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Let (T,r,p) be a finite measure space, X be a Banach space, P be a metric space and let L,(y,X) 
denote the space of equivalence classes of X-valued Bochner integrable functions on (T, T, p). We 
show that if $I: T x P-2x is a set-valued function such that for each fixed p E P, 4(. , p) has a 
measurable graph and for each fixed TV T, 4(t;) is either upper or lower semicontinuous then 
the Aumann integral of I$, i.e., S&(t,P) d&)= {Irx(f)d~(r):xES~(p)), where S,(P) = 
{yEL,(p,X):y(t)E+(t,p)p-a.e.}, is either upper or lower semicontinuous in the variable p as 
well. Our results generalize those of Aumann (1965, 1976) who has considered the above 
problem for X = R”, and they have useful applications in general equilibrium and game theory. 

1. Introduction 

Let (T, z,~) be a finite measure space, P be a metric space, X be a Banach 
space and let L1(pL, X) denote the space of equivalence classes of X-valued 
Bochner integrable functions on (T, r, p). Let 4: T x P+2’ be a set-valued 
function (where 2x denotes the set of all non-empty subsets of X), such that 
for each fixed PEP, 4(. , p) has a measurable graph and for each fixed 
t E T,&t;) is either upper or lower semicontinuous. We wish to know 
whether the Aumann integral of 4, i.e., JT&(t, p) d,u(t) = { JTx(t) ddt):x E S,(p)}, 
where S+(p) = {y EL, (p, X): y(t) E +(t, p) p - a.e.}, is either upper or lower semi- 
continuous in the variable p as well. It is the purpose of this paper to 
provide an answer to the above question. Specifically, we show (Theorems 
3.1 and 3.2) that integration preserves upper semicontinuity (u.s.c.) and that 
(Theorem 3.3) integration preserves lower semicontinuity (1.s.c.). 

We will first discuss briefly the main applications of our results in general 
equilibrium and game theory. The question of whether integration preserves 

*This is a revised version of my paper entitled ‘On the Lebesgue-Aumann Dominated 
Convergence Theorem in Infinite Dimensional Spaces’, written in 1986. The present version has 
benelitted from the comments, discussions and suggestions of Erik Balder, M. Ali Khan, Jean- 
Francois Mertens, Aldo Rustichini and of a knowledgeable referee. My debt to the pioneering 
works of Aumann (1965) and Debreu (1967) should be evident. Of course, I am resoonsible for 
any remaining shoricomings. 
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U.S.C. arises naturally in general equilibrium. In particular, T denotes the 
measure space of agents, X denotes the commodity space, P denotes the 
price space, 4(&p) denotes the demand set of agent t at prices p and the 
integral of 4 denotes the aggregate demand set. For X = R6 (where Re is the 
e-fold Cartesian product of the set of real numbers R), Aumann (1965, 1966, 
1976) has examined the above problem which is fundamental in order to 
prove the existence of an equilibrium for an economy with a measure space 
of agents and with finitely many commodities. However, if one wishes to 
examine the problem of the existence of an equilibrium for an economy with 
a measure space of agents and with an infinite dimensional commodity space, 
then an infinite dimensional generalization of the above result seems to be 
required.’ It turns out that the finite dimensional arguments of Aumann 
cannot be readily adopted to cover Banach-valued correspondences.2 In 
particular, his proof is based on the Lyapunov theorem, a result which is 
false in infinite dimensional spaces. Nevertheless, for strong forms of U.S.C. 
correspondences (i.e., weakly U.S.C. correspondences) results analogous to 
those of Aumann have been obtained in Yannelis (I 988). 

It is important to note that the method of proof in Yannelis (1988) utilizes 
in a crucial way the convex valuedness of the set-valued function. In 
particular, the argument is based on the ‘approximate version of the 
Lyapunov-Richter Theorem’, and it is applied to convex, closed valued and 
weakly U.S.C. correspondences.3 Since the correspondences we consider in 
Theorem 3.1 are not convex valued or closed valued or weakly U.S.C. this 
argument cannot be applied here. Nevertheless, in the setting of Yannelis we 
prove a result (Theorem 3.2) similar to his, using a weak sequential 
convergence theorem obtained in Yannelis (1989). 

Theorem 3.2 has found useful applications in game theory [see for instance 
Khan (1986) or Yannelis (1987) among others]. Specifically, the main result 
needed to prove the existence of a Nash equilibrium for a game with a 
continuum of players, is that the set of integrable selections of the set-valued 

‘It should be noted that Debreu (1967, pp. 364367) has already examined the problem of 
whether integration preserves U.S.C. or 1.s.c. for correspondences taking values in a Banach space. 
Moreover, Debreu provided an extension of the Lebesgue dominated convergence to infinite 
dimensional spaces. However, his notion of convergence is different than the one used in this 
paper [as in Aumann (1965) we follow the Kuratowski-type of convergence of sets, see the next 
section of the paper for a definition], and consequently our results do not follow from his. 

‘A correspondence is a set-valued function for which all image sets are non-empty. 
‘To be more specific, by the ‘approximate version of the Lyapunov-Richter Theorem’ we 

mean that if F is a set-valued function from the atomless measure space T to the separable 
Banach space X, then under appropriate assumptions cl JF= JZF (where cl denotes norm 
closure and E%i denotes closed convex hull). This result is proved by Datko (1973) for X being a 
reflexive separable Banach space. The reflexivity assumption was relaxed by Khan (1985). 
However, recently Rustichini and Yannelis (1988) have shown that the norm closure can be 
removed if the dimensionality of the measure space is larger than the dimensionality of the 
separable Banach space. In particular, this occurs if the economy has ‘many more’ agents than 
commodities. Of course the concept of dimension has to be given a rigorous formulation. 
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function 4: T x P+2x, i.e., S,(p) is weakly U.S.C. whenever for each 
t E T, c#~(t,p) is weakly U.S.C. with respect to p. Now, if z L,(p, X)+X is a 
linear mapping defined by z(x) =JrsT x(t)dp(t), the integral of the set-valued 
function 4: T x P-2’ is z(S,(p))= { ( ) n x : x~S+(p)}. Hence, if S,( *) is weakly 
U.S.C. so is z(S,( .))=f@(t;). It is exactly this idea which is exploited in the 
proof of Theorem 3.2 in order to show that integration preserves weak U.S.C. 

Finally, we wish to note that the problem of whether integration preserves 
1.s.c. (Theorem 3.3) has been useful in the literature of games with incomplete 
information in order to prove the 1.s.c. of expectation operators [see for 
instance Balder-Yannelis (1988)]. 

The paper proceeds as follows: Section 2 contains notation and definitions. 
Our main results are stated in section 3 and their proofs are collected in 
section 4. 

2. Notation and definitions 

2.1. Notation 

R” denotes the n-fold Cartesian product of the set of real numbers R. 
con A denotes the closed convex hull of set A. 
2A denotes the set of all non-empty subsets of the set A. 
0 denotes the empty set. 
\ denotes the set theoretic subtraction. 
dist denotes distance. 
proj denotes projection. 
If A c X, where X is a Banach space, cl A denotes the norm closure of A. 
If F, (n = 1,2,. . , ) is a sequence of non-empty subsets of a Banach space X, 

we will denote by LsF, and LiF, the set of its (strong) limit superior and 
(strong) limit inferior points respectively, i.e., 

x~X:x= lim x,~,x,~EF,~, k=l,2 ,... , and 
k-a, 

~~X:~=limx,,x,~F,,n=1,2 ,... . 
n-co 

A w in front of LsF, (UF,) will mean limit superior (limit inferior) with 
respect to the weak topology 0(X*,X). 

2.2. Dejinitions 

Let X and Y be sets. The graph of the set-valued function 1$:x+2’ is 
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denoted by G,= {(x,y)~X x EYE&X)). Let (T,r,p) be a complete, finite 
measure space, and X be a separable Banach space. The set-valued function 
4: T-+2X is said to have a measurable graph if G,E~@/I(X), where p(X) 
denotes the (norm) Bore1 o-algebra on X and 0 denotes product cr-algebra. 
The correspondence 4: T+2X is said to be lower measurable if for every open 
subset V of X, the set {TV T 4(t) n I’# 0) is an element of r. Recall [see for 
instance Debreu (1967, p. 359) or Himmelberg (1975, p. 47)] that if 4: T+2X 
has a measurable graph, then 4 is lower measurable. Furthermore, if $J( 0) is 
closed valued and lower measurable then 4: T+2X has a measurable graph. 
A well-known result of Aumann (1967) which will be of fundamental 
importance in this paper, [see also Himmelberg (1975, Theorem 5.2, p. 60)] 
says that if (T, z,p) is a complete, finite measure space, X is a separable 
metric space and 4: T-+2X is a non-empty valued correspondence having a 
measurable graph, then $( .) admits a measurable selection, i.e., there exists a 
measurable function f: T-+X such that f(t) E c$(t)p -a.e. 

We now define the notion of a Bochner integrable function. We will follow 
closely Diestel and Uhl (1977). Let (T, ~,,a) be a finite measure space and X 
be a Banach space. A function f: T+X is called simple is there exist 

x1,x2,..., x, in X and c~r,~,..., CI, in T such that J =‘j$‘= r xix=,, where 
Qt) = 1 if t ECC~ and xai(t) =0 if t $ai. A function f: T+X is said to be 
p-measurable if there exists a sequence of simple functions f,: T+X such that 

lim,+, [[f,(r)-f(t)II=O f or almost all tE T. A p-measurable function 1: T+X 
is said to be Bochner integrable if there exists a sequence of simple functions 
(f”: n = 1,2,. . . > such that 

lim f Il_f.@) -f(t)ll G(t) =O. 
n+co T 

In this case we define for each EEZ the integral to be JEf(t) dp(t) = 

lim,,-, Jsf&) dp(r). It can be shown [see Diestel and Uhl (1977, Theorem 2, 
p. 45)] that, if f: T+X is a p-measurable function then f is Bochner 
integrable if and only if ST IIf dp(t) -C co. We denote by L,(p,X) the space 
of equivalence classes of X-valued Bochner integrable functions x: T+X 
normed by 

/XII = L IIx@)lld/dt). 

It is a standard result that normed by the functional 11. II above, L,(p,X) 
becomes a Banach space [see Diestel and Uhl (1977, p. SO)]. 

We denote by S, the set of all X-valued Bochner integrable selections from 
4: T+2X, i.e., 
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Moreover, as in Aumann (1965) the integral of the set-valued function 
4: T-+2X is defined as follows: 

In the sequel we will denote the above integral by 14. Recall that the 
set-valued function 4: T-+2X is said to be integrably bounded if there exists a 
map hEL1(p,R) such that sup{~(x~(:x~~(t)}~h(t)~-a.e. Moreover, note 
that if T is a complete measure space, X is a separable Banach space and 
4: T-+2X is an integrably bounded, non-empty valued correspondence having 
a measurable graph, then by the Aumann measurable selection theorem we 
can conclude that S, is non-empty and therefore i&(t)dp(t) is non-empty as 
well. 

Let A, (n = 1,2,. . . ) be a sequence of non-empty subsets of a Banach space. 
Following Kuratowski (1966, p. 339) we say that A, converges in A (written 
as A,+A) if and only if LiA,=LsA,= A. It may be useful to remind the 
reader that LiA, and LsA, are both closed sets and that LiA,c LsA, [see 
Kuratowski (1966, pp. 336338)]. 

Let X be a metric space and Y be a Banach space. The set-valued function 
4: X-+2’ is said to be U.S.C. at x,EX, if for any neighborhood N(&x,)) of 
4(x,), there exists a neighborhood N(x,) of x0 such that for all 
x EN(x,,), 4(x) cN(&x,)). We say that 4 is U.S. if 4 is U.S.C. at every point 
x EX. Recall that this definition is equivalent to the fact that the set 
{x E X: 4(x) c V} is open in X for every open subset V of Y [see for instance 
Kuratowski (1966, Theorem 3, p. 176)]. 

Let u be a small positive number and let B be the open unit ball in Y. The 
set-valued function 4:X+2’ is said to be quasi upper-semicontinuous (q.u.s.c.) 
at x E X, if whenever the sequence x, (n = 1,2,. . . ) in X converges to x, then 
for some n,,, 4(x,) c 4(x) + oB for all n 2 n,. We say that $ is q.u.s.c. if $I is 
q.u.s.c. at every point x EX. It can be easily checked [see for instance Aubin 
and Ekeland (1984, p. lOS)] that if 4 is compact valued, quasi upper- 
semicontinuity implies upper-semicontinuity and vice-versa. 

In particular, note that if K is a compact subset of Y, the subsets 
N(K, 6) = {y E Y: dist(K, y) g 6) form a fundamental basis of neighborhoods of 
K, i.e., any neighborhood of the compact set K contains N(K,6) for a 
suitable 6>0. Consequently, if the correspondence 4:X-+2’ is compact 
valued, then $J is U.S.C. at x0 E X if and only if 

for every 6 > 0, there exists u > 0 such that for all 
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x E NC%, u),4(4 = Nd4QJ, 4. (2.1) 

However, if for x~EX, 4(x0) is not compact valued, then for all x~N(x~, u), 
~(x)cN(~(x,J,~) may hold, even if 4 is not U.S.C. To see this define the 
set-valued function 4: R+2R2 by $(z) = {(x, Y): x =z}. Obviously (2.1) holds 
for 6 =u, i.e., 4 is q.u.s.c. but $ is not U.S.C. Indeed, the set {(x,Y): (Y( -C l/lx/} is 
a neighborhood of 4(O), but for any x#O, I$(x) is not contained in the set 

{(x9 Y): IYJ < l/(x(). 
Let now P and X be metric spaces. The set-valued function F: P+2’ is 

said to be 1s.~. if the sequence pn (n= 1,2,. . . ) in P converges to p E P, then 
F(p) CLEF. Finally recall that the correspondence F: P-2’ is said to be 
continuous if and only if it is U.S.C. and 1.s.c. 

With all these preliminaries out of the way we can now turn to the 
statements of the main theorems. 

3. The main theorems 

Below we now state our main results: 

Theorem 3.1. Let (T r, p) be a complete, finite measure space, P be a metric 
space and X be a separable Banach space. Let $1 T x P+2’ be a non-empty 
valued, integrably bounded correspondence, such that for each fixed t E T, 
$(t; ) is q.u.s.c. and for each fixed p E P, t,G( *, p) has a measurable graph. Then 

J$(t, .) is q.u.s.c. 

Theorem 3.2. Let (T, z,,u) be a complete, finite measure space, P be a metric 
space and X be a separable Banach space. Let $11 T x P+2’ be a non-empty, 
closed, convex valued correspondence such that: 

(i) for each fixed t E T, $(t, * ) has a weakly closed graph,4 
(ii) for all (t,p)ETxP, Il/(t,p)CK(t) where K: T-+2X is an integrably 

bounded, weakly compact and non-empty valued correspondence. 

Then 

J$(t;) has a weakly closed graph. 

Theorem 3.3. Let (T,z, p) be a complete, finite measure space, X be a 
separable Banach space and P be a metric space. Let 4: T x P-2’ be an 
integrably bounded set-valued function such that for each fixed t E T, $J(t;) is 
1.s.c. and for each fixed p E P, 4(. , p) has a measurable graph. Then 

4By this we mean that if the sequence {p.:n= 1,2,. . .} in P converges to PEP then 
w-Ls$(t,p,)cI(l(t,p) for each teT. 
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Jrj(t;) is 1.s.c. 

Remark 3.1. If in addition to the assumptions of Theorem 3.1, it is assumed 
that Jtj(t;) is compact valued, then we can conclude that J$(t;) is U.S.C. 

Remark 3.2. If in Theorem 3.1 we add the assumption that I/(. , .) is convex 
valued and that for all (t, p) E T x P, $(t, p) c K, where K is a weakly compact, 
convex, non-empty subset of X, then it follows from Lemma 4.1 (see next 
section) that J&(t, .) d,u(t) is weakly compact valued and we can conclude 

that J&t;) dp(t) is weakly USC., i.e., the set {pi P:J&(f, p) dp(t) c V} is 

open in P for every weakly open subset V of X. Hence, from Theorem 3.1 we 
can obtain a version of Theorem 4.1 in Yannelis (1988) which does not 
require (T, 7,~) to be atomless. Note, however, that the measurability 
assumption made in Theorem 3.1 is slightly stronger than the one made in 
Theorem 4.1 of Yannelis (1988) (recall Lemma 4.4 in the next section). 

Remark 3.3. It can be easily shown by means of the failure of the 
Lyapunov theorem in infinite dimensional spaces that Theorem 3.2 is false 
without the convex valuedness of the set-valued function $: T x P--+2’ [see 
Rustichini (1989) for a complete argument]. Hence, the convexity assumption 
on the values of $ cannot be dropped from the similar result to Theorem 3.2 
obtained by Yannelis (1988). 

The Corollaries below follow directly from Theorems 3.1, 3.3 and Remark 
3.1. They extend some results of Aumann (1965, Theorem 5 and Corollary 
5.2) to separable Banach spaces. 

Corollary 3.1. Let (T,z, p) be a complete, finite measure space, P be a metric 
space and X be a separable Banach space. Let (I/: T x P+2’ be an integrably 
bounded, non-empty valued correspondence such that for each fixed PEP, 
$(. , p) has a measurable graph and for each fixed t E T, II/( t; ) is continuous. 
Moreover, suppose that J&(t;)dp(t) is compact valued. Then 

L WAdAt) is continuous. 

Corollary 3.2. (Lebesgue-Aumann Dominated Convergence Theorem).’ Let 
(T, 7,~) be a complete, finite measure space and X be a separable Banach 
space. Let 4”: T+2X (n= 1,2,...) be a sequence of integrably bounded, 
nonempty valued correspondence having a measurable graph, such that: 

%ompare with Theorem 6.3, in Debreu (1967, p. 366) and with Corollary 3.2 in Yannelis 
(1989) where different notions of convergence of sequences of set-valued functions were used.. 

J.Math D 
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(i) For all n (n=1,2,...), $,(t)cKp-a.e., where K is a compact, non-empty 
subset of X, and 

(ii) &(t)+f$(t)p--a.e. 

Then 

j 4,(t) dA+=l l $(t) @u(t). 
T T 

Moreover, if 4( .) is convex valued then 

4. Proof of the main theorems 

4.1. Lemmata 

For the proof of our main results we will need some preparatory lemmata. 

Lemma 4.1. Let (T,z,p) be a finite measure space and X be a Banach space. 
Let 4: T-+2X be a set-valued function satisfying the following condition: 

(i) d(t) c K p-a.e., where K is a weakly compact, non-empty subset of X. 
Then 

cl jGE~(t)dp(t)=~con~(t)dp(t). 
T T 

Proof. Let Z? =conK. Note that R is weakly compact, [see Dunford and 
Schwartz (1958, Theorem 4, p. 434)] non-empty and convex. Hence, from 
Diestel’s theorem [Diestel (1977, Theorem 2)] we have that Sg is weakly 
compact in L, (p,X). Since con4( .) is norm closed and convex valued so is 
SCG6. It is a consequence of the Separation Theorem that the weak and norm 
topologies coincide on closed convex sets. Hence, S,,, is weakly closed. 
Since S,,, cS~ and the latter set is weakly compact we can conclude that 
S,, is weakly compact. Define the mapping y: L1(p,X)-+X by y(x) = 
j+(t) dp(t). Ce t 1 r am y y is linear and norm continuous. It follows from 
Theorem 15 in Dunford and Schwartz (1958, p. 422) that y is also weakly 
continuous. Therefore, y(S,,,,) = {y( ) x : x E SC=,,} = &on 4( t) dp( t) is weakly - 
compact, and we can conclude that cl j,ZG~(t)d~(t)=j,con~(t). This 
completes the proof of Lemma 4.1. 

Notice that the above proof of Lemma 4.1 showed that fTcon$(t)dp(t) is 
weakly compact. Hence, Lemma 4.1 may be seen as the infinite dimensional 
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extension of Theorem 4 of Aumann (1965). Also, note that Datko (1973) and 
Khan (1985) showed that if (T, r, p) is assumed to be atomless then the 
conclusion of Lemma 4.1 can be strengthened to cl ~~ = @%i$. 

The result below is an infinite dimensional Li version of the Fatou Lemma 
for the set of all integrable selections from a correspondence. 

Lemma 4.2. Let (T,z,u) be a complete, finite measure space and X be a 
separable Banach space. Let c/J~: T+2X (n = 1,2.. . ) be a sequence of integrably 
bounded set-valued functions having a measurable graph, i.e., G,n EZO p(X), 
Then 

SLi6, c LiS,,. 

Proof. See Yannelis (1989, Lemma 5.3). 

Lemma 4.3. Let (T,z,u) be a finite measure space and X be a separable 
Banach space. Let {f,: n = 1,2,. . . } be a sequence of functions in L,(u, X), 14 
p< CD such that f,, converges weakly to f E L,(p, X). Suppose that for all n 
(n = 1,2,. . .), f,,(t) E F(t) p-a.e., where F: T-+2x is a weakly compact, integrably 
bounded, non-empty valued correspondence. Then 

f(t)ECiiw-Ls{f,(t)}u-a.e. 

Proof. See Yannelis (1989, Corollary 3.1). 

Lemma 4.4. Let (T,z,u) be a complete finite measure space and X be a 
separable Banach space. Let (F,: n = 1,2,. . . } be a sequence of non-empty 
valued and lower measurable correspondences. Then LiF,( .) has a measurable 
graph, i.e., GLiF, E z @ p(X). 

Proof. First notice that LiF,( .) is closed valued [recall from Kuratowski 
(1966, pp. 336337), that if A,, is a sequence of sets, LiA, and LsA, are both 
closed sets]. By definition [see Kuratowski (1966, p. 335)], LiF,(t)= 
(f’EX:lim .,oodist(f, F,(t))=Oj. S ince by assumption the sequence of set- 
valued functions F,( .) have a measurable graph and (T, 5,~) is a complete 
measure space, F,( .) are lower measurable. It follows from Himmelberg 
(1975, Theorem 3.3, p. 50) that dist(f, F,(t)) is continuous in f and 
measurable in t, i.e., dist( .;) is jointly measurable with respect to the o- 
algebra r 0 /I(X). Hence, lim,,, dist(f, F,(t)) is jointly measurable with 
respect to the a-algebra r@/?(X). Notice that 
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GLiF,,= (t,f)~ T x X: lim dist(f,F,(t))=O . 
“-+a2 

Since lim,, o. dist(f,F,(t)) is jointly measurable, the set GLiF, belongs to 
TO/~(X), i.e., CF,, has a measurable graph. This completes the proof of 
Lemma 4.4. 

Remurk 4.1. Under the assumptions of Lemma 4.4 LsF,( .) has a measur- 
able graph as well. Simply notice that [see Kuratowski (1966, p. 337)] 
LsF,(t)={f~X:Lidist(f,F,(t))=O}. 

4.2. Proof of Theorem 3.1 

Without loss of generality we may assume throughout the argument that 
frdp(t) = 1. Let B be the open unit ball in X, and u be a small positive 
number. We must show that if {p,: n = 1,2,. . . ) is a sequence in P converging 
to PEP, then for a suitable n,, 

Define the set-valued function SC p+2Ll(r,X’ by &L(P) = 
{xEL1(p,X):x(t)E$(t,p)p-a.e.). Let B and B be the open unit balls in X 
and L,(p, X), respectively. We first show that for a suitable no, S,(p,) c 
S,(p)+& for all nzn,. 

We begin by finding the suitable no. Since for each fixed t E T, $(t, .) is 
q.u.s.c. we can find a minimal M, such that 

$(t,p,)c$(t,p)+bB for all nZJ@fMt, (4.1) 

where 6 = 0/3~( T). 
We now show that M, is a measurable function of t. However, first we 

make a few observations. By assumption for each fixed p and n, 

GJl(..PnJ+6B EZ@ p(X) and so does (G,,., P,)+as)C (where SC denotes the 
complement of the set S). It is easy to see that G~~.,,,nG,,.,,,)+dB)C~~O 
p(X). Therefore, the set 

belongs to r@/?(X). 
It follows from the projection theorem [see for. instance Debreu (1967, 

(3.4), p. 357)] that 

proj,(U)Er. 
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Notice that 

By virtue of the measurability of the above set we can now conclude that M, 
is a measurable function of t. In particular, simply notice that 

{tET:h4,=mj= n {tET:~(t,Pn)C~(t,P)+6B} 
ntm 

We are now in a position to choose the desired n,. Since II/(. , .) is integrably 
bounded there exists h~Li(p,R) such that for almost all tE T, sup{((xll 
: x E t,b(t, p)} 5 h(t) for each p E P. 

Choose 6, such that if p(S)<6,, (ScT), then J,h(t)dp(t)<u/3. Since M, is 
a measurable function of t, we can choose no such that p({t E T M, 2 n,}) < 
6,. This is the desired no. Let n z:n, and y I&,. We must show that 

y E &L(p) + Id. 

By assumption, for each fixed PEP, Ic/(. ,p) has a measurable graph and 
$(. ;) is non-empty valued. Hence, by the Aumann measurable selection 
theorem there exists a measurable function fi: T-+X such that 

fi (r) E $(r, P) v - a.e. Define the correspondence 0: T-+2’ by 
O(t)=({y(t)}+dB)nrl/(t,p). It follows from (4.1) that for all tETo={t:MIs 
no}, d(t) # 0. Moreover, O( .) has a measurable graph. Another application of 
the Aumann measurable selection theorem allows us to guarantee the 
existence of a measurable function f2: T--+X such that f2(t) E 13(t) /L--a.e. 
Define f: T-X by 

f(t)= fl(t) for t4To, 
f2(t) for tE To. 

Then f(t) E $(t,p) p-a.e. and since $(. , .) is integrably bounded we can 
conclude that feS,(p). If we show that ((f-y[l<v then y~&,(p)+uB and we 
will be done. But this is easy to see. We have 

~2 s h(t) 44t) + 1 6 ddt) 
T/To TO 
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< 2u/3 + 6,u( T) = 2v/3 + u/3/*(T) . p(T) = v. 

This completes the proof of the fact that, if the sequence {p,: n = 1,2,. . . } in 
P converges to PEP, then for a suitable n,, 

S,(p,) t SJp) + US for all n 2 n,. (4.2) 

Define now the mapping y: L, (cl, X)-+X by y(x) = ST x(t) dp(t). It follows from 
(4.2) that for all nzn,, 

Y(Sjb(P”)) = M4: x E S,(A)) 

= i $(t, P,) G(t) c Y(S,(P) + us) = Y(~,(P)) + Y Co@ 

Hence, 

ST~(t,p,)dp(t)C~l(l(r,p)d~(t)+vB for all n>,no. 

i.e., jT$(r;)dp(r) is q.u.s.c. as was to be shown. 

4.3. Proof of Theorem 3.2 

We first show that the set-valued function S,: P+2LL(p9x’ defined by 

S,(P) = {x E L,hX): x0) E $(t,p) P--.e.), 

has a weakly closed graph, i.e., if {p,: n = 1,2,. . . } is a sequence in P 
converging to p E P, then 

w - L&i(P,) = S,(P). (4.3) 

To this end let x E w - LsS,(p,), i.e., there exists xk (k = 1,2,. . .) in L, (p, X) 
such that xk converges weakly to x E L, (p, X), and xk(r) E t,b(t, p,,) p-a.e., we - 
must show that XE &(p). It follows from Lemma 4.3 that x(t) ~conw- 
Ls { xJt)} p - a.e. and therefore, 

x(r)Econw-Ls$(t,p,) p--a.e. (4.4) 
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Since for each fixed t E T, $(t, .) has a weakly closed graph we have that 

w-LsJ/(t,p,)c$(t,p) p--.e. (4.5) 

Combining (4.4) and (4.5) and taking into account the fact that $ is convex 
valued we have that x(t) E $(t,p) p-a,e. Since $ is integrably bounded, we 
can conclude that x E S,(p). This completes the proof of the fact that S,( .) 
has a weakly closed graph. Define the linear mapping 

n:L,(p,X)+X by n(x)=jx(t)dp(t). 

It follows from (4.3) that if the sequence {p,: n= 1,2,. . . } in P converges to 
PEP, then 

= {44: x E S,(P)) 

i.e., J$(t;) has a weakly closed graph as was to be shown. 

4.4. Proof of Theorem 3.3 

We first show that the set-valued function S,: P+2L1(r9x) defined by 

%(P) = (YE L (K -0 y(t) E #(t, PI P -a.e.) 

is 1s.~. 

To see this, let {p,: it = 1,2,. . . } be a sequence in P converging to p E P. We 
must show that S,(p)cLiS,(p,). Since by assumption for each fixed t E T, 
4(t, .) is 1.s.c. we have that 4(t, p) c L$(t, p,) for all t E T, and therefore, 

s#(P) c slip. (4.6) 

It follows now from Lemma 4.2 that (4.6) can be written as 

Hence, 
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S,( * ) is 1.s.c. 

Define now the mapping y:Li(p,X)+X by y(x)= JTx(t)dp(t). Then y is 
linear and norm continuous. Notice that 

Y&M = {Y(X): x E S,(P)~ = s 4th P) Wt). 
T 

Since S,( .) is 1s.~. so is y(S,), i.e., lrf$(t,‘)dp(t) is 1.s.c. as was to be shown. 
This completes the proof of Theorem 3.2. 

4.5. Proqf of Corollary 3.2 

We begin by proving an approximate version of the Fatou Lemma in 
infinite dimensions [see also Balder (1988), Khan and Majumdar (1986) and 
Yannelis (1988) for w-Ls versions of this Lemma], which may be considered 
as an extension of the finite dimensional Fatou-type lemmata obtained in 
Aumann (1965) Artstein (1979), Balder (1984), Hildenbrand and Mertens 
(1971), Rustichini and Yannelis (1986), and Schmeidler (1970). 

Lemma 4.5. Let (T, z, p) be a complete, finite measure space and X be a 
separable Banach space. Let &I,,: T-+2X (n= 1,2,. . .) be a sequence of non- 
empty valued, graph measurable and integrably bounded correspondences, 
taking values in a compact, non-empty subset of X. Then 

Ls j h(t) ddt) ccl j L&(t) d/4+ 
T T 

Moreover, if Ls$,( ‘) is convex valued, then 

Ls j 4,(t) ddt) = j L&(t) MO. 
T T 

Proof. Denote by P the interval [0, 1). As in Rustichini and Yannelis (1986) 
define the set-valued function Ic/: T x P-+2’ by 

:’ 
4,(t) if l/(n+ l)<p< l/n, 

$(r,p)= 4,(r) u cb,+i(r) if p= l/(n+ l), 

1 W,(t) if p=O. 

It can be easily checked that for each fixed t E T, t,b(t;) is U.S.C. and that for 
each fixed PEP, $(. ,p) has a measurable graph [recall Lemma 4.4 and 
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Remark 4.11. Moreover, I,!I is integrably bounded. Hence, $ satisfies all the 
assumptions of Theorem 3.1. and thus, jT$(t;) dp(t) is q.u.s.c. Let now 
xELslT$,,(t)dp(t), i.e., there exists x,, such that lim,,, x”,=.x, 

x,,,E jT@&) dAt) (k = 192,. . . ). We wish to show that x~clj~Ls$~,(t) dp(t). 

Since jT$(t;)dp(t) is q.u.s.c. it follows that if pnk converges to 0 then 
jT $(t,pnr) dp(t) cJTt+b(t, 0) dp(t) + uB for all sufficiently large k. Consequently, 
xnk~jT$(t,O) dp(t) + oB for all sufficiently large k and therefore, 

x~clS~(t,O)d~(t)rclSLs~,(t)d~(t) 
T 7 

as was to be shown. If now Ls$,( .) is convex valued (recall that Ls$,,( .) is 
closed valued as well) it follows from Lemma 4.1 and the first conclusion of 
Lemma 4.5 that 

Ls j 4, dAt) ccl j h4df) MO = j W,(t) ddt). 
T T T 

The proof of Lemma 4.5 is now complete. 

We are now ready to complete the proof of Corollary 3.2. Notice first that 
it follows from Lemma 4.2 that 

(4.7) 

To see this define the linear mapping “/:L,(p,X)+X by ?;(~)=j~.x(t)dp(t). 
Note that y(SLig,)={y( x x E S,i4,} = jLi@, and hence by virtue of Lemma ): 
4.2 we zan conclude that 

y(SLig,) cy(LiS+J= {y(x): xEL~S#~} =L.ij4,. 

This completes the proof of (4.7). Since by assumption +,(t)+4(t)p-a.e., i.e., 
4(t) = L$,( t) = ,!a$,,( t) ,u - a.e., it follows from Lemma 4.5 and the expression 

(4.7) above that 

S~=SLi~,cLij~,cLsS~,cClSLS~,=ClS~. (4.8) 

Therefore, 

cl j 4(t) dp(t) = Li f A,(t) G(t) = Ls s h,(t) 44th 
T T T 

i.e., 

J 4,(t) dA+cl j 4(t) dA0. 
T T 
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If now @( .) is convex valued, (4.8) can be written (recall the second 
conclusion of Lemma 4.5) as 

i.e., 

S, 4(t) dAt) = Li /, d.(t) dAt) = Ls L 4,(t) dp(t), 

s, A,(t) dAt)+[ 4(t) dp(t), 

and this completes the proof of Corollary 3.2. 
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