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A Bayesian Considers Echo Chambers, Group Viewpoints, and
Information Accuracy

Abstract

I develop a Bayesian model of information acquisition that incorporates documented tendencies

of groups to have more similar views within group than across groups. Suppose n observers of two

types (e.g., Democrats and Republicans, or stock analysts from two different firms) see a signal

about a variable of interest (e.g., a future election outcome or future stock returns). First, an

unbiased latent signal is drawn for each type that underlies the type’s initial viewpoint. Then,

observers receive individual specific signals that are unbiased relative to their type’s latent signal.

Bayesian posteriors based on these signals are unbiased and achieve the lowest posterior variance

when the fractions of observer types are equal. However, the posterior variance cannot be reduced

to zero unless there are more types of observers with independent initial viewpoints, i.e., viewpoint

diversification.

JEL Classifications: C11, D72, D82, G41, M14 D83

Keywords: Bayesian inference, information aggregation, echo chambers, diversity, corporate gov-

ernance
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This paper is motivated by observations from trader behavior and forecasts in prediction mar-

kets. In the first paper in modern prediction markets, Forsythe, Nelson, Neumann, and Wright

(1992) show that partisan traders appear to have different expectations and interpret information

differently across parties. They have different viewpoints. By inferring implied distributions from

prices, Berg, Geweke, and Rietz (2010) show that elections seem to be characterized by residual

uncertainty. Why, after all the polls, forecasts, and markets, does there remain residual uncer-

tainty? Put another way, why might the “wisdom of the crowd” (Surowiecki (2005) as embodied

in prediction markets) NOT work?

This paper also arises from observing calls that governance boards be ideologically diversified,

meaning roughly even representation across the two major political parties (e.g., Chait, Holland,

and Taylor, 1993; Yockey, 2024, among others). Hemel and Feinstein (2018) show that balance

requirements are common in theory, if not in practice. Feinstein and Hemel (2024, p. 1,206)

show “qualified support for the view that Delaware’s constitutional commitment to a politically

balanced judiciary adds value to Delaware-incorporated firms.” Why should balanced boards across

two parties add value?

Similarly, it is motivated by calls to diversify corporate boards across a range of demographic

attributes, areas of expertise, etc. This is an area of particularly intense research as shown by an

excellent review by Knyazeva, Knyazeva, and Naveen (2021). However, they show that most of the

research (briefly reviewed below) is empirical and results are mixed. Further, with some exceptions,

there is a notion that more diversity is good, but seldom a straightforward theoretical reason for the

notion. Is there a simple information based reason that populating corporate boards with different

board member types should be good without resorting to conflicts of interest, adverse selection, or

potential managerial malfeasance?

I develop a Bayesian model of information acquisition and aggregation that is consistent with

these observations and provides answers for these questions, but can apply in other areas as well.

Consider a situation where a panel of people (“observers”) with different initial viewpoints

(“types”) gather information about an unknown variable with a commonly known prior distribution.

For each observer type, there is a common, latent, unobserved, but unbiased, piece of information

about the variable that determines a baseline belief or initial viewpoint for all observers of that

type.
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There are many examples of such initial viewpoint types. Consider well documented behav-

ioral differences between men and women in economic decision-making (Croson and Gneezy, 2009).

While one may ascribe differences in behavior to differences in preferences, Harris and Jenkins

(2006) argue that different initial beliefs drive different behaviors, not differences in preferences.

They show that women have a “greater perceived likelihood of negative outcomes and lesser ex-

pectation of enjoyment” then men when assessing risky choices (p. 48). Thus, women start from a

different place than men when assessing the likely outcomes of risky decisions. In this case, types

correspond to gender.

Political expectations are another example. In an election, Democrats may share some common

beliefs, assumptions, and information that form a common viewpoint for their beliefs. Republicans

may share different common beliefs, assumptions and, information that form a different common

viewpoint for their beliefs. For example, Peterson, Goel, and Iyengar (2021) show that Democrats

and Republicans selectively expose themselves to different news sources. So, they have different

information. Forsythe et al. (1992) argue that a false consensus effect (Ross, Greene, and House,

1977) cause different expectations across Republican and Democratic traders in political prediction

markets. A false consensus effect can arise because partisan individuals gather with similar individ-

uals and have some common expectations that they project onto others (Bauman and Geher, 2002),

instead of combining their information with others. Forsythe, Rietz, and Ross (1999) argue that

a wishful thinking effect influences how Republican and Democratic traders interpret information

and trade in prediction markets. Thus, Democrats and Republicans start from a different place

when assessing the likely results of an upcoming election. If one were to poll voters on what they

think the outcome a future election will be (i.e., “citizen forecasting,” Lewis-Beck and Skalaban,

1989), the analysis here shows how the views of different types of voters can be most efficiently

weighted. In these cases, a type corresponds to a party affiliation.

Another example is home country bias in investments. Coval and Moskowitz (1999) argue that

the reason for the home country bias (a preference for investing in geographically close companies)

is due to information effects. Investors have local knowledge about nearby businesses. The local

knowledge is likely to be commonly held among investors in one region and differ from information

of investors in other regions. In this case, a type corresponds to a geographic region. There is a

similar home team bias in sports. Love, Kopeć, and Guest (2015) suggest that fans of sports teams
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and sports writers who follow specific teams interpret the same information differently. Given the

same past records, fans of a team and writers who follow the team project higher future wins than

fans and writers who follow other teams. In this case, type corresponds to a team’s fan base.

With respect to corporate boards, Knyazeva et al. (2021) provide a thorough review for the

interested reader, so I will be very brief here. They document that researchers have investigated

diversity in the form of demographics (e.g., race, gender, and cultural backgrounds), professional

backgrounds, and expertise. They cite two papers on political diversity on boards (Kim, Pantzalis,

and Park, 2013; Lee, Lee, and Nagarajan, 2014) both suggesting diversity in political beliefs is

valuable. They review research on the determinants of board diversity based on firm type, business

conditions, firm structure, and other firm specific factors. There is also considerable research on

firm outcomes and Knyazeva et al. (2021) find the results are quite mixed.1 Most of the research

Knyazeva et al. (2021) cite is empirical, but based on the ideas that diversity brings in more

viewpoints and this should be good. Here, assuming that more accurate information leads to

better decisions, I provide a theoretical underpinning for this idea. The theory does not rely on

any biases, board politics, any kind of adverse selection or principal agent problems. All that is

required is a diversity of initial viewpoints.2

The viewpoint effect I model may arise from different experience, backgrounds, and expertise. It

can also arise whenever groups are operating in “echo chambers” (when groups share and reinforce

their own beliefs to the exclusion of others) or with confirmation bias (when people seek out

information that confirms their beliefs, but ignore information that can dispute them). Cinelli,

De Francisci Morales, Galeazzi, Quattrociocchi, and Starnini (2021) show that such effects are

heavily reinforced by social media and that “users online tend to prefer information adhering to their

worldviews, ignore dissenting information, and form polarized groups around shared narratives.”

Polarized groups can have different initial viewpoints, but even strong beliefs can be unbiased.

My model assumes only that initial viewpoints are different, not that they are systematically

biased in any way. Thus, this paper is not about bias (either implicit or explicit). It is also not about

politics or dishonesty. It is not about traditional demographic-based notions of diversity or ethical
1For example, Kang, Kim, and Oh (2020) find that higher diversity leads to more dissent which leads to higher

firm value and better governance. In contrast, Donaldson, Malenko, and Piacentino (2020) find that higher diversity
leads to more deadlock and worse outcomes.

2This implies that diversity in the form of demographics and expertise may constitute a valuable “type” if it is
associated with different initial viewpoints, but it will not be valuable without a difference in viewpoints.
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arguments for diversity. All observers honestly reveal their information and their types are known,

so it is not about situations where observers have incentives to hide or misrepresent information. It

is also not about groups that may have special or inside information. The model below only requires

differences in (unbiased) initial viewpoints. Given this, how does one incorporate the information

of observers optimally in forecasting a variable relevant for decision making?

I model a case where each observer’s type is known and taken into account when assessing

the value of their information (e.g., we can see their gender, voter registrations, what region they

are from, what team jerseys they wear, their specific corporate expertise, etc.). The analysis

follows a structure similar to latent variables Bayesian inference models found in the literature

(e.g., Gelman, Carlin, Stern, and Rubin, 1995, Chapter 5). While the theory is not particularly

novel, the implications are intuitive and important for understanding the properties of posterior

distribution mean (i.e., forecast based on the available information) and variance (i.e., the level of

residual forecasting error) in such situations. Specifically:

1. If all information is gathered and revealed by the same type of observers, the posterior variance

over the variable of interest (i.e., the forecasting error) is higher than when information comes

from different types with different initial viewpoints.

2. This problem is worse when initial viewpoints are more polarized.

3. A balance of observers of different types on a panel gives the lowest posterior variance.

4. An imbalance of types requires different weights on information from different types to min-

imize posterior variance.

5. With a small number of observer types on a panel, there are limits to the ability of the law of

large numbers to reduce the forecasting error. The mean of the posterior distribution does not

converge to the true underlying value. That is, with a limited number of types, the “wisdom

of the crowd” doesn’t work.

6. Only through many types of observers with independent initial viewpoints across types can

the posterior variance be driven further down.

Thus, panels of observers (e.g, boards, governance bodies, analyst groups, etc.) made up of a

single observer type will have the highest posterior variances (i.e., the make the biggest errors).

Balanced panels across a few types perform better in reducing posterior variance. The lowest
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posterior variance is achieved only by panels of many types of observers, i.e., high levels of initial

viewpoint diversification. Only then will the mean of the posterior distribution converge to the

true underlying value.

To show the potential size of the problem and how it can evolve through time, I use data

from the University of Chicago NORC’s General Social Survey. For a specific example, I use

survey responses from 1974 through 2004 on political orientation and questions about how the

government should spend money. Then, I show how to use simple dummy variable regressions to

assess the degree of polarization across two types: conservative and liberal respondents. Then, for

various numbers of types and observers, I calculate the impact of the polarization on the posterior

variance (or equivalently, the mean absolute forecasting error), while holding overall signal variance

constant. In 1974, political viewpoints explained little of the variance in opinions on government

spending for defense and welfare. Polarization was low. However, by 2021, the impact of political

viewpoints rose by 7.4 to 9.4 fold. Thus, the level of political polarization has risen dramatically.

The calculations back theoretical results in the paper that (1) the posterior variance is lower when

there is less disagreement in initial viewpoints and (2) adding more observers had limited power

to solve the problem and (3) adding more observer types more effectively reduces the problem.

Finally, it shows the problem is magnified when polarization is high.

If better information leads to better decisions, then this paper makes another important con-

tribution: It does not require any bias on the part of any observer or group to justify balancing

panels or expanding them to take advantage of viewpoint diversification.

1 Common Model Elements

Consider a situation where a panel of observers with different initial viewpoints (i.e., types) gather

information about an unknown variable with a common prior distribution. Let V be the variable

of interest and let

V ∼ N(0, σ2
V ) with precision λV = 1/σ2

V . (1)

V might be the vote shares in an upcoming election, the future return on a stock, the future

performance of a sports team, or the best strategy for a corporation, etc.3

3Consider a concrete example. Berg et al. (2010) focus on forecasting the major party vote shares in U.S. Presi-
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Observers of different types either access different baseline information or interpret the same

baseline information differently, resulting in different initial viewpoints. For each type, a latent,

common, unbiased, but unobserved, signal about V is drawn:

yτ = V + ητ where ητ ∼ N(0, σ2
η) with a common precision λη = 1/σ2

η, (2)

where yτ is the latent signal for all individuals of type τ and forms an initial viewpoint.4 There is

no bias in the latent signals, just noise.

Then, each observer of type τ receives an individual signal:

yi,τ = yτ + ϵi = V + ητ + ϵi where ϵi ∼ N(0, σ2
ϵ ) with a common precision λϵ = 1/σ2

ϵ , (3)

where yi,τ is the signal received by observer i (who is of type τ) and ϵi is independent of ητ .

Thus, an observer’s overall signal has expected value V plus of a combination of the common, but

unobserved, initial viewpoint (ητ ) plus individual variation from that initial viewpoint (ϵi).5

Note that, conditional on V , each type’s latent signal is distributed N(V, σ2
η) and each individual

signal is distributed N(V, σ2
η + σ2

ϵ ). So, both are effectively unbiased forecasts of V . Thus, each

observer has an overall unbiased signal.

2 Two Types, Two Individuals Cases

Suppose there are two Types denoted by τ ∈ {D,R}. While D and R can be thought of as

Democrat and Republican, they can be any two types of observers who have different latent initial

information/viewpoints across types, but common within types. Suppose there are two individual

observers on the panel. The Bayesian posterior distributions vary based on whether the observers

are of the same type or different types.

dential elections. They model a normal prior distribution for V = ln(f/(1 − f)) where f is the fraction of the two
party vote taken by the Democratic candidate. They parameterize their prior distribution by fitting it to historical
popular vote shares.

4The common precision simplifies the exposition, but the intuition generalizes to different precisions.
5The false consensus idea leads to another way to think about this. People form groups based on the closeness of

their private signal. As Bauman and Geher (2002, p. 314) put it “people tend to be friends with people who hold
similar attitudes.” This self-selection effectively makes groups share a correlation that is modeled by the common
latent signal here.
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2.1 Case 1: Two types, two observers, same type

Without loss of generality, suppose both observers are type τ = D. The individual signals are:

yi = V + ηD + ϵi, i = 1, 2. (4)

The two observed signals share the same latent noise ηD constituting the initial viewpoint with

precision λη. They each have an independent noise of ϵi with precision λϵ. If the two individuals

were both Type R, they would have the same precisions for the latent and independent noise. So,

one can drop the type designations and condition simply on the fact that they are the same type.

In that case, the precision contributed by the two signals from the same type is:

Λsame =
2

2σ2
η + σ2

ϵ

=
2

2
λη

+ 1
λϵ

=
2ληλϵ

λη + 2λϵ
, (5)

where “same” denotes conditioning on the two observers being the same type.

Then, the posterior distribution is:

V |ysame ∼ N

(
Λsame

λV + Λsame
× ȳ,

1

λV + Λsame

)
, (6)

where ȳ is the average signal.

The fact that the two observers have the same initial latent viewpoint affects the precision

contributed by the two signals. In turn, this affects the posterior expected value because it is a

weighted average of the prior expected value (0) and the sample mean where the weights depend on

the precision contributed by the signals. The posterior precision is the sum of the initial precision

and the precision contributed by the signals. Therefore, as the inverse of the posterior precision,

the posterior variance is affected by the same factors.

2.2 Case 2: Two types, two observers, different types

Now suppose the panel is made up of one type D observer and one type R. In this case, the observer

signals are:

y1 = V + ηD + ϵ1 and y2 = V + ηR + ϵ2. (7)
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The two signals have independent latent noise creating independent initial viewpoints, but they

have the same precision λη. They each have an independent noise of ϵi with precision λϵ. So, again,

one can drop the type designations and condition simply on the fact that they are different. In

that case, the precision contributed by the two signals is:

Λdiff =
2

σ2
η + σ2

ϵ

=
2

1
λη

+ 1
λϵ

=
2ληλϵ

λη + λϵ
, (8)

where “diff” denotes conditioning on the two observers being of different types.

Then, the posterior distribution is:

V |ydiff ∼ N

(
Λdiff

λV + Λdiff
× ȳ,

1

λV + Λdiff

)
, (9)

where, again, ȳ is the average signal.

The precision contributed by the two signals is no longer affected by the same latent initial

viewpoint. The signals are now completely independent. Relative to the same type case, this

changes the mean update and the posterior variance. .

2.3 Comparing Case 1 and Case 2

First, note that the sensitivity of the posterior mean to the data and the level of the posterior

variance are monotone in the precision of the data. The posterior update weight on the data,

Λdata/(λV + Λdata), is strictly increasing in Λdata. To see this, ake the partial derivative of the

update weight with respect to Λdata, giving:

∂

∂Λdata

(
Λdata

λV + Λdata

)
=

λV

(λV + Λdata)2
> 0. (10)

Further, the posterior variance, 1/(λV + Λdata), is strictly decreasing in Λdata. Taking the partial

derivative with respect to Λdata gives:

∂

∂Λdata

(
1

λV + Λdata

)
= − 1

(λV + Λdata)2
< 0. (11)

Given this, we can easily compare the posterior mean and variance based on same or different
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type observers, which leads to the following proposition:

Proposition 1. When the two observers are of the same type, (1) the posterior expected value

is less responsive to the data than when the observers are of different types and (2) the posterior

variance is higher than the observers are of different types.

Proof. Because, λη + 2λϵ > λη + λϵ:

Λsame =
2ληλϵ

λη + 2λϵ
<

2ληλϵ

λη + λϵ
= Λdiff. (12)

Because two observers of different types yields a higher precision than two observers of the same

type, the posterior update weight is higher (by equation 10) and the posterior variance is lower (by

equation 11).

The posterior update weights multiplying the sample means in equations 9 and 6 show how

much the mean of the posterior distribution changes when the data are observed. Signals from

two different types have more information content than two signals from the same type, so heavier

weight is placed on the sample mean (i.e., the data). As a result, the posterior mean moves more.

The differential information contents also affects the posterior variance. The higher information

resulting from signals form two types increases the precision of the data and decreases the posterior

variance. Note that the mean absolute prediction error for the posterior normal distribution equals√
2
π times the posterior standard deviation. So, the lower the posterior variance, the lower the

prediction errors will be based on the posterior distribution. Alternatively, the higher posterior

variance resulting from a single type of observer implies higher residual forecasting uncertainty.

Figure 1 illustrates the wedges that occur in the posterior variance and mean resulting from

having two individuals of the same type versus different types. Panel A shows the posterior variance.

The larger the variance in the latent type signals (i.e., the greater the variance in initial viewpoints),

the larger the wedge. Panel B shows the posterior mean for a mean signal of 1. The higher the

latent variance, the smaller the update. When, there are two observers of one type, the dampening

effect of the latent variance is magnified. Thus, if we are becoming more polarized (as asserted by

Cinelli et al., 2021), then it is even more valuable to have different viewpoints among the observers.
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Figure 1. Posterior variance and mean when σ2
V = σ2

ϵ = 1 and σ2
η ranges from 0 to 2. Panel A

shows the posterior variance. Panel B shows the posterior mean for a mean data signal of 1.

3 Generalization to n observers of two types

Now suppose that the panel consists of n observers and there are two types of observers. Let nD

observers see yi,D = V + ηD + ϵi and nR see yi,R = V + ηR + ϵi and let n = nD + nR. Thus,

the panel consist of n members, nD Democrats, and nR Republicans (or whatever two types you

want to think of). Denote the sample means of the observers by ȳD and ȳR for type D and type R

observers, respectively.

Each type shares a common latent viewpoint, so information within a type is correlated. The

precision contributed by type D observers is:

ΛD =
nD

σ2
ϵ + nDσ2

η

=
nDληλϵ

λη + nDλϵ
. (13)

Similarly for type R observers:

ΛR =
nRληλϵ

λη + nRλϵ
. (14)
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Thus the total data precision is:

Λdata = ΛD + ΛR =
nDληλϵ

λη + nDλϵ
+

nRληλϵ

λη + nRλϵ
. (15)

The posterior precision is λV + Λdata and the posterior distribution becomes:

V | y ∼ N

(
Λdata

λV + Λdata
· ȳ, 1

λV + Λdata

)
, (16)

where ȳ = ΛD ȳD+ΛR ȳR
Λdata

. Thus, the posterior mean optimally weights the signals from the type D

and type R observers in forecasting V . The weights come from the relative precision contributed

by each signal within each type balanced against the precision contributed by signals across types.

Analyzing the results leads to the following proposition.

Proposition 2. For fixed total sample size n = nD + nR, the data precision is maximized when

nD and nR are as equal as possible (i.e., nD = nR when n is even, and |nD − nR| = 1 when n is

odd). This (1) minimizes the posterior variance while (2) maximizing the sensitivity of the mean

of the posterior distribution to changes in the data.

Proof. Define g(m) =
mλη λϵ

λη +mλϵ
for m ≥ 0. Recall, λη, λϵ > 0. The first and second derivatives of

g(m) are:

g′(m) =
λ2
ηλϵ

(λη +mλϵ)2
> 0 and g′′(m) = −

2λ2
ηλ

2
ϵ

(λη +mλϵ)3
< 0. (17)

Thus, g(m) is increasing and strictly concave. With n = nD+nR fixed, Jensen’s inequality implies:

g(nD) + g(nR) ≤ 2g

(
nD + nR

2

)
= 2g

(n
2

)
, (18)

with equality if and only if nD = nR. Thus, the most balanced split maximizes Λdata. Maximizing

Λdata both maximizes the posterior update weight (by equation 10) and minimmizes the posterior

variance (by equation 11).

What does this mean? Splitting observers across the two latent viewpoints produces more

independent information (less shared latent noise) than concentrating observers on a single latent
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viewpoint. This maximizes the update in the forecast that results from a given weighted average

of signals while minimizing the posterior variance and expected forecasting error.6

Figure 2 shows the impact of imbalanced types on the posterior variance (Panel A) and mean

for a weighted average signal of 1 (Panel B). With all observers from one type and none from the

other, the panel becomes an echo chamber with the largest posterior variance (Panel A) and the

lowest sensitivity to the data (Panel B). As the number of type D observers range from 0 to 10 out

of 10, Figure 2 shows that the largest impact is going from 0 to 1 or 9 to 10. This arises because, if

all observers are one type, all information has the same underlying latent viewpoint and, therefore,

is correlated. Just one viewpoint from another type provides the only independent information

(from the other underlying latent signal) and, therefore, is heavily weighted.7

Breaking up the echo chamber matters a lot. Figure 2 shows that the biggest impact arises from

the first observer with an alternative viewpoint. Similarly, the mean of the posterior distribution will

shift more when adding one observer of a different type than when adding more. In fact, additional

weight on the minority type observations continues to emphasize the value of the uncorrelated

initial viewpoints when the numbers are larger.

Observation 1. On a per capita basis, the smaller group is always overweighted in determining

the posterior expected value.

Proof. Let w(nτ ) represent the weight per capita for an observer in a type τ with nτ observers.

The weight per capita is:

w(nτ ) =
Λ(nτ )

nτ
=

ληλϵ

λη + nτλϵ
. (19)

This is decreasing in nτ since

w′(nτ ) = − ληλ
2
ϵ

(λη + nτλϵ)2
< 0. (20)

6The perfectly even split arises because both types have the same initial latent viewpoint precision (λτ ). If one
type has more precision than the other, then there will be a heavier weighting on that type. However, observers of
the other type will generally still add precision because of the independence of their latent signal. More specifically,
if latent precisions differ across types, the contributed precision for type τ with nτ observers is Λτ =

nτ λη,τλϵ

λη,τ+nτλϵ
. For

types D and R, total precision is Λdata =
nD λη,Dλϵ

λη,D+nDλϵ
+

nR λη,Rλϵ

λη,R+nRλϵ
and the optimal allocation of observers equates

marginal gains from the observers’ information: λ2
η,D

(λη,D+nDλϵ)2
=

λ2
η,R

(λη,R+nRλϵ)2
. This implies the weighting should

emphasize signals from the type with higher latent precision, but not ignore signals from the other type.
7Interestingly, this contrasts with the “critical mass” idea for corporate boards outlined in Schwartz-Ziv (2017).

If all board members are rational, they should place the most weight on the first board member with a different
viewpoint.
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Figure 2. Posterior variance and mean for 10 observers with 0 to 10 of one type when σ2
V = σ2

η =
σ2
ϵ = 1. Panel A shows the posterior variance. Panel B shows the posterior mean for a mean data

signal of 1.

Interestingly, if urban and rural voters constitute different types, then this is what the electoral

college does by giving more electoral college votes per capita to smaller population rural states.

The next proposition says that there is a limit to how much incorporating two initial latent

viewpoints can limit posterior variance.

Proposition 3. As a board increases in size, with nD → ∞ and nR → ∞, (1) the posterior

variance around the mean within each group converges to zero but, (2) overall, the variance of the

posterior distribution of V converges to V ar(V | y) → 1/(λV + 2λη), which is strictly positive.

Proof. For two types, the data precision is

Λdata =
nDληλϵ

λη + nDλϵ
+

nRληλϵ

λη + nRλϵ
. (21)

As nD → ∞, the first term converges to λη because
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lim
nD→∞

nDληλϵ

λη + nDλϵ
= lim

nD→∞

ληλϵ

λη

nD
+ λϵ

=
ληλϵ

λϵ
= λη. (22)

Similarly, the second term converges to λη. This implies that Λdata → 2λη and Var(V | y) =

1/(λV + Λdata) converges to 1/(λV + 2λη), which is strictly positive.

Further, the posterior mean does not coverage to V as shown in the following proposition:

Proposition 4. As nD, nR → ∞, the posterior mean does not converge to the true value V but to

a random limit depending on the latent signals ηD, ηR.

Proof. The posterior mean is:

E(V | y) = ΛDȳD + ΛRȳR
λV + ΛD + ΛR

, (23)

where ȳD and ȳR are the sample means for each type and ΛD,ΛR are their contributions to the

overall precision. As nD → ∞, ȳD → V + ηD and ΛD → λη because individual noise averages out

but latent noise remains. Similarly for type R. Thus,

E(V | y) → λη(V + ηD) + λη(V + ηR)

λV + 2λη
= V +

λη(ηD + ηR)

λV + 2λη
. (24)

Since ηD, ηR are independent, zero-mean, and non-degenerate, the limiting posterior mean is

random and generally not equal to V . Therefore, even with arbitrarily many observers per type,

residual uncertainty persists.

Intuitively, within each type, averaging across observations wipes out the individual noise, but

does not wipe out the type-specific noise in the form of ητ , which is common to the whole group.

Thus even with arbitrarily many observers in each type, the posterior retains randomness coming

from the ηs. This prevents converging to the true V and leaves residual uncertainty.

Figure 3 shows how the posterior variance (Panel A) and mean (Panel B, with a weighted

average signal of 1) respond to more observers with equal numbers of each observer type ranging

from 1 to 10 per type. The posterior variance rapidly falls to a limit equal to 1
λV +2λη

. The level of

residual uncertainty depends on the precision of the prior and the precision of the two individual

latent signals/viewpoints. Similarly, the posterior mean update rises to a limit equal to 2λη

λV +2λη
,
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which is well below the weighted average signal of 1. Increasing the number of observers does not

change these limits. Thus, regardless of the number of observers, there will always be residual

uncertainty.

Figure 3. Posterior variance and mean when σ2
V = σ2

η = σ2
ϵ = 1 and nD = nR ranges from 0 to 20.

Panel A shows the posterior variance. Panel B shows the posterior mean for a mean data signal of
1.

For elections, there is data consistent with this lack of convergence: Berg et al. (2010) document

residual uncertainty in their posterior distributions of vote shares in Iowa Electronic Markets on

U.S. Presidential elections all the way through election day. So do Gruca and Rietz (2021).8

4 Generalization to n Types: The value of viewpoint diversifica-

tion

The analysis above shows, that a balance of types minimizes the residual variance in the posterior

distribution of V when there are two (or few) types. But, with a limited number of types, there is

a limit to the amount of uncertainty that can be resolved. What if the panel was based on a large
8While their data does not go all the way through to the election, Gruca and Rietz (2025) show a similar pattern.
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number of types with only one person from each type? That is, what if the panel were designed to

capture a larger range of viewpoints instead of being balanced across two viewpoints? The answer

shows the value of initial viewpoint diversification.

First, get the latent signals for each type and, becasue there is only one observer of each type,

we can index both the observer and type by the same variable, i (i.e., let i = τ). For i = 1, . . . , n.

Each observer sees the combination of their own latent and individual signals:

yi = V + ηi + ϵi, ηi ∼ N(0, σ2
η), and ϵi ∼ N(0, σ2

ϵ ), (25)

with all ηi and ϵi independent of one another and of V .9 This means each observer’s precision is:

λobs =
1

σ2
η + σ2

ϵ

=
1

1
λη

+ 1
λϵ

=
ληλϵ

λη + λϵ
, (26)

where “obs” denotes a single observer or observation.

Given n observers, the posterior distribution is:

V | y1, . . . , yn ∼ N
( nλobs
λV + nλobs

ȳi,
1

λV + nλobs

)
. (27)

Now compare the response in the posterior expected value to the same overall set of signals

depending on whether the signals are split across two types versus all completely independent. The

response is larger when the signals are independent as shown in the following proposition.

Proposition 5. Suppose there are n > 2 observations and either (1) they come from two types

with nD + nR = n or (2) from n independent types (one observation per type). Then, the posterior

precision under n independent types exceeds the posterior precision under any two-type allocation.

Consequently, the posterior mean is strictly more responsive to the data in the independent case.

Proof. For two types, the total precision is maximized by a balanced split nD = nR = n/2, which

gives:

Λtwo-types =
nληλϵ

λη +
n
2λϵ

. (28)

9If there were more than one observer of each type, would go back to being indexed by τ and observers by i and
each signal would be yi,τ = V + ητ + ϵi. The same intuition and similar math would hold for the rest of this section.
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For n independent types (one per observation), each contributes λobs =
ληλϵ

λη+λϵ
so the overall

precision is:

Λindep = nλobs = n
ληλϵ

λη + λϵ
. (29)

Since n > 2 implies λη +
n
2λϵ > λη + λϵ, the denominator in Λtwo-type is strictly larger than that in

Λindep. As a result, Λtwo-types < Λindep.

Because n independent types of observers yields a higher precision than the best split of n

observers across two types, the posterior update weight is higher (by equation 10) and the posterior

variance is lower (by equation 11).

Intuitively, the condition Λtwo-types < Λindep says that even the best allocation across types

(the balanced split) yields less total information than n independent types. This means that the

precision of the n independent types is higher, which directly translates into greater influence of

the data on the posterior mean. Its fairly easy to see that this will generalize to any number of

types where the number is less than n.

The next proposition shows that, under the n independent types case, the posterior variance

falls to zero and the mean observation becomes a consistent estimator of V when n is large:

Proposition 6. Suppose the n observations come from n independent types (one observer per type).

Then, as n → ∞, (1) the posterior variance converges to zero and (2) the sample mean observation

is a consistent estimator of V .

Proof. Because the n observations are conditionally independent given V , the data precision is

additive, so:

Λdata = nλobs, where λobs =
ληλϵ

λη + λϵ
> 0. (30)

As a result

V ar(V | y1, . . . , yn) =
1

λV + Λdata
=

1

λV + nλobs
−−−→
n→∞

0, (31)

proving part (1).

The mean of the posterior distribution is:
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E(V | y1, . . . , yn) =
nλobs

λV + nλobs
ȳ, where ȳ =

1

n

n∑
i=1

yi. (32)

By the law of large numbers, ȳ → V almost surely because {yi} are i.i.d. with mean V and finite

variance. Because the weight nλobs
λV + nλobs

→ 1:

E(V | y1, . . . , yn) =
nλobs

λV + nλobs
ȳ

a.s.−−−→
n→∞

V, (33)

proving part (2).

Thus, in contrast to having many observers of few types, having many types of observers with

few observers of each type breaks the lower bound on the posterior residual variance and results

in estimates that converge to the actual value of V . Figure 4 adds to Figure 3 lines showing the

posterior variance (Panel A) and mean (Panel B with a weighted average signal of 1) as the number

of types increases instead of increasing the number of observers of only two types. One observer

each of three types matches the limits achievable with two types and n observers each. Eventually,

the posterior variance converges to zero and the posterior mean converges to the average of the

signals which, in turn, converges to the true value. Thus, viewpoint diversification can overcome

the lower bound on the posterior variance and allow the posterior mean to converge to the true

value of V .

5 Calibration

There are many potential ways groups can form with different initial view points, i.e., common η’s

within group and different ηs across groups. First, because they are a member of a group, individuals

may start with common viewpoints. This may arise if they share a common initial information

set. For example, Democrats may attend common functions and listen to common news sources

because they are Democrats. The same may hold for Republicans. This is one rational for the

false consensus effect (Ross et al., 1977). Second, individuals may become part of a group because

they have a common η. This is another rational for the false consensus effect (Bauman and Geher,

2002). As an example, I consider differences in viewpoints along a liberal/conservative spectrum.

This likely fits better with the latter idea.
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Figure 4. Posterior variance and mean when σ2
V = σ2

η = σ2
ϵ = 1. Panel A shows the posterior

Variance. The solid line shows posterior variance with nD = nR ranging from 0 to 10. The lower
dashed line shows the number types ranging from 0 to 20 with one observer of each type. Panel
B shows the posterior mean for a mean data signal of 1. The solid line shows posterior mean with
nD = nR ranging from 0 to 10. The upper dashed line shows the number types ranging from 0 to
20 with one observer of each type.

To show the impact of this using real-world data, I downloaded the University of Chicago

NORC’s General Social Survey (https://gss.norc.org/). I created two groups based on the respon-

dents’ surveyed political viewpoints (the survey’s POLVIEWS variable) by assigning respondents

who said they were “liberal” or “extremely liberal” a value of 0 and those who said they were

“conservative” or “extremely conservative” a value of 1.10

Now, consider a regression to explain views of observers with a dummy variable indicating the

observer is one of two types. The R2 of that regression shows the percentage of the total variance

in responses due to group membership (i.e., the η’s). The remaining variance is due to individual
10This measure is for illustrative purposes. Respondents could also respond with “slightly” conservative or liberal

or “moderate.” Thus, my measure creates two types with a relatively high level of difference, but not the highest. One
could blend in “slightly” responses and it dampens the effect to some degree, but leaves the overall point unchanged.
Using only “extremely” responses does the opposite. Using the variable PARTYID and grouping over Democrats
(“strong Democrat” and “not very strong Democrat”) versus Republicans (“strong Republican” and “not very strong
republican”) gives similar results.
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variation (i.e., the ϵ’s). This allows one to estimate the relative size of the variances across types

versus across individuals with a simple regression. Using data from every survey year from 1974

through 2024, I ran the political views dummy as the independent variable in a regression explaining

the respondents’ views on whether the government was spending too little, about right, or too much

on (1) arms and national defense (NATARMS variable) and (2) welfare (NATFARE variable).11

Table 1 shows the results of the dummy variable regressions. The table shows two important

things. First, there are generally significant differences in opinion on government spending on arms

and defense and on welfare. All of the coefficient estimates are significant, all but two at the 99%

level of confidence. Second, the R2s have been changing through time. Because the R2s represent

the fraction of variance explained by the two ideological group types, the implies that polarization

is changing across time. Figure 5 clearly shows that recent opinions are driven more by ideological

differences and less by individual variation than they were before the turn of the century. The R2

for arms in defense in 2021 was 9.4 times what it was in 1974. The R2 for welfare in 2021 was 7.4

times the 1974 R2.

Based on each R2, I calibrate the model keeping the total variance of the signals constant. This

can be done by normalizing the variables to mean zero and variances that reflect the R2. Assume,

as before, that V ∼ N(0, 1). Then, normalize σ2
η and σ2

ϵ to sum to 2 and σ2
η

σ2
η+σ2

ϵ
= R2 for a given

year in Table 1. This normalizes the calibrations so that the total signal variance of 3 matches

Figures 2 through 4 while splitting the signal variance across the types to match the R2 of that

year’s regression. This gives σ2
η = 2 × R2 and σ2

ϵ = 2 × (1 − R2). Next, suppose that m is the

number of types and N is the total number of observers. A simple extension of Proposition 2 would

show that n = N/m observers of each type would minimize the posterior variance. In this case:

Λdata =
m∑

τ=1

N
mληλϵ

λη +
N
mλϵ

=
Nληλϵ

λη + nλϵ
. (34)

Using this, I calculate the posterior variance for 1, 2, 5 and 10 types of observers with 1, 2, 5, 10, 50

and 100 observers split evenly across types using the 1974 data (representative of a low polarization

case), 2021 data (the maximum polarization in the data set) and 2024 (the most recent observation).
11I note that, because the survey response scale is discrete (1–3), an ordered logit model is technically the correct

regression technique to use. This gives similar directional results, but there is not an exact mapping from the psuedo-
R2 to the variance decomposition. So, I use the simpler OLS regression to make the interpretation direct here for
illustrative purposes.
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Table 1. Dummy variable regressions. In each case, the dummy variable is 0 if the respondent
stated they were “liberal” or “extremely liberal” and 1 if they stated they were “conservative”
or “extremely conservative.” The dependent variable ranged rated spending as 1 (“too little”), 2
(“about right”) or 3 (“too much”).

Year
Arms and Defense Welfare

Coef. Std. Error R2 Coef. Std. Error R2
1974 -0.3149 0.073*** 0.0456 0.3858 0.0798*** 0.0549
1975 -0.4274 0.0711*** 0.0853 0.4456 0.0832*** 0.0690
1976 -0.3886 0.0755*** 0.0615 0.4776 0.0665*** 0.1116
1977 -0.4144 0.0733*** 0.0759 0.3653 0.0729*** 0.0585
1978 -0.3460 0.0763*** 0.0554 0.2969 0.0759*** 0.0394
1980 -0.3509 0.0765*** 0.0548 0.3217 0.0786*** 0.0441
1982 -0.5903 0.069*** 0.1269 0.5094 0.0731*** 0.0859
1983 -0.6131 0.1087*** 0.1360 0.3934 0.1154*** 0.0552
1984 -0.5205 0.1277*** 0.1199 0.5516 0.1459*** 0.1048
1985 -0.1853 0.105* 0.0155 0.3501 0.1069*** 0.0501
1986 -0.3323 0.1077*** 0.0473 0.4905 0.1112*** 0.0929
1987 -0.5172 0.1134*** 0.1184 0.4608 0.1303*** 0.0742
1988 -0.3769 0.0977*** 0.0656 0.3654 0.1126*** 0.0471
1989 -0.2843 0.0931*** 0.0407 0.4350 0.105*** 0.0745
1990 -0.3642 0.0946*** 0.0697 0.5020 0.1128*** 0.0935
1991 -0.4543 0.0845*** 0.1166 0.6620 0.1062*** 0.1581
1993 -0.3399 0.0896*** 0.0601 0.2658 0.1091** 0.0258
1994 -0.4278 0.0646*** 0.0827 0.4708 0.0607*** 0.1105
1996 -0.5096 0.0674*** 0.1150 0.4875 0.0706*** 0.0968
1998 -0.5040 0.0652*** 0.1179 0.4147 0.0703*** 0.0728
2000 -0.4091 0.0684*** 0.0760 0.2952 0.0708*** 0.0385
2002 -0.5641 0.0981*** 0.1376 0.5007 0.1006*** 0.1061
2004 -0.5614 0.1014*** 0.1273 0.4690 0.1029*** 0.0896
2006 -0.6786 0.0686*** 0.1647 0.6255 0.0681*** 0.1468
2008 -0.5759 0.082*** 0.1265 0.3795 0.0835*** 0.0581
2010 -0.7135 0.0776*** 0.1935 0.7002 0.0773*** 0.1902
2012 -0.6420 0.0769*** 0.1692 0.6116 0.0804*** 0.1443
2014 -0.7970 0.074*** 0.2171 0.7594 0.0728*** 0.2072
2016 -0.8278 0.0665*** 0.2397 0.7233 0.0666*** 0.1963
2018 -0.7850 0.0689*** 0.2414 0.8526 0.07*** 0.2650
2021 -1.0556 0.0434*** 0.4286 1.0696 0.046*** 0.4075
2022 -0.9540 0.0532*** 0.3243 0.9168 0.0553*** 0.2958
2024 -0.8861 0.0558*** 0.2872 0.9014 0.0573*** 0.2821
*, **, and ** denote significance at the 90%, 95%, and 99%
levels of confidence, respectively.

23



Figure 5. Graph of R2s from dummy variable regressions. In each case, the dummy variable is 0
if the respondent stated they were “liberal” or “extremely liberal” and 1 if they stated they were
“conservative” or “extremely conservative.” The dependent variable ranged rated spending as 1
(“too little”), 2 (“about right”) or 3 (“too much”).

The results of the calibrations are graphed in Figure 6. Graphs of the mean absolute prediction

error show the same pattern because the mean absolute prediction error for a normal posterior

equals the posterior variance times (2/π)0.5.

Figure 6 illustrates several important points. First, as we add observers with only one group

type represented, the posterior variance falls rapidly to a limit that is strictly above zero and strictly

higher than having more than one type represented. Second, for any given number of types, the

posterior variance approaches a limit as we add observers, but the limits are always strictly above

zero. Third, limits fall as we add types. Fourth, and possibly most important, when polarization

is relatively small (i.e., 1974), the posterior variance limits are relatively close to zero regardless

of the number of types. When polarization is high (i.e., 2021), the number of viewpoints (types)

represented matters a lot. This shows it is much more important to incorporate multiple viewpoints

when polarization is high.
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Figure 6. Posterior Variances based on the R2 from dummy variable regressions in 1974, 2021
and 2024 and various combinations of numbers of types and observers.
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6 Additional Observations

Consider another possible way around the limiting factor of two or few types, repeated signals given

to observers. There are three possibilities.

First, suppose each observer gets signals in sequence each with a new individual error term.

This means their type signal (what defines them as part of a group) stays the same and each new

combined signal equals to yi,j,τ = V + ητ + ϵi,j where j indexes the observers signal number. The

information in this set of n such signals for an type τ observer is exactly the same as having n type

τ observers each with one signal. As in that case, the posterior variance converges to a strictly

positive value and the posterior mean does not converge to the true value.

Second, suppose each observer gets signals in sequence with both new type and individual error

terms. Each new combined signal equals yi,j,τ = V + ητ,j + ϵi,j where j indexes the observers signal

number. This is effectively the same as having n types. The posterior distribution will converge

to the true V . However, it also means that, for no apparent reason, the entire group becomes a

new type with every new piece of information. Republicans may become Democrats; men become

women; neo-Nazis become ultra-feminists, etc. You could also rig it so that individuals instead of

entire groups change. But, neither scenario seems reasonable.

Third, suppose each observer gets signals in sequence with new individual error terms and the

variance of η is zero. Each new combined signal equals yi,j,τ = V +ϵi,j where j indexes the observers

signal number. This just becomes n observers with random noise. This would also converge, but

there is no longer a group viewpoint. This conflicts with evidence that Democrats do consistently

differ from Republicans in their initial viewpoints, men do differ from women, Nazis and feminists

do differ.

A final possibility is that, using a deterministic or random decay function, people simply forget

their types (their initial ηs through time). This would allow observers to become more homogeneous

over time, slowly removing the impact of ητ . Over time, this moves us to the third case above.

This means, over time, groups coalesce into a single homogenous group. In today’s society, this

conflicts with the evidence that we are becoming more polarized, not less.

While none of these panel data solutions seem to solve the problem in a reasonable way, we can

still say something about how the posterior distribution reacts to new information in the additional
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individual error terms case. Suppose that m is the number of types and N is the total number of

observers. Rearranging equation 34 slightly gives:

Λdata =

m∑
τ=1

N
mληλϵ

λη +
N
mλϵ

=
Nληλϵ

λη +
N
mλϵ

=
Nmληλϵ

mλη +Nλϵ
, (35)

where, again, N observers are equally divided among m types. It is easy to see that λdata is

increasing in m up to N , increasing in N , increasing in λη, and increasing in λϵ.12 All increase the

precision of the data and, as a result, decrease the posterior variance and increase the sensitivity of

the posterior mean to the data. In standard deviation terms, more polarization across groups (i.e.,

inter-group noise σ2
η) and more division withing groups (i.e., intra-group noise, σ2

ϵ ) both increase

the posterior variance and dampen the sensitivity of the posterior mean to the data. All of these

relationships also hold when the panel is unbalanced.

As Figure 2 shows, adding more observers of a type with fixed N changes the sensitivity of

the posterior to the data. Adding observers to the smaller group increases sensitivity, but at a

rapidly declining rate. Figure 3 shows how fast the posterior mean and variance approach their

limits assuming a balanced panel of observers as the number of observers increases. Equivalently,

it shows how fast the posterior mean and variance converge if two observers, one of each type, each

receive additional signals.

Unbalanced panels converge more slowly than balanced panels. But, because the updating

function weights the smaller group more heavily, it does not matter as much as one might think.

Figure 7 shows what happens if the panel is imbalanced with 1 D observer added after every 9 R

observers. The unbalanced panel converges somewhat more slowly to the same limit.

A natural and intuitive way to incorporate a range of information in a board is to (1) make

the board representative of the population and (2) equally weight the information of each board

member. Similarly, a common method of polling expectations for forecasting is to make the sample

representative of the population and equally weight all individual forecasts. While this helps, it

is suboptimal unless the fractions of types on the board (or poll) just happen to be equal. This

observation arises from Figure 2, Panel A and Observation 1. It is fairly easy to show the extent
12Simply take partial derivatives with respect to each argument. For example, the partial with respect to N

simplifies to m2λ2
ηλϵ

(mλη+Nλϵ)2
> 0. The other partials are similar.
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Figure 7. Posterior variance and mean when σ2
V = σ2

η = σ2
ϵ = 1 and 1 D is added after very 9 R

observers up to 20 observers total versus up to 20 balanced observers. Panel A shows the posterior
variance. Panel B shows the posterior mean for a mean data signal of 1.

of the suboptimality by reworking equations 13 through 16 assuming equal weighting instead of

optimal weighting.

As before, let nD denote the number of type-D observers and nR the number of type-R observers,

with n = nD + nR. The equally weighted mean is:

ỹ =
1

n

n∑
i=1

yi. (36)

The variance of ỹ is affected by the nD observers that have a single common η, the nR observers

that have a different, but commen, η and the n = nD + nR independent ϵ’s giving:

Var(ỹ | V ) =
n2
D + n2

R

n2
σ2
η +

σ2
ϵ

n
, (37)

which is minimized only when nD = nR. Alternatively, in precision notation:
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Var(ỹ | V ) =
n2
D + n2

R

n2

1

λη
+

1

n

1

λϵ
. (38)

Inverting this and a little algebra gives:

ΛEW =
n2ληλϵ

nλη + (n2
D + n2

R)λϵ
. (39)

Then, as before:

VarEW(V | ỹ) = 1

λV + ΛEW
. (40)

Comparing (39) to the optimal posterior variance in equation 15 shows that the equal-weight

posterior variance is strictly larger for every allocation with nD ̸= nR. Intuitively, equal weighting

forces the posterior to behave as if all signals contribute equally to the precision of the data.

This causes the posterior to overreact to the over-represented type and underweight the under-

represented type. Figure 8 shows the impact of this by comparing the optimally weighted posterior

variance from Figure 2 Panel A to the equally weighted posterior variance.

Figure 8. Posterior variance with optimal weights and equal weights for 10 observers with 0 to 10
of one type when σ2

V = σ2
η = σ2

ϵ = 1.

Thus, the seemingly “fair” or “natural” rule of adding more panelists and weight them equally
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is suboptimal. Posterior precision improves fastest not by equal weighting, but by accounting for

the contribution of each observer to the overall data precision. This shows clearly the point from

Proposition 3: only balancing types and weighting them optimally minimizes posterior uncertainty.

7 Discussion

This paper applies straightforward Bayesian analysis to a common situation to gain some interesting

insights. Consider the makeup of a panel of individuals tasked with uncovering information to make

informed decisions. Suppose the panel members (called “observers” here) include groups (or “types”

here) of people that share some common information or beliefs within their type (i.e., common, but

unobservable, baseline viewpoints). However, these initial viewpoints differ across types. Starting

with the common viewpoint associated with their type, each observer brings some additional private

information to the table. In this case, a Bayesian analysis shows the following:

1. If there are two types (groups) of panel members (e.g, Democrat and Republican), then:

(a) While a highly unbalanced panel may reveal unbiased information, the residual uncer-

tainty about the truth is high.

(b) A more balanced panel can still reveal unbiased information, while reducing residual

uncertainty.

(c) More panel members can also reduce residual uncertainty to some degree. But, with

only two types of panel members, there is a limit to how much residual uncertainty can

be reduced regardless of the number of panel members or their balance.

(d) The (correctly) weighted means of the observations does not give an estimator that

converges to the true V .

2. If there are many types (groups) of panel members that each bring their own unique baseline

beliefs and viewpoints, then:

(a) Each member of a panel of a new type brings additional unique information to the panel.

(b) When there are many types, the posterior mean is more responsive to the observed data

than when there are fewer types and it converges to the true V .

(c) With a sufficient number of types, the residual variance can be reduced to zero.
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Thus, the key to the most accurate information, which presumably leads to the best decisions,

lies not in more or more balanced representation by a small number of types. Instead, it arises

from including a wide range of types with independent initial underlying perspectives, beliefs, and

viewpoints. Unfortunately, often, the number of types may be quite limited. Further, none of these

results require any bias of any kind from individual observers or types.
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