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Summary. We introduce a new core concept for an exchange economy with 
differential information which is contained in the coarse core concept of Wilson 
(1978). We prove the existence of: (i) a core allocation for an exchange economy 
with differential information and; (ii) an s-core strategy for a game in normal form 
with differential information. 

1. Introduction 

An exchange economy with differential information consists of a finite set of agents 
each of whom is characterized by a random utility function, a random initial 
endowment, a private information set and a prior. 

The purpose of this paper is to study the following questions: How does one 
define the notion of the core in an exchange economy with differential information? 
What is the appropriate core concept? Under what conditions on agent's character- 
istics is the core nonempty? 

With finitely many states of nature, the existence of a coarse core allocation 
for an economy with differential information follows easily from the well known 
result of Scarf (1967), as first shown in a seminal paper by Wilson (1978). However, 
with a continuum of states even if there is symmetric information (i.e., the 
information set of each agent is the same) the domain of the expected utility 
becomes infinite dimensional (even if there is only one good in the economy), and 
consequently Scarf's theorem is not directly applicable. It turns out that in the 
presence of a continuum of states, functional analytic methods as well as several 
measure theoretic results seem to be required. 

* On different occasions I have benefited from discussions, comments and suggestions by C.D. 
Aliprantis, Kim Border, Don Brown, Baskar Chacravorti, Mark Feldman, Leo Hurwicz, Charlie 
Kahn, John Ledyard, Andreu Mas-Colell, Flavio Menezes, Tom Palfrey, Ed Prescott, Aldo 
Rustichini, David Schmeidler and Sanjay Srivastava. Mark Feldman and Aldo Rustichini both 
independently brought to my attention the related work of Wilson (1978). My thanks are extended 
to all the above individuals as well as to a careful referee. Of course, I am responsible for any 
remaining shortcomings. 
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The paper is organized as follows: Sect. 2 contains notation and definitions. 
The model and the main results are presented in Sect. 3. Sections 4 and 5 contain 
the proofs of our main theorems. Finally Sect. 6 contains some concluding remarks. 

2. Notation and definitions 

2.1. Notation 

R z denotes the/-fold Cartesian product of the set of real numbers R. 
W+ denotes the positive cone of R t. 
W+ + denotes the strictly positive elements of R z. 
2 A denotes the set of all nonempty subsets of the set A. 

denotes the empty set. 
/ denotes the set theoretic subtraction. 

If X is a linear topological space, its dual is the space X* of all continuous linear 
functionals on X, and if p~X*, and x e X  the value of p at x is denoted by p.x. 

2.2. Definitions 

If X and Y are sets, the 9raph of the set-valued function (or correspondence), 
~: X-->2 r is denoted by G~ = {(x, y)eX x Y: yEt~(x)}. Let (T, T, ~) be a complete, 
finite measure space, and X be a separable Banach space. The set-valued function 
t~: T ~  2 x is said to have a measurable 9raph if G, eT  | fl(X), where fl(X) denotes 
the Borel o--algebra on X and | denotes the product o--algebra. The set-valued 
function q~: T ~  2 x is said to be lower measurable or just measurable if for every open 
subset V of X, the set {t~ T: ~( t )n  V ~ ~ }  is an element of T. A well-known result of 
Debreu [(1966), p. 359] says that if ~: T ~  2 x has a measurable graph ,  then ~ is 
lower measurable. Furthermore, if ~(.) is closed valued and lower measurable then 
~: T-> 2 x has a measurable graph. A theorem of Aumann (1967) which will be of 
fundamental importance in this paper tells us, that if (T, T, #) is a complete, finite 
measure space, X is a separable metric space and ~: T--* 2 x is a nonempty valued 
correspondence having a measurable graph, then ~(.) admits a measurable selection, 
i.e., there exists a measurable function f :  T ~  X such that f(t)~c~(t)#-a.e. 

Let (T, T, #) be a finite measure space and X be a Banach space. Following 
Diestel-Uhl (1977) the function f :  T ~ X is called simple if there exist x 1, x E,..., X, 

in X and ~q,~2,. . . ,~,  in T such that f =  ~ xiz~,, where X~,(t)= 1 if t ~ i  and 
i = 1  

Z~,(t) = 0 if t~cq. A function f :  T ~ X  is said to be p-measurable if there exists a 
sequence of simple functions f , :  T - > X  such that lim I[ f,(t) - f(t)II = 0 for almost 

n - ~  ct~ 

all t~ T. A #-measurable function f :  T ~ X is said to be Bochner integrable if there 
exists a sequence of simple functions {f,: n = 1, 2 . . . .  } such that 

lim S II f.(t) - f(t)II dtz(t) = O. 
n ~ a o  T 

In this case we define for each E e T  the integral to be ~f(t)dtt(t) = lira If.(t)d#(t). 
E n ~ ~ 1 7 6  
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It can be shown [-see Diestel-Uhl (1977), Theorem 2, p.45] that if f :  T-~X is a 
g-measurable function then, f is Bochner integrable if and only if S II f(t)IJ dg(t) < ~ .  

T 
It is important to note that the Dominated Convergence Theorem holds for Bochner 
integrable functions. In particular, i f f , :  T ~  X, (n = 1, 2,. . .)  is a sequence of Bochner 
integrable functions such that lim f,(t) =f(t)g-a.e., and Ir f,(t)It < g(t)#-a.e., 

n.--~ oo 

(where g : T ~ R  is an integrable function), then f is Bochner integrable and 
lim S [I f , ( t )  -f(t)J[ dg(t) = O. 

n--* oO T 

For  1 ~ p  < o% we denote by Lp(g,X) the space of equivalence classes of 
X-valued Bochner integrable functions x: T ~ X  normed by 

,l x II, = ( !  [Ix(t)ll'dg(t)) a/'. 

It is a standard result that normed by the functional [[. ][, above, L,(g, X) becomes 
a Banach space [see Diestel-Uhl (1977), p. 50]. Recall that a correspondence 
~b:T~2 x is said to be integrably bounded if there exists a map h6Ll(g,R) such 
that sup { I] x II :x~4~(t)} < h(t)g-a.e. 

A Banach space X has the Radon-Nikodym Property with respect to the 
measure space (T, T,g) if for each g-continuous measure G:T ~ X  of bounded 
variation there exists oeL1 (g, X) such that G(E) = ~O(t)dg(t) for all EzT.  A Banach 

E 
space X has the Radon-Nikodym property (RNP) if X has the RNP with respect 
to every finite measure space. Recall now [see Diestel-Uhl (1977, Theorem 1, 
p. 98)] that if (T, T, g) is a finite measure space 1 < p < 0% and X is a Banach space, 

1 1 
then X* has the RNP if and only if (Lp(g, X))* = Lq(#, X*) where - + - = 1. 

P q 
We will close this section by collecting some basic results on Banach lattices 

[for an excellent treatment see Aliprantis-Burkinshaw (1985)]. Recall that a Banach 
lattice is a Banach space L equipped with an order relation > (i.e., > is a reflexive, 
antisymmetric and transitive relation) satisfying: 

(i) x > y implies x + z > y + z for every z in L, 
(ii) x > y implies 2x > 2y for all 2 > 0, 
(iii) for all x, y in L there exists a supremum (least upper bound) x v y and an 

infimum (greatest lower bound) x A y, 
(iv) [Xl > [Yl implies I[xll > [lY[I for all x,y in L. 
As usual x + = x v O ,  x - = ( - x ) v O  and [ x l = x v ( - x ) = x + + x - ;  we call 

x+,x - the positive and negative parts of x, respectively and [xl the absolute value 
of x. The symbol I[" [] denotes the norm on L. If x, y are elements of the Banach 
lattice L, then we define the order interval Ix, y] as follows: 

[-x, y]  = {z~L:x <_ z <_ y}. 

Note that Ix, y] is norm closed and convex (hence weakly closed). A Banach lattice 
L is said to have an order continuous norm if, x,+0 in L implies [[x,l[ ~0. A very 
useful result which will play an important role in the sequel is that if L is a Banach 
lattice then the fact that L has an order continuous norm is equivalent to weak 
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compactness of the order  interval Ix, z] --- {yeL:x < y < z} for every x, z in L [see 
for instance Al ipran t i s -Brown-Burk inshaw (1989), Theorem 2.3.8, p. 104 or 
Lindenstrauss-Tzafr i r i  (1979, p. 28) ]. 

We finally note that Cartwright (1974) has shown that if X is a Banach lattice 
with order  cont inuous norm (or equivalently X has weakly compact  order intervals) 
then LI(/~, X), has weakly compact  order  intervals, as well. Cartwright's theorem 
will play a crucial role in the proof  of our  main results. 

3. Model and results 

3.1 The core of an exchange economy with differential information 

Let Y be a separable Banach lattice with an order  cont inuous norm, whose dual Y* 
has the RNP.  1 Let  (.Q, F, #) be a complete finite measure space. 

An exchange economy with differential information F = { ( X i ,  ul, e~,Fi,qi): 
i = 1, 2 . . . .  , n} is a set of quintuples (X~, u~, ei, Fi, ql) where, 

(1) Xi:g2-~2 r+ is the random consumption set of agent i, 
(2) ui:g2 x X i ~ R is the random utility function of agent i, 
(3) F~ is a (measurable) part i t ion 2 of (s F) denoting the private information of 

agent i, 
(4) ei:g2-~ Y+ is the random initial endowment of agent i, ei(-) is Fi-measurable, 

Bochner  integrable and e~(~o)~X~(co) for all i, #-a.e., 
(5) q~:O-~R+ + is the prior of agent i, (i.e., q~ is a R a d o n - N i k o d y m  derivative 

having the proper ty  that  ~ q~(t)d#(t)= 1). 

Denote  by Lx, the set of all Bochner integrable and Fi-measurable selections from 
the consumption set X~ of agent i, i.e., 

Lx, = {xieL1 (l~, Y+ ):xi:g2-~ Y+ is Fi-measurable 

and xi(~o)~Xi(co)~--a.e.}. 

For  each i, (i = 1, 2 . . . .  , n), denote by E~(co) the event in F~ containing the realized 
state of nature ~o~.Q and suppose that  ~ q~(t)d~(t) > 0 for all i. Given E~(co) in 

t e Ei (r 

Fi define the conditional expected utility of agent i, V~:g2 x L x ~  R by 

Vi((-o, xl) = ~ ui(t, xi(t))qi(t] Ei(co))dl~(t ) (3.1) 
t~Ei(tg) 

where 
0 if tCE,(~o) (3.2) 

qi(t) if teEd(e)). 
qi(tlEi(c~ ~ qi(t)d]l(t) 

teiEi(m) 

We are now ready to define the central notions of the paper. 

I A basic example of a space which satisfies all these conditions is the Euclidean space Rk 
Remark 6.1 in Section 6 presents some more examples. 
2 In the sequel by an abuse of notation, we will still denote by an Fi the a-algebra that the partition 
Fi generates. 
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Definition 3.1.1: We say that x = ( x 1 ,  x 2 . . . . .  xn)E H Lx, is a core allocation for F, if 
i = 1  

e,, and 
i = 1  i = 1  

(ii) it is not true that there exist S c {1, 2 . . . . .  n} and (yi)i~s~[ILx, such that 

yl = ~ e~ and V~(co, y~)> Vi(co, x~) for all i~S for #-almost all co~.O (where V~ is 
iES i~S 

given by (3.1)). 

A couple of comments are in order: Note that x~ ~I Lx, implies that each xi(.) is 
i = 1  n 

Fi-measurable and therefore the vector x(~o)= (Xa(O~), x2(~o) . . . .  ,x,(~o))e 1-I Xi(co ) 
i = 1  

is ~ F~-measurable (where ~/ F~ denotes the join, the smallest partition containing 
i = 1  i = 1  

F 1 , F  2 . . . .  ,Fn). Condition (i) above implies that the markets are cleared in each 

state of nature, i.e., Z xi(~o ) = ~ el(cO)p-a.e. Condition (ii)shows that no coalition 
i = 1  i = 1  

of agents (while each agent in the coalition uses his/her own private information) 
can redistribute their initial endowments among themselves for any state of nature 
and make the conditional expected utility of each agent in the coalition better off. 
Note that condition (ii) of definition 3.1.1 implies the following condition: 

(ii)' It is not true that there exist S~{1 , 2  . . . .  ,n} and y : g 2 ~ I - i x i ,  y~(.) is 
i~S 

A F~-measurable (where A Fi denotes the meet, i.e., the maximal partition 
ieS ieS 

contained in all of them) such that ~ yi(co) = ~ ei(~o ) I~-a.e. and Vi(co, Yi) > Vi( ~~ xi) 
for all i~S for/~-almost all ~oe.Q. i~s ~s 

The above blocking notion is the one adopted by Wilson (1978) to define his coarse 
core concept. 3 Note that since each y~(.) is A F;-measurable, the information is 

i~S 

verifiable by each member of the coalition. For instance, if we imagine that agents 
negotiate the terms of a contract, then Wilson's definition tells us that a coarse 
core allocation has the property that no coalition of agents can exchange their 
own information (in fact, information is verifiable by each member of the coalition) 
and make each agent in the coalition better off. In other words, contracts are 
realizable because information is verifiable. However, according to our condition 
(ii) of definition 3.1.1, information is not necessarily verifiable by all the members 
of the coalition (it is only privately verifiable). The latter makes the core smaller, 
i.e., any core allocation satisfying the definition 3.1.1 is a coarse core allocation 
as well. (Recall that if Yi(') is A Fi-measurable, it is also Fi-measurable; of course 

l~S 

3 See a l so  K o b a y a s h i  (1980) w h o  has  a l so  used  the  coa r se  core.  
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the reverse is not true). Hence, the theorems that we will prove on the existence 
of core allocations will imply the existence of coarse core allocations as well. 

Note that if we were to narrow the set of core allocations by replacing the 
Fi-measurability of yi(') in (ii) of definition 3.1.1 with the V F~-measurability of 

i~S 

y:.O--, l~ X~, then it is easy to construct examples which satisfy all the assumptions 
i~S 

of Theorem 3.1 below, but the core is empty [see Wilson (1978) or Berliant (1990) 
for examples to that effect]. We are not aware of any natural set of assumptions 
on utility functions and initial endowments which will guarantee the existence of 
such a core. Finally, it is worth pointing out that a core notion which allows for 
complete exchange of information among agents in each coalition may not be an 
appropriate concept since in most applications, agents do not have an incentive 
to reveal their own private information (think of situations of moral hazard or 
adverse selection). 

Definition 3.1.2: We say that x~ ~I Lx, is (interim) Pareto optimal if:4 
i=1  

(i) ~ xi = ~ ei, and 
i =  1 i = . 1  

(ii) it is not true that there exists y el~I Lx~ such that ~ Yi= ~ ei and 
i = 1  i = l  i = 1  

Vi(~,yi) > Vi(~o, xl) for all i for #-almost all ~o~.Q (where Vi is given by (3.1)). 

Definition 3.1.3: We say that x~ (] Lx, is individually rational if: 
i = 1  

(it x i - -  and 
i = 1  i = I  

(ii) Vi(~o, xi)> V/(~o, el) for all i and for #-almost all ~o~.Q (where V i is given 
by (3.1)). 

Finally, if the private information set of each agent, is the same (i.e., there is 
n 

symmetric information so Fi - F for all i) we call any x~ I] Lx, satisfying (i) and 

(ii) of Definition 3.1.1 a symmetric core allocation for F. 
We are now ready to state our first main result: 

Theorem 3.1: Let F = { (X i, ul, el, Fi, ql):i = 1, 2,. . . ,  n} be an exchange economy with 
differential information satisfying the following assumptions,for each i (i = 1,2 . . . . .  n), 

(a.3.1) Xi:.Q--,2 r+ is an integrably bounded, convex, closed, nonempty valued 
and F~-measurable correspondence, 

(a.3.2) for each toe.Q, ui(co,') is weakly continuous and integrably bounded, and 
(a.3.3) for each o9~2, ui(co, .) is quasi-concave. 

Then a core allocation exists in F. 

The following Corollaries follow directly from Theorem 3.1. 

4 A similar notion is defined by Palfrey and Srivastava (1987). 
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Corollary 3.1: Let F =  {(Xi,ui,ei,Fi, qi):i = 1,2 . . . . .  n} be an exchange economy 
with differential information satisfying all the assumptions of Theorem 3.1. Then 
an individually rational and Pareto optimal allocation exists in F. 

Corollary 3.2: Let F =  {(Xi, ui, ei, Fi, qi): i= 1,2,. . . ,n} be an exchange economy 
with symmetric information (i.e., Fi =-F .for all i), satisfying all the assumptions of 
Theorem 3.1. Then a symmetric core allocation exists in F. 

3.2. The a-core of a game in normal form with differential information 

A game in normal form with differential information B = {(X i, ul, Fi, qi): i = 1, 2, . . . ,  n} 
is a set of quadruples (X i, ul, Fi, qi) where 

(1) Xi:12-~2 r is the strategy set-valued function of player i, 

(2) ui:-Q x l~I x i ~ R is the random payoff function of player i, 
i = 1  

(3) Fi is a (measurable) partition of (12, F) denoting the private information of 
player i, and 

(4) qi:12~R+ + is the prior of player i (i.e., qi is a Radon-Nikodym derivative 
having the property that S qi(t)d#(t) = 1). 

t ~ Q  

For each i (i = 1, 2 . . . . .  n) denote by E~(co) the event in F~ containing the true state 
of nature o9e~2 and suppose that ~ qi(t)dl~(t) > 0. Given Ei(e~ ) in F i define the 

conditional expected payoff of player i, Vi:12 x FI Lx~ ~ R by 
i = 1  

Vi(o),x) = S u~(t,x(t))q~(tlE~(co))d#(t), (3.3) 
teEd(co) 

where q~(t]Ei(~o)) is defined as in (3.2). 
Before we define the notion of an ~-core strategy for the game B we need to 

introduce some notation. Denote by I the set of players { 1, 2 . . . . .  n}. If S c I then 

(yS, xl/S) denotes the vector z in f l  Lx, where z i = Yl if i t S  and z~ = xi if i~S. 
i = l  

Definition 3.2.1: We say that x~ I-I Lx, = Lx is an ~-core strategy for B if: 
i = l  

(i) It is not true that there exist S c I  and (yi)i~s~I-[ Lx~ such that for any 

zVS~Y[ Lx,, vi(~, (yS zl/S)) > vi(~o, x) for all iaS for #-almost all ~o~K2 (where Vi is 
ieS 

given by (3.3)). 
n 

Note that as before x E ~ [  Lx~ implies that xi(') is Fi-measurable and 
i = l  

consequently the vector x(r = (x~(~) . . . . .  x~(r is V Fi-measurable. Condition (i) 
i~ l  

in Definition 3.2.1 indicates that no coalition of players is able to change its strategy 
(while each player in the coalition uses his/her own private information) and make 
the expected utility of each member in the coalition better off, no matter what the 
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complementary coalition chooses to do (each member in the complementary 
coalition is also allowed to take advantage of his/her own private information). 
Following the previous definition of a coarse core allocation for an economy with 
differential information, we can define an e-coarse strategy for the game B, and 
show that the set of c~-coarse core strategies contains the set of a-core strategies 
for the game B. 

Since there is no exchange of information among players in each coalition one 
may suggest that it is possible to analyze games in normal form with differential 
information (or economies with different information) in a noncooperative setting 
adopting the notion of a Bayesian Nash equilibrium or correlated equilibrium. 
However, the latter concepts do not yield Pareto optimal outcomes, contrary to 
the core or a-core. It seems to us that selecting outcomes out of the Pareto frontier 
is an attractive property for an allocation mechanism to have. The latter makes 
the core concept appealing in an economy with differential information. 

We can now state our second main result. 

Theorem 3.2: Let B = {(Xi, ui, Fi, ql): i= 1,2 . . . . .  n} be a game in normal form with 
differential information satisfying the following assumptions for each player 
i ( i=  1,2,. . . ,n),  

(a.3.2.1) Xi: 
compact valued 

(a.3.2.2) for 
and 

(a.3.2.3) for 

Then an e-core 

. Q ~ 2  r+ is an integrably bounded, nonempty convex weakly 
and Fi-measurable correspondence, 5 
each coes ui(o~,') is weakly continuous and integrably bounded, 

each c o ~ ,  ui((o,.) is concave. 

strategy exists in B. 

4. Proof of Theorem 3.1 

We first state the well-known core existence result of Scarf (1967) [see also Border 
(1984) or Yannelis (1990) for recent generalizations] which is going to play a crucial 
role in the proof of Theorem 3.1. We will first need some notation. 

Let E = {(Xi, ul, ei): i= 1,2 . . . . .  n} be an exchange economy, where 

(1) X i ~ R t is the consumption set of agent i, 
(2) ui: Xi -+R is the utility function of agent i, and 
(3) e~X~ is the initial endowment of agent i. 

Define the set-valued function Pi:Xi-+2 x' by Pi(xi): {yiEXi:ui(Yi)>ui(xl)}. 
Scarf's result asserts that if X i is a nonempty, closed, convex and bounded from 
below subset of R ~, u~ is quasi concave and continuous (i.e., if Pi is convex valued 
and has an open graph in X~ x X~), then core allocations exist in E, i.e., there exists 

xE ~I X~ such that: 
i = l  

5 The assumption that Xi(') takes values in the positive cone of Y, is not needed for the proof 
of this theorem. 
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(i) ~ x~= ~ e~, and 
i = 1  i = 1  

(ii) it is not true that there exist S ~ {1,2,...,n} and (y,),~s~l~x~ such that 
i~S 

~, yi = ~ ei and yi~P,(xi) for all iES. 
i~S ieS 

We begin the proof of Theorem 3.1 by constructing a new economy G =  
{(Lx,,P,,e~): i--  1,2 . . . .  ,n}, where 

(i) Lx, is the consumption set of agent i, 
(ii) P,: Lx, ~ 2 Lx, is the preference correspondence of agent i defined by Pi(xi) = 

(yi~Lx~: Vi( oJ, Yl)> Vi(r x~) for #-almost all r and 
(iii) ei~Lx, for all i, is the initial endowment of agent i. 

Note the existence of a core allocation for G implies the existence of a core 
allocation for the original economy F = {(X i, ui, e~, F~, q~): i = 1, 2 . . . . .  n}. Hence, all 
we need to show is that a core allocation exists in the economy G. To this end 
we first show that for each i, Lx, is closed, bounded, convex, nonempty and that 
P~:Lx,-~2 L~, is convex valued having a weakly open graph (i.e., the set 
Gp, = {(x,y)~Lx~ x Lx,:y~P,(x)} is weakly open in Lx, x Lx).  

Note the fact that Lx~ is convex, closed and bounded follows directly from 
assumption (a.3.1). To prove that Lx~ is nonempty, recall that X~:~-~2 r* is 
F,-measurable, nonempty, closed valued and therefore Gx, eFi| By the 
Aumann (1967) measurable selection theorem, we can obtain an F~-measurable 
function f~: ~ Y+ such that fi(e~)~Xi(r # - a.e. Since X~ is integrably bounded, 
we can conclude that f ,  eL~(#, Y+). Hence, f ~ L x ,  and this proves that Lx, is 
nonempty. 

In order to show that for each i, P~ has a weakly open graph, we will first need 
the following claim6: 

Claim 4.1: For each i (i = 1, 2 . . . .  ) and for each 09~12, Vi(co,.) is weakly continuous. 

Proof: Fix i ( i= 1,2 . . . .  ,n) and o~el2 and let Ei(~o) be an event in Ft. Consider 
the sequence {x~': m = 1, 2 . . . .  } in Lx, c LI(#, Y), which converges weakly to xieLx,, 
i.e., p.x'~ converges to P'Xi for any peL| Y*) = (LI(#, Y))* (recall that Y* has 
the RNP). Note that x7 converges weakly to xl is equivalent to the fact that 

�9 r ~ l  . m P xl Zn = PZa xi converges to P'X~ZA = PZa'Xi for any peL~(#,  Y*), A~F and each 
condition above implies that y*.x'Tx A = y*za.x.~ converges to y*.xiz a = y*zA.xi 
for any y*EY*, A~F. If we show that xT'z~,t,~ ~ converges pointwise in the weak 
topology of X~ to x~xE,to,), then since for each o9~12, u~(co,-) is weakly continuous 
and integrably bounded the weak continuity of V~(~o, .) will follow from the Lebesgue 
dominated convergence theorem. Now if F~ = {El, E 2 . . . .  } is the partition of agent 

i, then the fact that x~m and x~ are elements of Lx, implies that x~m---- ~ Xi,kZE~,m 
k = l  

x~= ~ x~,kX ~, for X~k, X~, k in X~ and consequently we can conclude that 
k = l  

6 A similar result is proved in Yannelis & Rustichini (1991). 



192 N.C. Yannelis 

x'~zea~o) ~ m k = Xi,k)~Eic~Ei(w) converges weakly to x~x~a~o)= ~ Xi,kZE~c~Ei(m ). This 
k = l  k = 1  

completes the proof of the claim. 
In view of Claim 4.1 we can now conclude that for each i,P~ has a weakly 

open graph. Moreover,  since for each c o ~ ,  u i (co, .) is concave so is Vi(co, .) 
and therefore, P~ is convex valued. We will now construct a suitable family of 
truncated subeconomies in a finite dimensional commodity space, each of which 
satisfies the assumptions of Scarf's theorem. Applying Scarf's theorem, we will 
obtain a net of core allocations for each subeconomy. By taking limits we will 
show that the existence of a core allocation for each subeconomy implies the 
existence of a core allocation for the original economy G. 

Let A be the set of all finite dimensional subspaces of LI(#, Y+) containing the 
initial endowments. For each ~ A  define the consumption set of agent i, L ~ by X i  

L~ x~ = Lx, c ~  and the preference correspondence of agent i, - ~ . - x ,  . , by 
= {( x,,Pi, el): i= 1,2,. . . ,n} P~(xl) = Pi(xi)c~L~x~. We now have an economy G ~ L" 

in a finite dimensional commodity space, where, 

(4.1) L ~ is the consumption set of agent i, Xi 

(4.2) P~: L ] , - ,  2Lx~ is the preference correspondence of agent i, and 

(4.3) eiEL~x, is the initial endowment of agent i. 

It can be easily checked that each economy G" satisfies all the assumptions of 

Scarf's theorem and therefore there exists x" - , x p . . . , -  ( ~ x~,,e I~I L]~ = L~: such that: 
i = 1  

(4.4) ~ x~= ~ e i, and 
i = 1  i = 1  

it is not true that there exist S ~ {1,2,.. . ,n} and ( y ~ ) ~ s ~ L  ~ such that X i  
isS 

(4.5) Y', Yi ~ ei and yi~ i(xi) for all iES. 
i~S i~S 

From (4.4) it follows that for each ~ A  

= x i -- e i=e .  
i = 1  i = 1  

Hence for each ~eA the vectors x~ ~ lie in the order interval [0,el. Since by 
assumption order intervals in Y are weakly compact, by Cartwright's theorem the 

order interval [0,el in ~ Lx~ is weakly compact. Direct the set A by inclusion so 
i = 1  

that ~'t~x~,x2, ~ ~ . . . ,x~): c~A} forms a net in I~ Lx~. Since all the vectors x~ lie in 
i = l  

�9 X ~t �9 the order interval [0,el which is weakly compact, the net {(x~ . . . . .  ). c~eA} has 
a subnet which converges weakly to some vector x~,x2 . . . . .  x~ in [0, e]. We will 
show that the vector x~ . . . . .  x, is a core allocation for the economy G. Denote the 
convergent subnet by {(x~(m),...,x~(m)):m~M} where M is a set directed by " > ' .  
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Since for all meM,  ~ xi~(")= ~, ei and xi ~(") converges weakly to xieLx,,  we 
i=1 i = 1  

conclude that x~ = ~ e~. We will now complete the proof by showing that: 
i = 1  i = 1  

It is not true that there exist S = {1, 2 . . . . .  n} and (Yi)i~s = 1-I Lx, such that 
ieS 

(4.6) ~ y~ = ~ e~ and y~eP~(x3 for all ieS. 
ieS i~S 

Suppose that (4.6) is false, then there exist S c (1, 2 . . . .  , n} and (y~)i~s~i-ILx, such 
ieS 

that ~ Yi = ~ ei and yiEPi(x) for all iES. Since xZ (m) converges weakly to x i and 
ieS ieS 

Pi has a weakly open graph, there exists mo~M such that y~sP~(x~ "(m)) for all 
m > m0 and for all i~S. Choose ml > m0 so that, if m > m~, y ~ L ~  m) for all i~S. 
Then y~P~'(")(xi'(")), for all m ~ m~ and for all i~S. But this contradicts (4.5). 
Hence (4.6) holds and this completes the proof of the theorem. 

5. Proof of Theorem 3.2 

We begin by stating the e-core existence result of Scarf (1971) which is going to 
be used in the proof of Theorem 3.2. 

Let N = {(X~,ul): i= 1,2 . . . . .  n} be a game in normal form where, 
(1) X i is a compact, convex and nonempty subset of R ~, denoting the strategy 

set of player i, and 
n tl 

(2) ui: 1-[ X i ~ R  is a quasi-concave function on I~ Xi denoting the payoffof 
player i. ~= 1 ~= 1 

n 

The strategy vector xe  1-[ X~ is said to be an a-core strategy for N if: 
i = I  

It is not true that there exist S c { 1, 2 . . . . .  n} and (y~)~seI] X~ such that for any 
ieS J /Se lq  x i ,  ui(y s, z I/s) > ui(x) for all ieS. 

iCS 

As in the proof of Theorem 3.1 we will construct a new game 
= {(Lx,, Vi):i = 1,2,...  ,n}, where 

(a) Lx, is the strategy set of player i, and 

(b) V~:I2 • f i  L x , ~ R  is the payoff function of player i (defined as in (3.3)). 
i = 1  

It is easy to see that the existence of an a-core strategy for B implies the existence 
of an a-core strategy for the original game B = { (X~, uz, Fi, q~):i = 1, 2, . . . .  n}. Our 
goal is to construct aa suitable family of truncated subgames in a finite dimensional 
strategy space, each of which satisfies all the conditions of the Scarf (1971) theorem. 
Therefore we will obtain a net of a-c0re strategies for each subgame. As in the 
proof of Theorem 3.1, operating a limiting argument we can show that the existence 
of an a-core strategy for each subgame implies the existence of an a-core strategy 
for the original game B. Before we start the outlined construction of the family of 
truncated subgames, we need to make some observations. 
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Note that for each (oe.~, V~(o),') is weakly continuous (recall Claim 4.1) and 

by virtue of assumption (a.3.2.3) quasi-concave on 1~ Lxc Moreover, note that 
i = 1  

each Lx~ is convex and nonempty. However, since Scarf's theorem requires the 
compactness of each strategy set we will need to prove the following claim which 
is known as Diestel's theorem. 

Claim 5.1: The set Lx, is weakly compact in LI( #, Y). 

Proof: The proof is based on the celebrated theorem of James (1964) and it is 
patterned after that Khan (1982). Note that the dual of LI(#, Y) is L~(#, Y**) 
(where w* denotes the w*-topology), i.e., (LI(p, Y))* = Lo~ (p, Y**) [see, for instance, 

, Tulcea-Tulcea (1969)]. Let x be an arbitrary element of L~(p, Yw*). If we show 
that x attains its supremum on Lx, the result will follow from Jame's theorem 
[James (1964)]. Let, 

Sup ~p'x= Sup ~ (~,(co)'xgo))dp((n). 
~OieLx i ~Oi~Lxi a)~.Q 

Note that by Theorem 2.2 in Hiai-Umegaki (1977), 

Sup S (Oigo)'x(oo))dp(m)= ~ Sup (r 
eqeLxi  ~ o ~  o)~_gl d)ieX,(~) 

For each i, define the set-valued function 9~:.(2--,2 r by #i(o))= {yeXi(~o):y.x= 
Sup r It follows from the weak compactness of Xi that for all ~oe/2, g~(w) 

4n~Xdo~) 

is nonempty. For each i, define fi:/2 x Y--, [ -  oe, oe] by fi(oo, y) = y.x - Sup r 

It is easy to see that for each fixed ~eD,  fi(o),.) is continuous and for each fixed 
yeY, fi(.,y) is Fi-measurable and hence fi(.,.) is jointly Fi-measurable, i.e., for 
every closed subset V of [ -  o% ~ ] ,  f a l ( V )  = {(~o,z)eD • Y:zeXi(oo)} belongs to 
F~ | B(Y). Since X~ is Fi-measurable the set Gx, = {(co, x):xeX~(o))} is an element 
of Fi| Moreover, note that Gg~=f[-l(O)c~Gx~ and since f71(0) and Gx, 
belong to F i | B(Y) so does Go,. It follows from the Aumann measurable selection 
theorem that there exists an F~-measurable function z~:/2-~ Y such that z~(o)eg~(oo) 
p-a.e. Thus, zieLx, and Sup r = ~ (zi(co)'x(co))d#((o) = zi'x. Since xeL~(#, Y**) 

r  i o~e 

was arbitrarily chosen, we conclude that every element of (L~(/~, Y))* attains its 
supremum on Lx,, and this completes the proof of the fact that Lx, is weakly 
compact. 

We are now ready to construct a suitable family of truncated subgames. To 
this end let A be a family of all finite subsets of Lx,. For each 2eA let L a denote Xi 
the closed convex hull of 2. Then each L ~ is a compact, convex, nonempty subset X~ 

of a finite dimensional Euclidean space and ~ L x = Lx~. Moreover, the set 
Xi 

�9 ~.e A 

{L~:2EA} is directed upwards by inclusion. For each 2cA we have a game 
Ba 2 {(L~,, Via):i = 1,2,. ,n} where, 

(5.1) L z is the strategy set of player i, and Xi 
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(5.2) Via:.O x I~I L x ~ R  is the payoff function of player i. Xi 
i = 1  

Each BZ satisfies the assumptions of Scarf's a-core existence theorem and therefore 
n 

there exists xZE IF] Lz satisfying the following property: Xi 
i = 1  

n 

It is not true that there exist S c {1,2,. . . ,n} and (yl)i~s ~ I] L ~ such that for 
Xi 

i = l  

each z*/SeIqL~,, ViZ(co,(yS, zl/S))> ViZ(e),x ~) for all i tS for It-almost all 09es 
ir 

Since the set A is directed by inclusion we have constructed a net 

2 2 .~ .  {(xpx 2 . . . . .  x ,) .2eA} of a-core strategies in I~I Lx,. Since by Claim 5.1 each 
i = 1  

Lx, is weakly compact so is l~l Lx,. Hence the net {(xl, x 2 . . . . .  ~2):X~A} has a 
i = 1  

subset which converges weakly to (Xl,X2,...,x,) in l~I Lx,. We must show that 
i = l  

x~, x2 . . . . .  x, is an e-core strategy for B. Adopting a similar argument with that 
used in the proof of Theorem 3.1, one can now complete the proof of Theorem 3.2. 

6. Concluding remarks 

Remark 6.1: In Theorems 3.1 and 3.2, Y is assumed to be a separable Banach lattice 
with order continuous norm whose dual Y* has the RNP. Basic examples of spaces 
which satisfy the above properties are: 

(i) the Euclidean space R I, 
(ii) the space I p (1 < p < oo) of real sequences {a,:n = 1,2 . . . .  } for which the 

norm Lla, llp= lanl p is finite, 
n 1 

(iii) the space LP(f2, F, It) (1 < p < oe) of measurable functions f on the measure 

( !alf(~)lPdIt(o9)) x/p space (f2, F, It) for which the norm II f lip = o, is finite. 

It is important to give examples of spaces that Theorems 3.1 and 3.2 do not cover: 
(iv) LI[0,  1] or Ll(It ), if It is not purely atomic, c o, loo, L~ [0, 1] and 
(v) the space C(X) of continuous real-valued functions on the infinite compact 

Hausdorff space X (with the supremum norm). 

Recall that the spaces in (iv) and (v) do not have the RNP moreover, order intervals 
are not weakly compact in Loo [0, 1] and C(X). 

Remark 6.2: The separability assumption on Y was used in order to make the 
Aumann measurable selection theorem applicable. The latter result was used in 
several steps in the proofs of Theorems 3.1 and 3.2. The relaxation of the separability 
of Y is possible. In this case however, the consumption set Lx, will be the set of 
all Gelfand integrable selections from the set-valued function Xi:.Q ~ 2 r*, and one 
will need to appeal to results on the existence of weak* measurable selections. 
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Remark 6.3: Theorem 3.1 and its Corol lar ies  can be easily extended to coal i t ion  
p roduc t ion  economies  p rov ided  that  the p roduc t ion  technology  is assumed to be 
balanced.  The p roo f  remains  essential ly unchanged.  

Remark 6.4: K a h n  and  Mooker jee  (1989), have in t roduced  a core-l ike concept  in 
order  to analyse games in no rma l  form with differential  informat ion.  Their  concept  
in a two-person  game, coincides with the coal i t ional  Nash  equil ibr ium. N o  existence 
results are given in their  paper .  However ,  it is known [see, for instance, Scarf 
(1971)] tha t  even if preferences are  strictly convex and  cont inuous  the set of 
coa l i t ionaal  Nash  equi l ibr ium strategies may  be empty.  

Remark 6.5: We conjecture  that  the core of a large finite pr ivate  in format ion  
economy will converge to the s t anda rd  Debreu-Scar f  (1963) core not ion,  with the 
a p p r o x i m a t i o n  gett ing finer the larger  the pr ivate  in format ion  economy (this will 
follow from the law of  large numbers  p rov ided  there is some kind of independence  
among  agents). Hence,  we can conclude that  core a l locat ions  in large pr ivate  
in format ion  economy will become Walras ian .  We also conjecture  that  wi thout  the 
independence  assumpt ion  a m o n g  agents,  core a l locat ions  in a large pr ivate  
in format ion  economy will character ize  some kind  of  ra t iona l  expecta t ions  
equi l ibr ium. 7 
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