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Summary. In the context of differential information economies, with and without
free disposal, we consider the concepts of Radner equilibrium, rational expectations
equilibrium, private core, weak fine core and weak fine value. We look into the pos-
sible implementation of these concepts as perfect Bayesian or sequential equilibria
of noncooperative dynamic formulations. We construct relevant game trees which
indicate the sequence of decisions and the information sets, and explain the rules for
calculating ex ante expected payoffs. The possibility of implementing an allocation
is related to whether or not it is incentive compatible. Implementation through an
exogenous third party or an endogenous intermediary is also considered.
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1 Introduction

An economy with differential information consists of a finite set of agents each
of which is characterized by a random utility function, a random consumption set,
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random initial endowments, a private information set defined on the states of nature,
and a prior probability distribution on these states. For such an economy there are
a number of cooperative and non-cooperative equilibrium concepts.

We have the noncooperative concepts of the generalized Walrasian equilibrium
ideas of Radner equilibrium and rational expectations equilibrium (REE) defined
in Radner (1968), Allen (1981) and Einy, Moreno, and Shitovitz (2000, 2001).1

We also have the cooperative concepts of the private core (Yannelis, 1991), of the
weak fine core, defined in Yannelis (1991) and Koutsougeras and Yannelis (1993),
and that of the weak fine value (Krasa and Yannelis, 1994). The last two concepts
allow the agents to pool their information.2

In a comparison of the equilibrium concepts we note that contrary to the private
core any rational expectations Walrasian equilibium notion will always give zero
quantities to an agent whose initial endowments are zero in each state. This is
so irrespective of whether his private information is the full partition or the trivial
partition of the states of nature. Hence the Radner as well as the REE do not register
the informational superiority of an agent.

In Glycopantis, Muir, and Yannelis (2001) we provided a noncooperative inter-
pretation of the private core for a three persons economy without free disposal. We
constructed game trees which indicate the sequence of decisions and the informa-
tion of the agents, and explained the rules for calculating ex ante, expected payoffs,
through the reallocation of initial endowments. We showed that the private core
can be given a dynamic interpretation as a perfect Bayesian equilibrium (PBE) of
a noncooperative extensive form game.

The term implementation is used in the sense of realization of an allocation
and not in the formal sense of implementation theory or mechanism design. Imple-
mentation or support of an allocation is sought through the PBE concept, described
in Tirole (1988), which is a variant of the Kreps-Wilson (1982) idea of sequential
equilibrium.

A PBE consists of a set of players’ optimal behavioral strategies, and consistent
with these, a set of beliefs which attach a probability distribution to the nodes of
each information set. Consistency requires that the decision from an information
set is optimal given the particular player’s beliefs about the nodes of this set and the
strategies from all other sets, and that beliefs are formed from updating, using the
available information. If the optimal play of the game enters an information set then
updating of beliefs must be Bayesian. Otherwise appropriate beliefs are assigned
arbitrarily to the nodes of the set. This equilibrium concept is further looked at in
Appendix I.

Our main observation in Glycopantis, Muir, and Yannelis (2001) was that
Bayesian incentive compatible concepts, like the private core, can be implemented
as a PBE of a noncooperative, extensive form game. Moreover we provided a
counter example which demonstrates that core concepts which are not necessarily
Bayesian incentive compatible, as for example the weak fine core, cannot be sup-
ported, under reasonable rules, in a dynamic framework. In the present paper we

1 Kurz (1994) has provided the alternative idea of rational belief equilibria.
2 See also Allen and Yannelis (2001) for additional references.
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examine further the issue of extensive form implementation and obtain additional
results.

Firstly, we consider cooperative and noncooperative solution concepts with and
without free disposal. To our surprise, as it was not intuitively obvious, we found that
solution concepts which are Bayesian incentive compatible without free disposal,
do not retain this property under free disposal. In particular, not only free disposal
destroys incentive compatibility but a problem also appears in verifying that an
agent has actually destroyed part of his initial endowment.

Secondly, we provide examples which demonstrate that with free disposal co-
operative and noocooperative solution concepts are not implementable as a PBE.
However implementation becomes possible by introducing a third party, such as a
court which has perfect knowledge in order to be able to penalize the lying agents.

Thirdly, for the purpose of implementation of the (non-free) disposal private
core, we follow an alternative approach. We consider the (non-free) disposal private
core example of the one-good, three-agent economy discussed in Glycopantis, Muir,
and Yannelis (2001). The introduction of a third party results in the implementation
of the private core allocation as a PBE. We show here that it can also be implemented
as a sequential equilibrium (Kreps and Wilson, 1982).

Finally we provide a full characterization of our Bayesian incentive compati-
bility concept in the case of one good per state.

The analysis suggests that if an allocation is not incentive compatible, i.e. the
agents do not find that it is in accordance with their interests, then there is a difficulty
in implementing it in a dynamic framework. On the other hand incentive compatible
allocations are implementable through contracts with reasonable conditions. We
note that the implementation analysis is independent of the equilibrium notion. It
applies to contracts in general which can be analysed by a similar tree structure.

Parts of the investigation fall into the area of the Nash programme the purpose
of which has been, as explained in Glycopantis, Muir, and Yannelis (2001), to
provide support and justification of cooperative solutions through noncooperative
formulations. On the other hand we extend here the investigation into more gen-
eral areas by discussing explicitly the possible implementation of noncooperative
concepts such as Radner equilibrium and REE. It appears that in general the issue
is the relation between dynamic and static considerations, not necessarily between
cooperative and noncooperative formulations.

The paper is organized as follows. Section 2 defines a differential information
exchange economy. Section 3 contains the equilibrium concepts discussed in this
paper. Section 4 describes ideas of incentive compatibility. Section 5 discusses
the non-implementation of free disposal private core allocations and Section 6 the
implementation of private core and Radner equilibria through the courts. Section 7
discusses the implementation of non-free disposal private core allocations through
an endogenous intermediary. Section 8 offers concluding remarks. Appendix I
contains further remarks on PBE.
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2 Differential information economy

We define the notion of a finite-agent economy with differential information, con-
fining ourselves to the case where the set of states of nature, Ω, is finite and there is
a finite number of goods, l, per state. F is a σ-algebra on Ω, I is a set of n players
and IRl

+ will denote the positive orthant of IRl.
A differential information exchange economy E is a set {((Ω, F), Xi, Fi, ui,

ei, qi) : i = 1, . . . , n} where

1. Xi : Ω → 2IRl
+ is the set-valued function giving the random consumption set

of Agent (Player) i, who is denoted also by Pi;
2. Fi is a partition of Ω, denoting the private information3 of Pi;
3. ui : Ω×IRl

+ → IR is the random utility function of Pi;
4. ei : Ω → IRl

+ is the random initial endowment of Pi, assumed to be constant
on elements of Fi, with ei(ω) ∈ Xi(ω) for all ω ∈ Ω;

5. qi is an F-measurable probability function on Ω giving the prior of Pi. It is
assumed that on all elements of Fi the aggregate qi is positive. If a common
prior is assumed it will be denoted by µ.

We will refer to a function with domain Ω, constant on elements of Fi, as
Fi-measurable, although, strictly speaking, measurability is with respect to the σ-
algebra generated by the partition. We can think of such a function as delivering
information to Pi which does not permit discrimination between the states of nature
belonging to any element of Fi.

In the first period agents make contracts in the ex ante stage. In the interim
stage, i.e., after they have received a signal4 as to what is the event containing the
realized state of nature, one considers the incentive compatibility of the contract.

For any xi : Ω → IRl
+, the ex ante expected utility of Pi is given by

vi(xi) =
∑

ω∈Ω

ui(ω, xi(ω))qi(ω). (1)

Denote by Ei(ω) the element in the partition Fi which contains the realized state
of nature, ω ∈ Ω. It is assumed that qi

(
Ei(ω)

)
> 0 for all ω ∈ Ω. The interim

expected utility function of Pi is given by

vi(ω, xi) =
∑

ω′ ∈Ω

ui(ω
′
, xi(ω

′
))qi

(
ω

′ |Ei(ω)
)
, (2)

where

qi

(
ω

′ |Ei(ω)
)

=






0 for ω
′

/∈ Ei(ω)
qi(ω

′
)

qi

(
Ei(ω)

) for ω
′ ∈ Ei(ω).

3 Following Aumann (1987) we assume that the players’ information partitions are common knowl-
edge. Sometimes Fi will denote the σ-algebra generated by the partition, in which case Fi ⊆ F , as it
will be clear from the context.

4 A signal to Pi is an Fi-measurable function from Ω to the set of the possible distinct observations
specific to the player; that is, it induces the partition Fi, and so gives the finest discrimination of states
of nature directly available Pi.
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3 Private core, weak fine core, Radner equilibrium, REE and weak fine value

We define here the various equilibrium concepts in this paper, distinguishing be-
tween the free disposal and the non-free disposal case. A comparison is also made
between these concepts. All definitions are in the context of the exchange economy
E in Section 2.

We begin with some notation. Denote by L1(qi, IRl) the space of all equivalence
classes, with respect to qi, of F-measurable functions fi : Ω → IRl.

LXi is the set of all Fi-measurable selections from the random consumption
set of Agent i, i.e.,

LXi
=

{
xi ∈ L1(qi, IRl) : xi : Ω → IRl is Fi-measurable

and xi(ω) ∈ Xi(ω) qi-a.e.
}

and let LX =
n∏

i=1
LXi .

Also let

L̄Xi =
{

xi ∈ L1(qi, IRl) : xi(ω) ∈ Xi(ω) qi-a.e.
}

and let L̄X =
n∏

i=1
L̄Xi .

An element x = (x1, . . . , xn) ∈ L̄X will be called an allocation. For any
subset of players S, an element (yi)i∈S ∈ ∏

i∈S

L̄Xi will also be called an allocation,

although strictly speaking it is an allocation to S.
We note that the above notation is employed also for purposes of comparisons

with the analysis in Glycopantis, Muir, and Yannelis (2001). In case there is only
one good, i.e. l = 1, we shall use the notation L1

Xi
, L̄1

Xi
etc. When a common prior

is also assumed L1(qi, IRl) will be replaced by L1(µ, IRl).
First we define the notion of the (ex ante) private core5 (Yannelis, 1991).

Definition 3.1. An allocation x ∈ LX is said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S

LXi such that
∑

i∈S

yi =
∑

i∈S

ei and vi(yi) > vi(xi) for all i ∈ S.

Notice that the definition above does not allow for free disposal. If the feasibility
condition (i) is replaced by (i)′

∑n
i=1 xi ≤ ∑n

i=1 ei then free disposal is allowed.

Example 3.1. Consider the following three agents economy, I = {1, 2, 3} with
one commodity, i.e. Xi = IR+ for each i, and three states of nature Ω = {a, b, c}.

We assume that the initial endowments and information partitions of the agents are
given by

5 The private core can also be defined as an interim concept. See Yannelis (1991) and Glycopantis,
Muir, and Yannelis (2001).
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e1 = (5, 5, 0), F1 = {{a, b}, {c}};
e2 = (5, 0, 5), F2 = {{a, c}, {b}};
e3 = (0, 0, 0), F3 = {{a}, {b}, {c}}.

It is also assumed that ui(ω, xi(ω)) = x
1
2
i , which is a typical strictly concave and

monotone function in xi, and that every player expects that each state of nature
occurs with the same probability, i.e. µ({ω}) = 1

3 , for ω ∈ Ω. For convenience, in
the discussion below expected utilities are multiplied by 3.

It was shown in Appendix II of Glycopantis, Muir, and Yannelis (2001) that,
without free disposal, a private core allocation of this economy is x1 = (4, 4, 1),
x2 = (4, 1, 4) and x3 = (2, 0, 0). It is important to observe that in spite of the
fact that Agent 3 has zero initial endowments, his superior information allows him
to make a Pareto improvement for the economy as a whole and he was rewarded
for doing so. In other words, Agent 3 traded his superior information for actual
consumption in state a. In return Agent 3 provided insurance to Agent 1 in state
c and to Agent 2 in state b. Notice that if the private information set of Agent 3
is the trivial partition, i.e., F ′

3 = {a, b, c}, then no-trade takes place and clearly
in this case he gets zero utility. Thus the private core is sensitive to information
asymmetries.

Next we define another core concept, the weak fine core (Yannelis, 1991; Kout-
sougeras and Yannelis, 1993). This is a refinement of the fine core concept of
Wilson (1978). Recall that the fine core notion of Wilson as well as the fine core in
Koutsougeras and Yannelis may be empty in well behaved economies. It is exactly
for this reason that we are working with a different concept.

Definition 3.2. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a weak fine
core allocation if

(i) each xi(·) is
n∨

i=1
Fi-measurable 6

(ii)
∑n

i=1 xi =
∑n

i=1 ei and
(iii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S

L̄Xi such that

yi(·) − ei(·) is
∨

i∈S

Fi-measurable for all i ∈ S,
∑

i∈S

yi =
∑

i∈S

ei and vi(yi) >

vi(xi) for all i ∈ S.

Existence of private core and weak fine core allocations is discussed in Glycopantis,
Muir, and Yannelis (2001). The weak fine core is also an ex ante concept. As
with the private core the feasibility condition can be relaxed to (ii)′

∑n
i=1 xi ≤∑n

i=1 ei. Notice however that now coalitions of agents are allowed to pool their
own information and all alocations will exhaust the resource. The example below
illustrates this concept.

Example 3.2. Consider the Example 3.1 without Agent 3. Then if Agents 1 and 2
pool their own information a possible allocation is x1 = x2 = (5, 2.5, 2.5). Notice

6
n∨

i=1
Fi denotes the smallest σ-algebra containing each Fi.
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that this allocation is
2∨

i=1
Fi-measurable and cannot be dominated by any coalition

of agents using their pooled information. Hence it is a weak fine core allocation.7

Next we shall define a Walrasian equilibrium notion in the sense of Radner. In
order to do so, we need the following. A price system is an F-measurable, non-
zero function p : Ω → IRl

+ and the budget set of Agent i is given by

Bi(p) =
{

xi : xi : Ω → IRl is Fi-measurable xi(ω) ∈ Xi(ω)

and
∑

ω∈Ω

p(ω)xi(ω) ≤
∑

ω∈Ω

p(ω)ei(ω)
}

.

Notice that the budget constraint is across states of nature.

Definition 3.3. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈
LX is an allocation, is a Radner equilibrium if

(i) for all i the consumption function maximizes vi on Bi

(ii)
∑n

i=1 xi ≤ ∑n
i=1 ei ( free disposal), and

(iii)
∑

ω∈Ω

p(ω)
∑n

i=1 xi(ω) =
∑

ω∈Ω

p(ω)
∑n

i=1 ei(ω).

Radner equilibrium is an ex ante concept. We assume free disposal, for otherwise it
is well known that a Radner equilibrium with non-negative prices might not exist.
This can be seen through straightforward calculations in Example 3.1.

Next we turn our attention to the notion of REE. We shall need the following.
Let σ(p) be the smallest sub-σ-algebra of F for which p : Ω → IRl

+ is measurable
and let Gi = σ(p)∨Fi denote the smallest σ-algebra containing both σ(p) and Fi.
We shall also condition the expected utility of the agents on Gi which produces a
random variable.

Definition 3.4. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈
L̄X is an allocation, is a rational expectations equilibrium (REE) if

(i) for all i the consumption function xi(ω) is Gi-measurable.
(ii) for all i and for all ω the consumption function maximizes

vi(xi|Gi)(ω) =
∑

ω′ ∈E
Gi
i (ω)

ui(ω
′
, xi(ω

′
))

qi(ω
′
)

qi

(
EGi

i (ω)
) , (3)

(where EGi
i (ω) is the event in Gi which contains ω and qi(EGi

i (ω)) > 0) subject
to

p(ω)xi(ω) ≤ p(ω)ei(ω)

i.e. the budget set at state ω, and
(iii)

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) for all ω.

7 See Koutsougeras and Yannelis (1993).
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This is an interim concept because we condition expectations on information re-
ceived from prices as well. In the definition, free disposal can easily be introduced.
The idea of conditioning on the σ-algebra, vi(xi|Gi)(ω), is rather well known.

REE can be classified as (i) fully revealing if the price function reveals to each
agent all states of nature, (ii) partially revealing if the price function reveals some
but not all states of nature and (iii) non-revealing if it does not disclose any particular
state of nature.

Finally we define the concept of weak fine value allocation (see Krasa and
Yannelis, 1994). As in the definition of the standard value allocation concept, we
must first define a transferable utility (TU) game in which each agent’s utility is
weighted by a factor λi (i = 1, . . . , n), which allows interpersonal comparisons.
In the value allocation itself no side payments are necessary.8 A game with side
payments is then defined as follows.

Definition 3.5. A game with side payments Γ = (I, V ) consist of a finite set of
agents I = {1, . . . , n} and a superadditive, real valued function V defined on 2I

such that V (∅) = 0. Each S ⊂ I is called a coalition and V (S) is the ‘worth’ of
the coalition S.

The Shapley value of the game Γ (Shapley, 1953) is a rule that assigns to each
Agent i a ‘payoff’, Shi, given by the formula9

Shi(V ) =
∑

S⊆I

S⊇{i}

(| S | −1)!(| I | − | S |)!
| I |! [V (S) − V (S\{i})]. (4)

The Shapley value has the property that
∑

i∈I Shi(V ) = V (I), i.e. it is Pareto
efficient.

We now define for each economy with differential information, E , and a com-
mon prior, and for each set of weights, λi : i = 1, . . . , n, the associated game with
side payments (I, Vλ) (we also refer to this as a ‘transferable utility’ (TU) game)
as follows:

For every coalition S ⊂ I , let

Vλ(S) = max
x

∑

i∈S

λi

∑

ω∈Ω

ui(ω, xi(ω))µ(ω) (5)

subject to

(i)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ−a.e.,
(ii) xi − ei is

∨

i∈S

Fi−measurable.

We are now ready to define the weak fine value allocation.

8 See Emmons and Scafuri (1985, p. 60) for further discussion.
9 The Shapley value measure is the sum of the expected marginal contributions an agent can make

to all the coalitions of which he/she is a member (see Shapley, 1953).
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Definition 3.6. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a weak fine
value allocation of the differential information economy, E , if the following con-
ditions hold

(i) Each net trade xi − ei is
n∨

i=1
Fi-measurable,

(ii)
∑n

i=1 xi =
∑n

i=1 ei and
(iii) There exist λi ≥ 0, for every i = 1, . . . , n, which are not all equal to zero, with∑

ω∈Ω

λiui(ω, xi(ω))µ(ω) = Shi(Vλ) for all i, where Shi(Vλ) is the Shapley

value of Agent i derived from the game (I, Vλ), defined in (5) above.

Condition (i) requires the pooled information measurability of net trades, i.e. net
trades are measurable with respect to the “join”. Condition (ii) is the market clearing
condition and (iii) says that the expected utility of each agent multiplied by his/her
weight, λi, must be equal to his/her Shapley value derived from the TU game
(I, Vλ).

An immediate consequence of Definition 3.6 is that

Shi(Vλ) ≥ λi

∑

ω∈Ω

ui(ω, ei(ω))µ(ω)

for every i, i.e. the value allocation is individually rational. This follows immediately
from the fact that the game (Vλ, I) is superadditive for all weights λ. Similarly,
efficiency of the Shapley value for games with side payments immediately implies
that the value allocation is weak-fine Pareto efficient.

On the basis of the definitions and the analysis of Example 3.1 of an exhange
economy with 3 agents and of Example 3.2 with 2 agents we make comparisons
between the various equilibrium notions. The calculations of all, cooperative and
noncooperative, equilibrium allocations are straightforward.

Contrary to the private core any rational expectation Walrasian equilibium no-
tion, such as Radner equilibrium or REE, will always give zero to an agent who
has no initial endowments. For example, in the 3-agent economy of Example 3.1,
Agent 3 receives no consumption since his budget set is zero in each state. This is
so irrespective of whether his private information is the full information partition
F3 = {{a}, {b}, {c}} or the trivial partition F ′

3 = {a, b, c}. Hence the Walrasian,
competitive equilibrium ideas do not take into account the informational superiority
of an agent.

The set of Radner equilibrium allocations, with and without free disposal, are
a subset of the corresponding private core allocations. Of course it is possible
that a Radner equilibrium allocation might not exist. In the two-agent economy
of Example 3.2, assuming non-free disposal the unique private core is the initial
endowments allocation while no Radner equilibrium exists. On the other hand,
assuming free disposal, for the same example, the REE coincides with the initial
endowments allocation which does not belong to the private core. It follows that
the REE allocations need not be in the private core.

We also have that a REE need not be a Radner equilibrium. In Example 3.2,
without free disposal no Radner equilibrium with non-negative prices exists but
REE does. It is unique and it implies no-trade.
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As for the comparison between private and weak fine core allocations the
two sets could intersect but there is no definite relation. Indeed the measurability
requirement of the private core allocations separates the two concepts. In Example
3.2 the allocation (5, 2.5, 2.5) to Agent 1 and (5, 2.5, 2.5) to Agent 2, as well as (6,
3, 3) and (4, 2, 2) belong to the weak fine core but not to the private core. There are
many weak fine core allocations which do not satisfy the measurability condition.

For n = 2 one can easily verify that the weak fine value belongs to the weak
fine core. However it is known (see, for example, Scafuri and Yannelis, 1984) that
for n ≥ 3 a value allocation may not be a core allocation, and therefore may not
be a Radner equilibrium.

Also, in Example 3.1 a private core allocation is not necessarily in the weak
fine core. Indeed the division (4, 4, 1), (4, 1, 4) and (2, 0, 0), to Agents 1, 2 and
3 respectively, is a private core but not a weak fine core allocation. The first two
agents can get together, pool their information and do better. They can realize the
weak fine core allocation, (5, 2.5, 2.5), (5, 2.5, 2.5) and (0, 0, 0) which does not
belong to the private core.

Finally notice that even with free disposal no allocation which does not distribute
the total resource could be in the weak fine core. The three agents can get together,
distribute the surplus and increase their utility.

In the next section we shall discuss whether core and Walrasian type allocations
have certain desirable properties from the point of view of incentive compatibility.
Following this, we shall turn our attention in later sections to the implementation
of such allocations.

4 Incentive compatibility

The basic idea is that an allocation is incentive compatible if no coalition can
misreport the realized state of nature to the complementary set of agents and become
better off.

Let us suppose we have a coalition S, with members denoted by i, and the
complementary set I \ S with members j. Let the realized state of nature be ω∗. A
member i ∈ S sees Ei(ω∗). Obviously not all Ei(ω∗) need be the same, however
all Agents i know that the actual state of nature could be ω∗.

Consider now a state of nature ω
′

with the following property. For all j ∈ I \S
we have ω

′ ∈ Ej(ω∗) and for at least one i ∈ S we have ω
′

/∈ Ei(ω∗) (otherwise
ω

′
would be indistinguishable from ω∗ for all players and, by redefining utilities

appropriately, could be considered as the same element of Ω). Now the coalition
S decides that each member i will announce that she has seen her own set Ei(ω

′
)

which, of course, definitely contains a lie. On the other hand we have that ω
′ ∈⋂

j /∈S

Ej(ω∗), (we also denote j ∈ I \ S by j /∈ S).

Now the idea is that if all members of I \ S believe the statements of the
members of S then each i ∈ S expects to gain. For coalitional Bayesian incentive
compatibility (CBIC) of an allocation we require that this is not possible. This is the
incentive compatibility condition used in Glycopantis, Muir, and Yannelis (2001)
where we gave a formal definition.
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We showed there that in the three-agent economy without free disposal the
private core allocation x1 = (4, 4, 1), x2 = (4, 1, 4) and x3 = (2, 0, 0) is incentive
compatible. This follows from the fact that Agent 3 who would potentially cheat in
state a has no incentive to do so. It has been shown in Koutsougeras and Yannelis
(1993) that if the utility functions are monotone and continuous then private core
allocations are always CBIC.

On the other hand the weak fine core allocations are not always incentive com-
patible, as the proposed redistribution x1 = x2 = (5, 2.5, 2.5) in the two-agent
economy shows. Indeed, if Agent 1 observes {a, b}, he has an incentive to report c
and Agent 2 has an incentive to report b when he observes {a, c}.

CBIC coincides in the case of a two-agent economy with Individually Bayesian
Incentive Compatibility (IBIC) which corresponds to the case in which S is a
singleton.

The concept of Transfer Coalitionally Bayesian Incentive Compatible
(TCBIC) allocations, used in this paper,10 allows for transfers between the mem-
bers of a coalition, and is therefore a strengthening of the concept of Coalitionally
Bayesian Incentive Compatibility (CBIC).

Definition 4.1. An allocation x = (x1, . . . , xn) ∈ L̄X , with or without free dis-
posal, is said to be Transfer Coalitionally Bayesian Incentive Compatible (TCBIC)
if it is not true that there exists a coalition S, states ω∗ and ω

′
, with ω∗ different from

ω
′

and ω
′ ∈ ⋂

i/∈S

Ei(ω∗) and a random net-trade vector, z, among the members of

S,

(zi)i∈S ,
∑

S

zi = 0

such that for all i ∈ S there exists Ēi(ω∗) ⊆ Zi(ω∗) = Ei(ω∗) ∩ (
⋂

j /∈S

Ej(ω∗)),

for which

∑

ω∈Ēi(ω∗)

ui(ω, ei(ω) + xi(ω
′
) − ei(ω

′
) + zi)qi

(
ω|Ēi(ω∗)

)
(6)

>
∑

ω∈Ēi(ω∗)

ui(ω, xi(ω))qi

(
ω|Ēi(ω∗)

)
.

Notice that the zi’ s above are not necessarily measurable. The definition is cast in
terms of all possible zi’ s. It follows that ei(ω)+xi(ω

′
)−ei(ω

′
)+zi(ω) ∈ Xi(ω)

is not necessarily measurable. The definition means that no coalition can form with
the possibility that by misreporting a state, every member will become better off if
the announcement is believed by the members of the complementary set.

Returning to Definition 4.1, one then can define CBIC to correspond to zi = 0
and then IBIC to the case when S is a singleton. Thus we have (not IBCI) ⇒ (not
CBIC) ⇒ (not TCBIC). It follows that TCBIC ⇒ CBIC ⇒ IBIC.

We now provide a characterization of TCBIC:

10 See Krasa and Yannelis (1994) and Hahn and Yannelis (1997) for related concepts.
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Proposition 4.1. Let E be a one-good differential information economy as de-
scribed above, and suppose each agent’s utility function, ui = ui(ω, xi(ω)) is
monotone in the elements of the vector of goods xi, that ui(., xi) is Fi-measurable
in the first argument, and that an element x = (x1, . . . , xn) ∈ L̄1

X is a feasible
allocation in the sense that

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) ∀ω. Consider the following

conditions:

(i) x ∈ L1
X =

n∏

i=1
L1

Xi
and

(ii) x is TCBIC.

Then (i) is equivalent to (ii).

Proof. First we show that (i) implies (ii) by showing that (i) and the negation of
(ii) lead to a contradiction.

Let x ∈ LX and suppose that it is not TCBIC. Then, varying the notation for
states to emphasize that Definition 4.1 does not hold, there exists a coalition S,
states a and b, with a 	= b and b ∈ ⋂

i/∈S

Ei(a) and a net-trade vector, z, among the

members of S,
(zi)i∈S ,

∑

S

zi = 0

such that for all i ∈ S there exists Ēi(a) ⊆ Zi(a) = Ei(a) ∩ (
⋂

j /∈S

Ej(a)), for

which
∑

c∈Ēi(α)

ui(c, ei(c) + xi(b) − ei(b) + zi)qi

(
c|Ēi(a)

)
(7)

>
∑

c∈Ēi(a)

ui(c, xi(c))qi

(
c|Ēi(a)

)
.

For c ∈ Ēi(a), ei(c) = ei(a) since ei is Fi-measurable, so

ei(c) + xi(b) − ei(b) + zi = ei(a) + xi(b) − ei(b) + zi

and hence also

ui

(
c, ei(c) + xi(b) − ei(b) + zi

)
= ui

(
a, ei(a) + xi(b) − ei(b) + zi

)
,

by the assumed Fi-measurability of ui.
Since, by (i), xi(c) = xi(a) for c ∈ Ēi(a), we similarly have ui

(
c, xi(c)

)
=

ui

(
a, xi(a)

)
. Thus in equation (7) the common utility terms can be lifted outside

the summations giving

ui

(
a, ei(a) + xi(b) − ei(b) + zi

)
> ui

(
a, xi(a)

)

and hence ei(a) + xi(b) − ei(b) + zi > xi(a), by monotonicity of ui.
Consequently,

∑

i∈S

(
xi(b) − ei(b)

)
>

∑

i∈S

(
xi(a) − ei(a)

)
. (8)
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On the other hand for i /∈ S we have xi(b) − ei(b) = xi(a) − ei(a) from which
we obtain ∑

i/∈S

(
xi(b) − ei(b)

)
=

∑

i/∈S

(
xi(a) − ei(a)

)
. (9)

Taking equations (8),(9) together we have
∑

i∈I

(
xi(b) − ei(b)

)
>

∑

i∈I

(
xi(a) − ei(a)

)
, (10)

which is a contradiction since both sides are equal to zero, by feasibility.11

We now show that (ii) implies (i). For suppose not. Then there exists some
Agent j and states a, b with b ∈ Ej(a) such that xj(a) 	= xj(b). Without loss
of generality, we may assume that xj(a) > xj(b). Since ej(.) is Fj-measurable
ej(b) = ej(a) and therefore

xj(a) − ej(a) > xj(b) − ej(b). (11)

Let S = I\{j}. From the feasibility of x and (11) it follows that
∑

i∈S

(
xi(a) − ei(a)

)
= −(

xj(a) − ej(a)
)

< −(
xj(b) − ej(b)

)
(12)

=
∑

i∈S

(
xi(b) − ei(b)

)
.

From (12) we have that

δ =
∑

i∈S

(
ei(a) + xi(b) − ei(b) − xi(a)

)
> 0. (13)

For each i ∈ S, let

zi = xi(a) − ei(a) − xi(b) + ei(b) +
δ

n − 1

so that
∑

i∈S zi = 0 and

ei(a) + xi(b) − ei(b) + zi > xi(a).

By monotonicity of ui, we can conclude that

ui(a, ei(a) + xi(b) − ei(b) + zi) > ui(a, xi(a)), (14)

for all i ∈ S, a contradiction to the fact that x is TCBIC as the role of Ēi in the
definition can be played by {a}.

Finally note that a particular case of Fi-measurability of ui is when it is inde-
pendent of ω. This completes the proof of Proposition 4.1. ��

11 Koutsougeras and Yannelis (1993) and Krasa and Yannelis (1994) show that (i) implies (ii) for any
number of goods, but for ex post utility functions. This means that the contract is made ex ante and after
the state of nature is realized we see that we have incentive compatibility. Hahn and Yannelis (1997)
show that (i) implies (ii) for any number of goods and for interim utility functions. Notice that since the
non-free disposal Radner equilibrium is a subset of the non-free disposal ex ante private core, it follows
from Hahn and Yannelis that the non-free disposal Radner equilibrium is TCBIC.



508 D. Glycopantis et al.

In the lemma that follows we refer to CBIC, as TCBIC does not make much
sense since zi is not available. CBIC is obtained when all zi’s are set equal to zero.

Lemma 4.1. Under the conditions of the Proposition, if there are only two agents
then (ii) x is CBIC, which is the same as IBIC, implies (i).

Proof. For suppose not. Then lack of Fi-measurability of the allocations implies
that there exist Agent j and states a, b, where b ∈ Ej(a), such that xj(b) < xj(a)
and therefore

xj(b) − ej(b) < xj(a) − ej(a). (15)

Feasibility implies

xi(b) − ei(b) + xj(b) − ej(b) = xi(a) − ei(a) + xj(a) − ej(a) (16)

from which we obtain

xi(b) − ei(b) > xi(a) − ei(a). (17)

By monotonicity and the one-good per state assumption it follows that,

ui(a, ei(a) + xi(b) − ei(b)) > ui(a, xi(a)). (18)

This implies that we have

ui(a, ei(c) + xi(b) − ei(b)) > ui(a, xi(c)) (19)

which contradicts the assumption that x is CBIC. This completes the proof of the
lemma. ��

The above results characterize TCBIC and CBIC in terms of private individual
measurability, i.e. Fi-measurability, of allocations. These results will enable us to
conclude whether or not, in case of non-free disposal, any of the solution concepts,
i.e. Radner equilibrium, REE, private core, weak fine core and weak fine value will
be TCBIC whenever feasible allocations are Fi-measurable.

It follows from the lemma that the redistribution shown in the matrix below,
which is a weak fine core allocation of Example 3.2, where the ith line refers to
Player i and the columns from left to right to states a, b and c,

(
5 2.5 2.5
5 2.5 2.5

)

is not CBIC as it is not Fi-measurable. Thus, a weak fine core allocation may not
be CBIC.

On the other hand the proposition implies that, in Example 3.2, the no-trade
allocation (

5 5 0
5 0 5

)

is incentive compatible. This is a non-free disposal REE, and a private core alloca-
tion.
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We note that the Proposition 4.1 refers to non-free disposal. As a matter of fact
Proposition 4.1 is not true if we assume free disposal. Indeed if free disposal is
allowed Fi-measurability PBE does not imply incentive compatibility.

In the case with free disposal, private core and Radner equilibrium need not
be incentive compatible. In order to see this we notice that in Example 3.2 the
(free disposal) Radner equilibrium is x1 = (4, 4, 1) and x2 = (4, 1, 4). The above
allocation is clearly Fi-measurable and it can easily be checked that it belongs to
the (free disposal) private core. However it is not TBIC since if state a occurs Agent
1 has an incentive to report state c and gain.

Now in employing game trees in the analysis, as it is done below, we will adopt
the definition of IBIC. The equilibrium concept employed will be that of PBE. The
definition of a play of the game is a directed path from the initial to a terminal node.

In terms of the game trees, a core allocation will be IBIC if there is a profile of
optimal behavioral strategies and equilibrium paths along which no player misre-
ports the state of nature he has observed. This allows for the possibility, as we shall
see later, that such strategies could imply that players have an incentive to lie from
information sets which are not visited by an optimal play.

In view of the analysis in terms of game trees we comment again on the general
idea of CBIC. First we look at it once more, in a similar manner to the one in the
beginning of Section 4.

Suppose the true state of nature is ω̄. Any coalition can only see that the state
lies in

⋂

i∈S

Ei(ω̄) when they pool their observations. If they decide to lie they must

first guess at what is the true state and they will do so at some ω∗ ∈ ⋂

i∈S

Ei(ω̄). Then

of course we have
⋂

i∈S

Ei(ω̄) =
⋂

i∈S

Ei(ω∗). Having decided on ω∗ as a possible

true state, they now pick some ω
′ ∈ ⋂

j /∈S

Ej(ω∗) and (assuming the system is not

CBIC) they hope, by announcing (each of them) that they have seen Ei(ω
′
) to

secure better payoffs.
This is all contingent on their being believed by I \S. This, in turn, depends on

their having been correct in their guessing that ω∗ = ω̄, in which case they might be
believed. If ω∗ 	= ω̄, i.e they guess wrongly, then since

⋂

j /∈S

Ej(ω∗) 	= ⋂

j /∈S

Ej(ω̄)

they may be detected in their lie, since possibly ω
′

/∈ ⋂

j /∈S

Ej(ω̄).

This is why the definition of CBIC can only be about possible existence of
situations where a lie might be beneficial. It is not concerned with what happens if
the lie is detected. On the other hand the extensive form forces us to consider that
alternative. It requires statements concerning earlier decisions by other players to
lie or tell the truth and what payoffs will occur whenever a lie is detected, through
observations or incompatibility of declarations. Only in this fuller description can
players really make a decision whether to risk a lie, since only then can they balance
the gains from not being caught against a definitely declared payoff if they are.

The issue is whether cooperative and noncooperative static solutions can be ob-
tained as perfect Bayesian or sequential equilibria. That is whether such allocations
can also be supported through an appropriate noncooperative solution concept. The
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analysis below shows that CBIC allocations can be supported by a PBE while lack
of incentive compatibility implies non-support, in the sense that the two agents, left
on their own, do not sign the contract. It is also shown how implementation of allo-
cations becomes possible through the introduction in the analysis of an exogenous
third party or an endogenous intermediary.

5 Non-implementation of free disposal private core and Radner equilibria,
and of weak fine core allocations

The main point here is that lack of IBIC implies that the two agents based on their
information cannot sign a proposed contract because both of them have an incentive
to cheat the other one and benefit. Indeed PBE leads to no-trade. This so irrespective
of whether in state a the contract specifies that they both get 5 or 4.

Note that to impose free disposal in state a causes certain problems, because
the question arises as to who will check that the agents have actually thrown away
1 unit. In general, free disposal is not always a very satisfactory assumption in
differential information economies with monotone preferences.

We shall investigate the possible implementation of the allocation
(

4 4 1
4 1 4

)

in Example 3.2, contained in a contract between P1 and P2 when no third party is
present. For the case with free disposal, this is both a private core and a Radner
equilibrium allocation.

This allocation is not IBIC because, as we explained in the previous section, if
Agent 1 observes {a, b}, he has an incentive to report c and Agent 2 has an incentive
to report b when he observes {a, c}.

We construct a game tree and employ reasonable rules for describing the out-
comes of combinations of states of nature and actions of the players. In fact we
look at the contract (

5 4 1
5 1 4

)

in which the agents get as much per state as under the private core allocation above.
The latter can be obtained by invoking free disposal in state a.

The investigation is through the analysis of a specific sequence of decisions
and information sets shown in the game tree in Figure 1. Notice that vectors at
the terminal nodes of a game tree will refer to payoffs of the players in terms of
quantities. The first element will be the payoff to P1, etc.

The players are given strategies to tell the truth or to lie, i.e., we model the
idea that agents truly inform each other about what states of nature they observe,
or deliberately aim to mislead their opponent. The issue is what type of behavior is
optimal and therefore whether a proposed contract will be signed or not. We find
that the optimal strategies of the players imply no-trade.

Figures 1 and 2 show that the allocation (5, 4, 1) and (5, 1, 4) will be rejected
by the players. They prefer to stay with their initial endowments and will not sign
the proposed contract as it offers to them no advantage.
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Figure 1

In Figure 1, nature chooses states a, b or c with equal probabilities. This choice
is flashed on a screen which both players can see. P1 cannot distinguish between a
and b, and P2 between a and c . This accounts for the information sets I1, I2 and I

′
2

which have more than one node. A player to which such an information set belongs
cannot distinguish between these nodes and therefore his decisions are common to
all of them. A behavioral strategy of a player is to declare which choices he would
make, with what probability, from each of his information sets. Indistinguishable
nodes imply the Fi-measurability of decisions.

P1 moves first and he can either play A1 = {a, b} or c1 = {c}, i.e., he can say
“I have seen {a, b} or “I have seen c”. Of course only one of these declarations will
be true. Then P2 is to respond saying that the signal he has seen on the screen is
A2 = {a, c} or that it is b2 = {b}. Obviously only one of these statements is true.

Strictly speaking the notation for choices should vary with the information set
but there is no danger of confusion here. Finally notice that the structure of the
game tree is such that when P2 is to act he knows exactly what P1 has chosen.

Next we specify the rules for calculating the payoffs, i.e. the terms of the
contract:

(i) If the declarations by the two players are incompatible, that is (c1, b2) then
no-trade takes place and the players retain their initial endowments. That is
the case when either state c, or state b occurs and Agent 1 reports state c and
Agent 2 state b. In state a both agents can lie and the lie cannot be detected by
either of them. They are in the events {a, b} and {a, c} respectively, they get
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Figure 2

5 units of the initial endowments and again they are not willing to cooperate.
Therefore whenever the declarations are incompatible, no trade takes place
and the players retain their initial endowments.

(ii) If the declarations are (A1, A2) then even if one of the players is lying, this
cannot be detected by his opponent who believes that state a has occured and
both players have received endowment 5. Hence no-trade takes place.

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected. P1
is trapped and must hand over one unit of his endowment to P2. Obviously if
his initial endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected.
P2 is now trapped and must hand over one unit of his endowment to P1.
Obviously if his initial endowment is zero then he has nothing to give.

The calculations of payoffs do not require the revelation of the actual state of
nature. Optimal decisions will be denoted by a heavy line. We could assume that a
player does not lie if he cannot get a higher payoff by doing so.

Assuming that each player chooses optimally from his information sets, the
game in Figure 1 folds back to the one in Figure 2. Inspection of Figure 1 reveals
that from the information set I2 agent P2 can play b2 with probability 1. (A heavy
line A2 indicates that this choice also would not affect the analysis). This accounts
for the payoff (4, 6) and the first payoff (0, 5) from left to right in Figure 2. Similarly
by considering the optimal decisions from all other information sets of P2 we arrive
at Figure 2. Analyzing this figure we obtain the optimal strategies of P1.

In conclusion, the optimal behavioral strategy for P1 is to play c1 with proba-
bility 1 from I1, i.e to lie, and from the singleton to play any probability mixture of
options, and we have chosen (A1,

1
2 ; c1,

1
2 ). The optimal strategy of P2 is to play

b2 from both I2 and I
′
2, i.e. to lie, and from the second singleton he can either tell
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the truth or lie, or spin a wheel, divided in proportions corresponding to A1 and c1,
to decide what to choose.

In Figures 1 and 2, the fractions next to the nodes in the information sets
correspond to beliefs of the agents obtained, wherever possible, through Bayesian
updating. I.e., they are consistent with the choice of a state by nature and the optimal
behavioral strategies of the players. This means that strategies and beliefs satisfy
the conditions of a PBE.

These probabilities are calculated as follows. From left to right, we denote
the nodes in I1 by j1 and j2, in I2 by n1 and n2 and in I

′
2 by n3 and n4. Given

the choices by nature, the strategies of the players described above and using the
Bayesian formula for updating beliefs we can calculate, for example, the conditional
probabilities

Pr(n1/A1) =
Pr(A1/n1) × Pr(n1)

Pr(A1/n1) × Pr(n1) + Pr(A1/n2) × Pr(n2)
(20)

=
1 × 0

1 × 0 + 1 × 1
3 × 1

2

= 0

and

Pr(n3/c1) =
Pr(c1/n3) × Pr(n3)

Pr(c1/n3) × Pr(n3) + Pr(c1/n4) × Pr(n4)
(21)

=
1 × 1

3

1 × 1
3 + 1 × 1

2 × 1
3

=
2
3
.

In Figure 3 we indicate, through heavy lines, plays of the game which are the
outcome of the choices by nature and the optimal behavioral strategies by the
players. The interrupted heavy lines signify that nature does not take an optimal
decision but simply chooses among three alternatives, with equal probabilities. The
directed path (a, c1, b2) with payoffs (5, 5) occurs with probability 1

3 . The paths
(b, c1, A2) and (b, c1, b2) lead to payoffs (5, 0) and occur with probability 1

3 (1− q)
and 1

3q, respectively. The values (1 − q) and q denote the probabilities with which
P2 chooses between A2 and b2 from the singleton node at the end of (b, c1). The
paths (c, A1, b2) (c, c1, b2) lead to payoffs (0, 5) and occur, each, with probability
1
3× 1

2 .
For all choices by nature, at least one of the players tells a lie on the optimal

play. The players by lying avoid the possibility of having to make a payment to
their opponent and stay with their initial endowments. The PBE obtained above
confirms the initial endowments. The decisions to lie imply that the players will
not sign the contract (5, 4, 1) and (5, 1, 4).

We have constructed an extensive form game and employed reasonable rules
for calculating payoffs and shown that the proposed allocation (5, 4, 1) and (5,
1, 4) will not be realized. A similar conclusion would have been reached if we
investigated the allocation (4, 4, 1) and (4, 1, 4) which would have been brought
about by considering free disposal.

Finally suppose we were to modify (iii) and (iv) of the rules and adopt those in
Section 5 of Glycopantis, Muir, and Yannelis (2001):
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Figure 3

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected, and
P1 is trapped and must hand over half of his endowment to P2. Obviously if
his endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected.
P2 is now trapped and must hand over half of his endowment to P1. Obviously
if his endowment is zero then he has nothing to give.

The new rules would imply, starting from left to right, the following changes in
the payoffs in Figure 1. The second vector would now be (2.5, 7.5), the third vector
(7.5, 2.5), the sixth vector (2.5, 2.5) and the eleventh vector (2.5, 2.5). The analysis
in Glycopantis, Muir, and Yannelis (2001) shows that the weak fine core allocation
in which both agents receive (5, 2.5, 2.5) cannot be implemented as a PBE. Again
this allocation is not IBIC.

Since we have two agents, the weak fine value belongs to the weak fine core. We
can also check through routine calculations that the non-implementable allocation
x1 = x2 = (5, 2.5, 2.5) belongs to the weak fine value, with the two agents
receiving equal weights.

Finally we note that, in the context of Figure 1, the perfect Bayesian equilibrium
implements the initial endowments allocation

(
5 5 0
5 0 5

)

·
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In the case of non-free disposal, no-trade coincides with the REE and it is imple-
mentable. However as it is shown in Glycopantis, Muir, and Yannelis (2002) a REE
is not in general implementable.

6 Implementation of private core and Radner equilibria through the courts;
implementation of weak fine core

We shall show here how the free disposal private core and also Radner equilibrium
allocation (

4 4 1
4 1 4

)

of Example 3.2 can be implemented as a PBE by invoking an exogenous third party,
which can be interpreted as a court which imposes penalties when the agents lie.

We shall assume that the agents do not hear the choice announced by the other
player or that they do not pay much attention to each other because the court will
verify the true state of nature.

It should be noted that now if the two players see the events (A1, A2) the
exogenous agent will not allow them to misreport the state of nature by imposing
a penalty for lying. Therefore the contract will be enforced exogenously.

The analysis is through the figures below. Figure 4 contains the information sets
of the two agents, P1 and P2, their sequential decisions and the payoffs in terms of
quantities. Each agent can choose either to tell the truth about the information set
he is in, or to lie.

Nature chooses states a, b and c with equal probabilities. P1 acts first and cannot
distinguish between a and b. When P2 is to act he has two kinds of ignorance. Not
only he cannot distinguish between a and c but also he does not know what P1 has
chosen before him. This is an assumption about the relation between decisions. The
one unit that the courts take from a lying agent can be considered to cover the costs
of the court.

Next given the sequence of decisions of the two players, shown on the tree, we
specify the rules for calculating payoffs in terms of quantities, i.e we specify the
terms of the contract. They will, of course include the penalties that the court would
impose to the agents for lying.

The rules are:

(i) If a player lies about his observation, then he is penalized by 1 unit of the
good. If both players lie then they are both penalized. For example if the
declarations are (c1, b2) and state a occurs both are penalized. If they choose
(c1, A2) and state a occurs then the first player is penalized. If a player lies
and the other agent has a positive endowment then the court keeps the quantity
substracted for itself. However, if the other agent has no endowment, then the
court transfers to him the one unit subtracted from the one who lied.

(ii) If the declarations of the two agents are consistent, that is (A1, A2) and state
a occurs, (A1, b2) and state b occurs, (c1, A2) and state c occurs, then they
divide equally the total endowments in the economy.
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Figure 4

One explanation of the size of the payoffs is that if the agents decide to share, they
do so voluntarily. On the other hand the court feel that they can punish them for
lying but not to the extent of forcing them to share their endowments.

Assuming that each player chooses optimally, given his stated beliefs, from the
information sets which belong to him, P2 chooses to play b2 with probability 1
from both I2 and I ′

2 and the game in Figure 4 folds back to the one in Figure 5.
The choice of b2 is justified as follows. We ignore for the moment the specific
conditional probabilities attached to the nodes of I2. On the other hand, starting
from left to right, the sum of the probabilities of the first two nodes must be equal

to
1
2

, and this implies that strategy b2 overtakes, in utility terms, strategy A2, as

1
2
5

1
2 +

1
2
2.5

1
2 < 4

1
2 . It follows that P2 chooses to play the behavioral strategy b2

with probability 1. Now inspection of Figure 5 implies that P1 will choose c1 from
I1. The conditional probabilities on the nodes of I1 follow from the fact that nature
chooses with equal probabilities and the optimal choice of c1 with probability 1

follows again from the fact that
1
2
5

1
2 +

1
2
2.5

1
2 < 4

1
2 .

Figure 6 indicates, through heavy lines, plays of the game which are the outcome
of choices by nature and the optimal strategies of the players. The fractions next
to the nodes of the information sets are obtained through Bayesian updating. I.e.
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Figure 5

they are consistent with the choice of a state by nature and the optimal behavioral
strategies of the players. We have thus obtained a PBE and the above argument
implies that it is unique.

The free disposal private core allocation that we are concerned with is imple-
mented, always, by at least one of the agents lying. The reason is that they make
the same move from all the nodes of an information set and the rules of the game
imply that they are not eager to share their endowments. They prefer to suffer the
penalty of the court.

Finally notice the following. Suppose that the penalties are changed as follows.
The court is extremely severe when an agent lies while the other agent has no
endowment. It takes all the endowment from the one who is lying and transfers it
to the other player. Everything else stays the same. Then the game is summarized
in a modified Figure 4. Numbering the end points from left to right, the 2nd vector
will be replaced by (5, 0), the 3rd by (0, 5), the 4th by (0, 0), the 6th by (0, 5) and
the 8th one by (5, 0).

The analysis of the game implies now that P2 will play A2 from I2 and P1 will
play A1 from I1. Therefore invoking an exogenous agent implies that the PBE will
now implement the weak fine core allocation

(
5 2.5 2.5
5 2.5 2.5

)

·
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Figure 6

7 Implementation of non-free disposal private core
through an endogenous intermediary

Here we draw upon the discussion in Glycopantis, Muir, and Yannelis (2001) but
we add the analysis that the optimal paths obtained are also part of a sequential
equilibrium. Hence we obtain a stronger conclusion, in the sense that we imple-
ment the private core allocation as a sequential equilibrium, which requires more
conditions than PBE.

In the case we consider now there is no court and the agents in order to decide
must listen to the choices of the other players before them. The third agent, P3,
is endogenous and we investigate his role in the implementation, or realization, of
private core allocations.

Private core without free disposal seems to be the most satisfactory concept.
The third agent who plays the role of the intermediary implements the contract and
gets rewarded in state a. We shall consider the private core allocation, of Example
3.1,




4 4 1
4 1 4
2 0 0





·
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We know that such core allocations are CBIC and we shall show now how they can
be supported as a perfect Bayesian equilibrium of a noncooperative game.

P1 cannot distinguish between states a and b and P2 between a and c. P3 sees
on the screen the correct state and moves first. He can either announce exactly what
he saw or he can lie. Obviously he can lie in two ways. When P1 comes to decide he
has his information from the screen and also he knows what P3 has played. When
P2 comes to decide he has his information from the screen and he also knows what
P3 and P1 played before him. Both P1 and P2 can either tell the truth about the
information they received from the screen or they can lie.

We must distinguish between the announcements of the players and the true
state of nature. The former, with the players’ temptations to lie, cannot be used to
determine the true state which is needed for the purpose of making payoffs. P3 has
a special status but he must also take into account that eventually the lie will be
detected and this can affect his payoff.

The rules of calculating payoffs, i.e. the terms of the contract, are as follows:

If P3 tells the truth we implement the redistribution in the matrix above which
is proposed for this particular choice of nature.
If P3 lies then we look into the strategies of P1 and P2 and decide as follows:

(i) If the declaration of P1 and P2 are incompatible we go to the initial en-
dowments and each player keeps his.

(ii) If the declarations are compatible we expect the players to honour their
commitments for the state in the overlap, using the endowments of the true
state, provided these are positive. If a player’s endowment is zero then no
transfer from that agent takes place as he has nothing to give.

The extensive form game is shown in Figure 7, in which the heavy lines can be
ignored in the first instance. We are looking for a PBE, i.e. a set of optimal be-
havioral strategies consistent with a set of beliefs. The beliefs are indicated by the
probabilities attached to the nodes of the information sets, with arbitrary r, s, q, p
and t between 0 and 1. The folding up of the game tree through optimal decisions
by P2, then by P1 and subsequently by P3 is explained in Glycopantis, Muir, and
Yannelis (2001).

In Figure 7 we indicate through heavy lines the equilibrium paths. The inter-
rupted heavy lines at the beginning of the tree signify that nature does not take an
optimal decision but simply chooses among three alternatives, with equal proba-
bilities. The directed paths (a, a, A1, A2) with payoffs (4, 4, 2), (b, b, A1, b2) with
payoffs (4, 1, 0) and (c, c, c1, A2) with payoffs (1, 4, 0) occur, each, with probability
1
3 . It is clear that nobody lies on the optimal paths and that the proposed reallocation
is incentive compatible and hence it will be realized.

Along the optimal paths nobody has an incentive to misrepresent the realized
state of nature and hence the private core allocation is incentive compatible. How-
ever even optimal strategies can imply that players might have an incentive to lie
from information sets which are not visited by the optimal play of the game. For
example, P1, although he knows that nature has chosen a or b, has an incentive to
declare c1 from I3

1 , trying to take advantage of a possible lie by P3. Similarly P2,
although he knows that nature has chosen a or c, has an incentive to declare b2 from
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Figure 7

I2
2 , I3

2 , I4
2 and I5

2 , trying to take advantage of possible lies by the other players.
Incentive compatibility has now been defined to allow that the optimal strategies
can contain lies, while there must be an optimal play which does not.

We also note that the same payoffs, i.e. (4, 4, 2), (4, 1, 0) and (1, 4, 0), can be
confirmed as a PBE for all possible orders of the players.

Next we turn our attention to obtaining a sequential equilibrium. This adds
further conditions to those of a PBE. Now, it is also required that the optimal
behavioral strategies and the beliefs consistent with these are the limit of a sequence
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consisting of completely stochastic behavioral strategies, that is all choices are
played with positive probability, and the implied beliefs. Throughout the sequence
it is only required that beliefs are consistent with the strategies. The latter are not
expected to be optimal.

We discuss how the PBE shown in Figure 7 can also be obtained as a sequential
equilibrium in the sense of Kreps and Wilson (1982). Therefore, we are looking for a
sequence of positive probabilities attached to all the choices from each information
set and beliefs consistent with these such that their limits are the results given in
Figure 7.

First we specify the positive probabilities, i.e. the completely stochastic strate-
gies, with which the players choose the available actions. The sequence is obtained
through {n = 2, 3, . . .}.

In the first instance we consider the singletons from left to right belonging to
P3. At the first one the positive probabilities attached to the various actions are
given by (a, 1 − 2

n ; b, 1
n ; c, 1

n ), at the second one by (a, 1
n ; b, 1 − 2

n ; c, 1
n ) and at

the third one by (a, 1
n ; b, 1

n ; c, 1 − 2
n ).

Then we come to the probabilities with which P1 chooses his actions from the
various information sets belonging to him. From I1

1 and I2
1 the choices and the

probabilities attached to these are (A1, 1− 1
n ; c1,

1
n ), and from I3

1 , as well as from
all the singletons, they are (A1,

1
n ; c1, 1 − 1

n ).
With respect to P2 choices and probabilities are given as follows. From I1

2 and I6
2

they are (A2, 1− 1
n ; b2,

1
n ) and from I2

2 , I3
2 , I4

2 and I5
2 they are (A2,

1
n ; b2, 1− 1

n ).
With respect to the singletons belonging to P2 we have for all of them (A2,

1
n ; b2,

1 − 1
n ).

Beliefs are indicated by the probabilities attached to the nodes of the information
sets. Below by the left (right) probability we mean the consistent with the above
behavioral strategies belief that the player attaches to being at the left (right) corner
node of an information set. We also give the limit of these beliefs as n tends to ∞.

In I1
1 the left probability is

1 − 2
n

1 − 1
n

and the right probability is
1
n

1 − 1
n

. The limit

is (1, 0).

In I2
1 the left probability is

1
n

1 − 1
n

and the right probability is
1 − 2

n

1 − 1
n

. The limit

is (0, 1).

In I3
1 the left probability is

1
2

and the right probability is
1
2

. The limit is
(1
2
,
1
2
)
.

In I1
2 the left probability is

(1 − 1
n )(1 − 2

n )
(1 − 2

n )(1 − 1
n ) + ( 1

n )2
and the right probability

is
( 1

n )2

(1 − 1
n )(1 − 2

n ) + ( 1
n )2

. The limit is (1, 0).

In I2
2 the left probability is

(1 − 2
n ) 1

n

(1 − 2
n ) 1

n + (1 − 1
n ) 1

n

and the right probability is

(1 − 1
n ) 1

n

(1 − 2
n ) 1

n + (1 − 1
n )( 1

n )
. The limit is

(1
2
,
1
2
)
.
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In I3
2 the left probability is

(1 − 1
n ) 1

n

(1 − 1
n ) 1

n + ( 1
n )2

and the right probability is

( 1
n )2

(1 − 1
n ) 1

n + ( 1
n )2

. The limit is (1, 0).

In I4
2 the left probability is

( 1
n )2

(1 − 1
n ) 1

n + ( 1
n )2

and the right probability is

(1 − 1
n ) 1

n

(1 − 1
n ) 1

n + ( 1
n )2

. The limit is (0, 1).

In I5
2 the left probability is

( 1
n )2

(1 − 2
n ) 1

n + ( 1
n )2

and the right probability is

(1 − 2
n ) 1

n

(1 − 2
n ) 1

n + ( 1
n )2

. The limit is (0, 1).

In I6
2 the left probability is

(1 − 1
n ) 1

n

(1 − 1
n ) 1

n + (1 − 1
n )(1 − 2

n )
and the right proba-

bility is
(1 − 1

n )(1 − 2
n )

(1 − 1
n ) 1

n + (1 − 1
n )(1 − 2

n )
. The limit is (0, 1).

The belief attached to each singleton is that it has been reached with probabil-
ity 1.

The limits of the sequence of strategies and beliefs confirm a particular Baye-
sian equilibrium as a sequential one. In an analogous manner, sequential equilibria
can also be obtained for the models analyzed in the previous sections.

8 Concluding remarks

As we have already emphasized in Glycopantis, Muir, and Yannelis (2001), we con-
sider the area of incomplete and differential information and its modelling important
for the development of economic theory. We believe that the introduction of game
trees, which gives a dynamic dimension to the analysis, helps in the development
of ideas.

The discussion in that paper is in the context of one-good examples without free
disposal. The conclusion was that core notions which may not be CBIC, such as
the weak fine core, cannot easily be supported as a PBE. On the other hand, in the
presence of an agent with superior information, the private core which is CBIC can
be supported as a PBE. The discussion provided a noncooperative interpretation
or foundation of the private core while making, through the game tree, the indi-
vidual decisions transparent. In this way a better understanding of how incentive
compatible contracts are formed is obtained.

In the present paper we investigate, in a one-good, two-agent economy, with and
without free disposal, the implementation of private core, of Radner equilibrium, of
weak fine core and weak fine values allocations. We obtain, through the construction
of a tree with reasonable rules, that free disposal private core allocations, to which
also the Radner equilibrium belongs, are not implementable. A brief comparison
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of the idea of CBIC in the static presentation with the case when the analysis is in
terms of game trees is made.

It is surprising that free disposal destroys incentive compatibility and creates
problems for implementation. Implementation in this case can be achieved by in-
voking an exogenous third party which can be thought of as a court that penalizes
lying agents. It is of course possible that rational agents, once they realize that they
can be cheated, might decide not to trade rather than rely on a third party which has
to prove that he has perfect knowledge and can execute the correct trades. Notice
that the third, exogenous party, in this case the court, plays the role of the mech-
anism designer in the relevant implementation literature (see Hahn and Yannelis,
2001, and the references there).

Similarly, implementation of a private core allocation becomes possible
through the introduction of an endogenous third party with zero endowments but
with superior information. In this case the third party is part of the model, i.e. an
agent whose superior information allows him to play the role of an intermediary.
The analysis overlaps with the one in Glycopantis, Muir, and Yannelis (2001). On
the other hand we show here that implementation can also be achieved through
a sequential equilibrium. It should be noted that the endogenous third agent is
rewarded for his superior information by receiving consumption in a particular
state, in spite of the fact that he has zero initial endowments in each state. However,
both Radner equilibria and REE would not recognize a special role to such an agent.
These Walrasian type notions would award to him zero consumption in all states
of nature.

In summary, the analysis here considers the relation between, cooperative and
noncooperative, static equilibrium concepts and noncooperative, game theoretic
dynamic processes in the form of game trees. We have examined the possible sup-
port and implementation as perfect Bayesian equilibria of the cooperative concepts
of the private core and the weak fine core, and the noncooperative generalized,
Walrasian type equilibrium notions of Radner equilibrium and REE. In effect what
we are doing is to look directly into the Bayesian incentive compatibility of the
corresponding allocations, as if they were contracts, and then consider their imple-
mentability.

Appendix I: A note on PBE

In this note we look briefly at equilibrium notions when sequential decisions are
taken by the players, i.e. in the context of game trees. For strategies we shall employ
the idea of a behavioral strategy for a player being an assignment to each of his
information sets of a probability distribution over the options available from that
set. For a game of perfect recall, Kuhn (1953) shows that analysis of the game in
terms of behavioral strategies is equivalent to that in terms of, the more familiar,
mixed strategies. In any case, behavioral strategies are more natural to employ with
an extensive form game. Sometimes we shall refer to them simply as strategies.

Consider an extensive form game and a given profile of behavioral strategies

s = {si : i ∈ I}
where I is the set of players.
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When s is used each node of the tree is reached with probability obtained by
producting the option probabilities given by s along the path leading to that node.
In particular, there is a probability distribution over the set of terminal nodes so
the expected payoff Ei to each player Pi may be expressed in terms of option
probabilities from each information set.

Consider any single information set J owned by Pi, with corresponding option
probabilities (1−πJ , πJ), where for simplicity of notation we assume binary choice.
The dependence of Ei on πJ is determined only by the paths which pass through J .
Taking any one of these paths, on the assumption that the game is of perfect recall,
the term it contributes to Ei will only involve πJ once in the corresponding product
of probabilities. Thus, on summing over all such paths, the dependence of Ei on
πJ is seen to be linear, with coefficients depending on the remaining components
of s.

This allows the formation of a reaction function expressing πJ in terms of the
remaining option probabilities, by optimizing πJ while holding the other proba-
bilities constant; hence the Nash equilibria are obtained, as usual, as simultaneous
solutions of all these functional relations. We are here adopting an agent form for
a player, where optimization with respect to each of his decisions is done indepen-
dently from all the others. A solution is guaranteed by the usual proof of existence
for Nash equilibria.

For example, consider the tree in Figure 4, denoting the option probabilities
from I1, I2 by (1 − α, α), (1 − β, β) respectively. The payoff functions are then
(apart from the factor 1

3 expressing the probability of Nature’s choice, and leaving
out terms not involving α which come from paths not passing through I1, I2

E1 = 5(1 − α)(1 − β) + 5(1 − α)β
+4α(1 − β) + 4αβ + 2.5(1 − α) + 4α + . . .

= 7.5 + 0.5α + . . . ;
E2 = 5(1 − α)(1 − β) + 4(1 − α)β

+5α(1 − β) + 4αβ + 2.5(1 − β) + 4β + . . .

= 7.5 + 0.5β + . . . .

Since the coefficient of α in E1 is positive, the optimal choice of α, i.e. the reaction
function of Agent 1 is 1. Similarly for β in E2 we obtain the value 1, and this is the
reaction function of Agent 2.

Note that in any such calculation, only the coefficient of each πJ is important
for the optimization – the rest of Ei is irrelevant. We may similarly treat the 21
option probabilities in Figure 7, obtaining 21 conditions which they must satisfy.
These are quite complex and there are, probably, many solutions but it may be
checked that the one given satisfies all conditions.

When an equilibrium profile is used, it is possible that some nodes are visited
with zero probability. This means that the restriction of the strategy profile to
subsequent nodes has no effect on the expected payoffs, so may be chosen arbitrarily.
To eliminate this redundancy in the set of Nash equilibria, a refinement of the
equilibrium concept to that of perfect equilibrium, was introduced for games of
perfect information – that is, games in which each information set is a singleton.
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This requires an equilibrium strategy also to be a Nash equilibrium for all sub-
games of the given game. In other words, the strategy profile should be a Nash
equilibrium for the game which might be started from any node of the given tree,
not just the nodes actually visited in the full game.

Any attempt to extend this notion to general games encounters the problem that
sub-trees might start from nodes which are not in singleton information sets. In
such a case, the player who must move first cannot know for certain at which node
he is located within that set. He can only proceed if he adopts beliefs about where he
might be, in the form of a probability distribution over the nodes of the information
set. Moreover, these beliefs must be common knowledge, for the other players to be
able to respond appropriately, so the desired extension of the equilibrium concept
must take into account both strategies and beliefs of the players. The game will be
played from any information set as if the belief probabilities had been realised by
an act of nature.

We need, therefore, to consider pairs (s, µ), consisting of a behavioral strategy
profile s and a belief profile

µ = {µJ : J ∈ J }.

Here, J denotes the set of information sets and µJ is a probability distribution
over the nodes of information set J , expressing the beliefs of the player who might
be required to play from that set. Given the belief profile, we then require that the
strategy profile give a perfect equilibrium, in the sense of being optimal for each
player starting from every information set. But we need also to consider the source
of the beliefs.

Given any behavioral strategy profile s denote the probability of reaching any
node a, using s, by ν(a). Consider first an information set, J , not all of whose nodes
are visited with zero probability when using s. We may calculate the conditional
probability of being at a node a ∈ J given that it is in J by

ν(a|J) =
ν({a} ∩ J)

ν(J)
=

ν(a)
ν(J)

since a ∈ J ⇒ {a} ∩ J = {a}. Thus the belief probabilities µJ(a) = ν(a|J) for
J are just the relative probabilities of reaching the nodes of J .

For example, returning to Figure 4 and employing the only Nash solution α =
β = 1 noted above, the probabilities of reaching the nodes of I2 are 0, 1

3 , 1
3 which

relativises, given the condition that we reach I , to 0, 1
2 , 1

2 as stated.
Thus for a PBE, the behavioral strategy-belief profile pair (s, µ) should satisfy

two conditions:

(i) For the given belief profile µ, the strategy profile s should be a perfect equi-
librium, as defined above;

(ii) For the given strategy profile s, the belief profile µ should be calculated at
each information set for which ν(I) 	= 0 by the formula above.

Justifications of the concept of perfect equilibrium in games of perfect infor-
mation will argue that the players need to have good strategies to employ, even
were something to go wrong with the intended play so that the game accidentally
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enters sub-trees which ought not to be accessed. One way to argue this is through
the notion of a trembling hand which makes errors, so possibly choosing the wrong
move. Employing this same idea in the context of perfect Bayesian equilibria, we
can allow small perturbations in the strategies, such that all information sets are
visited with non-zero probability. Then the relation determining beliefs from strate-
gies is well posed and we may consider only beliefs which arise as limiting cases
of such perturbations. This more restrictive definition of equilibrium is called a
sequential equilibrium.
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