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ARTICLES

LEARNING IN BAYESIAN GAMES BY
BOUNDED RATIONAL PLAYERS II:
NONMYOPIA

KoNSTANTINOS SErRFEs AND NicHoLAs C. YANNELIS
University of lllinois at Urbana—Champaign

We generalize results of earlier work on learning in Bayesian games by allowing
players to make decisions in a nonmyopic fashion. In particular, we address the

issue ofnonmyopidBayesian learning with an arbitrary number of bounded rational
players, i.e., players who choose approximate best-response strategies for the entire
horizon (rather than the current period). We show that, by repetition, nonmyopic
bounded rational players can reach a limit full-information nonmyopic Bayesian Nash
equilibrium (NBNE) strategy. The converse is also proved: Given a limit full-information
NBNE strategy, one can find a sequence of nonmyopic bounded rational plays that
converges to that strategy.

Keywords: Bayesian Game, Nash Equilibrium, Nonmyopia, Bayesian Learning,
Bounded Rationality

1. INTRODUCTION

The issue ofmyopicBayesian learning by a finite number of bounded rational
players has been addressed by Koutsougeras and Yannelis (1994). Recently, Kim
and Yannelis (1997b) extended that work by allowing the number of bounded
rational players to be arbitrary, i.e., any finite or infinite set or a continuum. Here,
we drop the myopia assumption and allow the players tadr@myopid.e., to
make decisions by taking into account the future.

In particular, the description of the model is as follows: (&, F, u) be a
probability measure space interpreted as the set of states of the world. Let
denote the¢ime horizonand A the set of playersA repeated Bayesian gan(er a
repeated game with differential information) is a sequence of gg@es € T}
such that for each G' = {(F!, X!, u,, qy) : @ € A}, where

1. F! denotes therivate informationof agentx in periodt,

2. X! (w) is theset of actionsavailable to agent in periodt when the state is,

3. Uy(w, ) : eea X! (w) — Ris theutility function of agent,

4. q, is theprior of agentu [q, is a density function, or Radon-Nikodym derivative,
such that,fmEQ 0o (@) die(w) = 1].
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The strategy, = {x! :t € T} of playera is a sequencex’, : t € T} where each
component is! measurable ang! (w) € X! (), u-a.e. and for alt € T. Given
E! (w), for each playew and for each strategy profilé = {X, : « € A} in period
t, define theconditional expected utility, (w, x') of playera as

v, X1 = / X @) (0| Ey@) i),
o' €EL(w)

whereq, (¢’ | E! (w)) denotes the conditional probability of, givenE! ().
We define playew’s total discounted expected utility,\do, X) for the strategy
proflex ={x':t e T} as

Uy (w, X) = Z 8tvu,(a), Xt),

teT

wheres € [0, 1) is thediscount factor.
An e-nonmyopic Bayesian Nash equilibriBNE, (G*)] is a strategy profile
x = {x' :t € T} such that, for altx € A and forp-a.e.,

Ua(w’ X) 2 UO,(CL), X—ou yot) —¢&

for all strategiesy,.

The NBNE, captures the idea of a bounded rational player in the sense that each
player chooses approximate obest-response strategies by taking into account
the future decisions. We call players who choose NBMN&uilibrium strategies
bounded rational, or we say that the play is bounded rational.

Learning in this model takes place as follows: The private information of player
« in periodt + 1, denoted byF!+1, is given by

FI = Flvoxh,

wherex' is the projection of a NBNEE*) on thetth coordinate an&! v o (x!) de-
notes the join, i.e., the smallestalgebra containing! ando (x'). Consequently,
for each playewr and period, we have

FLC R CRPc.. . (€

Expression (1) represents a learning process for player
Let

F()t = ViteT F(},a (2)

where F_a is the pooled information of player over the entire horizod. A
Bayesian game 3 B
G = {(Fa, Xa: Ug, o) - @ € A},

where X, Uy, q, are defined as above arﬁ_jx is given by (2), is called &imit
full-information Bayesian game
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Notice that the above setting is more general than the one of Kim and Yannelis
(1997b). In particular, by letting the discount be equal to zero, we are reduced to
the Kim-Yannelis framework. The questions that we address (and for which we
provide positive answers) are the following:

1.

2.

Can nonmyopic bounded rational players by repetition reach a limit full-information
NBNE outcome?

Conversely, pick a NBNE strategy for a limit full-information game. Can we construct
a sequence of bounded rational plays that converge to that strategy?

In a different setting and for a less general Bayesian game framework than ours,
guestion 1 has been addressed by Kalai and Lehrer (1993) and Nyarko (1996).
Question 2 is addressed for the first time in a nonmyopic setting.

The rest of the paper is organized as follows: Section 2 contains notation and
definitions. Section 3 describes the Bayesian game with differential information
with finitely many players. Section 4 proves the existence of a NENE(In
Section 5, we describe how learning takes place. In Section 6, we prove that
nonmyopic bounded rational players will reach a limit full-information NBNE
outcome and, conversely, given a limit full-information NBNE outcome, we can
construct a sequence of bounded rational nonmyopic play that converges to the
limit NBNE outcome. Section 7 addresses the same questions as those in Section 5
but in a Bayesian game with a continuum of nonmyopic players.

2. NOTATION AND DEFINITIONS

If X andY are sets, thgraph of the set-valued function (or correspondence),
¢ - X — 2Y,is denoted by

Gy ={(X.y) € X xY:yepX).

Let (22, F, u) be a complete, finite measure space, an¥ le¢ a separable Banach
space. The set-valued functign: Q@ — 2% is said to have aneasurable graph
if Gy ® B(X), whereg(X) denotes the BorefF-algebra onX and ® denotes
the productr-algebra. The set-valued functign: @ — 2X is said to bdower
measurabler justmeasurablef for every open subset of X, the set

weQ: ¢ NV £0)

is an element of.

Let (2, F, u) be afinite measure space andXelbe a Banach space. Following
Diestel and Uhl (1977), the functioh : @ — X is calledsimpleif there exist
X1, X2, - . ., XniN X anday, ez, . .., anin F suchthad | Xi x, Wherey,, (o) = 1
if o € o and xy,(w) = 0if @ ¢ . A function f: Q2 — X is said to be
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u-measurablédf there exists a sequence of simple functidiys: 2 — X such
that limy_ || fn(w) — f(w)|| = O for almost alkw € Q. A u-measurable function
f . Q@ — X is said to beBochner integrabléf there exists a sequence of simple
functions{f, : n=1,2, ...} such that

ﬂ&LHMM—HMMMw=O

In this case, for eack € F, we define the integral to be

/f(w)d,u(w): lim / fn(w) du(w).
E n—o0 E

It can be shown [see Diestel and Uhl (1977), Theorem 2, p. 45] that, if
f : Q@ — Xis au-measurable function, thehis Bochner integrable if and only
if [ I f (@)l du(w) < oo.

For 1< p < oo, we denote by ,(u, X) the space of equivalence classes of
X-valued Bochner integrable functiors 2 — X normed by

|mm=<[ﬂﬂdemw>5

Itis a standard result that normed by the functidnfp above L , (1, X) becomes
a Banach space [see Diestel and Uhl (1977, p. 50)].

Let X : @ — 2" be a correspondence, whe¥ds a Banach space. Also, let
u:QxY — Rbe areal-valued functiof2 can be decomposed into an atomless
part 2; and a countable union of atonss,. The following result from Balder
and Yannelis (1993, Theorem 2.8) states: Suppose that &g, X(w) is convex
and closedu(w, -) is concave and upper semicontinuousXf) andu(w, -) is
integrably bounded. Suppose further that foraalkt Q2,, X (w) is weakly closed
andu(w, -) is weakly upper semicontinuous of{w). Then,

U(X)=/Qu(w,x(w))dlt(w)

is weakly upper semicontinuous on the weakly closed-set= {y € Li(u,Y) :
Y(w) € X(w) andy is F-measurable

A corollary of the above result says thatlfis countable an (w) is weakly
closed andi(w, -) is weakly continuous, thed is weakly continuous as well.

A Banach space has tliRadon-Nikodym propertRNP) with respect to the
measure spacd, 7, v) if for eachv-continuous vector measu&: 7 — Y of
bounded variation, there exists some L(v, Y) such that, for alE € 7,

G(E) = /Eg(t)dv(t).
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It is a standard result [see Diestel and Uhl (1977)] that‘i{the norm dual oY)
has the RNP with respect (@, 7, v), then

(L1(v, )" = Loo(v, Y5).

We close this section by defining the notion of a martingale and stating the
martingale convergence theorem. ILdte a directed setand I€f; :i € 1} be a
monotone increasing net of subfields of F (i.e., R, € F, foriy <ip, iz, izin
). Anet{x :i € 1} in Ly(u, X) isa martingale if

E(Xi | Fil) = Xi;» Vi > il.

We denote the above martingale py, Fi}i<|. The proof of the followingmar-
tingale convergence theorecan be found in Diestel and Uhl (1977, p. 126). A
martingale{x;, Fi}ic) in L1(, X) converges in thé& 1(u, X)-norm if and only if
there existxin L1(u, X) suchthaE(x | F) = x; foralli € 1. Finally, recall [see,
e.g., Diestel and Uhl (1977, p. 129)] that if the martinggde Fi}ic, converges
intheL(u, X)-norm tox € L1(u, X), it also converges almost everywhere, i.e.,
limi_ X = X almost everywhere.

3. THE GAME WITH DIFFERENTIAL INFORMATION

Let T be a countable set that denotestilee horizonAn element ofT is denoted
byt.Let(2, F, u) be acomplete, finite, separable measure space, \Widgaotes
the set of states of the world and thealgebraF, the set of events. Let be a
separable Banach space afidbe a set of agents (which is any finite or infinite
set).

A repeated Bayesian ganfer a repeated game with differential information)
is a sequence of gamgS! : t € T} such that for each G' = {(F!, X!, uy, gy) :
o € A}, where

1. F!,isasubs-algebra ofF which denotes thprivate informatiorof agent in period
t.

2. X! : Q — 2Yis theaction set-valued functiowof agentx, whereX!, (w) is the set of
actions of agent, in periodt, when the state i®, which is F!-measurablé.

3. For eachw € @, U,(w, ) : Muea X! (w) — Riis theutility function of agento,
which depends on the states.

4. q, : 2 —> R, is theprior of agenta, [q, is a density function or Radon-Nikodym
derivative, such ’[hafmEQ O (@) di(w) = 1].

Let Lx: denote the set of all Bochner-integrable drldmeasurable selections
from the action set-valued functiok!, : @ — 2" of agentx in periodt, i.e.,

Lx = {x} € Li(u,Y) : X} is Fj-measurable ang, (») € X} (w), u-a.e}.

Let Lx, be the product ot x. over allt € T, i.e.,,Lx, = IterLx:. A typical
element ofLx, is denoted by, = {x}, : t € T} and is a sequence of strategies for
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playera over the entire horizon, where each element of the sequence belongs to
Lxt,i.e.,x, € Lx: . Atypical element ofX! (w) is denoted by (w) and a typical
element offTiet X, (w) is denoted by, ().
LetLx = ITyeal x, andLx , = Mazo L x,. Atypical element oL x is denoted
by x and ofL x_, by x_,. We endow all product spaces with the product topology.
Throughoutthe paper, we assume thatfor eaehAand each € T, there exists
a finite or countable partitio®! of 2. Moreover, ther-algebraF! is generated
by P!. For eachw € Q andt € T, let E} (w) € P! denote the smallest set Ff
containingw and assume that, for eaehand for each,

/ O (@) dp(w') > 0.
o' €EL (w)

For eachw € @ andt € T, theconditional (interim) expected utility functicof
agento, vy (@, -, ) : Lxt, x X} (w) - Ris defined as

Vo (0, X'y, X (@) =/ ] Uy (@, Xy (@), X, (@) Ga (@ | EL (@) diu(e),
o' €EL (w)

where
0 if o ¢E(w)

G (w/ | E‘t" (w)) = Qo (') . / t
Jorct 0y Qe (@) Apa(@) if o eE (o)

The functionv, (w, X' ,, X}, (w)) is interpreted as the conditional expected utility
of agenta in periodt, when he/she is using the actigf(w), the realized state is
o, and the other agents employ the strategy prafile wherex' , € Lxt, -
For eachw € Q, thetotal discounted conditional (interim) expected utiliof
agento,
Ug(w, -, ) i Lx , X H Xfx(a)) —- R
teT

is defined as

U (@, X o, X (@) = > 8" (0, X'y, X} (@),
teT

wheres € [0, 1), is thediscount factor.

The functionU, (w, X_,, X, (w)) is interpreted as the total discounted expected
utility of agenta, when he/she is using the sequence of strategi@s, the realized
state isw, and the other agents employ the sequence-of-strategies prqfile

A nonmyopic Bayesian Nash equilibritior G* = {G' : t € T} [denoted by
NBNE(G*)], is a strategy profilec* € Lx such that, for allx € A,

Uq (0, X2, Xi(w)) = Uq (0, X5y, Ya(@)), p-a.e.

max
Yo €Mte X, (@)
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Given are > 0, the strategy profilg* € Ly is said to be an-NBNE, (G*) if, for
eacha € Aandu-a.e.,

Uy (@, X5, XE(@)) = Uy (0, X5, Yo(@)) — &

—a?

for all y, (w) € Mier X}, (w).

4. EXISTENCE OF A NBNE(G*)

We can now state the assumptions needed for the existence of an RBNE(
First, we will establish the weak continuity of the total discounted expected utility.
Once this is done, the existence of a NBIE{ follows from [Kim and Yannelis
(1997a) or Yannelis (1997)]. We need the following assumptions:

Assumption 1. X!, : @ — 2" is a non-empty, convex, weakly compact-valued
and integrably bounded correspondence, havingameasurable graph.

Assumption 2.
() Foreachw € Q and for eacht € T, Uy(w, -, ) : TI, X} (w) — Ris continuous,
where eaclX! (w) is endowed with the weak topology.
(i) Foreachx € MyeaYq, With Y, =Y, U, (-, X) : @ —> Ris F-measurable.
(iif) For eachw € 2 andx_, € Maze Xa(w), Uy (@, X_q, ) : Xy (w) — Ris concave.
(iv) u, is integrably bounded.

THEOREM 1. Let G* = {G' : t € T} be a Bayesian game satisfying Assump-
tions1 and2. Then there exists a NBNE for G

Proof. It follows from Kim and Yannelis (1997b, Lemma A.1) that the condi-
tional expected utility, (w, X', X} (w)) is weakly continuous for eadhe T. We

need to show now that the total discounted expected utility,

U (@, X o, X (@) = 8" (0, X', X (@),
teT

is weakly continuous as well.

Because the s€l is countable, the desired result follows from Balder and
Yannelis (1993, Corollary 2.9).

SinceU,, is weakly continuous, concave amttmeasurable and the sexg,
satisfy Assumption 1, all conditions of the Kim and Yannelis (1997a) or Yannelis
(1997) equilibrium existence theorem are satisfied and therefore we can conclude
that a NBNE forG* exists. ]

Remark. Because NBNE(") ¢ NBNE.(G*), it also follows that NBNE
(G") # 4.

5. NONMYOPIC LEARNING

As we mentioned in the preceding sectiofsgenotes the time horizon. Agents
enter the game having private information about the states of nature and they choose
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a sequence of actions to maximize the approximate)(mtal discounted expected
utility, given that the other players have chosereasptimal strategy. At the end
of each period, each player observes the equilibrium strategies of all the players.
This observation generates new information, and agents refine their partitions.
More formally, leto (x') denote ther-algebra that the NBNEZ*) generates in
periodt. Then, the information of player in periodt + 1, denoted byF!*1, is
given by

Fift = Flvo(xh,

wherex' is the projection of a NBNE%*) on thetth coordinate an&! v o (x!) de-
notes the join, i.e., the smallestalgebra containing! ando (x'). Consequently,
for each playet,

FlCRMcFPc.... ©)

This represents a learning process for player
Now, let

FO( = vtET Fotp (4)

where F, is interpreted as the pooled information of playeover the entire
horizonT. A one-shot Bayesian game,

G = {(Fa, Xa, Uy, Q) T @ € A},

whereX,, u,, g, are defined as before arit, is given by (4), is called &imit
full-information Bayesian gamé.x and NBNEG) are defined for the Bayesian
gameG in a way analogous to that withy and NBNEG*) in the gameG*.

Note thatF, may or may not be the same as the full-informatiga s F,, which
is the pooled information over all players.

6. NONMYOPIC LEARNING IN FINITE BAYESIAN GAMES

We now state our first result that nonmyopic bounded rational play converges to a
limit full-information NBNE.

THEOREM 2. Let G* = {G' : t € T} be a Bayesian game satisfying Assump-
tionsland2and let{x' : t € T} be a sequence in NBN&*). Then, there exists
asubsequencex™ :n=1,2,...}of{x' :t € T}suchthatx":n=1,2,...}
converges weakly to*xe NBNEG).

Proof. Let{x! :t € T} be an element of NBNEG*). First, notice that, from
Diestel's Theorem [see, e.g., Kim and Yannelis (1997b, Lemma A.3)], leacls
weakly compact. From the measurability constraints, it follows that for each,

Lyt C Lx. Because! e Ly: for eacht andL x is weakly compact, it follows from
the Eberlein-Smulian Theorefunford and Schwartz (1958, p. 430)], that there
exists a subsequendg™ : n = 1,2,...}, such thatx" converges weakly to
x* € Lx. Hence, for each, x} is F,-measurable.
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Fixe € Aandw € Q. Let y,(w) € X,(w) be a strategy in the limit full-
information Bayesian gamé&. We need to show that* is a NBNE forG, i.e.,
thatu-a.e.,

Ug (@, X5, X5 (@) = Ug (0, Xy, Ya(®)).

—a’ o

Suppose by way of contradiction that for some playes A and forD C Q
with u(D) > 0, there existy, (w) such that, for allo € D,

Uq (0, X%, Ya(@)) > Ug (0, X2, X3 ().

Let
[Ua (@, X 4, Ya (@) = Ug (0. X5, X5(@))] = p.

Foreachm,(m=1,2,...) andw € D, setyl® = E[y, | F."]. Note that
Elye | R = E[E[yo | [ R = B[y | R

Hence,{y}'", F"}.1 is @ martingale inLx: C Li(u, Y) and by the martingale
convergence theorem [see Diestel and Uhl (1977, Corollary 2, p. 1263pn-
verges [in theL1(u, Y)-norm] and thus weakly tg, . It follows that (recall that
U, is weakly continuous) we can choase large enough so that, fon > m;, we
have

p—&
2

Ua (0, X2, Yo (@) — U (@, X7, yii(@) |<

and
|Ua(a), xm X(T(w)) - U, (a)’ x* X;(a))) - ,0—;9’

—a? —a

where(p — ¢)/2 > 0.
Thus,

Ua (@, X%, Yo (@) = Ug (@, X7, yi'(@)) + Uq (0, X7y, XT'(@))

—Ug (@, Xy, X2(@)) | < [Ug (@, X2, Yo (@) — Ug (@, X7, y2'(@)) |

— & — &
Pt P

+ !Ua (w0, X", X2 (@) — Ug (@, XE,, X;(w))‘ < 3

—o’ o

=p—ec.
Then, we have
Ua (@, Xy, Ya(@)) — Ug (@, X, Yo' (@) + Uq (@, X7, X7'(@))
— Uy (0, X%, X2 () < p—,
and by rearranging, we obtain
U (@, X7, YT) > U (@0, X, XT) + 2

for all w € D and for allm > m;. Hence, we found a stratedy' : m > mj}
that is an approximate Bayesian Nash equilibrium for playérom periodm;
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onward, while the other players have kept their strategies fixed. This contradicts
the fact thafx! : t € T} € NBNE.(G"). [}

COROLLARY 1. Let G = {G' : t € T} be a Bayesian game satisfying
Assumptiong and2 and let{x! : t € T} be a sequence in NBN&*). Then, there
exists a subsequen¢g™ : n = 1,2,...} of {x' : t € T} such that{x" : n =
1, 2, ...} converges weakly to*xe NBNEHG).

Proof. It follows if we set = 0 in the above proof. ]

THEOREM 3. Let G* = {G' : t € T} be a Bayesian game satisfying Assump-
tions1 and?2 and let X be an element of NBNB). Then for anye > 0 and t
large enough, there existg! : t > t'} in NBNE.(G*), such that X converges in
the Li(u, Y)-norm to X.

Proof. Letx!, = E[x} | F]. Note that
Bl |R] =E[EN R R] =EX[R].

Hence,{x}, F1}{%, is a martingale inLx. C Li(u,Y) and, by the martingale
convergence theorem, converges in thé 1 (i, Y)-norm tox*. To complete the
proof, it is enough to show that, fotarge enoughx' € NBNE, (G*). Suppose by
way of contradiction that, for infinitely martys, there exist®D, with (D) > 0
andy! (o) € M X, (w) such that

U, (a), xt,, y(tx(a))) > U, (a), xt,, X;(a))) +e

forallw € D. BecauseX!, (w) C X, (w) and the latter setis weakly compact, we can
assume thay! (w) converges weakly to some (w) (by passing to a subsequence
if necessary?$. It follows from the weak continuity of),, that, for allw € D,

Ua (@, X5y, V(@) = Uy (0, X5, Xi(@) + & > Uy (0, X5, X2 (),

—a’ N s N N

which contradicts the fact that € NBNE(G). ]

7. NONMYOPIC LEARNING IN BAYESIAN GAMES WITH A
CONTINUUM OF PLAYERS

In this section, we study the Bayesian gaie = {G' : t € T}, where the set

of players is a measure space. A Bayesian game with a measure space of agents
(A, A, v) is a sequence of gam¢&' : t € T} such that, for each G' = {(F!,

X! Uy, Q) @ € A}, where

1. F!,isasubs-algebra of~ which denotes thprivate informatiorof agentr in period
t.

2. Xt Ax Q — 2Y, is theaction set-valued functigiwhere X! («, ) is the set of
actions available to ageatin periodt when the state i®, which is F!-measurable.
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3. For each(a, w) € A x Q, U(at, w, -, ) :L1(v,Y) x X' (o, w) — R is the utility
function of agenix, using actiorx’, (w), when the state i® and the other players use
the joint actionx!.

4. q, : 2 - R4, is theprior of agentx [q, is a density function, or Radon-Nikodym
derivative, such thaf __ q.(e) du(w) = 1].

As before, letlx: denote the set of all Bochner-integrable d@ffdmeasurable
selections from the action set-valued functéi«, w) of agentx in periodt, i.e.,

Lx = {x'(a) € L1(i,Y) : X'(c, -) is F}-measurable ank' («, o)
e XY, w), u—a.e.}.

Let
Lx = {x' € L1(v, L1(, Y)) : X' (@) € Lx, v-a.e}.

A typical element ofL x: is denoted by'.

Let Lx be the product oL x: over allt T, i.e., Lx =TITierLx:. A typical
element ofL x is denoted by = {x! : t € T} and is a sequence of strategy pro-
files over the entire horizon, where each element of the sequence beldngs to
i.e.,x! € Lxt. A strategy of agent is an element of. x| = it Lx: denoted by
{x'(a) :t € T}. Foreacho, w) € Ax £, the conditional expected utility function
of agentx, v (o, @, -, -) : Lxt x X' (o, w) — Ris defined as

v(a, w, X', X (a, ) :/ U(er, o, X' (), X' (or, ©)) 0 (0 | E (@) die(),

W/ €E} (@)

where
" it o ¢ E@)
Go (o' | By (@) = O () if o eEl(w).
Joetr W@ du@ ¢ L)

For eachw € €2, thetotal discounted conditional (interim) expected utibfyplayer
a,U(a, w, -, ) . Ly x et X' (o, w) — Ris given by

U, o, X, X(a, @) = > 8'v(, 0, X', X' (@, ).
teT
A nonmyopic Bayesian Nash equilibridar G* is a strategy profile* € Lx such
that, forv-a.e. andu-a.e.,

U, 0, X", X*(@,w) =  max U(x, o, X", y(a, »)).
yellier X‘(a,w)

We can now state the assumptions needed for the proof of the next thorem.

Assumption 3.

(i) X': Ax Q — 2" is anon-empty, convex, weakly compact valued and integrably
bounded correspondence havige F-measurable graph, i.eGxte A ® F®
B(Y).
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(i) Foreacha € Aandt € T, X'(a, -) : @ — 2 has anF!-measurable graph, i.e.,
Gx(a) S Fclt ®B(Y)

Assumption 4.
(i) Foreach(a,w) € Ax Qandt € T, u(e, w,-,-) : L1(v,Y) x X' (e, w) — Ris
continuous wheré ; (v, Y) and X! («, w) are endowed with the weak topologies.
(i) Foreach(x,y) € Li(v,Y) x Y,u(-,-,X,y) : Ax @ - Ris A® F-measurable.
(iii) Foreacha € A, u(e, -, -, -) is integrably bounded.

Assumption 5.
(i) The dualY* of Y has the RNP with respect té\, A, v).

Given ane > 0, the strategy profile* € Lx is said to be a NBNEG*) if, for
u-a.e. and-a.e.,

U(a, , X*, x*(a, w) > U(a, o, X*, y(o, w)) — &

for all y(a, ) € Mier XY (@, w).

THEOREM 4. Let G* = {G' : t € T} be a Bayesian game satisfying Assump-
tions3-5 and let{x! : t € T} be a sequence in NBN&*). Then, there exists a
subsequencex™ :n =1,2,...} of {x' : t € T} such that{x : n =1,2,...}
converges weakly to*xe NBNEG).

Proof. Let{x! : t € T} be an element of NBNEG*). Recall that eaclh x:
is weakly compact. From the measurability constraints, it follows that, for each
t € T,Lx C Lyx.Becausex' € Ly for eacht and Ly is weakly compact,
it follows from the Eberlein-Smulian Theorefibunford and Schwartz (1958, p.
430)] that there exists a subsequefide : n = 1,2, ...} such thai™ converges
weakly tox* € Lx. Hence, for each, x* is F,-measurable.

Fixe € Aandw € Q. Lety(x, w) € X(a, w) be a strategy in the limit full-
information game. We need to show tixdtis a NBNE forG, i.e., thatu-a.e. and
v-a.e.,

U(e, w, X", X*(ar, w)) = U (o, o, X*, Y(at, w))

for all y(a, w) in the limit full-information game.

Suppose by way of contradiction that, for sofe ¢ A andD c Q with
v(M) > 0 andu(D) > 0, there existy(«a, ) in the limit full-information game
such that, for ale € M andw € D,

U(a, o, X*, y(o, w)) > U(a, o, X*, X" (o, w)).

Let
[U (o, o, X*, y(a, w)) — U (ar, 0, X*, X*(ar, )] = p > 0.

Foreachm (m=1,2,...) andw € D, sety?" = E[y,|FJ"]. Note that

Elya [ R = E[E[y. | R [FI] = B | R

o
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Hence,{y}'", F,"}i.1 is @ martingale inLx: C Li(u, Y) and by the martingale
convergence theoreryj" converges [in the_1(u, Y)-norm] and thus weakly to
Y- It follows that (recall thatJ, is weakly continuous) we can choosg large
enough so that, fam > m;, we havé

U (o, 0, X", y(@, ) — U e, o, X", y" (o, )| < "428

and
p—¢&

|U(aawa Xmsxm(av (1))) - U(C(va)’X*a)(*(av (,L)))' < 2

Thus,
U (a, 0, X", y(a, ®)) = U(e, 0, X", y"(, ©)) + U (e, @, X", X" (e, )
—U(e, 0. X", X (@, 0))| < [U(a, ., X", y(a, @)
—U(a, 0, X", Y™, w))| + |U (o, 0, X", X (e, w))

—¢ —¢
Pt P

_U ) 7X*7X* )
(a, w (o, )| < 5 5

=p—¢.
Then, we have
U(a, o, X*, y(a, w)) — U (a, 0, X", Y™ (@, 0)) + U (r, 0, X™, X" (@, ))
—U(a, w, X*, X*(a, w)) < p — &,
and by rearranging, we obtain
U(a, o, X", y" (o, ) > U (o, , X", xX™(a, w)) + &

foralle € M andw € D and for allm > my, a contradiction to the fact that
{X'}ter € NBNE,(G*). (]

COROLLARY 2. LetG* ={G':t € T} be a Bayesian game satisfying Assump-
tions 3-5 and let{x' :t € T} be in NBNEG*). Then there exists a subsequence
{x":n=1,2,...}of {x':teT}suchthatx™ : n =1, 2,...} converges weakly
to x*liesin NBNE(G).

Proof. It follows if we set = 0 in the above proof. ]

THEOREM 5. Let G* = {G! : t € T} be a Bayesian game satisfying Assump-
tions3-5 and let X in NBNHG). Then, for any > 0 and t large enough, there
exists{x' : t > t’} in NBNE.(G*) such that X converges in the 1(u, Y)-norm
to x*.

Proof. Letx! = E[x} | F!]. Note that
EDq | F] = E[EPG R |Fo] = B[ Fa).

Hence({x}, F}}{2, isamartingale i.x: C L1(«, Y) and, by the martingale con-
vergence theoremx! converges in the_1(u, Y)-norm to x*. To complete the
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proof, it is enough to show that, folarge enoughx' € NBNE, (G*). Suppose by
way of contradiction that, for infinitely marty, there existdM ¢ AandD c €,
with v(M) > 0, u(D) > 0, andy! (e, ®) € Mi>v X' (, w) such that

U(a, o, xt, yt(ot, w)) > U(a, o, X', Xt(oz, w)) + ¢

foralla € M andw € D.% BecauseX'(a, w) C X(«, ) and the latter set is
weakly compact, we can assume thigty, w) converges weakly to Somg (a, ),

by passing to a subsequence if necessary. Then, it follows from the weak continuity
of U («) that, for alle € M andw € D,

U(a, o, X*, Y (o, ) > U (o, o, X*, X" (o, ) + ¢ > U(a, o, X*, X*(, w)),

which contradicts the fact that € NBNE(G). n

8. CONCLUSIONS

We showed that the assumption of myopia can be disregarded from Bayesian learn-
ing atnoreal cost. In particular, players can choose strategies by taking into account
future actions and still by repetition the nonmyopic bounded rational players can
reach alimit full-information Bayesian Nash equilibrium outcome. The converse is
also true, i.e., given a limit full-information Bayesian Nash equilibrium outcome,
we can construct a sequence of nonmyopic bounded rational plays converging to
the limit full-information Bayesian Nash outcome.

NOTES

1. X! depends om only through the measurability constraint.

2. See also Section 2. _

3. yg' converges tg/3° = E[y. | Fq], which is equal toy, because, by constructiow, is in the
limit full-information game and hence 5, -measurable.

4. By y(w), we mean(y?'(w) : m > my} and similarly forx™,.

5. We say that there exists a time pertéduch that the strategy of a player is a NBNE from that
period onward. Thus, when we wrigé, we really mean thaty!, : t > t'}. The same applies td ,.

6. Notice that the assumptions below also guarantee the existence of a NBEEWgrappealing
to Kim and Yannelis (1997a) and by recalling that, for eéehw) € A x @, U (e, w, -, -) is weakly
continuous. The latter follows directly from Kim and Yannelis (1997b, Lemma A.2) and Balder and
Yannelis (1993, Corollary 2.9).

7. Byyw), we mean{y,'(w) : m > my} and similarly forx™.

8. We say that there exists a time pertéduch that the strategy of a player is a NBNE from that
period onward. Thus, when we wrigé, what we really mean i§y! };>. The same applies td ,.
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