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1 Introduction

Nowadays, one of the main tools in the arsenal of economists concerned with

equilibrium existence is Reny�s (1999) theorem, according to which a compact

Borel game has a mixed strategy Nash equilibrium if its mixed extension is

better-reply secure.2 In applications, better-reply security usually follows

from two conditions: one related to reciprocal upper semicontinuity and the

other to payo¤ security.

Establishing the payo¤ security of a game�s mixed extension often con-

stitutes a complicated problem. The concept of uniform payo¤ security,

introduced by Monteiro and Page (2007), makes the problem considerably

more tractable in games where it is applicable, including catalog games (Page

and Monteiro, 2003) and voting models (Carbonell-Nicolau and Ok, 2007).3

Verifying whether a game that is not upper semicontinuous-sum has a better-

reply secure mixed extension is, as a rule, quite challenging. This paper�s

main focus is on studying the existence of a mixed strategy Nash equilibrium

in normal form games where the sum of the payo¤ functions is not necessarily

upper semicontinuous.

We begin with considering the games having a diagonally transfer contin-

uous mixed extension, appealing to the analogy with the better-reply secure

mixed extensions. Baye, Tian, and Zhou (1993) showed that the existence of

a pure strategy Nash equilibrium in diagonally transfer continuous games fol-

lows from a generalization of the Knuster�Kuratowski�Mazurkiewicz (KKM)

lemma.4 In Section 2 of this paper, the Ky Fan minimax inequality, in

a slightly generalized form, is used to prove that every compact Borel game

2A number of results extending Reny�s equilibrium existence theorem have been ob-
tained recently (see, e.g., Barelli and Meneghel, 2013; Bich, 2009; Carmona, 2011; de
Castro, 2011; McLennan, Monteiro, and Tourky, 2011; Reny, 2013)

3Another approach to showing the payo¤ security of mixed extensions can be found in
Duggan (2007), where hospitable strategies are used for studying equilibrium existence in
voting models.

4The �rst part of this paper contains a number of results �rst presented in our 2012
working paper "On Uniform Conditions for the Existence of Mixed Strategy Equilibria."
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whose mixed extension is diagonally transfer continuous has a mixed strategy

Nash equilibrium. The range of applications of this basic result is consider-

ably broader than that of Glicksberg�s (1952) equilibrium existence theorem

�whose proof is based on the Kakutani-Fan-Glicksberg �xed point theo-

rem. In particular, the mixed extension of a game is diagonally transfer

continuous if the following two conventional assumptions hold: the exten-

sion is payo¤ secure and the game is upper semicontinuous-sum. Then, in

Section 3, we extend the concept of uniform payo¤ security to diagonally

transfer continuous games by introducing uniform diagonal security. In the

upper semicontinuous-sum games, uniform payo¤ security implies uniform

diagonal security. At the same time, if a compact Borel game is uniformly

diagonally secure, it has a mixed strategy Nash equilibrium, which makes

it possible to avoid having to study any additional properties of the game�s

mixed extension.

Example 1 is a slight modi�cation of the Tullock rent-seeking game where

it is additionally assumed that the favor the players vie for is granted to a

third party with probability one-half if at least one player exerts no e¤ort

at all. Notwithstanding the fact that the game is not better-reply secure,

it is not only diagonally transfer continuous, but also uniformly diagonally

secure; that is, the game has a mixed strategy Nash equilibrium.

In Section 4, we adapt Simon�s (1987) concept of weak domination on

average to our setting by introducing weak uniform payo¤ security, a gen-

eralization of uniform payo¤ security. Using this concept, we construct a

better-reply secure two-person game with a payo¤ secure mixed extension

that has no mixed strategy equilibria (Example 2).

In Section 5, we study the existence of a mixed strategy equilibrium in

reciprocally upper semicontinuous games that are uniformly payo¤secure. In

such games, the equilibrium existence problem becomes considerably more

tractable if it is possible to transform the game into an upper semicontinuous-
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sum game with the aid of positive a¢ ne transformations,5 which, in partic-

ular, implies that the game also has a reciprocally upper semicontinuous

mixed extension. In Example 3, this technique is applied to a conventional

two-candidate probabilistic spatial voting game. Theorems 5 and 6 give

geometric su¢ cient conditions for games that are reciprocally upper semi-

continuous and uniformly payo¤ secure to have a better-reply secure mixed

extension.

The Appendix contains a number of auxiliary results, deferred proofs,

and some comments regarding Theorem 5b of Dasgupta and Maskin (1986).

2 The Model and Some Facts

We consider a game G = (Xi; ui)i2I , where I = f1; : : : ; ng, each player i�s
pure strategy set Xi is a nonempty, compact subset of a metrizable topolog-

ical vector space, and each payo¤ function ui is a bounded Borel measurable

function from the Cartesian product X = �i2IXi, equipped with the product

topology, to R. Under these conditions, G = (Xi; ui)i2I is called a compact

Borel game. A game G = (Xi; ui)i2I is quasiconcave if each Xi is convex and

ui(�; x�i) : Xi ! R is quasiconcave for all i 2 I and all x�i 2 X�i, where

X�i = �k2InfigXk. In this paper, by a game we mean a compact Borel game.

The following de�nition of a payo¤ secure game is due to Reny (1999).

De�nition 1 In G = (Xi; ui)i2I , player i can secure a payo¤ of � 2 R at

x 2 X if there exists di 2 Xi such that ui(di; x0�i) � � for all x0�i in some

open neighborhood of x�i. The game G is payo¤ secure if for every x 2 X
and every " > 0, each player i can secure a payo¤ of ui(x)� " at x.

Payo¤ security can be reformulated in terms of transfer lower semiconti-

nuity, due to Tian (1992).

5Using a similar approach, Amir (2005) gives examples of Cournot oligopolies possessing
the cardinal complementarity property where the other complementarity conditions are
ine¤ective.
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De�nition 2 Let Z and Y be two topological spaces. A function f : Z �
Y ! R is �-transfer lower semicontinuous in y if for every (z; y) 2 Z � Y ,
f(z; y) > � implies that there exists some point z0 2 Z and some neighborhood
NY (y) of y in Y such that f(z0; w) > � for all w 2 NY (y): A function

f : Z � Y ! R is transfer lower semicontinuous in y if f is �-transfer lower
semicontinuous in y for every � 2 R.

A game is payo¤secure if and only if each player�s payo¤ function is trans-

fer lower semicontinuous in the other players�strategies (see Prokopovych,

2011, Lemma 1).

The graph of G is de�ned by GrG = f(x; u) 2 X � Rn j ui(x) = ui for
all i 2 Ng, and the set of pure strategy Nash equilibria of G in X is denoted

by EG. For a subset B of a topological vector space X, we denote by clB

the closure of B and by coB the convex hull of B. In a metric space Y , we

denote by BY (y; r) the open ball centered at y and with radius r > 0.

De�nition 3 A game G = (Xi; ui)i2I is better-reply secure if whenever

(x�; u�) 2 clGrG and x� 2 XnEG, some player i can secure a payo¤ strictly
above u�i at x

�.

A useful fact is that a payo¤ secure game is better-reply secure i¤ it is

also transfer reciprocally upper semicontinuous (see Bagh and Jofre, 2006;

Prokopovych, 2011, Lemma 2).

De�nition 4 A game G = (Xi; ui)i2I is: (i) reciprocally upper semicontin-

uous if for any (x; �) 2 clGrGnGrG, there is a player i such that ui(x) > �i;
(ii) weakly reciprocally upper semicontinuous if whenever (x; �) 2 clGrGnGrG,
there are a player i and di 2 Xi such that ui(di; x�i) > �i; (iii) transfer recip-

rocally upper semicontinuous if whenever (x; �) 2 clGrGnGrG and x is not a
Nash equilibrium, there are a player i and di 2 Xi such that ui(di; x�i) > �i.

It is clear that every weakly reciprocally upper semicontinuous game is

transfer reciprocally upper semicontinuous.
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Reny�s (1999) equilibrium existence theorem states that every compact,

quasiconcave, better-reply secure game has a Nash equilibrium in pure strate-

gies.

Theorem 1 (Reny,1999) If G = (Xi; ui)i2I is compact, quasiconcave, and

better-reply secure, then it possesses a pure strategy Nash equilibrium.

Another approach to studying equilibrium existence in discontinuous games,

based on the concept of diagonal transfer continuity, due to Baye, Tian, and

Zhou (1993).

For G = (Xi; ui)i2I , de�ne the following aggregator functions:

AG : X �X ! R by AG(d; x) =
X
i2I
ui(di; x�i);

where, as usual, the �i subscript on x stands for "all players except i,"

A0G : X ! R by A0G(x) =
X
i2I
ui(x),

and

FG : X �X ! R by FG(d; x) = AG(d; x)� A0G(x).

A strategy pro�le x 2 X is a Nash equilibrium of G i¤ FG(d; x) � 0 for
all d 2 X.

De�nition 5 A game G = (Xi; ui)i2I is diagonally transfer continuous if

for every x 2 XnEG, there exist some d 2 X and some neighborhood NX(x)

of x in X such that FG(d; z) > 0 for all z 2 NX(x).

It is worth noticing that G is diagonally transfer continuous i¤ FG is

0-transfer lower semicontinuous in x.

Every payo¤ secure game with an upper semicontinuous A0G is diagonally

transfer continuous.
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Lemma 1 If, in a game G = (Xi; ui)i2I , each ui : X ! R is transfer lower
semicontinuous in x�i and the aggregator function A0G : X ! R is upper

semicontinuous, then G is diagonally transfer continuous.

For convenience, the proof of Lemma 1 is given in the Appendix.

Now we de�ne the mixed extension �(G) of a game G = (Xi; ui)i2I . De-

note by 4(Xi) the set of Borel probability measures on Xi and by ca(Xi)

the set of Borel signed measures with �nite total variation on Xi. A basic

open neighborhood of �i 2 ca(Xi) in the weak topology on ca(Xi) is a set of

the form
�
�i 2 ca(Xi) :

����Z fj(d�i � d�i)���� < "; j = 1; : : : ;m� for some con-
tinuous fj : Xi ! R, j = 1; : : : ;m, and " > 0. The set ca(Xi) is a Hausdor¤

topological vector space equipped with the weak topology. The topology in-

duced on4(Xi) by the weak topology is compact.6 Let each of the Cartesian

products ca(X) = ca(X1)�: : :�ca(Xn) and4(X) = 4(X1)�: : :�4(Xn) be

equipped with the product topology. The set ca(X) is a Hausdor¤ topologi-

cal vector space in which the operations of addition and scalar multiplication

are de�ned as follows: for � = (�1; : : : ; �n) 2 ca(X) and � 2 R the scalar
multiplication of � by � is the element �� given by �� = (��1; : : : ; ��n).

The addition of � = (�1; : : : ; �n) 2 ca(X) and v = (�1; : : : ; �n) 2 ca(X) gives
�+ v = (�1 + �1; : : : ; �n + �n).

The mixed extension of the game G is the n-player normal form game

�(G) = (4(Xi); Ui)i2I , where 4(Xi) is player i�s strategy set and player i�s

payo¤ function Ui : 4(X)! R is de�ned by

Ui(�) =

Z
X1

Z
X2

: : :

Z
Xn

ui(x1; : : : ; xn)d�1 : : : d�n:

For the game �(G), we also de�ne the aggregator functions A�(G) :

6In order to make 4(Xi) a subset of a linear space, we embed it in the space ca(Xi)
of signed measures with �nite total variation on Xi. Sometimes it is possible to proceed
without the embedding. See, for example, the proof of the compactness of the set of
probability measures given by Glycopantis and Muir (2004).
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4(X) � 4(X) ! R, A0
�(G)

: 4(X) ! R, and F�(G) : 4(X) � 4(X) ! R
(see the corresponding de�nitions for G).

Theorem 2 If the mixed extension �(G) of a game G = (Xi; ui)i2I is diag-

onally transfer continuous, then G possesses a mixed strategy Nash equilib-

rium.

Proof. The set 4(X) is a compact, convex subset of ca(X). Consider the
aggregator function F�(G)(�; �) : 4(X)�4(X)! R. Since F�(G) is linear in
� and 0-transfer lower semicontinuous in �, the mixed extension �(G) of G

has a Nash equilibrium in pure strategies by the Ky Fan minimax inequality

(see Lemma 4 in the Appendix).

Another proof of Theorem 2 can be obtained by using the fact that every

diagonally transfer continuous mixed extension has the single deviation prop-

erty (see, for some details, Reny, 2009, 2011; and Prokopovych, 2013).

Since the upper semicontinuity of A0G implies the upper semicontinuity

of A0�(G), verifying whether a game has a mixed strategy Nash equilibrium

usually means verifying the following two properties: (a) the upper semicon-

tinuity of the sum of the payo¤ functions; and (b) the payo¤ security of its

mixed extension. If these properties hold, the mixed extension of the game is

not only better-reply secure but, by Lemma 1, diagonally transfer continuous.

For example, this is the case for the all-pay auction games with homogeneous

valuations (see Baye, Kovenock, and Vries, 1996; Monteiro and Page, 2007).

It is also clear that every game whose payo¤ functions are continuous has

a diagonally transfer continuous mixed extension since the mixed extension

itself is a continuous game (see, e.g., Aliprantis, Glycopantis, and Puzzello,

2006).

The diagonal transfer continuity of a game does not imply that its mixed

extension is diagonally transfer continuous. For example, Sion and Wolfe�s

(1957) zero-sum game is payo¤secure (see Carmona, 2005) and its aggregator

function A0G is constant. Thus, the game is diagonally transfer continuous by
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Lemma 1. However, since the game has no mixed strategy Nash equilibria,

its mixed extension is not diagonally transfer continuous.

3 Uniform Diagonal Security

An easily veri�able condition for the mixed extension of a game to be payo¤

secure is that of uniform payo¤ security, due to Monteiro and Page (2007).

De�nition 6 A game G = (Xi; ui)i2I is uniformly payo¤ secure if for each

i 2 I, every xi 2 Xi and every " > 0, there is di(xi; ") 2 Xi such that for

every x�i 2 X�i, ui(di(xi; "); w�i) � ui(xi; x�i)� " for all w�i in some open
neighborhood NX�i(x�i) of x�i in X�i.

Wewill omit the arguments xi and " of di if there is no ambiguity. Another

useful de�nition is the following: In G = (Xi; ui)i2I , player i�s payo¤ function

ui : Xi �X�i ! R is said to be uniformly transfer lower semicontinuous in
x�i at xi 2 Xi if for every " > 0, there is di 2 Xi such that, for every

x�i 2 X�i, there exists a neighborhood NX�i(x�i) of x�i in X�i such that

ui(di; w�i) > ui(xi; x�i)� " for all w�i 2 NX�i(x�i).

The mixed extension of a uniformly payo¤ secure, upper semicontinuous-

sum game is both better-reply secure and diagonally transfer continuous.

Corollary 1 If G = (Xi; ui)i2I is uniformly payo¤ secure and its aggrega-

tor function A0G is upper semicontinuous, then the mixed extension �(G) is

diagonally transfer continuous, and, therefore, G possesses a mixed strategy

Nash equilibrium.

The notion of a uniformly payo¤ secure game can be extended to diago-

nally transfer continuous games.

De�nition 7 A game G = (Xi; ui)i2I is uniformly diagonally secure if for

every d 2 X and every " > 0, there is d 2 X such that for every x 2 X,
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FG(d; w) > FG(d; x)� " for all w in some open neighborhood NX(x) of x in

X.

An upper semicontinuous-sum game G is uniformly diagonally secure if

it is uniformly payo¤ secure.

Lemma 2 If a game G = (Xi; ui)i2I is uniformly payo¤ secure and the ag-

gregator function A0G : X ! R is upper semicontinuous, then G is uniformly
diagonally secure.

Proof. Fix d 2 X and " > 0. By the uniform payo¤ security of G, for each

i 2 I, there is a deviation strategy di 2 Xi such that, for every x�i 2 X�i,

ui(di; w�i) � ui(di; x�i)� "
2n
for all w�i in some open neighborhoodNX�i(x�i)

of x�i in X�i. Denote N 1
X(x) = \i2IfXi � NX�i(x�i)g for x 2 X. Then

AG(d; w) � AG(d; x)� "
2
for all w 2 N 1

X(x). Since the function �A0G is lower
semicontinuous on X, for every x 2 X there exists a neighborhood N 2

X(x)

such that �A0G(w) > �A0G(x)� "
2
for all w 2 N 2

X(x). Then for every x 2 X,
FG(d; w) > FG(d; x)� " for all w 2 N 1

X(x) \N 2
X(x).

Theorem 3 If a game G = (Xi; ui)i2I is uniformly diagonally secure, then

its mixed extension �(G) is diagonally transfer continuous, and, therefore, G

possesses a mixed strategy Nash equilibrium.

The proof of Theorem 3 follows the lines of the proof of Theorem 1 of

Monteiro and Page (2007) and is given in the Appendix.

The concept of uniform diagonal security might be of help in studying

equilibirum existence in games whose aggregator function A0G is not upper

semicontinuous.

Example 1 Consider a slight modi�cation of the rent-seeking game due
to Tullock (1980). Two players simultaneously bid for a political favor com-

monly known worth V dollars. Their bids, denoted by x1 and x2, in�uence

the probability of receiving the favor. Player i�s strategy set is the segment
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[0; V ]. Let �i(x1; x2) denote the probability that player i wins. The function

�i, called player i�s contest success function, is speci�ed as follows:

�i(xi; x�i) =

8>><>>:
1
4
if x1 = x2 = 0,

1
2
if xi > x�i = 0,
xri

xri+x
r
�i
otherwise,

where r > 0. Player i�s payo¤ function ui is

ui(xi; x�i) = �i(xi; x�i)V � xi:

The only di¤erence of the model from the Tullock rent-seeking game is the

assumption that if the lowest bid submitted is equal to zero (or, in other

words, at least one player exerts no e¤ort at all), the favor may be granted

to a third party with probability one-half. Consequently, the aggregator

function A0G is not upper semicontinuous.

Let, for speci�city, V = 2 and r = 3. In this case, the game has no pure

strategy Nash equilibria (see, for a related discussion, Baye, Kovenock, and

de Vries, 1994). For example, one can check that the only candidate point for

being an interior solution is (1:5; 1:5), a strategy pro�le where both players

get negative expected payo¤s. However, each of them can avoid getting a

negative payo¤ by bidding zero.

To verify that the game is not better-reply secure, consider the sequence

fxkg with xk = ( 1
k
; 1
k
) for k = 1; 2; : : : :Then the corresponding sequence of

payo¤ vectors f(u1(xk); u2(xk))g converges to (1; 1). It is clear that no player
can secure a payo¤ strictly above 1 at (0; 0).

On the other hand, the game possesses mixed strategy equilibria since it

is uniformly diagonally secure. To verify this, for d 2 X and " 2 (0; 1), de�ne
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d = (d1; d2) as follows:

di =

(
di if di > 0;
"
4
if di = 0;

for i = 1; 2:

It is a little tedious but not di¢ cult to show that, for every x 2 X, FG(d; w) >
FG(d; x)� " for all w in some open neighborhood NX(x).7

4 Weak Uniform Payo¤ Security

The Sion-Wolfe (1957) game is a better-reply secure game that has no Nash

equilibria. Its mixed extension is upper semicontinuous-sum, but is not payo¤

secure (see Carmona, 2005, Example 3). From now on, we study equilibrium

existence in games whose mixed extension is payo¤ secure. Example 2 shows

that there are better-reply secure games with a payo¤ secure mixed extension

which have no Nash equilibria.

The following de�nition extends Simon�s (1987, p. 577) concept of weak

domination on average to our setting.

De�nition 8 In G = (Xi; ui)i2I , player i�s payo¤ function ui is weakly

uniformly transfer lower semicontinuous in the other players� strategies at

xi 2 Xi if for every ��i 2 4(X�i) and every " > 0, there are a strategy

�i(xi; ��i; ") 2 4(Xi) and a Borel set Q�i � X�i with ��i(Q�i) > 1 � "
such that for every x�i 2 Q�i, Ui(�i(xi; ��i; "); w�i) > ui(xi; x�i)� " for all
w�i in some open neighborhood NX�i(x�i) of x�i in X�i. The game G is

weakly uniformly payo¤ secure if each ui is weakly uniformly transfer lower

semicontinuous in the other players�strategies at every xi 2 Xi.

7If needed, a detailed explanation of this example can be found in the
appendix of our working paper titled "On Uniform Conditions for the Exis-
tence of Mixed Strategy Equilibria" at SSRN: http://ssrn.com/abstract=2023500 or
http://dx.doi.org/10.2139/ssrn.2023500.
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There is some notational abuse in denoting
R
Xi
ui(xi; w�i)d�i(xi; ��i; ")

by Ui(�i(xi; ��i; "); w�i), but no ambiguity ensues. The proof of the next

statement follows the lines of the proof of Proposition 3 of Simon (1987) and

is relegated to the Appendix.

Lemma 3 If a game G = (Xi; ui)i2I is weakly uniformly payo¤ secure, then

its mixed extension �(G) is payo¤ secure.

The game studied in Example 2 is not only better-reply secure but also

has a payo¤ secure mixed extension. However it does not possess mixed

strategy Nash equilibria.

Example 2 Let I = f1; 2g, X = [0; 1] � [0; 1], and the payo¤ functions
are de�ned by

u1(x1; x2) =

8><>:
0 if x2 = x1 + 1

2
, x2 = x1, or (x1; x2) = (0; 1),

x2 � x1 � 1 if 0 � x1 < x2 < x1 + 1
2
,

1 otherwise,

u2(x2; x1) =

8><>:
0 if x2 = x1 + 1

2
, x2 = x1:, or (x1; x2) 2 [0; 12)� f1g,

1 if 0 � x1 < x2 < x1 + 1
2
,

�1 otherwise.

Let us show that the game has no mixed strategy Nash equilibria. It is

clear that there is no Nash equilibrium (b�1; b�2) with b�2(f1g) = 1.
Assume, by way of contradiction, that (b�1; b�2) is a mixed strategy Nash

equilibrium of the game.

If b�2(f1g) = 0, then the set D = f(x1; x2) 2 X : minf0; x2 � 1
2
g � x1 �

x2g must be a null set with respect to the product measure b� = b�1 � b�2,
otherwise, by choosing strategy 1 with probability 1, player 1 can increase

her payo¤. Then, in the equilibrium, the payo¤ to player 2 is equal to �1.
However, player 2 can guarantee herself at least 0 by choosing strategy 1

with probability 1, a contradiction. Therefore, b�2(f1g) > 0. Then it must

also be the case that b�1((12 ; 1)) = 0.
13



The set D1 = f(x1; x2) 2 X : 0 � x2 � x1; 0 � x1 <
1
2
g must be

a null set with respect to the product measure b�, otherwise player 2 can
increase her payo¤ by shifting some weight from [0; 1

2
) closer to 1

2
. The set

D2 = f(x1; x2) 2 X : x1 < x2 � x1 +
1
2
; 0 < x1 <

1
2
g is also a null set,

otherwise player 1 could bene�t from shifting some weight from (0; 1
2
) closer

to 0 (recall that, on D2, u1(�; x2) is a strictly decreasing function for any
x2 2 (0; 1)). Furthermore, the set D3 = f(x1; x2) 2 X : x1 +

1
2
< x2 < 1;

x1 6= 0g is a null set, otherwise player 2 can increase her payo¤ by shifting
some weight from (1

2
; 1) closer to 1

2
.

If b�1((0; 12)) > 0, then the fact that D1[D2[D3 is a null set implies thatb�2([0; 1)) = 0, which is impossible since there is no Nash equilibrium withb�2(f1g) = 1. Thus, b�1(f0g [ f12g [ f1g) = 1.
If b�2([0; 12 ]) > 0, then b�1(f0g) = 0, otherwise player 1 can increase her

payo¤ by shifting the mass b�1(f0g) to strategy 1 (recall that u1(0; 1) = 0).
Further, player 2 can increase her payo¤ by shifting the mass b�2([0; 12 ]) to
strategy 1 if b�1(f1g) > 0, and, for example, to 2

3
if b�1(f1g) = 0, a contradic-

tion.

If b�2((12 ; 1)) > 0, then b�1(f12g) = 0 (since b�2((12 ; 1]) = 1), and again

player 2 can get a nonnegative payo¤ by playing 1 with probability 1. Thus,b�2(f1g) = 1, a contradiction.
We will now show, for completeness, that u1 is weakly uniformly transfer

lower semicontinuous in player 2�s strategies at every x1 2 X1. Denote by �
D
x1

the Dirac measure concentrated at x1. One can see that the payo¤ function

u1 is uniformly transfer lower semicontinuous in player 2�s strategies at any

x1 2 f0g [ [12 ; 1], with �1(x1; �2; ") = �D1 for every �2 2 4(X2), and every

" > 0. Fix some x1 2 (0; 12), �2 2 4(X2), and " > 0. It is not di¢ cult to see

that there is "0 2 (0; ") such that both x1 � "0 and x1 + "0 lie in the interval
(0; 1

2
), �2(Q2) > 1� " where Q2 = X2n([x1� "0; x1)[ (x1; x1 + "0][ [x1 + 1

2
�

"0; x1+
1
2
)[ (x1+ 1

2
; x1+

1
2
+"0]), and U1(12�

D
x1�"0+

1
2
�Dx1+"0 ; w2) > u1(x1; x2)�"

for every x2 2 Q2 and all w2 in some open neighborhood NX2(x2) of x2 in

14



X2. A similar reasoning can be used to show that u2 is weakly uniformly

transfer lower semicontinuous in player 1�s strategies at every x2 2 X2.

5 Equilibria of Reciprocally Upper Semicon-

tinuous Games with Payo¤ Secure Mixed

Extensions

Verifying whether a game is transfer reciprocally upper semicontinuous is

often considerably easier than doing that for its mixed extension. In this sec-

tion, we study several classes of better-reply secure games with payo¤ secure

mixed extensions that also have transfer reciprocally upper semicontinuous

mixed extensions.

Some reciprocally upper semicontinuous games can be transformed into

upper semicontinuous-sum games with the aid of positive a¢ ne transforma-

tions. If this is the case, the game has a reciprocally upper semicontinuous

mixed extension. Example 3 demonstrates that a conventional probabilistic

spatial voting model possesses this property.

Then we study equilibrium existence in reciprocally upper semicontinuous

games of two players on the unit square that have a payo¤ secure mixed

extension . Additional conditions are made on the set of discontinuities of

the payo¤ functions. In particular, it is assumed that the discontinuities lie

on one or two strictly monotone, continuous curves.

We now introduce some notation. Recall that a function � : R! R is a
positive a¢ ne transformation if it can be written in the form: �(x) = ax+ b

where a > 0 and b is any real number. Given a game G = (Xi; ui)i2I and

an n-tuple of positive a¢ ne transformations (�1; : : : ; �n), we denote by �(G)

the game (Xi; �i(ui))i2I . The following three facts are straightforward.

(i) Let G = (Xi; ui)i2I , and let (�1; : : : ; �n) be an n-tuple of positive a¢ ne

transformations. Then E�(G) = E�(�(G)).
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(ii) Let (�1; : : : ; �n) be an n-tuple of positive a¢ ne transformations. Then

G = (Xi; ui)i2N is weakly uniformly payo¤ secure i¤ the game �(G) is weakly

uniformly payo¤ secure.

(iii) Let (�1; : : : ; �n) be an n-tuple of positive a¢ ne transformations.

Then G = (Xi; ui)i2N is reciprocally upper semicontinuous i¤ the game �(G)

is reciprocally upper semicontinuous.

Theorem 4 If G = (Xi; ui)i2I is weakly uniformly payo¤ secure, and there is

an n-tuple of positive a¢ ne transformations (�1; : : : ; �n) such that the game

�(G) is upper semicontinuous-sum, then G possesses a mixed strategy Nash

equilibrium.

Proof. Since G is weakly uniformly payo¤ secure, the game �(G) is also

weakly uniformly payo¤ secure by fact (ii). Thus, �(�(G)) is payo¤ secure

by Lemma 3.

The fact that �(G) is upper semicontinuous-sum implies that �(�(G))

is upper semicontinuous-sum. Since �(�(G)) is the same game as �(�(G)),

the mixed extension �(G) is reciprocally upper semicontinuous by fact (iii).

By Theorem 1, �(G) possesses a pure strategy Nash equilibrium.

Example 3 Consider the following spatial voting model (see Ball, 1999,
Example 1). Two candidates are competing in an election for public of-

�ce. The electorate is distributed uniformly along the ideological spectrum

[0; 1]. During the electoral campaign, each candidate i announces, simulta-

neously with the other candidate, a platform, denoted by xi. The probability

Pi(xi; x�i) that candidate i wins the election is de�ned as follows:

Pi(xi; x�i) =

8><>:
xi+x�i

2
for 0 � xi < x�i � 1;

1
2
for 0 � xi = x�i � 1;

1� xi+x�i
2

for 0 � x�i < xi � 1:
Candidates 1 and 2�s policy preferences on [0; 1] are represented by h1(z) =

�1
2
(z � 1)2 and h2(z) = �1

2
z2. The candidates are assumed to be o¢ ce-

motivated. Let the candidates�o¢ ce motivation parameters be k1 = :05 and

16



k2 = 3, respectively. Candidate i�s payo¤ function is

ui(xi; x�i) = Pi(xi; x�i)(hi(xi) + ki) + (1� Pi(xi; x�i))hi(x�i):

The game is not upper semicontinuous-sum and has no pure strategy

Nash equilibria.

Now we consider the game �(G) = (Xi; �i(ui))i2f1;2g where �1 and �2 are

de�ned by �1(t) =
k2
k1
t and �2(t) = t for t 2 R, respectively. It is not di¢ cult

to see that A0�(G) is a continuous function on X. Since G is uniformly payo¤

secure, G possesses a mixed strategy Nash equilibrium by Theorem 4.

It is useful to notice that the voting game is an example of a game with a

better-reply secure mixed extension that is not upper semicontinuous-sum.

In the next two theorems, we study the existence of mixed strategy Nash

equilibria in some basic better-reply secure games of two players. To start

with, we consider the case when all discontinuities of the payo¤ functions

lie on a strictly monotonic, continuous curve. Denote S1 = f(x1; x2) 2
[0; 1] � [0; 1] : x2 > x1g, S2 = f(x1; x2) 2 [0; 1] � [0; 1] : x1 > x2g, and
S = f(x1; x2) : [0; 1]� [0; 1] : x1 = x2g.

Theorem 5 Let G = (Xi; ui)i2f1;2g be a two-player game on the unit square

X1 �X2 = [0; 1]� [0; 1]. Suppose that
(i) G is uniformly payo¤ secure and reciprocally upper semicontinuous;

(ii) there are continuous functions f ji : clS
j ! R, i = 1; 2, j = 1; 2, such

that ui(x) = f
j
i (x) for all x 2 Sj and all i; j 2 f1; 2g;

(iii) u1(0; 0) � f 21 (0; 0) and u1(1; 1) � f 11 (1; 1);
(iv) the restriction of each ui to S, uijS, is a continuous function from S to

R.
Then G has a better-reply secure mixed extension, and, therefore, it has a

mixed strategy Nash equilibrium.

Condition (ii) is stronger than the assumption that all points of dis-

continuity of the payo¤ functions lie on S. In particular, (ii) implies that
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limk!1 ui(x
k) = f ji (x) for every sequence of points fxkg, xk 2 Sj, that con-

verges to x 2 S; that is, the limit value does not depend on the choice of
a sequence in Sj. Condition (iii) may be replaced, if needed, with a num-

ber of other conditions, such as: (iii�) for every " > 0 and each z 2 f0; 1g,
there exists a deviation strategy d1(z; ") satisfying the uniform payo¤ se-

curity condition for player 1�s strategy z that is di¤erent from z; or (iii�)

u2(0; 0) � f 12 (0; 0) and u2(1; 1) � f 22 (1; 1).
Theorem 5 can be extended to a class of games where the discontinu-

ities of the payo¤ functions might lie on two strictly monotone, disjoint

curves. In particular, Theorem 6 covers the games where one of the curves

is strictly increasing and the other is strictly decreasing.8 We will show

it for a representative game from this class. For every h : R1 ! R1, de-
note X1

h = f(x1; x2) : h(x1) < x2g, X2
h = f(x1; x2) : h(x1) > x2g, and

Xh = f(x1; x2) : h(x1) = x2g.

Theorem 6 Let G = (Xi; ui)i2f1;2g be a two-player game on the unit square

X1�X2 = [0; 1]� [0; 1], and let h1 : R1 ! R1 be de�ned by h1(x1) = 1
4
x1+

3
4

and h2 : R1 ! R1 by h2(x1) = �1
4
x1 +

1
4
. Suppose that

(i) G is uniformly payo¤ secure and reciprocally upper semicontinuous;

(ii) for each i 2 f1; 2g, there are continuous functions f 1i : clX1
h1
! R, f 2i :

clX2
h1
\clX1

h2
! R, and f 3i : clX2

h2
! R such that ui(x) = f 1i (x) for every x 2

X1
h1
, ui(x) = f 2i (x) for every x 2 X2

h1
\ X1

h2
, and ui(x) = f 3i (x) for every

x 2 X2
h2
;

(iii) u1(1; 1) � f 11 (1; 1) and u1(1; 0) � f 31 (1; 0);
(iv) for each i 2 f1; 2g and each l 2 f1; 2g, the restriction of ui to Xhl,

ui jXhl , is a continuous function from Xhl to R.
Then G has a better-reply secure mixed extension, and, therefore, it has a

mixed strategy Nash equilibrium.

Condition (iii) of Theorem 6 may be replaced with a number of other

8Equilibrium existence conditions similar to those presented in Theorem 6 can also be
provided for Sion-Wolfe-type games.
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geometric conditions, if need appears.

Example 4 Consider the following deterministic spatial voting model.
Two candidates are competing in an election for public o¢ ce. The electorate

is distributed uniformly along the ideological spectrum [0; 1]. The candidate

with the most votes wins. Each voter casts his vote for the candidate that

is closest to her ideological position. During the electoral campaign, each

candidate i announces, simultaneously with the other candidate, a platform

xi 2 [0; 1] to which he commits if elected. The probability that candidate i
wins the election is

Pi(xi; x�i) =

8><>:
1, if (xi + x�i � 1)(x�i � xi) > 0,
1
2
if xi + x�i = 1 or xi = x�i,

0, if (xi + x�i � 1)(x�i � xi) < 0.

The inequality (xi+x�i�1)(x�i�xi) > 0 represents the fact that candidate
i gets most of the votes. For example, if x�i > xi and

xi+x�i
2

> 1
2
, then

(xi + x�i � 1)(x�i � xi) > 0. The candidates� loss functions on [0; 1] are

represented by h1(z) = �1
2
(z � 1)2 and h2(z) = �1

2
z2, and the candidates

are assumed to be o¢ ce-motivated. Let the o¢ ce motivation parameters be

k1 = :05 and k2 = 3, respectively. Candidate i�s payo¤ function is

ui(xi; x�i) = hi(xi) + Pi(xi; x�i)ki:

Thus, each candidate cares only about winning, and taking an ideological

position di¤erent from her ideal point is costly. It is not di¢ cult to see that

the game has no pure strategy Nash equilibria. Both Theorem 4 and Theo-

rem 6 can be used to prove the existence of mixed strategy Nash equilibria

in this game, notwithstanding the fact that the discontinuities of the payo¤

functions lie on both of the diagonals of the unit square.

We now show how to apply Theorem 6 to this game. First notice that

every pure strategy z 2 [0; 3
5
) of player 1 is strictly dominated by strategy 1.
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As a result, to show that the game under study has mixed strategy equilibria,

it is enough to investigate whether its restriction Gr to [3
5
; 1]�[0; 1] has mixed

strategy equilibria, where the game Gr = (Xr
i ; u

r
i )i2f1;2g is de�ned as follows:

Xr
1 = [

3
5
; 1], Xr

2 = X2 = [0; 1], uri (x) = ui(x) for every x 2 Xr
1 �Xr

2 and each

i.

One can see that Gr is uniformly payo¤ secure. For example, given " > 0,

if x1 = 3
5
, then for every x2 2 [0; 1] there exists an open neighborhoodNX2(x2)

such that u1(1; w2) > u1(35 ; x2)� " for all w2 2 NX2(x2). If x1 2 (35 ; 1], then
there is � 2 (0; x1 � 3

5
) such that for every x2 2 [0; 1], u1(x1 � �; w2) >

u1(x1; x2) � " for all w2 in some neighborhood NX2(x2) of x2. Clearly, the

game is reciprocally upper semicontinuous. The existence of a mixed strategy

Nash equilibrium in Gr follows from Theorem 6.

6 Conclusions

We use aggregator functions in conjunction with the Ky Fan minimax in-

equality to study the existence of a mixed strategy Nash equilibrium in di-

agonally transfer continuous games. Similar to the approach based on the

concept of better-reply security, the aggregation-based approach is applica-

ble to the upper semicontinuous-sum games whose mixed extension is payo¤

secure. However, if the sum of a game�s payo¤ functions of a game is not

upper semicontinuous, showing that its mixed extension is either better-reply

secure or diagonally transfer continuous often constitutes an intractable prob-

lem. To alleviate it, the concept of uniform payo¤ security is extended to

diagonally transfer continuous games by introducing uniform diagonal secu-

rity. We show that every uniformly diagonally secure game possesses a mixed

strategy Nash equilibrium, and, with the aid of an example, that uniformly

diagonally secure games need not be better-reply secure.

After introducing a generalization of uniform payo¤ security, called weak

uniform payo¤ security, we provide an example of a better-reply secure game
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with a payo¤ secure mixed extension that has no mixed strategy Nash equi-

libria. Then we study the existence of a mixed strategy Nash equilibrium

in games that are reciprocally upper semicontinuous and uniformly payo¤

secure. We propose two sets of easily veri�able, geometric conditions for a

better-reply secure game of two players to possess a better-reply secure mixed

extension.

Appendix

Proof of Lemma 1

We shall �rst show that AG(d; x) is transfer lower semicontinuous in x. Let

(d; x) 2 X � X and � 2 R be such that AG(d; x) > �. Then there are

�1; : : : ; �n 2 R such that � = �1 + : : :+ �n and ui(di; x�i) > �i for all i 2 I.
Since each ui is transfer lower semicontinuous in x�i, there exist di 2 Xi and

an open neighborhood NX�i(x�i) of x�i in X�i such that ui(di; z�i) > �i for

all z�i 2 NX�i(x�i). Consequently, AG(d; z) > � for every z 2 \i2IfXi �
NX�i(x�i)g.
Since A0G is upper semicontinuous on X, the transfer lower semicontinuity

of AG in x implies the transfer lower semicontinuity of FG in x. In particular,

FG is 0-transfer lower semicontinuous in x.

The Ky Fan Minimax Inequality

In Theorem 2, the Ky Fan minimax inequality is used in the following, slightly

generalized form. (see, e.g., Tian, 1992; Ding and Park, 2002; Lan and Wu,

2002, for more general results).

Lemma 4 Let X be a compact convex set in a Hausdor¤ topological vector

space, and let f : X �X � R satisfy:
(i) f(x; x) � 0 for each x 2 X;
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(i) f(�; y) is quasiconcave for each y 2 X,
(ii) f is 0-transfer lower semicontinuous in y.

Then there exists y 2 X such that f(x; y) � 0 for all x 2 X.

Lemma 4 can be shown in a number of ways. Its conventional proofs are

based either on the KKM lemma or on Browder�s �xed point theorem, which

are two equivalent results (see, for an in-depth discussion, Yannelis, 1991).

Let us give an outline of the proof using Browder�s �xed point theorem. It

proceeds by assuming, to the contrary, that, for each y 2 X, there exists
x 2 X such that f(x; y) > 0. Then the correspondence M : X � X

de�ned by M(y) = fx 2 X : f(x; y) > 0g has nonempty values. The

quasiconcavity of f in x implies that M has convex values. Since f is 0-

transfer lower semicontinuous in y, M has a multivalued selection with open

lower sections (see, e.g., Prokopovych, 2011), denoted by M0 : X � X.

Then, by Lemma 5.1 of Yannelis and Prabhakar (1983), the convex-valued

correspondence M0 : X � X de�ned by M0(x) = coM0(x) also has open

lower sections. Therefore, by Browder�s �xed point theorem, the selection

has a �xed point, which contradicts (i).

Proof of Theorem 3

Suppose � = (�1; : : : ; �n) 2 4(X)nE�(G). Then there exists � 2 4(X) such
that F�(G)(�; �) > 0. Since � is a vector of probability measures, there exists

d = (d1; : : : ; dn) 2 X such that F�(G)(�
D
d ; �) > 0, where �

D
d = (�

D
d1
; : : : ; �Ddn) is

the vector of Dirac measures concentrated at d1; : : : ; dn, respectively. With

some abuse of notation, we will write F�(G)(d; �) in place of F�(G)(�
D
d ; �).

Put "� = F�(G)(d; �) and denote liminfw!xFG(d; w) by FG(d; x). Since G is

uniformly diagonally secure, there is d 2 X such that FG(d; x) > FG(d; x)� "�

2

for all x 2 X. Therefore F �(G)(d; �) > F�(G)(d; �)� "�

2
, where F �(G)(d; �) =R

X
FG(d; x)d�.

The lower semicontinuity of FG in x implies that F �(G)(d; �) : 4(X)! R
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is lower semicontinuous (see, e.g., Aliprantis and Border, 2006, Theorem

15.5). Consequently, F �(G)(d; �0) > F�(G)(d; �) � "�

2
> 0 for all �0 in some

open neighborhood N4(X)(�) of �. Since FG(d; x) �FG(d; x) for all x 2 X,
we conclude that F�(G)(d; �0) � F �(G)(d; �0) > 0 for all �0 2 N4(X)(�), which

means that �(G) is diagonally transfer continuous.

Proof of Lemma 3

Fix some � = (�1; : : : ; �n) 2 4(X), " > 0, and i 2 I. We have to show
that, for each i 2 I, there are a strategy �i 2 4(Xi) and a neighborhood

N4(X�i)(��i) such that Ui(�i; �
0
�i) � ui(�)� " for all �0�i 2 N4(X�i)(��i).

Fix some i 2 I. There is xi 2 Xi such that Ui(xi; ��i) > ui(�) � "
4
.

Since G is a bounded game, there exists B > 1 such that jui(x)j < B for

every x 2 X. Pick �i(xi; ��i;
"
4B
) 2 4(Xi) and a Borel set Q�i � X�i

with ��i(Q�i) > 1 � "
4B
such that lim infw�i!x�i Ui(�i(xi; ��i;

"
4B
); w�i) �

ui(xi; x�i) � "
4B
for every x�i 2 Q�i. For the brevity of notation, denote

lim infw�i!x�i Ui(�i(xi; ��i;
"
4B
); w�i) by U i(�i(xi; ��i;

"
4B
); x�i). ThenZ

U i(�i(xi; ��i;
"

4B
); x�i)d��i �

Z
Q�i

U i(�i(xi; ��i;
"

4B
); x�i)d��i �

"

4

�
Z
Q�i

ui(xi; x�i)d��i �
"

2
� Ui(xi; ��i)�

3"

4
> Ui(�)� "

The lower semicontinuity of U i(�i(xi; ��i;
"
4B
); �) implies that U i(�i(xi; ��i; "

4B
); �) :

4(X�i)! R de�ned by U i(�i(xi; ��i; "
4B
); ��i) =

R
U i(�i(xi; ��i;

"
4B
); x�i)d��i

is lower semicontinuous in the second argument (see, e.g., Aliprantis and Bor-

der, 2006, Theorem 15.5). Consequently, U i(�i(xi; ��i;
"
4B
); �0�i) > Ui(�)� "

for all �0�i in some open neighborhood N4(X�i)(��i) of ��i. On the other

hand, since Ui(�i(xi; ��i;
"
4B
); �0�i) �

R
U i(�i(xi; ��i;

"
4B
); x�i)d�

0
�i for every

�0�i 2 4(X�i), we have that Ui(�i(xi; ��i;
"
4B
); �0�i) > Ui(�) � " for every

�0�i 2 N4(X�i)(��i), which completes the proof.
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An Auxiliary Lemma

Lemma 5 Let X = [0; 1] � [0; 1], and �i 2 4([0; 1]), i = 1; 2, and let D be

a Borel subset of [0; 1]. Then the set D = f(z; z) 2 [0; 1]� [0; 1] : z 2 Dg is
a null set with respect to the product measure � = �1 � �2 i¤ �(x) = 0 for
every x 2 D.

Proof. Assume that �(x) = 0 for every x 2 D. We have to show that

�(D) = 0.

First consider the case where, for some i 2 f1; 2g, �i(x) = 0 for all x 2 D.
Fix some arbitrary " > 0. Since �i has no mass points on D, there exists a

�nite disjoint collection fDkgmk=1 of subsets of D such that D = [mk=1Dk and

�i(Dk) � " for all k. Then �(D) �
P

k �(Dk �Dk) =
P

k �i(Dk)��i(Dk) �
"��i(D) � ", which implies that �(D) = 0.
Let both �1 and �2 have mass points on D. Each �i, as a �nite measure,

can have at most a countable number of mass points. Denote by Ci the set

of mass points of �i on D. Since �(x) = 0 for every x 2 D, C1 \ C2 = ?.
Fix some arbitrary " > 0. Since C1 \ C2 = ?, it is possible to associate

with every x 2 C1 a Borel setD(x) � [0; 1] containing x such that �1(D(x)) �
2�1(x) and �2(D(x)) � "

2
. Let D1 = DnC1. The set D1 is Borel, and �1

is nonatomic on it. Denote by C1(D1) the set f(z; z) 2 [0; 1] � [0; 1] : z 2
C1(z 2 D1)g. It is clear that C1 is at most countable and �(D1) = 0. Then,

since D = C1[D1 and C1\D1 = ?, we have that �(D) = �(C1)+�(D1) =

�(C1) �
P

x2C1 �1(D(x))�2(D(x)) �
P

x2C1 2�1(x)
"
2
� ":

Some Comments on Theorem 5b of Dasgupta andMaskin

(1986)

It is di¢ cult to overestimate the in�uence of Theorem 5b of Dasgupta and

Maskin (1986) on the subsequent development of equilibrium existence the-

ory. As was pointed out by Bagh (2010), the proof of Theorem 5b requires

stronger assumptions than those made initially by Dasgupta and Maskin
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(1986). In what follows we show that the modi�cations needed are almost

impalpable.

Consider a two-player game G = (Xi; ui)i2f1;2g on the unit square, X =

X1 � X2 = [0; 1] � [0; 1], where the payo¤ functions�discontinuities lie on
the main diagonal of X. Let S1 = f(x1; x2) 2 [0; 1]� [0; 1] : x2 > x1g, S2 =
f(x1; x2) 2 [0; 1]�[0; 1] : x1 > x2g, and S = f(x1; x2) : [0; 1]�[0; 1] : x1 = x2g.
Denote the set of points at which the sum of the payo¤ functions is not upper

semicontinuous by SD; that is, SD = fx 2 X : limsupy!xA
0
G(y) > A

0
G(x)g.

Theorem 7 Consider a two-player game G = (Xi; ui)i2f1;2g on the unit

square X = [0; 1]� [0; 1]. Assume that
(i) there are continuous functions f ji : clS

j ! R, i = 1; 2; j = 1; 2 such that
ui(x) = f

j
i (x) for all x 2 Sj and all i; j 2 f1; 2g;

(ii) for each i 2 f1; 2g and every x 2 S, there exists j 2 f1; 2g such that

f ji (x) � ui(x) � f
�j
i (x);

(iii) for every point x = (z; z) 2 SD, there exist i; j 2 f1; 2g such that
limk!1 f

j
i (x

k
i ; z) > ui(x) for some sequence f(xki ; z)g � Sj converging to x;

(iv) if f ji (x) > ui(x) for some x 2 SD and i; j 2 f1; 2g, then f
j
�i(x) < u�i(x);

(v) A0G(x) � maxj2f1;2gff
j
1 (x) + f

j
2 (x)g for every x 2 S:

Then G has a mixed strategy Nash equilibrium.

One can check that (i) and (ii) imply that both the initial game and

the auxiliary game constructed in the proof are uniformly payo¤ secure.

Condition (iii) is slightly stronger than the assumption that for every point

x = (z; z) 2 SD, there exist i; j 2 f1; 2g such that f ji (x) > ui(x). The

di¤erence between them pertains to the points (0; 0) and (1; 1) only. The

strengthening is needed to make it impossible for an equilibrium product

measure of the modi�ed game to have mass points at (0; 0) or (1; 1).

Proof. De�ne A0G : X ! R by A0G(x) = u1(x) + u2(x) for every x 2 X. It is
not di¢ cult to see that SD = fx 2 S : maxj2f1;2g(f j1 (x) + f

j
2 (x)) > A

0
G(x)g
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is a Borel set in X.

The proof follows the general lines of Theorem 5b of Dasgupta and

Maskin (1986). First we will modify payo¤s on SD so as to make the sum

of the payo¤ functions upper semicontinuous on X. However, at every

x 2 SD we will modify only one player�s payo¤, without changing the

other player�s payo¤. It is possible because if x 2 SD, then, for some

j(x) 2 f1; 2g,
P

i2f1;2g f
j(x)
i (x) �

P
i2f1;2g f

�j(x)
i (x); that is, in the modi-

�ed game, the equality
P

i2f1;2g f
j(x)
i (x) = A0bG(x) will imply that A0bG(x) �P

i2f1;2g f
�j(x)
i (x).

If for x 2 SD,
P

i2f1;2g f
j
i (x) >

P
i2f1;2g f

�j
i (x) for some j 2 f1; 2g, then

put j(x) = j, and, if
P

i2f1;2g f
1
i (x) =

P
i2f1;2g f

2
i (x), pick j(x) such that

f
j(x)
1 (x) > u1(x). Denote by i(x) the index i such that f

j(x)
i (x) > ui(x).

De�ne the modi�ed payo¤ functions as follows: for any x 2 XnSD;bui(x) = ui(x) for i 2 f1; 2g; for any x 2 SD, bui(x) = ui(x) for i 2
f1; 2gnfi(x)g and

bui(x)(x) = f j(x)i(x) (x)�(u�i(x)(x)�f
j(x)
�i(x)(x)) = max j2f1;2g(f

j
1 (x)+f

j
2 (x))�u�i(x)(x).

Let us show, for example, that bu1 is Borel measurable on X. Denote
SiD = fx 2 SD : i(x) = ig, i = 1; 2. It is clear that SD = S1D [ S2D.
The set S1D, in its turn, consists of the following three subsets: S01D = fx 2
SD :

P
i2f1;2g f

1
i (x) =

P
i2f1;2g f

2
i (x)g, S11D = fx 2 SD :

P
i2f1;2g f

1
i (x) >P

i2f1;2g f
2
i (x) and f

1
1 (x) > u1(x)g, and S21D = fx 2 SD :

P
i2f1;2g f

2
i (x) >P

i2f1;2g f
1
i (x) and f

2
1 (x) > u1(x)g. Thus, S1D is a Borel set, which, in

particular, implies that bu1 is a Borel measurable function. Clearly, bu2 is
Borel measurable on X as well.

It is useful to notice that bu1(x) + bu2(x) = maxj2f1;2g(f j1 (x) + f j2 (x)) for
every x 2 S. As a result, the function A0bG is upper semicontinuous on X.
By Lemma 2 and Theorem 3, bG has a mixed strategy Nash equilibrium,b� = (b�1; b�2).
Let us show that b�(SD) = 0. Assume, by way of contradiction, that
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b�(SD) > 0. Since the set SD is Borel and lies on the main diagonal of the

unit square, it is clear that the set fz 2 [0; 1] : (z; z) 2 SDg is Borel (see also
Kechris, 1995, Theorem 15.1). Then, by Lemma 5, b�(SD) > 0 i¤ b�(x) > 0
for some x = (z; z) 2 SD. That is, b�i(z) > 0 for each i 2 f1; 2g. By (iii),
there exist i 2 f1; 2g and some sequence f(xki ; z)g � Sj(x) converging to x

such that limn!1 f
j(x)
i (xki ; z) > bui(x). Then, it is not di¢ cult to see that for

every " > 0, there exists �(") 2 Rnf0g such that z + �(") 2 [0; 1] and, for
every di 2 (z; z + �(")], bui(di; x�i) > bui(z; x�i)� " for all x�i 2 X�i.

Since b�i(z) > 0, bUi(�Dz ; b��i) = max�i24(Xi)
bUi(�i; b��i). On the other

hand, bUi(�Dz ; b��i) = b��i(z)ui(z; z) + R[0;1]nfzg bui(z; x�i)db��i. Fix some " 2
(0; 1

2
b��i(z)(f j(x)i (z; z) � bui(z; z))). Pick some di 2 (z; z + �(")] such thatbui(di; z) = f j(x)i (di; z) >

1
2
(f
j(x)
i (z; z)+bui(z; z)). Then bUi(�Ddi ; b��i)�bUi(�Dz ; b��i) >b��i(z)(bui(di; z)� bui(z; z))� " > 0, a contradiction.

Therefore, bUi(b�) = Ui(b�), i = 1; 2. Since b� is a mixed strategy equilibrium
of bG and, by construction, bUi(�) � Ui(�) for each i 2 f1; 2g and every
� 2 4(X), we conclude that b� is also a mixed strategy Nash equilibrium of

G.

Results similar to Theorem 7 can also be shown using Simon and Zame�s

(1990) endogeneous sharing rule approach, which was applied by Siegel (2009)

to all-pay contests and by Klose and Kovenock (2013) to all-pay auctions with

complete information and identity-dependent externalities.

Proof of Theorem 5

For a given � > 0 and z 2 [0; 1], let eC�(z) denote the set of all z0 2 [0; 1] such
that jz0 � zj � �

2
. For x = (x1; x2) 2 [0; 1]�[0; 1], let C�(x) = eC�(x1)� eC�(x2).

Denote by B[0;1] the �-algebra of Borel sets on [0; 1]. For every � 2 4([0; 1])
and a Borel set Y � [0; 1], denote by � jY the restriction of the probability

measure � to Y ; that is, � jY (A) = �(Y \A) for every A 2 B[0;1]. If �(Y ) > 0,
then denote by � jY the probability measure de�ned by � jY (A) =

�(Y \A)
�(Y )

for
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every A 2 B[0;1].
We will show that every game on the unit square satisfying (i)-(iv) has

a weakly reciprocally upper semicontinuous mixed extension. Consider a

sequence of �k = (�k1; �
k
2) 2 �(X) converging weakly to b� = (b�1; b�2) 2 �(X)

such that lim kUm(�
k); m = 1; 2, exist and lim kUi(�

k) > Ui(b�) for some
i 2 f1; 2g. We have to show that there exist m 2 f1; 2g and �0m 2 �(Xm)

such that Um(�0m; b��m) > lim kUm(�
k).

Since Ui jumps down at b� along the sequence ��k	, it must be the
case that b�(S) > 0. Let us �rst consider the case where each b�m has a

�nite number of mass points. Denote by W (b�) = fy1; : : : ; yLg the set of
mass points of b� belonging to S, where ys = (zs; zs), s = 1; : : : ; L. By

Lemma 5, b�(S) = P
y2W (b�) b�(y). Then, for some small enough b�1 > 0,

Cb�1(ys) \ Cb�1(yt) = ? for all s; t 2 f1; : : : ; Lg, s 6= t, and, for each s 2
f1; : : : ; Lg, b�m(fzg) = 0, m = 1; 2, for every z 2 eCb�1(zs)nfzsg. In particular,
the latter implies that b�(@Cb�1(ys)) = 0 for each s 2 f1; : : : ; Lg. Assume
also that lim kUm(�

k
m j eCb�1 (zs); �k�m) exists for each s 2 f1; : : : ; Lg and each

m 2 f1; 2g; if not, consider a subsequence of f�kg possessing this property.
Let y1 2 W (b�) be such that limk

R
Cb�1 (y1) uid�

k �
R
Cb�1 (y1) uidb� > a > 0.

Then there exist j1 2 f1; 2g and a subsequence of
�
�k
	
, denoted again by�

�k
	
, such that f j1i (y

1) > ui(y
1) and limk�

k(Cb�1(y1)\Sj1) > b�(Cb�1(y1)\Sj1).
The reciprocal upper semicontinuity of G implies that f j1�i(y

1) < u�i(y
1).

De�ne

b�i =
1

2
(u�i(y

1)� f j1�i(y1))(limk�
k(Cb�1(y1) \ Sj1)� b�(Cb�1(y1) \ Sj1)):

Since all f ji ; i; j 2 f1; 2g; and uijS; i 2 f1; 2g, are uniformly continuous
on their respective compact domains clSj and S, for every " > 0 there exists

�(") 2 (0; b�1
2
] such that, for all i, j 2 f1; 2g,

��f ji (x0)� f ji (x00)�� < " for all x0
and x00 in clSj with kx0 � x00k < 2�(") and

��uijS(x0)� uijS(x00)�� < " for all x0
and x00 in S with kx0 � x00k < 2�(").
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It follows from the uniform payo¤ security of G that, for each s 2
f1; : : : ; Lg, there exists d�i(zs; b�i2s+2

) 2 X�i such that for every xi 2 Xi,

u�i(d�i(z
s; b�i
2s+2

); wi) > u�i(z
s; xi) � b�i

2s+2
for all wi in some neighborhood

NXi(xi) of xi in Xi. For each s 2 f1; : : : ; Lg, pick some e�s 2 (0; �( b�i2s+2
)] such

that BXi(z
s;e�s) � NXi(z

s).

We want to show that there exist d1�i 2 X�i and �1 2 (0;e�1] such that
U�i(d

1
�i; b�i) > lim kU�i(�

k
�ij eC�1 (z1); �ki ) + b�i

2b��i( eC�1 (z1)) . Consider �rst the case
where y1 2 Snf(0; 0) [ (1; 1)g. Put d1�i = d�i(z

1; b�i
8
) and �1 = e�1. Notice

that U�i(d1�i; b�i) = RXin eC�1 (z1) u�i(d1�i; xi)db�i + R eC�1 (z1) u�i(d1�i; xi)db�i. Since
u�i(d

1
�i; xi) > u�i(x�i; xi)�

b�i
2
for every (x�i; xi) 2 eC�1(z1)� (Xin eC�1(z1)),

U�i(d
1
�i; b�i jXin eC�1 (z1)) > U�i(b��ij eC�1 (z1); b�ijXin eC�1 (z1))� b�i(Xin eC�1(z1))b�i2 :

Since b�i(@ eC�1(z1)) = b��i(@ eC�1(z1)) = 0, u�i is continuous on eC�1(z1) �
(Xin eC�1(z1)), and the sequence f(�k�ij eC�1 (z1); �kijXin eC�1 (z1))g converges weakly
to (b��ij eC�1 (z1); b�i jXin eC�1 (z1)), we have that

U�i(b��ij eC�1 (z1); b�i jXin eC�1 (z1)) = lim kU�i(�
k
�ij eC�1 (z1); �ki jXin eC�1 (z1)):

Therefore,

U�i(d
1
�i; b�i jXin eC�1 (z1)) > lim kU�i(�

k
�ij eC�1 (z1); �ki jXin eC�1 (z1))�b�i(Xin eC�1(z1))b�i2 :

A further important fact is that u�i(d1�i; xi) > supy2 eC�1 (z1)� eC�1 (z1) u�i(y)�
b�i
2
for every xi 2 eC�1(z1). To understand it, notice that for some zi 2 eC�1(z1),

u�i(z
1; zi) > sup

y2 eC�1 (z1)� eC�1 (z1)
u�i(y)�

b�i
8
;

which would not be necessarily true if y1 were (0; 0) or (1; 1). Moreover,

u�i(d
1
�i; zi) > u�i(z

1; zi) � b�i
8
, and u�i(d1�i; xi) � u�i(d1�i; zi) > � b�i

8
for
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every xi; zi 2 eC�1(z1).
Then

U�i(d
1
�i; b�i j eC�1 (z1)) > b�i( eC�1(z1))( sup

y2 eC�1 (z1)� eC�1 (z1)
u�i(y)�

b�i
2
):

It follows from the de�nition of b�i that for some subsequence of f�kg,
denoted again by f�kg, b�1( eC�1(z1))b�2( eC�1(z1)) sup y2 eC�1 (z1)� eC�1 (z1)u�i(y) �
lim kU�i(�

k
�i j eC�1 (z1); �ki j eC�1 (z1)) > b�i, and, therefore,

b�i( eC�1(z1)) sup y2 eC�1 (z1)� eC�1 (z1)u�i(y)
> lim kU�i(

�k�i j eC�1 (z1)b��i( eC�1(z1)) ; �ki j eC�1 (z1)) + b�ib��i( eC�1(z1)) :
Then U�i(d1�i; b�i j eC�1 (z1)) > lim kU�i(

�k
�i j eC�1 (z1)b��i( eC�1 (z1)) ; �ki j eC�1 (z1))� b�i( eC�1(z1)) b�i2 +

b�ib��i( eC�1 (z1)) . Since lim k�
k
�i(
eC�1(z1)) = b��i( eC�1(z1)), we have that

lim kU�i(
�k�i j eC�1 (z1)b��i( eC�1(z1)) ; �ki j eC�1 (z1)) = lim kU�i(�

k
�ij eC�1 (z1); �ki j eC�1 (z1));

and, therefore,

U�i(d
1
�i; b�i) > lim kU�i(�

k
�ij eC�1 (z1); �ki )

� (b�i( eC�1(z1)) + b�i(Xin eC�1(z1)))b�i2 +
b�ib��i( eC�1(z1)) ;

which implies that U�i(d1�i; b�i) > lim kU�i(�
k
�i j eC�1 (z1); �ki ) + b�i

2b��i( eC�1 (z1)) .
Consider the case where y1 = (0; 0). If �i = 1, then, since j1 = 1

by virtue of (iii), put d11 = �1 = �( b�i
8
). In this case, it is clear that

u�i(d
1
1; xi) > supy2 eC�1 (z1)� eC�1 (z1) u�i(y) � b�i

2
for every xi 2 eC�1(0). The
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rest of the argument is quite similar to that provided above. Let �i = 2. If
j1 = 1, then the uniform payo¤security condition for player 2�s strategy 0 can

be made use of. If j1 = 2 and f 12 (0; 0) � u2(0; 0), then, put d12 = �1 = �(
b�i
8
).

If j1 = 2 and f 12 (0; 0) < u2(0; 0), then the uniform payo¤ security condition

for player 2�s strategy 0 can be made use of. The case where y1 = (1; 1) can

be handled in a similar manner.

We will now describe how to pick, for each s 2 f2; : : : ; Lg, ds�i 2 X�i and

�s 2 (0; �( b�i2s+2
)] such that U�i(ds�i; b�i) > limk U�i(�

k
�ij eC�s (zs); �ki )� b�i

2sb��i( eC�s (zs)) .
Let ys 2 Xnf(0; 0) [ (1; 1)g. If u�i(ys) > minff 1�i(ys); f2�i(ys)g or u�i(ys) =
f 1�i(y

s) = f 2�i(y
s), then it is possible to make use of the uniform payo¤ secu-

rity condition for player �i�s strategy zs. If ys is a point of discontinuity of
u�i and u�i(ys) � f j�i(ys) � f

�j
�i (y

s) for some j 2 f1; 2g, then, to avoid am-
biguity in notation, denote l = �i = f1; 2gnfig, and put ds�i = zs+(�1)j+l�
and �s = � for some � 2 (0; �( b�i2s+2

)] such that ds�i 2 [0; 1].
Assume that ys = (0; 0) and �i = 2. It follows from (iii) that u2(0; 0) �

f 22 (0; 0). If f
1
2 (0; 0) � u2(0; 0), then put ds2 = �s = �( b�i

2s+2
). If f 12 (0; 0) <

u2(0; 0), then the uniform payo¤ security condition for player 2�s strategy 0

can be made use of.

Assume that ys = (0; 0) and�i = 1. By (iii), u1(0; 0) � f 21 (0; 0). If, more-
over, f 11 (0; 0) � f 21 (0; 0), then, put ds1 = �s = �(

b�i
2s+2

). If f 11 (0; 0) > f
2
1 (0; 0),

then it is important whether there is some subsequence of f�kg, denoted
again by f�kg, such that limk�

k(Ce�1(0; 0) \ S1) > b�(Ce�1(0; 0) \ S1). If this
is not the case, then it is possible to choose a small enough �s 2 (0; �( b�i2s+2

)]

such that U1(�s; b�2) > limk U1(�
k
1 j eC�s (0); �k2)� b1

2sb�1( eC�s (0)) . This is so because,
by choosing �s close enough to 0, b�(C2�s(0; 0) \ S1) can be made arbitrarily
small, and, moreover, G is a compact game and lim supk�

k(C2�s(0; 0)\S1) �b�(C2�s(0; 0)\S1). However, if such a subsequence of f�kg exists, then one of
the possible ways to circumvent the obstacle is to repeat the above argument

for player 2 (�i = 2), with y1 = (0; 0) and j1 = 1. A similar problem can

not occur in this case even if ys = (1; 1) for some s � 2 by virtue of (iii).

31



Then lim kU�i(�
k
�i; �

k
i ) =

P
s=1;L b��i( eC�s(zs)) limk U�i(�

k
�i j eC�s (zs); �ki )) +

U�i(b��i jX�in[s=1;L eC�s (zs); b�i), and, consequently, it is not di¢ cult to see that
lim kU�i(�

k
�i; �

k
i ) <

P
s=1;L b��i( eC�s(zs))U�i(ds�i; b�i)+U�i(b��i jX�in[s=1;L eC�s (zs); b�i).

De�ne �0�i 2 4(X�i) as follows:

�0�i =
X
s=1;L

b��i( eC�s(zs))�Dds�i + b�0�i jX�in[s=1;L eC�s (zs):
Then we have that lim kU�i(�

k
�i; �

k
i ) < U�i(�

0
�i; b�i), which implies that � is

weakly reciprocally upper semicontinuous.

The case where each b�m has a countable number of mass points can be
treated similarly because b�1 and b�2 are �nite measures and G is a compact
game. For example, let the set of mass points of b� lying on S, W (b�), be a
countable set. Since Ui jumps down at b� along the sequence ��k	, there are
y1 2 W (b�) and b�1 > 0 such that lim infk RC�(y1) uid�k � RC�(y1) uidb� > a > 0
for every � 2 (0;b�1]. Moreover, for every " > 0 there exists �" 2 (0;b�1]
such that b�((W (b�)nfy1g)\C�"(y1)) < " and b�i(@ eC�"(z1)) = b��i(@ eC�"(z1)) =
0, which makes it possible to repeat the above reasoning for C�1(y

1) with

some small enough �1 2 (0;b�1]. Then pick another mass point from the set

W (b�)nC�1(y1), if there are any left in it. Denote it by y2. It is again possible
to apply the argument. However, in this case, it may be necessary to consider

an in�nite number of the mass points of b� lying on S.
Proof of Theorem 6

For the sake of notational simplicity, denote X1
h1
by T 1, X2

h1
\ X1

h2
by T 2,

and X2
h2
by T 3. Then, for each i 2 f1; 2g, ui(x) = f 1i (x) for every x 2 T 1,

ui(x) = f
2
i (x) for every x 2 T 2, and ui(x) = f 3i (x) for every x 2 T 3.

Consider a sequence of �k = (�k1; �
k
2) 2 �(X) converging weakly tob� 2 �(X) such that limk Ui(�

k) > Ui(b�) for some i 2 f1; 2g. Assume,

without loss of generality, that each b�m has a �nite number of mass points
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and limk Um(�
k),m = 1; 2, exist. We have to show that there existm 2 f1; 2g

and �0m 2 �(Xm) such that Um(�0m; b��m) > limk Um(�
k).

Since Ui jumps down at b� along the sequence ��k	, it must be the case
that b�(Xh1 [ Xh2) > 0. Denote by W (b�) = fy1; : : : ; yLg, the set of mass
points of b� belonging to Xh1 [ Xh2. Then b�(Xh1 [ Xh2) =

P
s=1;L b�(ys),

and there exists some b�1 > 0 such that Cb�1(ys) \ Cb�1(yt) = ? for all

s; t 2 f1; : : : ; Lg, s 6= t. Assume also that limk Um(�
k
m j eCb�1 (zsm); �k�m) ex-

ists for each s 2 f1; : : : ; Lg and each m 2 f1; 2g. Without loss of generality,
y1 = (z11 ; z

1
2) 2 Xh2 and limk

R
Cb�1 (y1) uid�

k �
R
Cb�1 (y1) uidb� > a > 0.

For some j1 2 f2; 3g and some subsequence of
�
�k
	
, denoted again by�

�k
	
, we have that f j1i (y

1) > ui(y
1) and limk�

k(Cb�1(y1)\T j1) > b�(Cb�1(y1)\
T j1). The reciprocal upper semicontinuity of G implies that f j1�i(y

1) <

u�i(y
1). De�ne

b�i =
1

2
(u�i(y

1)� f j1�i(y1))(limk�
k(Cb�1(y1) \ T j1)� b�(Cb�1(y1) \ T j1)):

Consider �rst the case where �i = 2. Since the details of the argument in
this case is similar to those that can be found in the proof of Theorem 5, we

will describe how to choose d12 2 X2 and �1 2 (0;b�1] such that U2(d12; b�1) >
limk U2(�

k
2 j eC�1 (z12); �k1) + b2

2b�2( eC�1 (z12)) in a schematic way. First notice that the
cases where y1 2 Xh2n(f(0; 14)g [ f(1; 0)g) can be handled with no di¢ culty
through making use of the uniform payo¤ security condition for player 2�s

strategy y12.

Let y1 = (0; 1
4
). If j1 = 2 and u2(0; 14) > f

3
2 (0;

1
4
) or j1 = 3 and u2(0; 14) >

f 22 (0;
1
4
), then one can make use of the uniform payo¤ security condition for

player 2�s strategy 1
4
to �nd suitable d12 and �1. If j1 = 3 and u2(0; 14) �

f 22 (0;
1
4
) or j1 = 2 and u2(0; 14) � f

3
2 (0;

1
4
), then d12 =

1
4
+ (�1)(j1�1)�1 with a

small enough �1 2 (0;b�1].
Let y1 = (1; 0). By virtue of (iii), u2(1; 0) � f 32 (1; 0). If j1 = 2 and

u2(1; 0) > f
3
2 (1; 0) or j1 = 3 and u2(1; 0) > f

2
2 (1; 0), then the uniform payo¤
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security condition for player 2�s strategy 0 can be made use of. If j1 = 2 and

u2(1; 0) = f
3
2 (1; 0) or j1 = 3 and u2(1; 0) � f 22 (1; 0), then put d12 = (j1 � 2)�1

with a small enough �1 2 (0;b�1].
We now have to describe how to choose, for each s 2 f2; : : : ; Lg, a de-

viation strategy ds2 2 X2 and a small enough �s > 0 such that U2(ds2; b�1) >
limk U2(�

k
2 j eC�s (zs2); �k1)� b2

2sb�2( eC�s (zs2)) . It is also done in a schematic way.
Assume, for example, that ys = (0; 1

4
) for some s 2 f2; : : : ; Lg. If

u2(0;
1
4
) � maxff 22 (0; 14); f

3
2 (0;

1
4
)g, then the uniform payo¤security condition

for player 2�s strategy 1
4
can be used to �nd suitable ds2 and �s. Let u2(0;

1
4
) <

maxff 22 (0; 14); f
3
2 (0;

1
4
)g. If f 22 (0; 14) � f

3
2 (0;

1
4
) (f 22 (0;

1
4
) < f32 (0;

1
4
)), then put

ds2 =
1
4
+ �s (ds2 =

1
4
� �s) with a small enough �s 2 (0;b�1]. The cases where

ys 2 Xh2nf(0; 14)g for some s 2 f2; : : : ; Lg can be handled in a similar man-
ner. The only case worth mentioning separately is where ys = (1; 0) and

f 22 (1; 0) < f
3
2 (1; 0). Recalling that u2(1; 0) � f 32 (1; 0) by virtue of (iii), put

ds2 = 0 and pick a small enough �s 2 (0;b�1]. A similar argument can be

provided for the mass points of b�2 lying on Xh1 .

Thus, if, for some s 2 f1; : : : ; Lg, some j1 2 f1; 2; 3g, and some subse-
quence of

�
�k
	
, denoted again by

�
�k
	
, the inequalities f j11 (y

s) > u1(y
s) and

limk�
k(Cb�1(ys)\T j1) > b�(Cb�1(ys)\T j1) hold, then it is possible to construct

�02 2 4(X2) such that U2(�02; b�1) > limk U2(�
k
2; �

k
1). Assume now that this is

not the case; then �i = 1. We will now show that there exists �01 2 4(X1)

such that U1(�01; b�2) > limk U1(�
k
1; �

k
2).

If j1 = 2 and y1 is (1; 0) or (1; 1), then put d11 = 1 � �1 with a small
enough �1 2 (0;b�1] (here not only (iii) is used but also the assumption that
�i can not be equal to 2). If y1 2 (Xh1 [Xh2)n(f(1; 0)g [ f(1; 1)g), then the
uniform payo¤ security condition for player 1�s strategy y11 can be made use

of to �nd suitable d11 and �1.

If, for some s 2 f2; : : : ; Lg, ys = (1; 0) (or (1; 1)), then ds1 = 1� �s with a
small enough �s 2 (0;b�1], which is possible owing to the assumption that �i
can not be equal to 2. Let, for example, ys = (ys1; y

s
2) 2 Xh2nf(1; 0)g for some
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s 2 f2; : : : ; Lg. An attempt to apply the uniform payo¤ security condition

for player 1�s strategy ys1 may not succeed here, since, in general, it is possible

for ds1 to coincide with y
s
1. Denote by y

d = (yd1 ; y
d
2) the point belonging to Xh1

such that yd1 = y
s
1. If u1(y

s) � f 21 (ys) and u1(yd) � f 21 (yd), then ds1 = ys1 + �s
with a small enough �s 2 (0;b�1], which is possible since if f 31 (ys) > u1(y

s)

(f 11 (y
d) > u1(y

d)), then it must be the case that lim supk�
k(C�s(y

s) \ T 3) �b�(C�s(ys) \ T 3) (lim supk�k(C�s(yd) \ T 1) � b�(C�s(yd) \ T 1)). If u1(ys) >
f 21 (y

s) or u1(yd) > f21 (y
d), then the uniform payo¤ security condition for

player 1�s strategy ys1 can be used to �nd suitable d
s
1 and �s.
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