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Abstract

Let L be an ordered topological vector space with topological dual LX and order dual
L; . Also, let f and g be two order-bounded linear functionals on L for which the
supremum fkg exists in L. We say that fkg satisfies the Riesz–KantoroÕich formula if
for any 0FvgL we have

w xfkg v s sup f x qg vyx .Ž . Ž . Ž .
0FxFv

This is always the case when L is a vector lattice and more generally when L has the Riesz
Decomposition Property and its cone is generating. The formula has appeared as the crucial
step in many recent proofs of the existence of equilibrium in economies with infinite
dimensional commodity spaces. It has also been interpreted by the authors in terms of the
revenue function of a discriminatory price auction for commodity bundles and has been
used to extend the existence of equilibrium results in models beyond the vector lattice
settings. This paper addresses the following open mathematical question:

Ø Is there an example of a pair of order-bounded linear functionals f and g for which
the supremum fkg exists but does not satisfy the Riesz–KantoroÕich formula?

We show that if f and g are continuous, then fkg must satisfy the Riesz–Kantorovich
formula when L has an order unit and has weakly compact order intervals. If in addition L
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is locally convex, fkg exists in L; for any pair of continuous linear functionals f and g
if and only if L has the Riesz Decomposition Property. In particular, if L; separates points

Ž ;. ;in L and order intervals are s L, L -compact, then the order dual L is a vector lattice if
and only if L has the Riesz Decomposition Property — that is, if and only if commodity
bundles are perfectly divisible. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

It has for sometime been well-understood that one cannot hope to prove the
existence of general equilibrium — or establish the validity of the welfare
theorems — under the standard finite dimensional assumptions when the commod-
ity space is infinite dimensional and consumption sets lack interior points. In this

Ž .literature, the commodity space is most often a Riesz space vector lattice and
primitive data of the economy are supposed to satisfy various assumptions known

Ž .as ‘‘properness conditions’’ see Aliprantis et al., 1990, Aliprantis et al., 2000 .
A distinctive feature of this literature is the non-trivial use of the lattice

Ž .structure of the commodity space. Indeed, Aliprantis and Burkinshaw 1991 show
that when the commodity space is a vector lattice, the lattice structure of the dual
space is basically equivalent to the validity of the welfare theorems. 1 Further-
more, the various proofs in this literature can be delineated by means of the Riesz

Ž .Decomposition Property of the commodity space. For example, Mas-Colell 1986
Ž .and Aliprantis et al. 1987 use the Decomposition Property to facilitate a

Ž .separating hyperplane argument, while Yannelis and Zame 1986 use the property
to show the continuity and extendibility of the equilibrium prices of truncated
economies. This is in sharp contrast to the case where consumption sets are
assumed to have interior points and where the existence of a continuous quasi-
equilibrium price can be proven with little reference to the lattice structure of the

Ž .commodity space see for example, Bewley, 1972; Florenzano, 1983 .
Ž .In the more recent approach of Mas-Colell and Richard 1991 and Richard

Ž . Ž1989 see also Deghdak and Florenzano, 1999; Podczeck, 1996; Tourky, 1998,
.1999 the Decomposition Property is used in an indirect manner. Here, the authors

consider economies in the more general setting of a Riesz commodity space that
need not be locally solid. In this setting a supporting hyperplane argument in the
space of allocations furnishes a list of prices and the crucial part of the proof is
showing that the supremum of these prices is indeed the required supporting
Ž .equilibrium price. In this second group of papers, the Decomposition Property is
used through two of its consequences. First, the fact that the order dual of the

1 Of course, here we are talking about those welfare theorems that are traditionally proven using a
separating hyperplane argument, i.e., the second welfare theorem and the equivalence of Edgeworth
and Walrasian equilibria.



( )C.D. Aliprantis et al.rJournal of Mathematical Economics 34 2000 55–76 57

commodity space is a vector lattice and second the Riesz–Kantorovich formula for
calculating the supremum of any two order-bounded linear functionals. It is also
quite clear that the decentralization arguments in these more recent papers go
through with little fuss if both of these properties are present, and without regard
to whether the commodity space is a Riesz space or has the Riesz Decomposition
Property.

Ž .This observation was recently made by Aliprantis et al. 1998 , who extended
the literature on the existence of equilibrium and on the welfare theorems in
infinite dimensional spaces to commodity spaces that are not lattice ordered. They
were able to drop the requirement that both the commodity space and the price
space be lattice ordered by introducing a new class of non-linear prices based on
the Riesz–Kantorovich formula. They also provide concrete economic interpreta-
tions to the Riesz Decomposition Property and the Riesz–Kantorovich formula.
The Riesz–Kantorovich formula coincides with the revenue function of a discrimi-
natory price auction — a generalization of the revenue function of the single
commodity US Treasury Bill Auction. They interpreted the Riesz Decomposition

Ž .Property and its extension termed ‘‘Consumption Decomposability’’ as the
perfect divisibility of commodity bundles and showed that in the presence of such
perfectly divisible bundles the revenue function of the auctioneer is always linear.

Motivated by these observations, we address in this paper the following long
standing open mathematical question.

Ø Is there an example of a pair of order-bounded linear functionals for which
the supremum exists but does not satisfy the Riesz–KantoroÕich formula?

We consider an arbitrary ordered vector space L with order unit and weakly
compact order intervals. We show if f and g are continuous linear functionals on
L and fkg exists in the order dual L; , then fkg must satisfy the Riesz–
Kantorovich formula. Therefore, we provide a negative answer to our question in

Ž ;.the important setting of an ordered vector space with order unit and s L, L -
compact order intervals.

We also show that if, in addition, L is locally convex with weakly compact
intervals, then fkg exists in L; for any pair of continuous linear functionals f

Žand g if and only if L has the Riesz Decomposition Property see also Ando,ˆ
˜ ;. Ž .1962 . In particular, if L separates points in L and order intervals are s L, L -

compact then L; is a vector lattice if and only if L has the Riesz Decomposition
Property — hence, if and only if commodity bundles are perfectly divisible.

Commodity spaces with order units often arise in the study of economies with
infinitely many commodities even when the underlying commodity space does not
have an order unit. Consider an exchange economy with an ordered vector space L
as a commodity space, with total endowment vG0, and consumption sets that
coincide with the positive cone of L. Since all economic activity takes place inside

w xthe Edgeworth box 0,v , it is often useful to restrict the commodity space to the
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ideal L generated by v. This ideal consists of all bundles that are dominated byv

multiples of v, i.e.,

� 4L s xgL:"xFlv for some l)0 .v

The space L is the canonical example of a commodity space that satisfies ourv

assumptions. For an extensive analysis of economies truncated to L , see Alipran-v

Ž .tis et al. 1987 .
The paper is organized as follows. The mathematical preliminaries are outlined

in Section 2. Our main results are in Section 3. In Section 4 we show the
usefulness of our main results in the theory of value with non-linear prices as

Ž .developed by Aliprantis et al. 1998 . We show that the perfect divisibility of
commodity bundles, the linearity of the non-linear prices, and the lattice ordering
of the order dual are equivalent.

2. Mathematical preliminaries

Unless otherwise stated in this work, L shall denote an ordered vector space.
Ž .Recall that a real vector space L is called an ordered Õector space if L is

equipped with an order relation G such that xGy imply xqzGyqz for all
zgL and a xGa y for each aG0. We shall say that x dominates y if xGy

� 4holds. The convex set L s xgL: xG0 is called the positiÕe cone of L and itsq
members are referred to as positiÕe Õectors. The positive cone L satisfies theq
following properties:
1. L qL :L ,q q q
2. aL :L for each aG0, andq q

Ž . � 43. L l yL s 0 .q q
Ž . Ž . Ž .Any subset C of a vector space that satisfies the above properties 1 , 2 , and 3

is called a conÕex cone. Every convex cone C induces a natural order G on X by
letting xGy whenever xyygC. This order makes X an ordered vector space
satisfying X sC. In other words, an ordered vector space is completely charac-q
terized by its positive cone.

Ž . ŽA non-empty subset A of L is bounded from above respectively, from
. Ž .below if there exists some xgL satisfying aFx respectively, xFa for all

Ž .agA; the vector x is called an upper bound respectively, lower bound of A. A
set is order-bounded if it is bounded from above and below. Any set of the form
w x � 4x, y s zgL: xFzFy is called an order interÕal or simply an interÕal.
Clearly, a subset of L is order-bounded if and only if it is included in an interval.

Ž .A subset A of L has a least upper bound or a supremum , denoted sup A,
if sup A is an upper bound of A and whenever x is an upper bound of A, then

Ž .sup AFx. The greatest lower bound or infimum is defined analogously.
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Following the standard lattice terminology, the supremum and infimum of the set
� 4x, y will be denoted by xky and xny, respectively. That is,

� 4 � 4xkyssup x , y and xnys inf x , y .

Ž .An ordered vector space L is called a Riesz space or a Õector lattice if xky
and xny exist in L for all x, ygL. In a Riesz space, the elements

< < q yx sxk yx , x sxk0, and x s yx k0Ž . Ž .
are called the absolute Õalue, the positiÕe part, and the negatiÕe part of the
vector x, respectively. We have the identities

q y < < q yxsx yx and x sx qx . 1Ž .
For extensive and detail treatments of Riesz spaces, see Luxemburg and Zaanen
Ž . Ž .1971 and Aliprantis and Burkinshaw 1985 .

The cone L is said to be generating if for each xgL there exist y, zgLq q
such that xsyyz. Equivalently, L is generating if every vector of L isq

Ž .dominated by some positive vector. If L is a Riesz space, then it follows from 1
that the cone L is generating.q

Recall that a vector agA, where A is a subset of a vector space X, is an
internal point of A if for each xgX there exists some l )0 such that0

Žaql xgA for each yl FlFl or, equivalently, if for each x there exists0 0

some l )0 such that aql xgA for each 0FlFl . A vector egL is called0 0 q
an order unit if for each xgL there exists some l)0 such that xFle. Clearly,
if L has an order unit, then the cone L is automatically generating. Also, ifq
egL is an order unit, the so are a e for a)0 and eqx for each xgL . Theq q

Ž .next well-known result see for instance, Theorem 1.3.1 of Jameson, 1970, p. 11
that characterizes the order units will play an important role in this work.

Lemma 2.1. A Õector egL is an order unit if and only if it is an internal pointq
of L . In particular, if e is an order unit, then the zero Õector is an internal pointq

� 4of the conÕex set eyL s xgL: xFe .q

Proof. Assume first that e is an internal point of L and let xgL. Then thereq
Ž . Ž .exists some a)0 such that eqa yx G0. This implies xF 1ra e, so that e

is an order unit.
Next, suppose that e is an order unit and let xgL. Fix some l )0 such that0
Ž .l yx Fe. Now notice that for each 0-lFl we have0 0

l l
l yx s l yx F eFe.Ž . Ž .0ž /l l0 0

So, eql xG0 for all 0FlFl , which shows that e is an internal point of0

L . Bq
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Some known relationships between order units and interior points are included
in the next result.

Lemma 2.2. For an ordered Õector space L we haÕe the following.
1. If the positiÕe cone L of L has an interior point e with respect to a linearq

topology on L, then e is an order unit — and so L is also generating.q
2. When L is finite dimensional, the positiÕe cone L is generating if and only if itq

has an interior point with respect to the Euclidean topology of L.
3. If L is infinite dimensional and L is generating, then L can haÕe no interiorq q

points for many Hausdorff locally conÕex topologies on L.

Ž .Proof. 1 Assume that L has an interior point e with respect to some linearq
topology t on L. Pick a symmetric t-neighborhood V of zero such that eqV:L .q
Now let xgV. Then we have yxgV and so e"xgL or yeFxFe. That is,q

w x w xV: ye,e , which shows that the order interval ye,e is a t-neighborhood of
zero. This implies that e is an order unit.

Ž . n2 Assume LsR and that L is generating. We claim that L contains aq
� 4basis consisting of positive vectors. To see this, let e , . . . ,e be a maximal set of1 k

linearly independent vectors lying in L . Now, let xgL. Since L is generating,q q
we can choose y, zgL such that xsyyz. It follows that both y and z lie inq

� 4the span of the set e , . . . ,e , and from this we infer that x likewise lies in the1 k
� 4 � 4span of e , . . . ,e . In other words, e , . . . ,e is a basis of L and so ksn.1 k 1 k

Next, put esÝn e . We claim that e is an interior point of L . To proveis1 i q
� n n < < 4this, notice first that the set Vs xsÝ l e :Ý l -1 is an open neighbor-is1 i i is1 i

hood of zero for the Euclidean topology. Moreover, if xsÝn l e gV, thenis1 i i
n Ž .eqxsÝ 1ql e gL . This shows that eqV:L so that e is an interioris1 i i q q

point of L .q
Ž . q3 If Ls l , then its standard cone l is generating while its interior is empty1 1

with respect to the topology induced by the l -norm. B1

U ŽThe symbol L denotes the vector space of all linear functionals on L the
. U Ž .algebraic dual of L . A linear functional fgL is said to be positiÕe if f x G0

holds for all xgL . The collection of positive linear functionals on L is denotedq
LU and is known as the cone of positiÕe linear functionals. If the cone L isq q
generating, then the cone LU makes LU an ordered vector space by letting fGgq

U Ž . Ž .if fyggL , or f x Gg x for each xgL .q q
A linear functional f is said to be order-bounded if f carries order-bounded

sets of L to bounded subsets of R. The collection of all order-bounded linear
functionals on L is a vector subspace of LU called the order dual of L and
denoted L; . Clearly, every positive linear functional is order-bounded, and so

Ževery regular linear functional i.e., every linear functional that can be written as
. ta difference of two positive linear functionals is likewise order-bounded. If L
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denotes the vector space of all regular linear functionals, then we have the
following vector subspace inclusions:

Lt :L;: LU .

It should be noticed that if L; is a Riesz space, then Lr sL.
An ordered vector space L is said to have the Riesz Decomposition Property

Ž .or simply the Decomposition Property whenever 0FyFx qx with x , x g1 2 1 2

L guarantees the existence of two vectors y , y gL satisfying 0Fy Fx ,q 1 2 1 1

0Fy Fx , and y qy sy. Every Riesz space has the Decomposition Property2 2 1 2
Ž .see Aliprantis and Burkinshaw, 1985, Theorems 1.9 and 1.15 . An ordered vector

Žspace with the Decomposition Property need not be a vector lattice see for
. 2instance, Peressini, 1967, p. 14 . For a simpler example, let LsR and consider

� 4 �Ž . 4the cone L s 0 j x, y : x)0 and y)0 . Then the ordered vector spaceq
Ž .L, L is not a Riesz space but it satisfies the Decomposition Property.q

The ‘‘ice cream’’ cones do not satisfy the Decomposition Property. The
following example clarifies the situation.

Example 2.3. Consider the ‘‘ice cream’’convex cone C in R3 defined by

Cs l x , y ,2 :lG0 and x 2 qy2 F1� 4Ž .
s x , y , z :gR3 : zG0 and z 2 G4 x 2 qy2 .Ž .� 4Ž .

�Ž . 2 2 4That is, C is the convex cone with vertex zero generated by x, y,2 : x qy F1 .
Its graph is shown in Fig. 1.

We denote the order induced by C on R3 by G or F , i.e., xG y if andC C C

only if xyygC. Some straightforward verifications show that the cone C and
Ž 3 .the ordered vector space R ,C equipped with its Euclidean topology satisfy the

following properties.
Ž .1 C is a closed cone.
Ž . Ž 3 .2 R ,C has order units — and hence, C is also a generating cone. For

Ž . Ž . 3instance, the vector es 0,0,2 is an order unit. To see this, fix us x, y, z gR .
Ž .Choose some a)0 such that the real number ls yzq2a r2 satisfies

2 2(l) x qy and note that
yx yy

yuqa es yx ,yy ,yz qa 0,0,2 sl , ,2 gC.Ž . Ž . ž /l l

This implies uFa e.
Ž . Ž .3 C has a non-empty interior. For instance, the open ball centered at 0,0,2

with radius 1r2 lies entirely in C. This can also be derived from Lemma 2.2 via
Ž .part 2 above.

Ž . Ž 3 .4 The order intervals of R ,C are compact.
Ž . Ž . 2 2 35 If usl x, y,2 gC and x qy s1, then a vector ÕgR satisfies

Ž0F ÕF u if and only if there exists some 0FmF1 such that Õsmu. TheC C
� Ž . 4 2 2half-rays a x, y,2 :aG0 , where x qy s1, are the extreme half-rays of this

.cone.
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Fig. 1.

Ž . Ž . 2 2To see this, assume that 0F l a,b,2 F x, y,2 with x qy s1. Clearly,C C

0FlF1 and if ls0 or ls1, the conclusion should be obvious. So, let
Ž . Ž . Ž . 20-l-1. Since x, y,2 yl a,b,2 gC, there exist some pair a ,b with a q

2 Ž . Ž . Ž . Ž .b F1 and some mG0 such that x, y,2 yl a,b,2 sm a ,b ,2 . Hence, x, y
Ž . Ž . 2 2 Ž .sl a,b qm a ,b . Since x qy s1, the point x, y is an extreme point of the

Ž . Ž . Ž . Ž .unit disk, and from this we see that x, y s a,b . Hence, l a,b,2 sl x, y,2 .
Ž . Ž 3 .6 The ordered vector space R ,C does not have the Decomposition Prop-

Ž . Ž . Ž .erty. To see this, consider the vectors 1,0,2 , y1,0,2 , 1,0,2 gC and note that

0F 0,1,2 F 0,0,4 s 1,0,2 q y1,0,2 .Ž . Ž . Ž . Ž .C C

Ž 3 . 3If R ,C has the Decomposition Property, we can find vectors u,ÕgR
Ž . Ž . Ž .satisfying 0F uF 1,0,2 , 0F ÕF y1,0,2 , and uqÕs 0,1,2 . Now byC C C C

Ž . Ž . Ž .part 5 , there exist 0Fl,mF1 such that usl 1,0,2 and Õsm y1,0,2 . But
then,

0,1,2 suqÕsl 1,0,2 qm y1,0,2 s lqm ,0,2 lqm ,Ž . Ž . Ž . Ž .Ž .
Ž 3 .which is impossible. So R ,C does not satisfy the Decomposition Property. B

Regarding ordered vector spaces with the Decomposition Property we have the
following basic result.
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( )Theorem 2.4 Riesz–Kantorovich . If an ordered Õector space L has the
Decomposition Property and its cone is generating, then its order dual L; is a
Riesz space. MoreoÕer, if f,ggL; , then for each xgL we haÕe:q

fkg x ssup f y qg z : y , zgL and yqzs x� 4Ž . Ž . Ž . q

s sup f y qg xyyŽ . Ž .
0FyFx

fng x s inf f y qg z : y , zgL and yqzs x� 4Ž . Ž . Ž . q

s inf f y qg xyyŽ . Ž .
0FyFx

< < < <f x ssup f y : y Fx s sup f y .� 4Ž . Ž . Ž .
< <y Fx

Ž . Ž .Proof. See Peressini 1967 Proposition 2.4, p. 23 . B

The preceding theorem is due to the founders of the theory of Riesz spaces, F.
Riesz and L.V. Kantorovich, and lies in the heart of the theory of positive

Ž .operators. Theorem 2.4, as stated above, was proven first by Riesz 1940 and was
generalized to arbitrary order-bounded operators from a Riesz space to an order

Ž .complete Riesz space by Kantorovich 1936 . The formulas describing the lattice
operations in the order dual of a Riesz space are known as the Riesz–KantoroÕich
formulas. The following remarkable mathematical problem regarding the Riesz–
Kantorovich formulas is still open.

Ø Assume that for two regular operators S,T:L™M between two Riesz spaces
( )the supremum least upper bound SkT of the operators exists in the ordered

rŽ .Õector space of regular operators LL L, M . Does then the supremum SkT
satisfy the Riesz–KantoroÕich formula

SkT x s sup S y qT xyyŽ . Ž . Ž .
0FyFx

for each xgL ?q

For more about this problem and related material we refer the reader to Andô
Ž . Ž . Ž .1962 , van Rooij 1985 and Abramovich and Wickstead 1991; 1993 . Before
moving on to our main results, let us settle on some further notation. For any
positive integer m)0 and xgL define the following non-empty convex sets:q

m
m mAA s y , . . . , y gL : y Fx andŽ . Ýx 1 m q i½ 5

is1

m
m mFF s y , . . . , y gL : y sx .Ž . Ýx 1 m q i½ 5

is1
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Also, for a finite number f , . . . , f of order-bounded linear functionals on L we1 m

let
qm m

� 4 � 4f ssup f , f . . . , f and f ssup 0, f , f , . . . , f ,E Ei 1 2 m i 1 2 mž /
is1 is1

where the suprema are taken in L;.2 Now notice that if L has the Riesz
Decomposition Property then the Riesz–Kantorovich formulas can be rewritten as
follows:

m m
mf x ssup f y : y , y , . . . , y gFFŽ . Ž . Ž .E Ýi i i 1 2 m x½ 5ž /

is1 is1

qm m
mf x ssup f y : y , y , . . . , y gAAŽ . Ž . Ž .E Ýi i i 1 2 m x½ 5ž /

is1 is1

for all xgL .q
Regarding the convex sets AA m and FF m we have the following result —x x

whose easy proof is omitted.

Lemma 2.5. Assume that t is a Hausdorff linear topology on an ordered Õector
w xspace L such that for some xgL the order interÕal 0, x is t-compact. Then:q

Ž . m m1 For each m the conÕex sets AA and FF are both compact subsets ofx x
Ž .mL,t .

Ž .2 If f , . . . , f are t-continuous linear functionals, then the suprema1 m

m m
m msup f y : y , . . . , y gFF and sup f z : z , . . . , z gAAŽ . Ž . Ž . Ž .Ý Ýi i 1 m x i i 1 m x½ 5 ½ 5

is1 is1

Ž U U . m Ž U U . mare both maxima. That is, there exist y , . . . , y gFF and z , . . . , z gAA1 m x 1 m x

such that
m m m m

U Uf y G f y and f z G f zŽ . Ž . Ž . Ž .Ý Ý Ý Ýi i i i i i i i
is1 is1 is1 is1

Ž . m Ž . mhold for all y , . . . , y gFF and all z , . . . , z gAA .1 m x 1 m x

3. The Riesz–Kantorovich formula

We begin with our first important result concerning the Riesz–Kantorovich
formula.

2 m Ž m .qIt should be observed that k f and k f are in general different linear functionals. Foris1 i is1 i

an example, consider a linear functional f -0 and note that f k f s f -0s fq.
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Lemma 3.1. Let L be an ordered Õector space with an order unit e and assume
that for the order-bounded linear functionals f , f , . . . , f the supremum1 2 m
Ž m .q ; Ž U U . m

Uk f exists in L . If there exists some x , x , . . . , x gAA satisfyingis1 i 1 2 m e

m m
Uf x G f xŽ . Ž .Ý Ýi i i i

is1 is1

Ž . mfor each x , x , . . . , x gAA , then1 2 m e

qm m
Uf e s f x .Ž . Ž .E Ýi i iž /

is1 is1

Ž m .qProof. Let gs k f and notice first thatis1 i

m m m
U U Ug e Gg x s g x G f x G0.Ž . Ž . Ž .Ý Ý Ýi i i iž /

is1 is1 is1

Ž . m Ž U .To finish the proof, we must verify that g e FÝ f x is also true.is1 i i
m Ž U . Ž .If Ý f x s0, then it should be clear since e is an order unit that f F0is1 i i i

Ž .in fact, we have f s0 for all is1, . . . ,m. In this case, gs0 from which we geti
Ž . m Ž U . m Ž .g e sÝ f x s0. So, we can assume that Ý f x )0.is1 i i is1 i i

Let
m m

UmYs y , y , . . . , y gL : f y ) f x .Ž . Ž . Ž .Ý Ý1 2 m q i i i i½ 5
is1 is1

m Ž Ž U U U . .Notice that Y:L is non-empty for instance, 2 x , x , . . . , x gY and con-q 1 2 m

vex. Furthermore, Y is disjoint from AA m and is therefore disjoint from the convexe

set
m

mZs y , y , . . . , y gL : y Fe ,Ž . Ý1 2 m i½ 5
iy1

Ž . mwhich in turn in view of Lemma 2.1 has an internal point in L . By the
ŽSeparation Theorem see for instance, Aliprantis and Border, 1999, Theorem 5.46,

. Ž . Ž U .mp. 188 there exists a non-zero linear functional h ,h , . . . ,h g L that1 2 m

separates Z and Y. That is,
m m

h y G h z for all y , y , . . . , y gY and z , z , . . . , z gZ.Ž . Ž . Ž . Ž .Ý Ýi i i i 1 2 m 1 2 m
is1 is1

2Ž .
Ž U U U . Ž .Since x , x , . . . , x gZ, it follows from 2 that1 2 m

m m
Uh y G h x for all y , y , . . . , y gY . 3Ž . Ž . Ž . Ž .Ý Ýi i i i 1 2 m

is1 is1
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Ž .Furthermore, it follows from 2 that
m m m

U Uh x s lim h a x G h z for all z , z , . . . , z gZ. 4Ž . Ž . Ž . Ž . Ž .Ý Ý Ýi i i i i i 1 2 m
a x1is1 is1 is1

Next, we show that h sh s PPP sh sh. Suppose, by way of contradic-1 2 m
Ž . Ž .tion, that there exists some zgL such that h z )h z . Then for some a)11 2

we have
m m

U U U Uh x qz qh x yz q h x ) h a x .Ž . Ž . Ž . Ž .Ý Ý1 1 2 2 i i i i
is3 is1

Ž U U U . Ž U U U U .But a x ,a x , . . . ,a x gY and x qz, x yz, x , . . . , x gZ, which contra-1 2 m 1 2 3 m
Ž .dicts 2 . By the symmetry of the situation we see that h sh s PPP sh sh.1 2 m

Ž .Now we show that hG0. Let xgL and note that eya x,0, . . . ,0 gZ forq
Ž . m Ž U . Ž . Ž .all a)0. Therefore, from 4 we get Ý h x Gh e ya h x oris1 i

m
Uh e y h xŽ . Ž .Ý i

is1h x G ,Ž .
a

Ž . ;for each a)0. Letting a™` yields h x G0. That is, hG0 and so hgL .
Ž . Ž .Furthermore, since h/0 it must be the case that h e )0 and since e,0, . . . ,0

Ž . m Ž U .gZ, 4 implies that Ý h x )0. So, we can letis1 i

m
Uf xŽ .Ý i i

is1
ds )0.m

Uh xŽ .Ý i
is1

We claim that d hG f for is1,2, . . . ,m. To see this, fix i and let xgL . Ifi q
Ž . Ž . Ž . Ž .f x F0, then d h x G0G f x is trivially true. Assume, therefore, that f x )0i i i

and let
m

Uf xŽ .Ý i i
is1

gs )0.
f xŽ .i

Ž .It is clear that the vector 0, . . . ,ag x,0, . . . ,0 , where ag x occupies the i-th
Ž .position, satisfies 0 . . . ,ag x,0, . . . ,0 gY

Ž .for any a)1, and from 3 we see that
m m

U U
dg h x sd limh ag x Gd h x s f x sg f x ,Ž . Ž . Ž . Ž . Ž .Ý Ýi i i i

a x1 is1 is1

Ž . Ž .or d h x G f x for each xG0. Thus, d hG f for is1,2, . . . ,m.i i
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Ž .Consequently, gFd h. In particular, from 4 it follows that
m m

U Ug e Fd h e Fd h x s f x ,Ž . Ž . Ž . Ž .Ý Ýi i i
is1 is1

and the proof is finished. B

Corollary 3.2. Let L be an ordered Õector space with an order unit e and assume
that for the order-bounded linear functionals f , f , . . . , f the supremum k m f1 2 m is1 i

; Ž U U U . mexists in L . If there exists some x , x , . . . , x gFF , satisfying1 2 m e

m m
Uf x G f xŽ . Ž .Ý Ýi i i i

is1 is1

Ž . mfor each x , x , . . . , x gFF , then1 2 m e

m m
Uf e s f x .Ž . Ž .E Ýi i iž /

is1 is1

m w m Ž .xqProof. Let gsk f and start by observing that gy f s k f y f andis1 i 1 is2 i 1

m m
U Uf y f x s f x y f eŽ . Ž . Ž . Ž .Ý Ýi 1 i i i 1

is2 is1

m m

G f x q f ey x y f eŽ . Ž .Ý Ýi i 1 i 1ž /
is2 is2

m

s f y f x ,Ž . Ž .Ý i 1 i
is2

Ž . my 1for any x , . . . , x gAA . Therefore, by Lemma 3.1, we have2 m e

m
Ugy f e s f y f x .Ž . Ž . Ž . Ž .Ý1 i 1 i

is2

In particular,

m m m
U U Ug e s f ey x q f x s f x ,Ž . Ž . Ž .Ý Ý Ý1 i i i i iž /

is2 is2 is1

which is the desired formula. B

From now on we shall assume that L is equipped with a Hausdorff linear
topology t for which the order intervals are compact — in which case the

X Ž . ;topological dual L of L,t is a vector subspace of the order dual L , i.e,
LX :L; .
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We are now ready to state and prove our main theorem.

Theorem 3.3. Assume that L is an ordered Õector space with order units and that
it is equipped with a Hausdorff linear topology for which the order interÕals of L
are compact. If for some continuous linear functionals f , f , . . . , f the supremum1 2 m

gsk m f exists in L; , then g satisfies the Riesz–KantoroÕich formula, i.e., foris1 i

each xgL we haÕeq

m m
mf x ssup f y : y , y , . . . , y gFF .Ž . Ž . Ž .E Ýi i i 1 2 m x½ 5ž /

is1 is1

Proof. Assume that t is a Hausdorff linear topology on L for which the intervals
m Ž .mare t-compact and notice that for each xgL the set FF is compact in L,t .q x

Now fix an arbitrary xgL , and then select an order unit e such that xFe.q
Ž .For each 0-a-1 let e sa xq 1ya e. Clearly, each e is an order unita a

Ž .and 0Fe Fe holds for each 0-a-1. We consider the index set 0,1 directeda

Ž .by the increasing order relation K , i.e, aKb in 0,1 if and only if aGb.
Clearly, x ™x. By Lemma 3.1, we know that g satisfies the Riesz–Kantorovicha

formula for each order unit. Therefore, for each 0-a-1 there exists some
Ž a a a . m m az , z , . . . , z gL such that Ý z sx and1 2 m q is1 i a

m
aa g x q 1ya g e sg x s f z . 5Ž . Ž . Ž . Ž . Ž .Ž .Ýa i i

is1

a w x Ž .Since z g 0,e for each ag 0,1 and each is1,2, . . . ,m and the order intervali
w x �Ž a a a .4 Ž0,e is t-compact, there exists a subnet of z , z , . . . , z which without loss1 2 m

�Ž a a a .4 a w xof generality we also denote it by z , z , . . . , z such that z ™z g 0,e , for1 2 m i i
a w x w xis1,2, . . . ,m. From x yz g 0,e for each a and the closedness of 0,e , wea i

see that 0Fxyz Fe. So 0Fz Fx and Ým z sx. Finally, letting a™1 ini i is1 i
Ž .Eq. 5 , it follows from the continuity of each f thati

m m
mg x s f z Fsup f y : y , y , . . . , y gFF Fg x ,Ž . Ž . Ž . Ž . Ž .Ý Ýi i i i 1 2 m x½ 5

is1 is1

and the proof is finished. B

It should be noticed that the hypotheses of Theorem 3.3 do not imply that the
partially ordered vector space L satisfies the Decomposition Property. For in-
stance, R3 with the ‘‘ice cream’’ cone of Example 2.3 satisfies all the assumptions
of Theorem 3.3 but it does not have the Riesz Decomposition Property.

The next result characterizes the Riesz Decomposition Property in terms of a
lattice property of the topological dual.
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Corollary 3.4. Assume that L is an ordered Õector space with order units and that
it is equipped with a Hausdorff locally conÕex topology for which the order
interÕals of L are weakly compact. Then the following statements are equiÕalent.
1. For eÕery pair f,ggLX the supremum fkg exists in L; .
2. L has the Riesz Decomposition Property.
MoreoÕer, if this is the case, then L; is a Riesz space whose lattice operations are
giÕen by the Riesz–KantoroÕich formulas.

Ž . Ž .Proof. If 2 is true, then the validity of 1 follows from Theorem 2.4. So, assume
Ž . w x w x w xthat 1 is true and fix x, ygL . Clearly, 0, x q 0, y : 0, xqy .q

w xNow suppose, by way of contradiction, that there exists some zg 0, xqy
w x w x w x w xsuch that z/ 0, x q 0, y . Since 0, x q 0, y is a weakly compact convex set, it

Žfollows from the Separation Theorem see for instance, Aliprantis and Border,
. X1999, Corollary 5.59, p. 194 that there exist some non-zero fgL and some ´)0

such that

f z )´q f u q f ÕŽ . Ž . Ž .
w x w xfor all ug 0, x and all Õg 0, y . Now a glance at Theorem 3.3 shows that

sup f w s f q xqy s f q x q fq yŽ . Ž . Ž . Ž .
0FwFxqy

s sup f u q sup f ÕŽ . Ž .
0FuFx 0FÕFy

F f z y´Ž .
- f z ,Ž .

w x w x w xwhich is a contradiction. Hence, 0, x q 0, y s 0, xqy holds true, and so L has
the Decomposition Property. B

; Ž . ;Recall that L separates points in L if xgL and f x s0 for all fgL
Ž ;.implies xs0. In this case, the weak topology s L, L is a Hausdorff locally

convex topology on L. We, therefore, obtain the following simple consequence of
Corollary 3.4.

Corollary 3.5. Assume that L is an ordered Õector space with order units and that
; Ž ;.L separates points in L. If the order interÕals of L are s L, L -compact, then

the following statements are equiÕalent.
1. L; is lattice ordered, i.e., L; is a Riesz space.
2. L has the Riesz Decomposition Property.

Let us now move to the case where L is an ordered vector space without an
` w xorder unit. For any xgL denoted by L , the linear subspace j n yx, x andq x ns1
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note that L under its canonical ordering is an ordered vector space with order unitx
` w xx. The linear subspace L sj n yx, x is referred to as the ideal generatedx ns1

by x. As usual, the restriction of the positive cone L to L is denoted by Lq,q x x
q w xi.e., L sL lL . Notice that for any ygL the L-order interval 0, y isx x q x

q w x qcontained in L , i.e, 0, y :L .x x

The next lemma characterizes the Riesz–Kantorovich problem for continuous
Ž .linear functionals on certain ordered vector spaces with or without order units .

We highlight this technical observation since perhaps it may lead to a more
general solution of the Riesz–Kantorovich problem than the one presented in this
paper.

Lemma 3.6. If L is an ordered Õector space that is equipped with a Hausdorff
linear topology for which the order interÕals of L are compact, then the following
two statements are equiÕalent.
1. There is a pair of continuous linear functionals f and g such that fkg exists in

L; but does not satisfy the Riesz–KantoroÕich formula for all xgL .q
2. There is a pair of continuous functionals f and g and a point xgL such thatq

; Ž . < <fkg exists in L but the restriction fkg is not the supremum of f andL Lx x

< ;g in the order dual L of L .L x xx

Proof. Assume first that L is an ordered vector space that is equipped with a
Hausdorff linear topology for which the order intervals of L are compact.

Ž . XAssume that 1 holds and let f , ggL be a pair of continuous functionals for
which fkg exists in L; but does not satisfy the Riesz–Kantorovich formula.
That is there is some xgL such thatq

fkg x ) sup f y qg xyy . 6Ž . Ž . Ž . Ž .
0FyFx

Consider the space L for which x is an order unit. Assume, by way ofx

contradiction, that

< < <fkg s f kg , 7Ž . Ž .L L Lx x x

where the supremum on the right-hand side of the equation is in the order dual of
Ž . Ž .L . By Lemma 3.1, 6 and 7 , we havex

< < < <f kg x s sup f y qg xyyŽ . Ž . Ž .Ž .L L L Lx x x x
0FyFx

s sup f yqg xyyŽ Ž .
0FyFx

s fkg xŽ .
< <s f kg x ,Ž .Ž .L Lx x

Ž . Ž . Ž .which is a contradiction. Therefore, 2 holds and 1 ´ 2 .
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Ž . XFor the converse, assume that 2 is true. Let f , ggL be a pair of continuous
functionals for which fkg exists in L; and let xgL be a positive vector suchq

Ž . < < <that the restriction fkg is not the supremum of f and g in the orderL L Lx x x

dual of L . We claim that fkg does not satisfy the Riesz–Kantorovich formula.x

To see this, assume, by way of contradiction, that fkg satisfies the Riesz–
Kantorovich formula at every zgL , that is, for each zgL we haveq q

fkg z s sup f y qg zyy . 8Ž . Ž . Ž . Ž .
0FyFz

Let h be a linear functional in the order dual of L such that hG f and hGg. Wex
Ž . qsee from Eq. 8 that for any zgL we havex

< < <h z G sup f y qg zyy s fkg z ,Ž . Ž . Ž . Ž . Ž .L L Lx x x
0FyFz

Ž . < Ž . < < <which implies hG fkg . In particular, we get that fkg s f kgL L L Lx x x x
; Ž .holds in L , which contradicts our assumption. Therefore, 1 holds true andx

Ž . Ž .2 ´ 1 . B

4. Commodity decomposition

Ž .In Aliprantis et al. 1998 , a theory of value with non-linear prices was
developed. The formula for this price is a generalization of the Riesz–Kantorovich
formula. The authors also provided concrete economic meaning to the Riesz–
Kantorovich formula and the Riesz Decomposition Property in terms of the
revenue function of a discriminatory price auction and the perfect decomposability
of commodity bundles, respectively. With this in mind, we show the implications
of the results of Section 3 to the theory of value with non-linear prices.

Ž . Ž .Following Aliprantis et al. 1998 , let L,t be an ordered Hausdorff locally
convex space whose order intervals are t-bounded. Consider an exchange econ-
omy with m consumers and designate the arbitrary consumer by the index i. The
bundle v gL is the i-th consumer’s initial endowment. As usual, vsÝm v isi is1 i

the total endowment. The consumption set of consumer i is X . Throughout thisi

section, for each consumer i, we assume that:
Ø the consumption set X is a conÕex t-closed subcone of L , andi q
Ø 0-v gX .i i

Ž . mWe call an arbitrary linear functional ps p , p , . . . , p on L a list of price1 2 m

bids. Now, each list of price bids defines a value functional that generalizes the
revenue function of the single commodity US Treasury Bill Auction. In a short
while, we shall call this value functional an auction price, which can be non-linear.
The domain C of this value functional will be the convex cone generated in L by
j m X , i.e., CsX qX q PPP qX .is1 i 1 2 m
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Clearly, C is a convex subcone of L and vgC. The vector space generatedq
by C is denoted by M, i.e., MsCyC.

Now for each commodity bundle xgL , we let AA denote the set of allq x

consumable allocations when the total endowment is x, i.e.,

m m

AA s y , y , . . . , y g X : y Fx .Ž . Ł Ýx 1 2 m i i½ 5
is1 is1

Ž .mClearly, each AA is a non-empty, convex and closed subset of L,t . Notice alsox

that for each x, ygL and all aG0, we haveq

AA qAA :AA and AA sa AA .x y xqy a x x

We move to the definition of our value functional.

Ž .Definition 4.1. The auction price of a list of price bids ps p , p , . . . , p is the1 2 m
w xfunction c :C™ 0,` defined byp

c x s sup p z qp z q PPP qp z .Ž . Ž . Ž . Ž .p 1 1 2 2 m m
zgAAx

One can think of these non-linear functions as the auctioneer’s revenue function
in a discriminatory price auction. Consumers participate in a discriminatory price
auction for commodity bundles. Their bids comprise a consumption set and a
personalized price, which is a linear functional on L. The auctioneer divides
commodity bundles into consumable allocations that maximize revenue. Each

Ž ;.m Žconsumer pays the price she bids. Clearly, if pg L in particular, if pg
Ž X.m. Ž .L , then c is a real-valued function. The value c x represents the maxi-p p

mum revenue that can be obtained for the commodity bundle x by the auctioneer
when p is the list of personalized price bids by the m players.

We are interested in the conditions under which an auction price is additive and
can be extended to a linear functional on all of L, in which case the notions of an
auction price and a Walrasian price coincide. Before addressing this question, we
list the basic properties of the auction prices. This result can be found in Aliprantis

Ž .et al. 1998 .

Ž . Ž ;.mLemma 4.2. If ps p , p , . . . , p g L is a list of order-bounded price bids,1 2 m
w .then its auction price c :C™ 0,` is a non-negatiÕe real-Õalued function suchp

that:
Ž . Ž .1. c is monotone, i.e., x,ygC with xFy implies c x Fc y ,p p p

Ž . Ž . Ž .2. c is super-additiÕe, i.e., c x qc y Fc xqy for all x,ygC,p p p p
Ž . Ž .3. c is positiÕely homogeneous, i.e., c a x sac x for all aG0 and xgC,p p p

Ž . Ž .4. if p sp s PPP sp sqG0, then c x sq x for all xgC, i.e., c sq,1 2 m p p

and
Ž . Ž .5. if xgX , then p x Fc x .i i p
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Ž . Ž .It should be noticed immediately that properties 2 and 3 of Lemma 4.2
Ž .guarantee that the auction prices which are, in general, non-linear are always

concave functions.
We now introduce the decomposability property of the consumption sets. This

notion captures the idea of the perfect decomposability of commodity bundles into
consumable allocations.

( )Definition 4.3 Consumption Decomposability . The economy has the Consump-
tion Decomposability Property if for each x, ygC we have AA qAA sAA .x y xqy

Regarding the Consumption Decomposability Property and extension of auction
Ž .prices, we have the following result which is taken from Aliprantis et al. 1998 .

Lemma 4.4. For a Õector subspace PP of L; the following statements are
equiÕalent.

Ž . m w .1. For each non-zero ps p , p , . . . , p gPP the auction price c :C™ 0,`1 2 m p

is additiÕe — and hence it has a unique linear extension to MsCyC.
2. For each x,y g C we haÕe AA : AA qAA , where the bar denotesxqy x y

Ž m m.s L , PP -closure.

Ž . Ž .Proof. 1 ´ 2 Suppose, by way of contradiction, that there exist x, ygC and
m mŽ . Ž .some zs z , z , . . . , z gAA such that zf AA qAA . Since s L , PP is a1 2 m xqy x yy

Ž . mlocally convex topology, there exists some non-zero ps p , p , . . . , p gPP1 2 m

which strongly separates z and AA qAA . That is, there exists some ´)0x yy

satisfying
m m

p z G´q p uŽ . Ž .Ý Ýi i i i
is1 is1

Ž .for all u ,u , . . . ,u eAA qAA . This easily implies1 2 m x yy

m

c xqy G p z G´qc x qc y )c x qc y ,Ž . Ž . Ž . Ž . Ž . Ž .Ýp i i p p p p
is1

which contradicts the additivity of c .p
Ž . Ž . Ž . m w x2 ´ 1 Let ps p , p , . . . , p gPP . Then the auction price c :C™ 0,` ,1 2 m p

defined by

c x s sup p z qp z q PPP qp z ,Ž . Ž . Ž . Ž .p 1 1 2 2 m m
zgAAx

is real-valued, positively homogeneous and super-additive. To see that c isp
Ž .additive, let x, ygC, and fix zs z , z , . . . , z gAA : AA qAA . Then there1 2 m xqy x y

�Ž a a .4 �Ž a a .4exist two nets u , . . . ,u :AA and Õ , . . . ,Õ :AA such that1 m x 1 m y
Ž m m.s L , PP

a a a a

6

u qÕ , . . . ,u qÕ z .Ž .1 1 m m
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m Ž a a . m Ž .In particular, we have lim Ý p u qÕ sÝ p z . Now taking intoa is1 i i i is1 i i

account that
m m m

a a a ap u qÕ s p u q p Õ Fc x qc y ,Ž . Ž .Ž . Ž . Ž .Ý Ý Ýi i i i i i i p p
is1 is1 is1

m Ž . Ž . Ž . Ž .we see that Ý p z Fc x qc y . Since zs z , z , . . . , z gAA isis1 i i p p 1 2 m xqy
Ž . Ž . Ž . Ž .arbitrary, we conclude that c xqy Fc x qc y . Consequently, c xqyp p p p

Ž . Ž .sc x qc y , so that c is additive on C.p p p

Now, we leave it to the reader to verify that if for each xgM we write
xsayb with a,bgC, then the formula

c x sc a yc bŽ . Ž . Ž .p p p

is independent of the representation of x as a difference of two vectors of C and
Ž . Ždefines a unique linear extension of c to all of M. Notice also that c is ap p

.positive linear functional on M with respect to the generating cone C. B

We are now ready to present two connections between the preceding results and
the results in Section 3.

Theorem 4.5. Assume that L has order units and that the order interÕals of L are
weakly compact. Assume further that X s L for each i and let p si q
Ž . Ž X.mp , p , . . . , p g L be a list of continuous price bids. The following state-1 2 m

ments are equiÕalent:
w .1. The auction price c :C™ 0,` is additiÕe — and hence it has a unique linearp

extension to LsL yL .q q
Ž m .q ; (2. The supremum linear functional k p exists in L and is giÕen by theis1 i

)Riesz–KantoroÕich formula .

Ž . Ž . Ž .Proof. Theorem 3.3 says that 2 ´ 1 . Assume that 1 holds and let qG0 be
the linear extension of c to all of L. Notice that q is in L; . Now suppose that ap

positive linear functional f satisfies fGp for each is1, . . . ,m. Then it is cleari
Ž . Ž . Ž m .qthat f x Gq x for all xgL . Therefore, fGq and so qs k p holdsq is1 i

; Ž . Ž .in L . Thus, 1 ´ 2 . B

Theorem 4.6. Assume that L has order units and that the order interÕals of L are
weakly compact. If X sL for each i, then the following statements are equiÕa-i q
lent.

Ž . Ž X.m1. For eÕery list of price bids ps p , p , . . . , p g L the auction price c is1 2 m p

additiÕe — and hence it has a unique linear extension to LsL yL .q q
2. The economy has the Consumption Decomposability Property.
3. The commodity space has the Riesz Decomposition Property.

Ž . Ž X.m4. For eÕery list of price bids p , p , . . . , p g L the linear functional1 2 m
Ž m .q ;k p exists in L .is1 i
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Ž . Ž . XProof. We show that 1 ´ 2 . Consider Lemma 4.4 and let PPsL . Denote by
m Ž m Ž X.m. ms the topology s L , L on L . Since order intervals are weakly compact,

we see that for each x, ygL the convex sets AA and AA are s m-compact.q x y
mTherefore, AA qAA s AA qAA , where the bar denotes s -closure. Notice there-x y x y

fore that this economy has the Consumption Decomposability Property if and only
if AA qAA : AA qAA for each x, ygL . Therefore, by Lemma 4.4 statementsx y x y q
Ž . Ž .1 and 2 are equivalent.

Ž . Ž .Now, we show that 2 ´ 3 . So assume that the economy has the Consump-
tion Decomposability Property and let three vectors x, y, zgL satisfy 0FzFxq

Ž .q y. Then u s z,0,0, . . . ,0 g AA s AA q AA . So, there exist Õ sxqy x y
Ž . Ž .Õ ,Õ , . . . ,Õ gAA and ws w ,w , . . . ,w gAA satisfying usÕqw. The1 2 m x 1 2 m y

latter implies Õ sw s0 for is2,3, . . . ,m, and so the vectors Õ ,w gL satisfyi i 1 1 q
0FÕ Fx, 0Fw Fy and Õ qw sz. This shows that L has the Riesz Decom-1 1 1 1

position Property.
Ž . Ž .Finally, it is well-known that 3 ´ 4 . Furthermore, we know from Theorem

Ž . Ž .4.5 that 4 ´ 1 , which proves the theorem. B
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