 

$0.2-$0.4 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.3000 

$0.3063 

$(0.0063) 

20 

-0.0606 

$0.3667 

$0.2973 

$0.0694 

30 

0.8092 

$0.2432 

$0.2874 

$(0.0442) 

37 

-0.6153 

$0.3333 

$0.2952 

$0.0381 

51 

0.5746 

$0.3023 

$0.2909 

$0.0115 

86 

0.2316 

$0.3837 

$0.3012 

$0.0825 

86 

1.5994 

$0.4-$0.6 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.4400 

$0.4945 

$(0.0545) 

25 

-0.5059 

$0.4000 

$0.5013 

$(0.1013) 

25 

-1.057 

$0.4848 

$0.5036 

$(0.0188) 

33 

-0.2198 

$0.3939 

$0.5077 

$(0.1137) 

33 

-1.3591 

$0.4259 

$0.4860 

$(0.0601) 

54 

-0.9045 

$0.3857 

$0.4830 

$(0.0973) 

70 

-1.7201 

$0.6-$0.8 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.6667 

$0.6924 

$(0.0258) 

18 

-0.2245 

$0.5217 

$0.6767 

$(0.1549) 

23 

-1.4786 

$0.5926 

$0.7142 

$(0.1216) 

27 

-1.2406 

$0.5697 

$0.7062 

$(0.1165) 

39 

-1.4513 

$0.6667 

$0.6952 

$(0.0285) 

48 

-0.4322 

$0.5556 

$0.6953 

$(0.1397) 

36 

-1.6889 

$0.8-$1.0 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.9551 

$0.9506 

$0.0044 

89 

0.2004 

$0.8675 

$0.9388 

$(0.0712) 

83 

-1.9524 

$0.7887 

$0.9199 

$(0.1311) 

71 

-2.7083* 

$0.8393 

$0.9213 

$(0.0820) 

56 

-1.6461 

$0.5926 

$0.9059 

$(0.3133) 

27 

-3.2092* 

$0.7500 

$0.9167 

$(0.1667) 

20 

-1.6118 

*Significant at the 95% level of confidence. 
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Table 2:  Average Prices, Payoffs and Dollar Returns to Purchases 

(Aggregated by Price Quintiles across all Contracts and Markets) 

Price 

Quintile 

Item 

 

Days to Liquidation Determination 

1 2 4 7 14 21 

1 

(Lowest 

20%) 

Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.0135 

$0.0016 

$0.0119 

74 

0.8857 

$0.0133 

$0.0033 

$0.0101 

75 

0.7578 

$0.0405 

$0.0076 

$0.0329 

74 

1.4316 

$0.0541 

$0.0133 

$0.0408 

74 

1.5533 

$0.1370 

$0.0334 

$0.1036 

73 

2.5383* 

$0.1449 

$0.0473 

$0.0977 

69 

2.2631* 

2 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.0121 

$0.0137 

$(0.0016) 

73 

-0.1146 

$0.0694 

$0.0210 

$0.0484 

72 

1.6063 

$0.1644 

$0.0418 

$0.1226 

73 

2.7980* 

$0.1233 

$0.0563 

$0.0670 

73 

1.7281 

$0.1918 

$0.1241 

$0.0677 

73 

1.4523 

$0.1739 

$0.1407 

$0.0332 

69 

0.7269 

3 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.0912 

$0.0946 

$(0.0034) 

74 

-0.1042 

$0.2027 

$0.1215 

$0.0813 

74 

1.7458 

$0.2000 

$0.1630 

$0.0370 

75 

0.7933 

$0.2568 

$0.1966 

$0.0601 

74 

1.1846 

$0.2639 

$0.2680 

($0.0041) 

72 

-0.0785 

$0.3333 

$0.2920 

$0.0414 

69 

0.7329 

4 Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.5753 

$0.5950 

$(0.0197) 

73 

-0.3558 

$0.4795 

$0.5701 

$(0.0907) 

73 

-1.5487 

$0.4861 

$0.5452 

$(0.0591) 

72 

-1.0259 

$0.4658 

$0.5177 

$(0.0520) 

73 

-0.9173 

$0.4384 

$0.4682 

$(0.0298) 

73 

-0.5178 

$0.3768 

$0.4517 

$(0.0749) 

69 

-1.2680 

5 

(Highest 

20%) 

Avg. Payoff 

Avg. Price 

Diff. 

n 

tstat 

$0.9726 

$0.9701 

$0.0025 

73 

0.1256 

$0.9041 

$0.9538 

$(0.0497) 

73 

-1.4410 

$0.7808 

$0.9165 

$(0.1357) 

73 

-2.8156* 

$0.7671 

$0.8844 

$(0.1173) 

73 

-2.4419* 

$0.6389 

$0.7780 

$(0.1391) 

72 

-2.4017* 

$0.6377 

$0.7351 

$(0.0974) 

69 

-1.6555 

*Significant at the 95% level of confidence. 
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Table 3:  Logit Models for the Microsoft Price Level Market 

MODEL I Days to Liquidation Determination 

 Null 1 2 4 7 14 21 

Obs 

ln(p/(1-p)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

 

1 

 

0 

61 

0.8549 

(0.2193) 

0.4040 

(0.4561) 

61 

0.7019 

(0.1926) 

0.4186 

(0.3600) 

61 

0.3285* 

(0.1249) 

0.3583 

(0.2922) 

61 

0.5022* 

(0.1516) 

(0.2842 

(0.3115) 

61 

0.2888* 

(0.2027) 

0.3613 

(0.2855) 

58 

0.4859* 

(0.2390) 

0.1674 

(0.2776) 

Log Likelihood 

Pseudo  R2 

 -16.9353 

0.5754 

-23.8667 

0.4016 

-35.4848 

0.1221 

-33.2567 

0.1772 

-39.0865 

0.0330 

-36.0661 

0.0741 

MODEL II Days to Liquidation Determination 

 Null 1 2 4 7 14 21 

Obs 

ln(p/(1-p)) 

(Std. Dev.) 

D(ln(p/(1-p))) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

 

1 

 

0 

 

0 

61 

0.8319 

(0.1711) 

0.0687 

(0.3615) 

0.3812  

(0.4123) 

61 

0.6651 

(0.2183) 

0.7635 

(0.4096) 

0.6639* 

(0.3217) 

61 

0 .4493* 

(0.1412) 

-0.5664* 

(0.2668) 

0.2813 

(0.3008) 

61 

0.5065* 

(0.1750) 

0.4341 

(0.2462) 

0.3466 

(0.3293) 

61 

0.3879* 

(0.2182) 

-0.4791 

(0.4850) 

0.3475 

(0.3024) 

56 

0.2830* 

(0.2920) 

0.7057 

(0.5650) 

0.1992 

(0.2987) 

Log Likelihood 

Pseudo  R2  

LR Test vs. Model I 

(Chi2(1)) 

 -16.9101 

0.5760 

0.05 

-21.2334 

0.4676 

5.27* 

-33.6187 

0.1682 

3.73 

-32.0100 

0.2080 

2.49 

-38.4254 

0.0493 

1.32 

-34.5151 

0.0898 

1.74 

MODEL III Days to Liquidation Determination 

 Null 1 2 4 7 14 21 

Obs 

ln(p/(1-p)) 

(Std. Dev.) 

P(MSFT)/Cut 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

 

1 

 

0 

 

0 

61 

0.7171 

(0.3804) 

6.4810 

(12.5475) 

0.4264 

(0.4419) 

61 

0.5733 

(0.4012) 

4.6603 

(13.42055) 

0.4352 

(0.3566) 

61 

-0.1604* 

(0.2240) 

18.7116* 

(9.3916) 

0.5234 

(0.2839) 

61 

0.1862* 

(0.2587) 

9.1976 

(7.5309) 

0.3943 

(0.3166) 

61 

-0.2863* 

(0.3757) 

16.5609* 

(8.1080) 

0.5968 

(0.3760) 

58 

0.6062 

(0.3208) 

-3.4020 

(5.7318) 

0.1200 

(0.2835) 

Log Likelihood 

Pseudo  R2 

LR Test vs. Model I 

(Chi2(1)) 

 -16.8460 

0.5776 

0.18 

-23.7374 

0.4048 

0.26 

-32.1695 

0.1931 

5.75* 

-32.5394 

0.1949 

1.43 

-35.0914 

0.1318 

7.99* 

-35.9416 

0.0745 

0.25 

The dependent variable in all models is the probability of a $1 payoff for the MSH contract.  In Model I, the only 

independent variable is ln(p/(1-p)).  In Model II, the one-day change in ln(p/(1-p)) is added to Model I as an 

independent variable.  In Model III, the current Microsoft stock price divided by the payoff-determining cutoff is 

added to Model I as an independent variable.  All likelihood ratio tests are relative to (the restricted) Model I. 

 

*Significantly different from the Null at the 95% level of confidence. 

 



 38 

 

Table 4:  Models for the Computer Industry Returns Market 

MODEL I: Own Price Ratios Only 

 Days to Liquidation Determination 

. 

Null 

Value 1 2 4 7 14 21 

 

AAPL Component 

ln(p(AAPL)/p(SP500)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

1 

 

0 

 

0.8312 

(0.1807) 

0.1052 

(0.6277) 

0.5915* 

(0.1496) 

0.2782 

(0.7011) 

0.7644 

(0.1776) 

0.1372 

(0.7208) 

0.7972 

(0.1974) 

0.2095 

(0.6771) 

0.5073* 

(0.1848) 

0.8911 

(0.5039) 

0.1026* 

(0.2402) 

1.0408* 

(0.4767) 

 

IBM Component 

ln(p(IBM)/p(SP500)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

1 

 

0 

 

1.0152 

(0.2732) 

-0.4205 

(0.8627) 

0.7719 

(0.1690) 

-0.2224 

(0.6653) 

0.8991 

(0.1791) 

-0.3739 

(0.7480) 

0.8876 

(0.1953) 

-0.2973 

(0.6729) 

0.4359* 

(0.2117) 

0.4275 

(0.5268) 

0.4869* 

(0.2535) 

0.2030 

(0.5978) 

 

MSFT Component 

ln(p(MSFT)/p(SP500)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

1 

 

0 

 

0.8102 

(0.2228) 

0.2596 

(0.5609) 

0.5125* 

(0.1446) 

0.6075 

(0.5452) 

0.3819* 

(0.1312) 

0.8076 

(0.5288) 

0.3609* 

(0.1637) 

0.7867 

(0.5194) 

0.4287* 

(0.1872) 

0.5806 

(0.5399) 

0.3564* 

(0.2700) 

0.5633 

(0.5194) 

Joint 2 Test Statistic (3 dof) 

Obs 

Log Likelihood 

Pseudo  R2 

2.81 

55 

-28.5956 

0.6057 

19.38* 

57 

-44.8707 

0.4000 

22.82* 

60 

-50.7949 

0.3552 

16.94* 

60 

-54.0141 

0.3143 

14.26* 

60 

-72.6081 

0.0763 

15.32* 

57 

-72.3809 

0.0353 
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Table 4 (Continued):  Models for the Computer Industry Returns Market 

MODEL II: Own and Cross Price Ratios 

  Days to Liquidation Determination 

 
Null 

Value 

1 2 4 7 14 21 

 

AAPL Component 

ln(p(AAPL)/p(SP500)) 

(Std. Dev.) 

ln(p(IBM)/p(SP500)) 

(Std. Dev.) 

ln(p(MSFT)/p(SP500)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

1 

 

0 

 

0 

 

0 

 

2.1332* 

(0.5708) 

-0.6549 

(0.4185) 

0.1248 

(0.3157) 

1.0792 

(1.3216) 

0.5980* 

(0.1771) 

-0.2728 

(0.2717) 

0.2404 

(0.3882) 

0.2610 

(0.8082) 

0.7929 

(0.2420) 

-0.3529 

(0.3473) 

0.2293 

(0.2611) 

0.0473 

(0.7002) 

0.9287 

(0.2310) 

-0.0754 

(0.3535) 

-0.1268 

(0.3024) 

0.3647 

(0.7162) 

0.3944* 

(0.2319) 

-0.3094 

(0.5288) 

-0.0257 

(0.5463) 

1.2838* 

(0.5799) 

0.2693 

(0.4741) 

-0.1442 

(0.4058) 

-0.7013 

(0.5155) 

2.2697* 

(0.9504) 

 

IBM Component 

ln(p(AAPL)/p(SP500)) 

(Std. Dev.) 

ln(p(IBM)/p(SP500)) 

(Std. Dev.) 

ln(p(MSFT)/p(SP500)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

0 

 

1 

 

0 

 

0 

 

0.2671 

(0.4419) 

1.0397 

(0.2732) 

1.1556* 

(0.4396) 

0.4702 

(1.4449) 

-0.4044 

(0.2124) 

0.9525 

(0.2308) 

0.5194 

(0.4165) 

-0.2686 

(0.8481) 

-0.1073 

(0.1997) 

0.8842 

(0.3835) 

-0.1022 

(0.3367) 

-0.5033 

(0.7610) 

0.2609 

(0.1991) 

0.8682 

(0.3644) 

-0.3732 

(0.3734) 

-0.1758 

(0.7479) 

0.0427 

(0.2444) 

0.3990 

(0.4887) 

-0.4486 

(0.5541) 

0.8004 

(0.6247) 

0.3144 

(0.4248) 

0.4814 

(0.4181) 

-1.0078 

(0.5395) 

1.5183 

(1.0323) 

 

MSFT Component 

ln(p(AAPL)/p(SP500)) 

(Std. Dev.) 

ln(p(IBM)/p(SP500)) 

(Std. Dev.) 

ln(p(MSFT)/p(SP500)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

0 

 

0 

 

1 

 

0 

 

0.5879 

(0.3789) 

0.1220 

(0.2850) 

1.4731 

(0.3657) 

1.9103 

(1.2418) 

-0.2271 

(0.21362) 

0.3306 

(0.2293) 

0.7811 

(0.4096) 

0.7464 

(0.6965) 

0.0792 

(0.2193) 

-0.2546 

(0.3013) 

0.4458* 

(0.2595) 

0.8447 

(0.5089) 

0.1985 

(0.2219) 

-0.2452 

(0.2893) 

0.2223* 

(0.2822) 

1.0078 

(0.5196) 

-0.2681 

(0.3022) 

-0.2755 

(0.4985) 

0.4456 

(0.5488) 

0.8906 

(0.6243) 

-0.1298 

(0.4693) 

-0.2327 

(0.3760) 

-0.0221* 

(0.4751) 

1.5859 

(0.9350) 

Joint 2 Test Statistic (3 dof) 

Obs 

Log Likelihood 

Pseudo  R2 

LR Test vs. Model I (Chi2(6)) 

6.09 

55 

-22.3661 

0.6916 

12.46 

6.76 

57 

-40.9907 

0.4519 

7.76 

8.96* 

60 

-49.18.6 

0.3757 

3.23 

11.68* 

60 

-52.9354 

0.3280 

2.16 

15.40* 

60 

-70.0943 

0.1083 

5.03 

18.00** 

57 

-68.2869 

0.0857 

8.19 
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Table 4 (Continued):  Models for the Computer Industry Returns Market 

MODEL III: Own Price Ratios and Own Relative Return 

 
Null 

Value 

Days to Liquidation Determination 

1 2 4 7 14 21 

 

AAPL Component 

ln(p(AAPL)/p(SP500)) 

(Std. Dev.) 

R(AAPL)-Max(R(.)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

1 

 

0 

 

0 

 

0.0425* 

(0.2954) 

37.2185 

(23.8098) 

0.9570 

(0.7856) 

-0.0107* 

(0.2617) 

15.0964* 

(6.7977) 

1.1438 

(0.8577) 

0.1615* 

(0.1953) 

10.5711* 

(4.0316) 

0.8620 

(0.7248) 

0.1548* 

(0.2295) 

10.6456* 

(4.2570) 

0.9169 

(0.6870) 

-0.3153* 

(0.2325) 

10.0743* 

(3.8167) 

1.7133* 

(0.6006) 

-0.8051* 

(0.3776) 

14.2847 

(8.5370) 

2.3030* 

(0.7327) 

 

IBM Component 

ln(p(IBM)/p(SP500)) 

(Std. Dev.) 

R(IBM)-Max(R(.)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

1 

 

0 

 

0 

 

0.5684 

(0.3159) 

14.6792 

(10.0518) 

0.01597 

(0.7673) 

0.2575* 

(0.2646) 

24.4116 

(13.0333) 

0.8854 

(0.9077) 

0.3869* 

(0.2072) 

16.2386 

(9.0827) 

0.2687 

(0.8404) 

0.1881* 

(0.2593) 

22.8276* 

(10.8520)0

.6842 

(0.8773) 

-0.3729* 

(0.3010) 

21.7421* 

(8.8743) 

1.7609* 

(0.8169) 

-0.1174* 

(0.2961) 

12.9387 

(7.8880) 

1.3155 

(0.7810) 

 

MSFT Component 

ln(p(MSFT)/p(SP500)) 

(Std. Dev.) 

R(IBM)-Max(R(.)) 

(Std. Dev.) 

Intercept 

(Std. Dev.) 

1 

 

0 

 

0 

 

0.4076* 

(0.2978) 

8.3428 

(13.3637) 

0.3886 

(0.6402) 

0.1164* 

(0.2095) 

9.9092 

(7.7181) 

1.0217 

(0.7055) 

-0.1278* 

(0.2004) 

14.3312 

(7.8889) 

1.6158* 

(0.7475) 

-0.1173* 

(0.2120) 

9.3323 

(5.3186) 

1.4573* 

(0.6549) 

-0.2458* 

(0.2548) 

9.8242 

(5.3854) 

1.8364* 

(0.7867) 

-0.2797* 

(0.3772) 

10.7831 

(6.7212) 

1.7765* 

(0.7972) 

Joint 2 Test Statistic (3 dof) 

Obs 

Log Likelihood 

Pseudo  R2 

LR Test vs. Model I (Chi2(3)) 

11.19 

55 

-24.4788 

0.6624 

8.23* 

26.51* 

57 

-39.2301 

0.4754 

11.28* 

37.87* 

60 

-44.9220 

0.4297 

11.75* 

31.37* 

60 

-48.4262 

0.3853 

11.18* 

41.61* 

60 

-62.3990 

0.2062 

20.42* 

31.13* 

57 

-64.7645 

0.1368 

15.23* 

The dependent variables in all models are the probabilities of $1 payoffs for each contract.  In all models, the base 

contract is the S&P500 contract.  In Model I, the independent variables are ln(pAAPL/pSP500), ln(pIBM/pSP500) and 

ln(pMSFT/pSP500) and coefficients on cross-log-price-ratio terms are restricted to zero.  In Model II, the independent 

variables are the same but cross-log-price-ratio terms are unrestricted.  In Model III, cross-log-price-ratio 

restrictions are restored and a relative standing variable (the contracts return minus the maximum of the other three 

returns) is added as an independent variable in each component regression.  All cross-standing terms are restricted 

to be zero.  The null in the joint 2 tests is for all own price ratio coefficients to equal 1.  All likelihood ratio tests 

are relative to (the restricted) Model I.  

 

*Significant from the Null at the 95% level of confidence. 
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Table 5:  Portfolio Characteristics of a Mean-Variance Utility Maximizing  

Trader in the Microsoft Price Level Market 

Panel A:  Trader Uses Model I to Predict Payoff Probabilities 

 

Quantity of 

MSH Held 

Quantity of 

MSL Held 

Quantity 

Volume 

Expected Value 

of Portfolio 

Variance in 

Portfolio Value Monthly Return 

Portfolio statistics for  = 0.50    Final Value:  $120.35 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

0.23 

0.42 

2.00 

0.00 

0.28 

0.45 

1.00 

0.00 

0.21 

0.43 

2.00 

0.00 

107.70 

8.42 

120.39 

99.87 

0.21 

0.22 

0.99 

0.00 

0.31% 

0.81% 

4.98% 

-0.33% 

0.30% 

Portfolio statistics for  = 0.25    Final Value:  $146.65 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

0.52 

0.83 

3.00 

0.00 

0.59 

0.79 

2.00 

0.00 

0.48 

0.69 

4.00 

0.00 

118.57 

18.46 

146.85 

100.93 

0.47 

0.37 

1.50 

0.00 

0.64% 

1.61% 

9.31% 

-0.48% 

0.63% 

Portfolio statistics for  = 0.10    Final Value:  $207.18 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

1.32 

2.03 

8.00 

0.00 

1.46 

1.87 

6.00 

0.00 

1.22 

1.43 

10.00 

0.00 

142.67 

42.23 

207.51 

102.26 

1.19 

0.86 

3.97 

0.00 

1.24% 

3.08% 

18.33% 

-1.22% 

1.20% 

 

Panel B:  Trader Uses Model III to Predict Payoff Probabilities 

 

Quantity of 

MSH Held 

Quantity of 

MSL Held 

Quantity 

Volume 

Expected Value 

of Portfolio 

Variance in 

Portfolio Value Monthly Return 

Portfolio statistics for  = 0.50    Final Value:  $410.83 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

0.60 

10.10 

366.00 

0.00 

0.30 

0.55 

7.00 

0.00 

1.02 

13.88 

366.00 

0.00 

199.50 

139.33 

410.97 

100.55 

0.40 

4.77 

173.02 

0.00 

4.76% 

28.46% 

219.41% 

-5.47% 

2.34% 

Portfolio statistics for  = 0.25    Final Value:  $722.83 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

1.24 

20.17 

731.00 

0.00 

0.61 

1.03 

13.00 

0.00 

2.05 

27.70 

730.00 

0.00 

300.96 

278.45 

723.25 

100.97 

0.82 

9.53 

345.57 

0.00 

7.23% 

43.13% 

353.85% 

-9.26% 

3.30% 

Portfolio statistics for  = 0.10    Final Value:  $1,655.28 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

3.11 

50.43 

1,828.00 

0.00 

1.53 

2.50 

33.00 

0.00 

5.17 

69.28 

1,826.00 

0.00 

601.64 

695.43 

1,656.10 

102.73 

2.06 

23.83 

864.16 

0.00 

11.32% 

65.77% 

581.22% 

-14.02% 

4.71% 

The trader starts with $100 in cash.  At each date, the trader estimates the probability of payoff for each contract 

using logit Model I or Model III (each described in Table 3).  Then, the trader maximizes the utility function 

U(x)=E(x)–Var(x) where x is the payoff for the current month’s contracts.  The trader re-estimates and re-

optimizes daily from 21 days to 1 day before liquidation value determination. 
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Table 6:  Portfolio Characteristics of a Mean-Variance Utility Maximizing  

Trader in the Computer Industry Returns Markets 

Panel A:  Trader Uses Model I to Predict Payoff Probabilities 

 

Quantity of 

AAPL Held 

Quantity of 

IBM Held 

Quantity of 

MSFT Held 

Quantity of 

SP500 Held 

Quantity 

Volume 

Expected 

Value of 

Portfolio 

Variance in 

Portfolio 

Value 

Monthly 

Return 

Portfolio statistics for  = 0.50      Final Value:  $109.41 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

0.88 

0.81 

13.00 

0.00 

0.37 

0.75 

12.00 

0.00 

0.59 

0.62 

3.00 

0.00 

0.79 

0.79 

13.00 

0.00 

0.94 

1.63 

26.00 

0.00 

$104.28 

$2.92 

$109.58 

$98.89 

0.24 

0.26 

3.67 

0.00 

0.16% 

0.48% 

1.17% 

-1.17% 

0.15% 

Portfolio statistics for  = 0.25      Final Value:  $127.25 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

1.81 

1.58 

25.00 

0.00 

0.80 

1.49 

24.00 

0.00 

1.13 

1.13 

6.00 

0.00 

1.49 

1.46 

25.00 

0.00 

1.93 

3.10 

52.00 

0.00 

$112.73  

 $8.24  

 $127.61  

 $98.31 

0.89 

1.00 

13.49 

0.00 

0.39% 

0.88% 

2.46% 

-1.54% 

0.39% 

Portfolio statistics for  = 0.10      Final Value:  $166.06 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

4.50 

3.90 

63.00 

0.00 

2.00 

3.63 

59.00 

0.00 

2.90 

2.81 

16.00 

0.00 

3.80 

3.65 

64.00 

0.00 

4.77 

7.60 

130.00 

0.00 

$129.89  

 $20.19  

 $166.60  

 $95.45 

5.36 

6.02 

85.92 

0.00 

0.84% 

1.88% 

4.67% 

-3.02% 

0.83% 

 

Panel B:  Trader Uses Model III to Predict Payoff Probabilities 

 

Quantity of 

AAPL Held 

Quantity of 

IBM Held 

Quantity of 

MSFT Held 

Quantity of 

SP500 Held 

Quantity 

Volume 

Expected 

Value of 

Portfolio 

Variance in 

Portfolio 

Value 

Monthly 

Return 

Portfolio statistics for  = 0.50      Final Value:  $430.46 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

12.48 

43.45 

355.00 

0.00 

3.45 

23.12 

420.00 

0.00 

13.38 

46.42 

420.00 

0.00 

14.26 

47.82 

420.00 

0.00 

24.64 

98.39 

1,228.00 

0.00 

$224.83  

 $97.37  

 $457.62  

 $100.17 

0.96 

3.60 

97.38 

0.00 

2.09% 

3.48% 

18.06% 

0.03% 

2.42% 

Portfolio statistics for  = 0.25      Final Value:  $648.97 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

20.64 

66.90 

497.00 

0.00 

5.70 

34.02 

628.00 

0.00 

21.45 

69.54 

628.00 

0.00 

23.10 

72.32 

628.00 

0.00 

37.18 

142.71 

1,819.00 

0.00 

$294.91  

 $157.29  

 $704.15  

 $99.95 

3.58 

13.96 

389.52 

0.00 

2.75% 

4.12% 

22.19% 

-0.28% 

3.11% 

Portfolio statistics for  = 0.10      Final Value:  $1,299.19 

Average 

Std. Dev. 

Max 

Min 

Geo. Avg. 

42.11 

128.36 

1,186.00 

0.00 

11.86 

62.85 

1,247.00 

0.00 

43.09 

132.68 

1,247.00 

0.00 

46.43 

137.84 

1,247.00 

0.00 

73.52 

275.36 

3,579.00 

0.00 

$500.81  

 $335.37  

 $1,439.09  

 $100.06 

20.90 

86.08 

2,440.43 

0.00 

3.96% 

5.15% 

29.83% 

-0.19% 

4.29% 

The trader starts with $100 in cash.  At each date, the trader estimates the probability of payoff for each contract 

using logit Model I or Model III (each described in Table 4).  Then, the trader maximizes the utility function 

U(x)=E(x)–Var(x), where x is the payoff for the current month’s contracts.  The trader re-estimates and re-

optimizes daily from 21 days to 1 day before liquidation value determination. 

 


