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Abstract

We introduce a new game form which allows the players’ strategies to depend on their strategy-relevant
private information as well as on some publicly announced information. The players’ payoffs depend on
their own payoff-relevant private information and some payoff-relevant common information. Under the
assumption that the players’ strategy-relevant private information is diffuse and their private information is
conditionally independent given the public and payoff-relevant common information, we prove the existence
of a pure strategy equilibrium for such a game by developing a distribution theory of correspondences via
vector measures.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

We introduce a new game form which allows the players’ strategies to depend on their strategy-
relevant private information as well as on some publicly announced information. The players’
payoffs depend on their own payoff-relevant private information and some payoff-relevant com-
mon information. The purpose of this paper is to show that a pure strategy equilibrium exists for
such game if the players’ strategy-relevant private information is diffuse and their private infor-
mation is conditionally independent given the public and payoff-relevant common information.
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The proof of the existence of a pure strategy equilibrium in our setting is far from trivial and
requires the use of some new mathematical techniques. In particular, we develop a distribution
theory of correspondences via vector measures that involves convexity, compactness and
preservation of upper semi-continuity. This type of results allows us to apply Kakutani’s fixed
point theorem to prove the existence result based only on pure strategies. As noted in Khan and
Sun (1995, p. 637), such a direct proof on the existence of a pure strategy equilibrium using only
pure strategies does have some advantages from a game-theoretic point of view. In particular,
one does not need to go through mixed (or behavioral) strategies that are considered to have
limited appeal in many practical situations.

The paper is organized as follows. In Section 2, we introduce the game with private and public
information and state the existence of a pure strategy equilibrium for such a game. Section 3
contains the main mathematical tool that is needed for our existence proof. Section 4 contains
some concluding remarks. All the proofs are given in the appendix.

2. Games with private and public information

Consider a game Γ with private and public information formulated as follows. The game
has finitely many players i = 1, . . . , l. Each player i is endowed with a finite action set Ai,
a measurable space (Ti, Ti) representing her strategy-relevant private information, and another
measurable space (Si,Si) representing her payoff-relevant private information. A finite set T0 =
{t01, . . . , t0m} represents those states that are to be publicly announced to all the players; let
T0 be the power set on T0. Another finite set S0 = {s01, . . . , s0n} represents the payoff-relevant
common states that affect the payoffs of all the players with S0 the power set on S0. Thus, the
product measurable space (Ω,F) = (�lj=0(Tj × Sj),�lj=0(Tj × Sj)) equipped with a probability
measure η constitutes the information space of the game. For each player i, her payoff function is
a mapping from A× S0 × Si to R, i.e. ui : A× S0 × Si −→ R. Here A = �lj=1Aj is the set of
the players’ action profiles; and assume that for any a ∈ A, ui(a, s0, si) is integrable on (Ω,F, η).

For each player i, she can use her private information as well as the publicly announced
information. Thus, a pure strategy for player i is a measurable mapping from T0 × Ti to Ai;
and let Meas(T0 × Ti, Ai) be the space of all measurable mappings from T0 × Ti to Ai. A pure
strategy profile is a collection g = (g1, . . . , gl) of pure strategies that specify a pure strategy
for each player. For a player i = 1, . . . , l, we shall use the following (conventional) notation:
A−i = �1≤j≤l,j �=iAj , a = (ai, a−i) for a ∈ A, and g = (gi, g−i) for a strategy profile g.1

To sum up, our game is of the form Γ = {A1, . . . , Al; T0; S0; T1, . . . , Tl;
S1, . . . , Sl; u1, . . . , ul}, where A1, . . . , Al are the players’ action spaces, T0 is their public infor-
mation space, S0 is their payoff-relevant common information space, T1, . . . , Tl are their strategy-
relevant private information spaces, S1, . . . , Sl are their payoff-relevant private information spaces
and u1, . . . , ul are their payoff functions.

If the players play a pure strategy profile g = (g1, . . . , gl), the resulting expected payoff for
player i can be written as

Ui(g) = Ui(g1, . . . , gl) =
∫
Ω

ui(g1(t0, t1), . . . , gl(t0, tl), s0, si)dη. (1)

A pure strategy equilibrium for Γ is a pure strategy profile g∗ = (g∗
1, . . . , g

∗
l ) such that for each

i = 1, . . . , l, g∗
i maximizes Ui(gi, g∗−i) for gi ∈ Meas(T0 × Ti, Ai).

1 From now on, without any ambiguity, we shall abbreviate �1≤j≤l,j �=i to �j �=i.
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The marginal measure of η on (T0 × S0, T0 × S0) is denoted by η0. For simplicity, we denote
η0({(t0k, s0q)}) by αkq. For each given t0k ∈ T0 and s0q ∈ S0, let ηkq denote the conditional prob-
ability measure of η on the space (�lj=1(Tj × Sj),�lj=1(Tj × Sj)). For each player i = 1, . . . , l,

let τi be the marginal measure of η on the space (Ti, Ti), ρkqi the marginal measure of ηkq on the

space ((Ti × Si) ×�j �=iTj, (Ti × Si) ×�j �=iTj), νkqi the marginal measure of ηkq on the space

(Ti × Si, Ti × Si), and μkqi be the marginal measure of ηkq on the space (Ti, Ti).

Definition 1.

(1) The players’ strategy-relevant private information is said to be diffuse if the marginal measure
τi of η on the space (Ti, Ti) is atomless for each player i = 1, . . . , l.

(2) The players’ private information is said to be conditionally independent given the public
and payoff-relevant common information if for each player i = 1, . . . , l, her strategy and
payoff-relevant information is conditionally independent of all other players’ strategy-relevant
information, given t0 ∈ T0 and s0 ∈ S0. That is, ρkqi = ν

kq
i ×�j �=iμ

kq
j for k = 1, . . . , m and

q = 1, . . . , n.

The following result shows the existence of a pure strategy equilibrium for the game Γ under
the assumption of diffuse and conditionally independent information.

Theorem 1. If the players’ strategy-relevant private information is diffuse and their private in-
formation is conditionally independent given the public and payoff-relevant common information,
then there exists a pure strategy equilibrium for the game Γ .

Independent payoff-relevant and strategy-relevant private information is used in the game
studied in Radner and Rosenthal (1982). Milgrom and Weber (1985) consider games with payoff-
relevant common information and private information that influences players’ strategies and
payoffs.2 Our model introduces the new concept of public information that influences all players’
strategies, in addition to payoff-relevant and strategy-relevant private information and payoff-
relevant common information. It is obvious that the existence results of pure strategy equilib-
rium in Milgrom and Weber (1985) and Radner and Rosenthal (1982) are special cases of our
Theorem 1.3

3. Distribution of correspondences via vector measures

In this section we present some properties of the distribution of correspondences induced by
vector measures, which will be used to prove Theorem 1. We recall some basic notions first.

LetΩ and X be nonempty sets, and P(X) the power set of X. A mapping fromΩ to P(X) \ {∅}
is called a correspondence from Ω to X.

Let F be a correspondence from a measurable space (Ω,F) to a complete separable metric
space X with its Borel σ-algebra B(X), where F is a σ-algebra on Ω. The correspondence F

2 See Khan et al. (2006) for a unified approach to the purification of mixed strategies by using a consequence of the
Dvoretzky-Wald-Wolfowitz Theorem in Dvoretzky et al. (1951).

3 The existence result of a pure strategy equilibrium in Milgrom and Weber (1985) is stated as a consequence of
purification. However, the purification result in Milgrom and Weber (1985) does not follow directly from the original
result in Dvoretzky et al. (1951) as claimed therein, but from a new corollary of the Dvoretzky-Wald-Wolfowitz Theorem
formulated in Khan et al. (2006), where a stronger result on purification is also proved.
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is said to be measurable if for each closed subset C of X, the set {ω ∈ Ω : F (ω) ∩ C �= ∅} is
measurable in F. The correspondence F is said to be closed valued if F (ω) is a closed subset
of X for each ω ∈ Ω. A function f from (Ω,F) to X is said to be a measurable selection of F if
f is measurable and f (ω) ∈ F (ω) for all ω ∈ Ω. When F is measurable and closed valued, the
classical Kuratowski-Ryll-Nardzewski Theorem (see, for example, Aliprantis and Border (1994,
p. 505)) says that F has a measurable selection.

Let M(X) be the space of Borel probability measures on X endowed with the topology of
weak convergence of measures. Let ν be a probability measure and μ = (μ1, . . . , μm) a vector
measure on (Ω,F), where eachμk is a probability measure for k = 1, . . . , m. (Ω,F, μ) is called a
vector probability measure space. For a measurable mapping ϕ from a probability space (Ω,F, ν)
to X, we use νϕ−1 to denote the Borel probability measure on X induced by ϕ, which is often
called the distribution of ϕ. We also use μϕ−1 to denote (μ1ϕ

−1, . . . , μmϕ
−1), which belongs

to (M(X))m. When X is a finite set {x1, . . . , xd}, M(X) can be identified with the simplex
Δ = {(x1, . . . , xd) : xi ≥ 0,

∑d
i=1 xi = 1} under the Euclidean metric.

Next, let G be a correspondence from a topological space Y to another topological space Z. Let
y0 be a point in Y. Then G is said to be upper semicontinuous at y0 if for any open set U which
containsG(y0), there exists a neighborhood V of y0 such that y ∈ V implies thatG(y) ⊆ U. G is
said to be upper semicontinuous on Y if it is upper semicontinuous at every point y ∈ Y .

Now we state our main result about the distribution of correspondences induced by a vector
measure when the target space is a finite set.

Proposition 1. Let A be a finite set, Y a metric space, (Ω,F, μ) an atomless vector proba-
bility measure space,4 and F a correspondence from Ω× Y to A. For each fixed y ∈ Y , let Fy
denote the correspondence F (·, y) from Ω to A, which is assumed to be measurable. Let G be a
correspondence from Y to (M(A))m such that for each y ∈ Y ,

G(y) = {μϕ−1 : ϕ(·) is ameasurable selection fromFy(·)}. (2)

Then, (1) G is convex and compact valued; (2) if, in addition, the correspondence F (ω, ·) is upper
semicontinuous on Y for each fixed ω ∈ Ω, then G is upper semicontinuous on Y.

Consider the simple case that μ is a scalar probability measure (i.e., m = 1). All the three
properties of convexity, compactness, and preservation of upper semicontinuity in the above
theorem on the distribution of correspondences may fail when A is not assumed to be finite (see
Examples 1, 2 and 3 in Sun (1996) for the case that A = [−1, 1]).

4. Concluding remarks

The game introduced in this paper can be easily extended to a social system by including
constraint correspondences where action sets depend on the information of individual players.
Such a framework may be useful to applications for economies with private information and
also public information (see, for example Glycopantis and Yannelis, 2005). Thus, the standard
Walrasian expectation equilibrium notions may be generalized by including the public information
aspect as used in this paper.

4 It means that μk is atomless for each 1 ≤ k ≤ m.
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Appendix A

Proof of Theorem 1. First fix i = 1, . . . , l. Denote gi(t0k, ti) by gki (ti) for k = 1, . . . , m. Thus,
for each k, gki is a mapping from Ti to Ai. With the assumption of conditional independence in
Theorem 1, we can rewrite player i’s payoff in Eq. (1) as

Ui(g) =
m∑
k=1

n∑
q=1

αkq

∫
�l
j=1(Tj×Sj)

ui(g
k
1(t1), . . . , gkl (tl), s0q, si)dη

kq

=
m∑
k=1

n∑
q=1

αkq

∫
(Ti×Si)×�j �=iTj

ui(g
k
1(t1), . . . , gkl (tl), s0q, si)dρ

kq
i

=
m∑
k=1

n∑
q=1

αkq

∫
(Ti×Si)×�j �=iTj

ui(g
k
1(t1), . . . , gkl (tl), s0q, si)d(νkqi ×�j �=iμ

kq
j )

=
m∑
k=1

n∑
q=1

αkq

∫
(Ti×Si)×A−i

ui(g
k
i (ti), a−i, s0q, si)d(νkqi ×�j �=iμ

kq
j (gkj )

−1)

=
m∑
k=1

n∑
q=1

αkq

∫
A−i

∫
Ti×Si

ui(g
k
i (ti), a−i, s0q, si)dν

kq
i d�j �=iμ

kq
j (gkj )

−1. (3)

Now we define the conditional expectation

v
kq
i (a, ti) = E(ui(a, s0q, s̃i)|t̃i = ti),

where t̃i and s̃i are the projections from (Ti × Si, Ti × Si, νkqi ) to Ti and Si, respectively. Then,∫
Ti×Si

ui(g
k
i (ti), a−i, s0q, si)dν

kq
i =

∫
Ti

v
kq
i (gki (ti), a−i, ti)dμ

kq
i . (4)

Thus, by substituting (4) into (3), we have

Ui(g) =
m∑
k=1

n∑
q=1

αkq

∫
A−i

∫
Ti

v
kq
i (gki (ti), a−i, ti)dμ

kq
i d�j �=iμ

kq
j (gkj )

−1

=
m∑
k=1

n∑
q=1

∫
Ti

αkq

∫
A−i

v
kq
i (gki (ti), a−i, ti)d�j �=iμ

kq
j (gkj )

−1dμkqi =
m∑
k=1

Vki (gki ),

(5)

where we write

Vki (gki ) =
n∑
q=1

∫
Ti

αkq

∫
A−i

v
kq
i (gki (ti), a−i, ti)d�j �=iμ

kq
j (gkj )

−1dμkqi .

It means that player i’s expected payoff depends on the actions of the other players only through
the conditional distributions of their strategies (given the payoff-relevant common information
s0q and public information t0k) induced on their action spaces. Recall that the marginal measure

τi of η on the space (Ti, Ti) is atomless. This implies that if αkq > 0, μkqi is also atomless. When
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αkq = 0, we can redefine μkqi to be τi without changing anything. Thus, we can assume that μkqi
is also atomless for each k = 1, . . . , m, and q = 1, . . . , n.

Now fix k ∈ {1, . . . , m}. Let λki = ∑n
q=1 μ

kq
i . It is obvious to see that dμkqi /dλ

k
i is well-defined

with value in [0, 1] for each i, k and q, and that
∑n
q=1

dμkq
i

dλk
i

(ti) = 1 for λki -almost all ti. For a

given γ ∈ �lj=1[(M(Aj))n],5 Eq. (5) says that for each state of public information t0 = t0k, k =
1, . . . , m, player i should choose a response function gki : Ti → Ai to maximize6

V
kγ
i (gki ) =

n∑
q=1

∫
Ti

αkq

∫
A−i

v
kq
i (gki (ti), a−i, ti)d�j �=iγ

q
j (a−i)dμ

kq
i (ti)

=
∫
Ti

n∑
q=1

αkq
dμkqi
dλki

∫
A−i

v
kq
i (gki (ti), a−i, ti)d�j �=iγ

q
j (a−i)dλki

=
∫
Ti

wki (g
k
i (ti), ti, γ)dλki (ti) (6)

where

wki (ai, ti, γ) =
n∑
q=1

αkq
dμkqi
dλki

(ti)
∫
A−i

v
kq
i (ai, a−i, ti)d�j �=iγ

q
j (a−i). (7)

It is obvious that for each ai in the finite set Ai, wki (ai, ti, γ) is Ti-measurable with respect to
ti ∈ Ti, and continuous with respect to γ ∈ �lj=1[(M(Aj))n].

For a fixed k ∈ {1, . . . , m} and for any γ ∈ �lj=1[(M(Aj))n], ti ∈ Ti, let

�ki (ti, γ) = Arg maxai∈Aiw
k
i (ai, ti, γ). (8)

For each fixed ti ∈ Ti, the correspondenceΦki (ti, ·) is upper semicontinuous on�lj=1[(M(Aj))n]
by Berge’s maximum theorem (see, for example, Aliprantis and Border (1994, p. 473)). For any
fixed γ ∈ �lj=1[(M(Aj))n], the correspondence Φki (·, γ) is measurable by Theorem 14.91 in
Aliprantis and Border (1994, p. 508).

Consider a pure strategy profile g∗ = (g∗
1, . . . , g

∗
l ) and let g∗k = (g∗k

1 , . . . , g
∗k
l ) be defined as

g∗k
i (·) = g∗

i (t0k; ·), k = 1, . . . , m.
Denote the n-dimensional vector measure (μk1

i , . . . , μ
kn
i ) by μki . Let γ∗k

i be the conditional
distribution μki (g

∗k
i )−1 of player i, and γ∗k = (γ∗k

1 , . . . , γ
∗k
l ). Then, g∗ is a pure strategy equi-

librium for the game Γ if and only if for each player i and each k, g∗k
i maximizes Vkγ

∗k
i (·) on

the space Meas(Ti, Ai).7 This condition can be satisfied if g∗k
i is a measurable selection of the

correspondence Φki (·, γ∗k) for any k and i.

5 For any player j, let γj = (γ1
j , . . . , γ

n
j ) ∈ (M(Aj))n, which can be interpreted as a conditional distribution for player

j’s strategy given the payoff-relevant common information s0q and public information t0k . Let γ = (γ1, . . . , γl) which
specifies a conditional distribution for each player while γ−i specifies the conditional distributions for all the players
except for player i.

6 The function Vkγi (gki ) is actually independent of γi. However, it is more convenient, as we do, to take the whole γ as
a parameter.

7 The space of all measurable mappings from Ti to Ai.



H. Fu, et al. / Journal of Mathematical Economics 43 (2007) 523–531 529

We shall now show the existence of such a pure strategy profile g∗. For any γ ∈
�lj=1[(M(Aj))n] and any k ∈ {1, . . . , m}, let

Gki (γ) = {μki ϕ−1 : ϕ(·) is a measurable selection fromΦki (·, γ)}, (9)

and Gk(γ) = �li=1G
k
i (γ). Proposition 1 implies that for each i, Gki (·) is convex and compact

valued, and upper-semicontinuous on �lj=1[(M(Aj))n], so is the product Gk(γ). By the Kaku-

tani Fixed Point Theorem, there exists a γ∗k = (γ∗k
1 , . . . , γ

∗k
l ) ∈ �lj=1[(M(Aj))n] such that

γ∗k ∈ Gk(γ∗k). This means that for each player i and each k, γ∗k
i ∈ Gki (γ∗k), i.e., there ex-

ists a measurable selection g∗k
i of the correspondence Φki (·, γ∗k) such that μki (g

∗k
i )−1 = γ∗k

i .
Therefore, the pure strategy profile g∗ = (g∗

1, . . . , g
∗
l ) is a pure strategy equilibrium for the

game Γ . �

To prove Proposition 1, we need part of Corollary 1 in Khan et al. (2006), which is presented
in the following lemma for the convenience of the reader. The result is a simple consequence of
Theorem 2.1 in Dvoretzky et al. (1951).

Lemma A.1. Let (Ω,F, μ) be an atomless vector probability measure space with μ =
(μ1, . . . , μm), A a finite set with elements a1, . . . , ad , and g : Ω → M(A) a measurable map-
ping. Then there exists a measurable mapping g∗ : Ω → A such that g∗(ω) ∈ supp g(ω) = {a ∈
A : g(ω)({a}) > 0} for all ω ∈ Ω, and for each a ∈ A,

∫
Ω
g(ω)({a})dμ(ω) = μg∗−1({a}).

Let An, n = 1, 2, . . . be a sequence of sets in a metric space X. A point x ∈ X is said to be
a cluster point of the sequence of sets if every neighborhood of x intersects infinitely many An.
The set of all such cluster points is denoted by cl-LimnAn, which is also called topological limes
superior (see, for example, Definition 3.10 in Sun (1996)). Note that when X is a finite set, one
can use any metric introducing the discrete topology.

Before proving Proposition 1, we prove two more lemmas.

Lemma A.2. Let f = (f1, . . . , fd) and fn = (fn1 , . . . , f
n
d ), n = 1, 2, . . ., be measurable func-

tions from a probability space (Ω,F, ν) to the unit simplexΔ = {(x1, . . . , xd) : xi ≥ 0,
∑d
i=1 xi =

1}. Assume that for each k ∈ {1, . . . , d}, fnk converges to fk in the weak star topology
σ(L∞(Ω), L1(Ω)). Then, for ν-almost all ω ∈ Ω, {k ∈ {1, . . . , d} : fk(ω) > 0} ⊆ cl-Limn{k ∈
{1, . . . , d} : fnk (ω) > 0}.
Proof. Suppose not. Then there exists a measurable subset E ⊆ Ω of positive mea-
sure with respect to ν, with the following property: for all ω ∈ E, the inclusion rela-
tion {k′ ∈ {1, . . . , d} : fk′ (ω) > 0} ⊆ cl-Limn{k′ ∈ {1, . . . , d} : fnk′ (ω) > 0} fails. So there ex-
ists a k ∈ {1, . . . , d} and a set Ek ⊆ E with ν-positive measure, such that for any ω ∈
Ek, fk(ω) > 0, and k /∈ cl-Limn{k′ ∈ {1, . . . , d} : fnk′ (ω) > 0}, which means that k /∈ {k′ ∈
{1, . . . , d} : fnk′ (ω) > 0} for sufficiently large n. Thus, for any ω ∈ Ek, fnk (ω) = 0 for sufficiently
large n.

Let 1Ek be the indicator function of Ek. Note that fnk is assumed to converge to fk in the weak
star topology σ(L∞(Ω), L1(Ω)). This implies that

lim
n→∞

∫
Ω

fnk (ω)1Ek (ω)dν(ω) =
∫
Ω

fk(ω)1Ek (ω)dν(ω). (10)

We observe that
∫
Ω
fnk (ω)1Ek (ω)dν(ω) = ∫

Ek
f nk (ω)dν(ω), which equals zero for sufficiently large

n, and thus the left hand side of Eq. (10) is zero. On the other hand, the right hand side of Eq.
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(10) is
∫
Ω
fk(ω)1Ek (ω)dν(ω) = ∫

Ek
fk(ω)dν(ω), which is strictly positive since ν(Ek) > 0, and

fk(ω) > 0 for any ω ∈ Ek. This is a contradiction. �
Next we turn to Lemma A.3.

Lemma A.3. Let (Ω,F, μ) be an atomless vector probability measure space with μ =
(μ1, . . . , μm), A = {a1, . . . , ad}, and ϕn, n = 1, 2, . . . a sequence of measurable functions from
(Ω,F) to A. Letμϕ−1

n = (μ1ϕ
−1
n , . . . , μmϕ

−1
n ) for n ≥ 1, and τ = (τ1, . . . , τm) a vector of proba-

bility measures on A. Assume that for each k = 1, . . . , m, and each a ∈ A,μk(ϕ−1
n ({a})) converges

to τk({a}) as n goes to infinity. Then there exists a measurable selection ϕ of the correspondence
H = cl-Limn{ϕn} such that μϕ−1 = τ.

Proof. Since A is finite, the classical Alaoglu Compactness Theorem (see, for example, Aliprantis
and Border (1994, p. 158)) implies that there exists a subsequence ϕnq, q = 1, 2, . . . of ϕn, n =
1, 2, . . . such that for each a ∈ A, {1{a}(ϕnq (·)) : q = 1, 2, . . .} converges to some function fa(·) ∈
L∞(Ω,F, |μ|) in the weak star topology σ(L∞(Ω,F, |μ|), L1(Ω,F, |μ|)), where |μ| denotes
the probability measure (1/m)

∑m
i=1 μi.

For each q ≥ 1 and each a ∈ A, let fqa (·) = 1{a}(ϕnq (·)); then fqa , a ∈ A are non-negative
functions satisfying

∑
a∈A fa(·) ≡ 1. Since fqa (·) converges to fa(·) in the weak star topology

σ(L∞(Ω,F, |μ|), L1(Ω,F, |μ|)) as q goes to infinity, fa(ω), a ∈ A are non-negative with sum-
mation one for |μ|-almost all ω ∈ Ω; we can assume, without loss of generality, that this property
holds for all ω ∈ Ω.

By the convergence assumption in the statement of the lemma, we have∫
Ω

fqa (ω)dμk = μk(ϕ
−1
nq

({a})),

which converges to τk({a}) as q goes to infinity. Let dμk/d|μ| be the Radon-Nikodym deriva-
tive of μk with respect to |μ|. Since f

q
a (·) converges to fa(·) in the weak star topology

σ(L∞(Ω,F, |μ|), L1(Ω,F, |μ|)) as q goes to infinity, we have

lim
q→∞

∫
Ω

fqa (ω)dμk = lim
q→∞

∫
Ω

fqa (ω)
dμk
d|μ|d|μ| =

∫
Ω

fa(ω)
dμk
d|μ|d|μ|.

Hence, we obtain that

τk({a}) =
∫
Ω

fa(ω)
dμk
d|μ|d|μ| =

∫
Ω

fa(ω) dμk.

It follows from Lemma A.2 that for |μ|-almost all ω ∈ Ω,

{a ∈ A : fa(ω) > 0} ⊆ cl-Limq{a ∈ A : fqa (ω) > 0} = cl-Limq{ϕnq (ω)} ⊆ cl-Limn{ϕn(ω)}.
Define a mapping g onΩ by lettingg(ω)({a}) = fa(ω) forω ∈ Ω anda ∈ A. Then g is a measur-

able mapping fromΩ toM(A). Applying Lemma A.1 to g, we know that there exists a measurable
mapping ϕ : Ω → A such that ϕ(ω) ∈ {a ∈ A : fa(ω) > 0}, and μϕ−1({a}) = ∫

Ω
fa(ω)dμ(ω).

Hence, μϕ−1 = τ. Note that we also have ϕ(ω) ∈ cl-Limn{ϕn(ω)} for |μ|-almost all ω ∈ Ω. By
modifying the values of ϕ on a |μ|-null set through a measurable selection of cl-Limn{ϕn(·)}, we
can require that ϕ(ω) ∈ cl-Limn{ϕn(ω)} for all ω ∈ Ω. �

We are now ready to prove Proposition 1.

Proof of Proposition 1. Fix y ∈ Y . To prove the convexity, let c ∈ [0, 1] and ϕ and ϕ̃ be two
measurable selections from Fy(·). Let τ = c μϕ−1 + (1 − c)μϕ̃−1. Define a mapping f : Ω →
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M(A) by letting f (ω) = cδϕ(ω) + (1 − c)δϕ̃(ω), where δa is the Dirac measure at a for a ∈ A. Then
τ({a}) = ∫

Ω
f (ω)({a})dμ(ω) for any a ∈ A. By Lemma A.1, there exists a measurable function

ψ : Ω → A such that τ = μψ−1 and ψ(ω) ∈ {ϕ(ω), ϕ̃(ω)} for all ω ∈ Ω. Since {ϕ(ω), ϕ̃(ω)} ⊆
Fy(ω), this implies that ψ is a measurable selection of Fy. Hence, τ ∈ G(y) and G(y) is convex.

Now we turn to the upper semicontinuity ofG(·), or equivalently, the closeness of the graph of
correspondenceG(·). Suppose that yn converges to y in Y, τn = μϕ−1

n ∈ G(yn) and τn converges
to τ, where ϕn(·) ∈ Fyn (·). We need only show that τ ∈ G(y). In fact, Lemma A.3 implies that
there exists a measurable selection ϕ of the correspondence cl-Limn{ϕn} such that μϕ−1 = τ.
The upper-semicontinuity of Fy with respect to y implies the relation cl-Limn{ϕn} ⊆ Fy. So ϕ is
a measurable selection of Fy, hence τ ∈ G(y). Thus, we obtain the upper-semicontinuity of the
correspondence G(·).

Since (M(A))m is compact, the compactness of G(·) follows from its closedness while the
closedness follows from upper-semicontinuity by taking yn = y above. �
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