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Integration of Banach-
Valued Correspondences

Nicholas C. Yannelis

Abstract. We study the basic properties of the integral of a Banach-valued
correspondence. In particular, we examine the convergence, compactness and
convexity properties of the Bochner and Gel’fand integrals of a set-valued func-
tion. The above properties are applied to prove the existence of an equilibrium
for an abstract economy with a continuum of agents.

1. Introduction

The classical model of exchange under perfect competition known as
the “Arrow-Debreu-McKenzie model” was formulated in terms of a finite
set of agents taking prices as given and engaging in sale and purchase of
commodities. Aumann (1966) argued that the classical model is clearly
at odds with itself as the finitude of agents means that each individual
is able to exercise some influence and therefore the assumption of price
taking behavior is not sensible. In a path breaking paper, Aumann (1966)
resolves this problem by assuming that the set of agents is an atomless
measure space and consequently the influence of each agent in the econ-
omy as a whole is “negligible.” Hence, the “Aumann economy,” that is,
an economy with an atomless measure space of agents, captures precisely
the meaning of perfect competition.

In order to prove the existence of a competitive equilibrium in a
perfectly competitive economy, Aumann (1966) faced the following fun-
damental problem. What is the definition of the aggregate demand set if
the set of agents is an atomless measure space? For instance, if we denote
the set of agents by T’ and denote by D(t,p) the demand set of agent
t € T, at prices p, we know that if T is finite, the aggregate demand set is
given by the summation of the individual demand sets, i.e., >, . D(t,p).
However, if T is an atomless measure space, then we have to integrate the
set D(t,p). But what does it mean to integrate a set-valued function? In
a seminal paper Aumann (1965) introduced the notion of the integral of
a set-valued function (or correspondence) and proved some basic results
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Nicholas C. Yannelis 3

needed to tackle the problem of the existence of a competitive equilib-
rium in an economy with an atomless measure space of agents, and with
a finite dimensional commodity space.

However, if one wishes to allow for perfectly competitive economies
with an infinite dimensional commodity space, then an extension of the
work of Aumann (1965) is required. In particular, from the integration
of finite dimensional-valued correspondences we must now pass to inte-
gration of Banach-valued correspondences.

The main purpose of this paper is to study the integral of a Banach-
valued correspondence and prove some basic theorems needed in general
equilibrium and game theory. Results due to Debreu (1967), Datko (1972),
Diestel (1977), Hiai-Umegaki (1977), Khan (1982, 1984, 1985), Papageor-
giou (1985), Khan-Majumdar (1986), Balder (1988), Yannelis (1988, 1989,
1990), Rustichini (1989), and Castaing (1988) have drastically influenced
the present paper which in a way may be considered as a synthesis of the
work of the above authors.

2. Preliminaries

2.1 Notation.

R™ denotes the n-fold Cartesian product of the set of real numbers R.

con A denotes the convex hull of the set A.

tonA denotes the closed convex hull of the set A.

24 denotes the set of all nonempty subsets of the set A.

@ denotes the empty set.

/ denotes the set of theoretic subtraction.

dist denotes the distance.

proj denotes the projection.

If A C X, where X is a Banach space, cl A denotes the norm closure of A.

If X is alinear topological space, its dual is the space X * of all continuous
linear functionals on X, and if p € X* and z € X the value of p at
z is denoted either by (p,z) or p- z.

If {F, :n =1,2,...} is a sequence of nonempty subsets of a Banach
space X, we will denote by s-Ls F,, and s-Li F,, the set of its (strong)
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limit superior and (strong) limit inferior points respectively, i.e.,

s-Lan:{xEX:mzs—kILrgoxnk,:z:mEF

ng?

R N R
ssLiF,={z€X:2=8- lim z,,z,€F,,n=1,2,...}.

n—o0

A w in front of Ls F,, (Li F,,) will mean limit superior (limit inferior)
with respect to the weak topology o(X, X™*).

2.2 Definitions. Let X and Y be sets. The graph of the set-valued
function (or correspondence), ¢ : X — 2¥ is denoted by G, = {(z,y) €
X xY :y€ @(z)}. Let (T, 7,p) be a complete, finite measure space, and
X be a separable Banach space. The correspondence ¢ : T — 2% is said to
have a measurable graphif G, € T ® (X ), where (X denotes the Borel
g-algebra on X and ® denotes product o-algebra. The correspondence
¢ : T — 2% is said to be lower measurable if for every open subset V of X,
the set {t € T': ¢(t) NV # 0} is an element of 7. Recall [see for instance
Debreu (1966), p. 359 or Yannelis (1990a), Lemma 3] that if ¢ : T —
2% has a measurable graph, then ¢ is lower measurable. Furthermore,
if ¢(-) is closed valued and lower measurable then ¢ : T — 2% has a
measurable graph. A well-known result of Aumann (1967) which will be of
fundamental importance in this paper says that if (T, 7, 1) is a complete,
finite measure space, X is a separable metric space and ¢ : T — 2%
is a nonempty valued correspondence having a measurable graph, then
#(-) admits a measurable selection, i.e., there exists a measurable function
f:T — X such that f(2) € ¢(t) p-a.e.

We now define the notion of a Bochner integrable function. We will
follow closely Diestel-Uhl (1977). Let (T, 7,x) be a finite measure space
and X be a Banach space. A function f : T — X is called simple if
there exist z;,2,,...,2, in X and a;,a,,...,a, in 7 such that f =
Y 1 %X, Where x,. (1) = 1ift € o; and x,,(1) = 0ift € ;. A
function f : T — X is said to be u-measurable if there exists a sequence
of simple functions f, : T — X such that lim,_, || f.(2) = f(#)|| = 0
for almost all ¢ € T. A u-measurable function f : T — X is said to be
Bochner integrable if there exists a sequence of simple functions {f, : n =
1,2,...} such that

tim [ 10 - F@)ldu) = 0.
T
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In this case we define for each E € 7 the integral to be [, f(t)du(t) =
lim,_, ., [z fa(t)du(t). It can be shown [see Diestel-Uhl (1977), Theo-
rem 2, p. 45] that, if ¢ : T — X is a p-measurable function then f is
Bochner integrable if and only if [ ||f(2)||dp(t) < oco. It is important to
note that the Dominated Convergence Theorem holds for Bochner inte-
grable functions, in particular, if f, : T — X (n=1,2,...) is a sequence
of Bochner integrable functions such that lim__, _ f,.(¢) = f(t) p-a.e., and
I £, £ g(t) p-a.e., where g € L(p,R), then f is Bochner integrable
and lim, _ o, [ I1f,(8) = F()ldu(t) = 0.

For 1 < p < oo, we denote by L,(u,X) the space of equivalence
classes of X-valued Bochner integrable functions z : T — X normed by

el = ([ 1|:c(t)npdu(r))w-

It is a standard result that normed by the functional ||-||,, above, L, (g, X)
becomes a Banach space [see Diestel-Uhl (1977), p. 50]. We denote by
S; the set of all selections from ¢ : T — 2% that belong to the space
L(p,X), 1.8,

52 = {z € L(1,X) : 2(t) € (1) p-ae.).

We will also consider the set S} = {z € L,(u,X) : z(t) € #(t) p-ae.},
i.e., Si is the set of all Bochner integrable selections from ¢(-). Using the
above set and following Aumann (1965) we can define the integral of the
correspondence ¢ : T — 2% as follows:

/T $(t)du(t) = { /T z(t)dp(t) : z € S} }

In the sequel we will denote the above integral by [ ¢. Recall that the
correspondence ¢ : T — 2% is said to be integrally bounded if there
exists a map h € L,(u,R) such that sup{||z|| : z € ¢(t)} < h(t) p-a.e.
Moreover, note that if T is a complete measure space, X is a separable
Banach space and ¢ : T — 2% is an integrably bounded, nonempty
valued correspondence having a measurable graph, then by the Aumann
measurable selection theorem we can conclude that 5 ‘}, is nonempty and
therefore [ #(t)du(t) is nonempty as well. It should be noted that the
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measurability of ¢ is a sufficient condition for the nonemptiness of [ ¢,
but it is not necessary. In fact, [ ¢ may be nonempty even if ¢ does not
have a measurable graph [see Schechter (1989) for an example to that
effect].

A Banach space X has the Radon-Nikodym Property with respect
to the measure space (T, T, u) if for each y-continuous vector measure
G : 7 — X of bounded variation there exists g € L;(y,X) such that
G(E) = [;g(t)du(t) for all E € 7. A Banach space X has the Radon-
Nikodym Property (RNP) if X has the RNP with respect to every finite
measure space. Recall now [see Diestel-Uhl (1977, Theorem 1, p. 98))
that if (T, T, ) is a finite measure space 1 < p < 0o, and X is a Banach
space, then X* has the RNP if and only if (L,(p, X))* = L (g, X ™) where
L+l

Let A, (n =1,2,...) be a sequence of nonempty subsets of a Banach
space. Following Kuratowski (1966, p. 339) we say that A, convergesin
A (written as A, — A) if and only if s-LiA, = s-Ls A, = A. Also, we
say that A, converges in the Kuratowski-Mosco sense to A (written as
A, 5™ 4)if and only if sLid, = w-LsA, = A. It may be useful to
remind the reader that LiA, and Ls A, are both closed sets and that
s-Li A, C s-Ls A, [see Kuratowski (1966), pp. 336-338].

Let X be a metric space and Y be a Banach space. The correspon-
dence ¢ : X — 2Y is said to be upper semicontinuous (u.s.c.) at z3 € X,
if for any neighborhood N(¢(z,)) of ¢(z,), there exists a neighborhood
N(zg) of z, such that for all z € N(zg), ¢(z) C N(¢(z,)). We say that
¢ is u.s.c. if ¢ is u.s.c. at every point z € X. Recall that this definition is
equivalent to the fact that the set {z € X : ¢(z) C V} is open in X for
every open subset V of Y [see for instance Kuratowski (1966), Theorem 3,
p. 176).

Let v be a small positive number and let B be the open unit ballin Y.
The correspondence ¢ : X — 2Y is said to be quasi upper-semicontinuous
(qu.s.c.) at z € X, if whenever the sequence z, (n = 1,2,...) in X
converges to z, then for some ngy, ¢(z, ) C ¢(z) + vB for all n > n,. We
say that ¢ is q.u.s.c. if ¢ is g.u.s.c. at every point z € X. It can be easily
checked that if ¢ is compact valued, quasi upper-semicontinuity implies
upper-semicontinuity and vice-versa.

Let now P and X be metric spaces. The correspondence F : P — 2%
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is said to be lower semicontinuous (1.s.c.) if the sequence p, (n =1,2,...)
in P converges to p € P, then F(p) C LiF(p,). Finally recall that the
correspondence F : P — 2% is said to be continuous, if and only if it is
u.s.c. and ls.c.

3. Weak Compactness in L,u, X)

The result below has found several applications in general equilibrium
and game theory [see for example Khan (1986), Yannelis (1987, 1990b)
and Yannelis-Rustichini (1990, 1991)] and it is known in the literature of
economic theory as Diestel’s theorem on weak compactness in L, (p,X).

Theorem 3.1. Let (T, 1,12) be a complete finite measure space, X be a
separable Banach space and ¢ : T — 2% be an integrally bounded, convez,
weakly compact and nonempty valued correspondence. Then Sqlb is weakly
compact in Ly(p, X).

Proof. First note that (L;(g,X))* = L. (¢, X.) [see for instance
Tulcea-Tulcea (1969)]. Pick an arbitrary z € L (¢, X,,.). If we show
that z attains its supremum on §3 the result will follow from James’s
theorem [James (1964)]. To this end, let

sup f-z=sup | (f(2)-a(t))du(t)-
J€S} sesl JieT

By Lemma 1 in Debreu-Schmeidler (1972) or Theorem 2.2 in Hiai- Umegaki
(1977) we have that

swp [ (1) a)dut) = [ sup (g-2(@)au).
€T i )

JES, It €T ged(t

Define the correspondence 8 : T — 2% by

8(t) ={y€ ¢(t):y-z= sup g-z}.
9€¢(t)

Since the correspondence ¢ : T — 2% is weakly compact valued we have
that 8(t) # 0 for all ¢ € T. Define the function F': T x X — [—o00,00]

by F(t,y) = y & — suP¢q(y) 9 - - Note that for each fixed t € T, F(t,-)
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is continuous and for each fixed y € X, F(-,y) is measurable. Hence
by a standard result [see for instance Yannelis (1990a, Proposition 3.1)],
F(-,-) is jointly measurable and consequently the set

F10)={(t,y) eTx X : F(t,y) =0} belongs to 7 ® B(X).

Since ¢(-) has a measurable graph, theset G, = {(2,y) € TxX : y € ¢(1)}
is an element of 7 ® B(X). Observe that

Ge = F_l(()) n Gé'

Since F~1(0) and G, belong to 7 @ B(X) so does Gy, i.e., 6() has a
measurable graph. By the Aumann measurable selection theorem, there
exists a measurable function z : T — X such that z(t) € 6(t) p-a.e. Hence
z € §} and

sup g-z = /teT(Z(t) -z(t))du(t) = z - .

1
ye.‘.‘iﬁ‘5

Since z € L (u,X}.) was arbitrary, we can conclude that every ele-
ment of (L,(#,X))* = L. (¢, X%.) attains its supremum on S}. This
completes the proof of the Theorem.

Remark 3.1. Note that if (T, 7,u) is a finite measure space, and X
is a Banach space then (L,(z,X))" = L,(p,X}.) where 1 < p < oo,
1+ 1 =1 [see Tulcea-Tulcea (1969)]. Hence, in Theorem 3.1 we can
replace the fact that St}) is weakly in L,(g, X ) with the statement that
5%, (1 £ p < 00) is weakly compact in L, (g, X).

Bibliographical notes. Theorem 4.1 was proved by Diestel (1977)
in a less general form [see also Byrne (1978)]. However, it should be
noted that Castaing had earlier proved a related result to that of Di-
estel’s. Also, Datko (1973) proved a version of Diestel’s theorem for a
reflexive separable Banach space. The proof of Theorem 4.1 is based on
the celebrated theorem of James (1964) and it is patterned after that of
Khan (1982, 1987) and Papageorgiou (1985). Recently, Balder (1990) has
given an alternative proof of Diestel’s theorem using a.e. convergence of
arithmetic averages.
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4. Weak Sequential Convergence
in L,u,X)

We begin by proving the following result:

Theorem 4.1. Let (T,7,u) be a finite measure space and X be a sep-
arable Banach space. Let {f, : A € A} (A is a directed set), be a net in
L,(#,X), 1 £ p < 0o such that f, converges weakly to f € L,(p,X).
Suppose that for all A € A, f,(t) € F(t) p-a.e., where F : T — 2X isa
weakly compact, integrably bounded, convez, nonempty valued correspon-
dence. Then we can eztract a sequence {fy_ :n =1,2,...} from the net

{fx : A € A} such that:

(i) f», converges weakly to f, and
(i1) f(t) € comw-Ls{f,_ (1)} p-a.e.

Proof. We begin the proof of Theorem 4.1 by stating the following
result of Artstein (1979, Proposition C, p. 280).

Proposition 4.1. Let (T, ,u) be a finite measure space and let f, :
T = R* (n =1,2,...) be a uniformly integrable sequence of functions
converging weakly to f. Then,

f(t) € conw-Ls{f, (1)} p-a.e.

Using Artstein’s result we can prove the following proposition.

Proposition 4.2. Let (T,7,u) be a finite measure space and X be
a separable Banach space whose dual X* has the RNP. Let {f, : n =
1,2,...} be a sequence in L,(p,X),1 < p < oo such that f, converges
weakly to f € L,(p,X). Suppose that for all n (n = 1,2,...), f.(t) €
F(t) p-a.e. where F : T — 2% is a weakly compact, nonempty valued
correspondence. Then

£(1) € RW-Ls{/, (1)} p-a.e.

Proof. Since f, converges weakly to f and X™* has the RNP, for any
Y € (L,(p, X)) = L(p,X") (where % + % = 1), we have that (¢, f,) =
Jr((1), fo(t))du(t) converges to (3, f) = [{1(t), f(2)}du(t). Define the
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functions h, : T — Rand h : T — R by h,(t) = (¥(2), f,(2)) and
Rh(t) = {(t), f(t)) respectively. Since for each n, f,(t) € F(¢) p-a.e. and
F(-) is weakly compact, h,, is bounded and uniformly integrable. Also, it
is easy to check that h_ converges weakly to k. In fact, let g € L (u,R)
and let M = ||g||, then

‘ /T g(t)(hﬂ(t)—h(t))du(t)l = | /T g ({(2), £.(1))

_ w0, fendu| Y
g M|(¢s fn> - (¢Jf>|

and (4.1) can become arbitrarily small since as it was noted above (Y, f,.)

converges to (¥, f).
By Proposition 4.1, we have that A(?) € conw-Ls{h,(t)} C conw-Ls

{h, (1)} pae., ie., ($(1), f(1)) € omw-Ls{{%, £,(1))} = (¥(t),comw-Ls
{f.()}) p-a.e. and consequently,

[ o, s € [ wiezmnu), (42)
T T _
where z(-) is a selection from con w-Ls{f,(-)}. It follows from (4.2) that:

f € StsmaLe(say ()

To see this, suppose by way of contradiction that f & S2__ ITRY then
by the separating hyperplane theorem,! there exists ¢ € (L,(u,X))* =
L (1, X*), % # 0 such that (¥, f) > sup{{¢¥,z): z € .S'cﬂoﬁw_h{f“}}, ie.,

[ @), F(2))du(t) > [7{d(2), z(t))dp(t), where z(:) is a selection {rom
tonw-Ls{f,(-)}, 2 contradiction to (4.2). Hence, (4.3) holds and we can

conclude that f(t) € omw-Ls{f,(¢)} p-a.e. This completes the proof of
Proposition 4.2,

1 Note that the set S%;‘;Tw-r_.s{f,,} is nonempty. In fact, since w-Ls{fn} is
lower measurable and nonempty valued, so is conw-Ls{fr}. So, con w-Ls{fx}
admits a measurable selection (recall the Kuratowski and Ryll-Nardzewski
measurable selection theorem). Obviously the measurable selection is also in-
tegrable since con w-Ls{frn} lies in a weakly compact subset of X. Therefore,
we can conclude that S2__ . (.} is nonempty.
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Remark 4.1. Proposition 4.2 remains true without the assumption
that X* has the RNP. The proof proceeds as follows: Since f, con-
verges weakly to f we have that (¢, f,) converges to (¢, f) for all ¢ €
(L,(p,X))*. It follows from a standard result [see for instance Dinculeanu
(1973, p. 112)] that ¢ can be represented by a function 4 : T' — X* such
that (¢, z) is measurable for every z € X and ||| € L,(#,R). Hence,
(s o) = [0, Fo(D)du(t) and (b, 1) = fo((8), F(D)du(t). Define
the functions A, : T — R and h : T — R by h,(t) = (¥(1), f,.(1)) and
h(t) = {(1), f(2)) respectively. One can now proceed as in the proof of
Proposition 4.2 to complete the argument.

We are now ready to complete the proof of Theorem 4.1. Denote the
net {f, : A € A} by B. Since by assumption for all A € A, f,(t) € F(t)
y-a.e. where F' : T — 2X is an integrably bounded, weakly compact,
convex, nonempty valued correspondence we can conclude that for all
A € A, f, lies in the weakly compact set SE (recall Diestel’s theorem
on weak compactness, Theorem 3.1). Hence, the weak closure of B, i.e.,
w — cl B, is weakly compact. By the Eberlein-Smulian Theorem [see
Dunford-Schwartz (1958, p. 430)], w—cl B is weakly sequentially compact.
Obviously the weak limit of f,,i.e., f, belongs to w—cl B. From Whitley’s
theorem? [Aliprantis-Burkinshaw (1985, Lemma 10.12, p. 155)], we know
that if f € w — cl B, then there exists a sequence {f,_ :n=1,2,...} in
B such that f, converges weakly to f. Since the sequence {f, :n =
1,2,...} satisfies all the assumptions of Proposition 4.2 and Remark 4.1
we can conclude that f(t) € con w-Ls{f,_(?)} p-a.e. This completes the
proof of Theorem 4.1.

An immediate conclusion of Theorem 4.1 is the following useful corol-
lary.

Corollary 4.1. Let (T, ,u) be a finite measure space and X be a sepa-
rable Banach space. Let {f, :n =1,2,...} be a sequence of functions in
L,(1:X),1< p < oo such that f, converges weakly to f € L,(p,X). Sup-
pose that for all n (n=1,2,...), f.(t) € F(t) p-a.e., where F : T — 2%
is a weakly compact, integrably bounded, nonempty valued correspondence.
Then

f(t) € conw-Ls{f,(t)} p-a.e.

2 See also Kelley-Namioka (1963, exercise L, p. 165).
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Bibliographical Notes. Theorem 4.1 and its proof are due to Yan-
nelis (1989). Corollary 4.1 generalizes previous results of Artstein (1979)
and Khan-Majumdar (1986). A related result to Corollary 4.1 has also
been obtained by Balder (1988) and Castaing (1988). Ostroy-Zame (1988)
have used Corollary 4.1 in order to prove the existence of an equilibrium

in economies with a continuum of agents and commodities.

5. Properties of the Set of Integrable
Selections from a Correspondence

We begin by proving s-Li and w-Ls versions of Fatou’s Lemma for
the set of integrable selections.

Theorem 5.1. Let (T,7,u) be a complete, finite measure space and
let X be a separable Banach space. If ¢, : T — 2% (n = 1,2,...)
is a sequence of integrably bounded correspondences having a measurable
graph, i.e., G, € 7 Q® B(X), then

Ssl_Li bu C s-Li Séu i

Proof. Letz € §}y;, ,ie.,z(t) € s-Li ¢, (t) y-a.e., we must show that
z € s-LiS} . First note that z(¢) € s-Li¢,(t) p-a.e. implies that there
exists a sequence {z, : n = 1,2,...} such that s —lim,,_,__ z(2) = z(1)
p-a.e. and z_(t) € ¢,(1)) = 0 p-a.e. Foreachn (n=1,2,...), define the
correspondence A_ : T — 2% by

4,0 = {v € 6,0 Iy - 2(0) < d2(a(0), 8,0) + 2.

Clearly for all n (n = 1,2,...) and for all t € T, A_(2) # 0. Moreover,
A, (-) has measurable graph. Indeed, the function g : T x X — [—00, 0]
defined by g(t,y) = ||y — z(3)|| - dist(z(2), $,(?)) is measurable in ¢ and
continuous in y and therefore by a standard result [see Yannelis (1990a,
Proposition 3.1)], g(+, -) is jointly measurable with respect to the product
g-algebra 7 ® B(X). It is easy to see that:

1
Gy, = {(t,y) €ETxX:9(ty) < ;;} NGy,

(= e
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Since ¢,(-) has a measurable graph and g¢(:,-) is jointly measurable, we
can conclude that G, belongs to 7 ® B(X), i.e., 4,(-) has a measur-
able graph. By the Aumann measurable selection theorem there exists a
measurable function f, : T — X such that f,(¢) € A,(f) p-a.e. Since
(1) € s-Lig,(t) p-ae, lim,_,  dist(z(t), #,(t)) = 0 p-a.e. which implies
that lim,_,  [|£,(t) — z(t)]| = 0 p-a.e. Since f,(t) € ¢,(t) p-ae. and
¢,(*) is integrably bounded, by the dominated convergence theorem [see
Diestel-Uhl (1977, p. 45)], £,,(-) is Bochner integrable, i.e., fn € Ly(p, X).
Hence, z € s-Li S,},‘ and this completes the proof of Theorem 5.1.

Theorem 5.2. Let (T, 7,1t) be a finite measure space, X be a separable

Banach space and let ¢, : T — 2% (n = 1,2,...) be a sequence of

nonempty, closed valued correspondences such that:

(i) For alln (n = 1,2,...), ¢,(t) C F(t) p-a.e., where F : T — 2X
is an integrably bounded, weakly compact, convez, nonempiy-valued
correspondence.

Then
w-Ls S;, C Sy

conw-Ls ¢, °

Moreover, assume that w-Lsé_(-) is closed and convez valued.

Then,
w-Ls S C S%. s

Proof. Letz € w-LsS} ,ie., thereexistsz, € .S'; (k=1,2,...)such
that z, converges weal-.ly to z. We wish to know that z € Sesmw-Le o, -
Since z converges weakly to z and z, lies in a weakly compact set,
it follows from Proposition 4.2 that z(t) € tomw-Ls{z,(t)} p-a.e. and
therefore z(t) € tonw-Ls ¢, () p-a.e. Since by assumption for each n,
¢,(-) lies in the integrably bounded, convex set F (-), we can conclude

that z € S1__ . This completes the proof of the fact that:

conw-Ls ¢,
W-Ls S}, C Showres. (5.1)

Since w-Ls ¢,,(-) is closed and convex (hence weakly closed), we have
that w-Ls ¢, (-) = con w-Ls ¢, (+) and therefore,

Sl-Ls .. Scon w-Ls ¢, * (5°2)

Combining now (5.1) and (5.2) we can conclude that w-Ls S, C
Se-Ls ¢, This completes the proof of the theorem.
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Combining Theorems 5.1 and 5.2 we can obtain the following domi-
nated convergence result for the set of integrable selections from a corre-
spondence.

Corollary 5.1. Let (T,7,u4) be a complete finite measure space and
X be a separable Banach space. Let ¢, : T — 2% (n = 1,2,...) be
a sequence of closed valued and lower measurable correspondences such
that:

(i) For eachn (n=1,2,...), ¢.(t) C F(t) p-a.e., where F : T — 2%
is an integrably bounded, weakly compact, convez, nonempty valued
correspondence,

(ii) ¢,(1) =% #(t) p-a.e., and

(iii) ¢(-) is convez valued.
Then
o 5
Proof. First note that since for each n (n = 1,2,...), ¢,(-) is closed
valued and lower measurable, G, € 7®B(X),i.e., ¢,(-) has a measurable
graph and so does s-Li¢,,(-). Now if ¢(t) = s-Li ¢, (t) = w-Ls ¢, () p-a.e.,
it follows from Theorems 5.1 and 5.2 that:

Ble=8ly, CwLiB) Cwile8) €80, =8
Therefore
S} =sl1iS) =wlsS}_,

and we can conclude that 53 = S3. This completes the proof of the
Corollary.

The lemma below will be used to prove Theorem 5.3.

Lemma 5.1. Let (T, 7,u) be a complete finite measure space, X be a
separable Banach space and F : T — 2% be a nonempty closed valued and
lower measurable correspondence. Let {f; :1=1,2,...} be a sequence in
S%, (1 € p < ) such that F(t) = cd{fi(t) : i = 1,2,...} p-a.e. Then,
for each f € S% and 6§ > 0, there exists a finite measurable partition
{A;,4,,..., A} of (T,T) such that

”f = xafi
i=1

< 6.
P
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Proof. Considerastrictly positivev € L, (¢, R) such that [, . v(t)du(t)
< & . We can find a countable measurable partition {B;} of (T, ) such
that

| f(t) = fi()ll, < v(t), foralmostallte€ B;, ¢ 2> 1.
Pick an integer m so that

> [ sl < L2,

i=m+1

E / £, @ll,du(t) < ~52 (8/2f / )

i=m+1
and define a measurable partition {A4,,...,4,,} as follows:
oo
AlzBIU( U Bt)’ Aj:ijorj=2,.. s
i=m+1

Then it can be easily seen that:

F=3 xat Z ] 17C2) - £l dut)

. ] 1)~ ANl du()
i=m<1
= [ewaw+ Y 2 j o

i=m<41

+ lADl)dr(t) < é.

Theorem 5.3. Let (T, 1,u) be a complete finite measure space, X be
a separable Banach space and F : T — 2% be a closed, nonempty valued
and lower measurable correspondence. Suppose that S%., (1 < p < ) is
nonempty. Then -

ST 5 = TORS G-

Proof. Define the correspondence F : T — 2X by F(t) = tonF(t). It
can be easily checked that F(-) is lower measurable and obviously closed
and convex valued. Moreover, S ;";- is closed and convex. Clearly, tonS% C
52 - since Sk C ST,

conF"

To prove that SZ_p. C conS%, consider the
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sequence {f; :i=1,2,...} in §% where cl{f;(2):i=1,2,...} = F(2) p-
a.e. Define the set

n b
U= {gzz)\ifi, A; 2 0, rational, Z)‘i 2 Lo 522 1}.

=1 i=1

Observe that U is a countable subset of SE_. and tonF(t) = cl{g(?) :
g € U} p-a.e. It follows from Lemma 5.1 that for each f € SZ_p and for
each § > 0 we can find a finite measurable partition {A4,, 4,,...,A4,,} of

(T, 7) and functions g4,9,,...,9,, in U such that:

< A

m
= Xa,9
k=1

P

We can now find an integer n so that, for

n n
1<k<m, gk=2,\k,.f,. where A;; > 0, ZA,“.:L

i=1 . i=1

Observe that:
ZXAkgk = ZXA., (Z ’\k.'f.')
k=1 k=1 i=1
m
= Z (Ali;l?---:Aml'm) (ZXA,,f;,,) ,
k=1

(1504im)

where (4,...,%,,) is taken for 1 < i{;, < n, k = 1,2,...,m. Therefore,
> k=1 Xa, 9 is a convex combination of functions in S% and we can con-
clude that f € conS%. This completes the proof of Theorem 5.3.

Below we consider correspondences of two variables and assume that
they are measurable in the one variable and u.s.c. or l.s.c. in the other.
We then ask the question as to whether the set of all integrable selections
of the correspondence is either u.s.c. or l.s.c.

Theorem 5.4. Let (T,1,p) be a complete, finite measure space, P be
a metric space and X be a separable Banach space. Let : T x P — 2%
be a nonempiy valued, integrably bounded correspondence, such that for
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each fizedt € T, 9(1,-) is q.u.s.c. and for each fized p € P, (-,p) has a
measurable graph. Then

S,},(-) is q.u.s.c.

Proof. Let B be the open unit ball in L,(p,X) and v be a small
positive number. We must show that if {p, : n = 1,2,...} is a sequence
in p converging to p € P, then for a suitable ngy, §3(p,) C Sy(p) + vB
for all » > n,.

We begin by finding the suitable ny. Since for each fixed ¢t € T,
¥(t,+) is q.u.s.c. we can find a minimal M, such that

¥(t,p,) C ¥(t,p)+ 6B for all n > M,, (5.3)

where § = 3tz (and B is the open unit ball in X).

We now show that M, is a measurable function of t. However, first
we make a few observations. By assumption for each fixed p and n,
Gy(. pu)+68 € T®B(X) and so does (G . ,.)+58)°, (Where S¢ denotes the
complement of the set ). It is easy to see that G . ;) V(G y(. p.)+58)° €
7 ® B(X). Therefore, the set

= {(t,:z:) eETxX: (t,:r) & G‘f’(w}’) n (G¢(-,pn)+63)c}

belongs to 7 @ B(X).
It follows from the projection theorem [see for instance Yannelis
(1990a)] that
projr(U) € 7.

Notice that,

projp(U) = {t € T : ¢(t,p) ¢ ¥(¢,p,) + 6B}
= {te T :¢(t,p)/(¥(t,p,) + 6B) # 0}.

By virtue of the measurability of the above set we can now conclude that
M, is a measurable function of t. In particular, simply notice that,

{teT:M,=m}= ) {teT:¢(p,) C ¥(tp)+ 6B}

n2m

N{t €T :9(tpm_1) € ¥(t,p)+ 6B}



18 Integration of Banach-Valued Correspondences

We are now in a position to choose the desired ny. Since 9(:,:) is inte-
grably bounded there exists h € L,(u,R) such that for almost all £ € T,
sup{||z|| : z € ¥(t,p} < h(t) for each p € P.

Choose 8, such that if u(S) < &, (S C T), then Js h(t)du(t) < .
Since M, is a measurable function of ¢, we can choose n, such that u({t €
T : M, > ng}) < 6;. This is the desired ny. Let n > ng and y € 5 (p,,).
We must show that y € §1(p) + vB.

By assumption, for each fixed p € P, 9(-,p) has a measurable graph
and #(-,-) is nonempty valued. Hence, by the Aumann measurable se-
lection theorem there exists a measurable function f; : T — X such
that f,(t) € #¥(i,p) p-a.e. Define the correspondence ¢ : T — 2X
by 6(t) = ({y(¥)} + 6B) N ¥(t,p). It follows from (5.3) that for all
teTy = {t: M, < ng}, (1) # 0. Moreover, 6(-) has a measurable
graph. Another application of the Aumann measurable selection theorem
allows us to guarantee the existence of a measurable function f, : T — X
such that f,(t) € 6(t) p-a.e. Define f: T — X by

(1) = { f1(@) fort g T
f(t) forteT,.
Then f(t) € 9(t,p) p-a.e. and since (- ,-) is integrably bounded we can
conclude that f € §}(p). If we show that || f—y|| < v then y € SL(p)+vB
and we will be done. But this is easy to see. We have

17—l = ,Q ECRCTTOR ]T 1£,(2) - ()lldu(t)
<2 L - h(t)du(t) + L 0 bdp(t)

2v v
3 3u(T)
This completes the proof of the theorem.

<

+ou(T) = 2+ T (T) = v

Remark 5.1. Ifin addition to the assumptions of Theorem 5.4, it is
assumed that S3(-) is compact valued, then we can conclude that S} (:)
is u.s.c. Moreover, by adding in Theorem 5.3 the assumption that ¥(-,-)
is convex valued and that for all (¢,p) € T x P, ¢(t,p) C K where K is
a weakly compact, convex, nonempty subset of X, then it follows from
Theorem 3.1 that S3(-) is weakly compact valued and we can conclude
that .5',},() is weakly u.s.c.,i.e., theset {p€ P: S:b C V} is open in P for
every weakly open subset V of X.
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Theorem 5.5. Let (T,7,u) be a complete, finite separable measure
space, P be a melric space and X be a separable Banach space. Lei
¥ : T x P — 2X be a nonempty, closed, convez valued correspondence
such that:

(i) for each fizedt € T, 9(1,-) is weakly u.s.c.

(ii) for all (t,p) € T x P, ¥(t,p) C K(t) where K : T — 2% is an
integrably bounded, weakly compact and nonempty valued correspon-
dence.

Then
Sy(-) is weakly u.s.c.

Proof. First note that by Theorem 3.1 S} is weakly compact in
Ly(#,X). Since for each p € P, 5)(p) is a weakly closed subset of
Sk, it is weakly compact. Since the measure space (T, T, p) is separa-
ble and X is a separable Banach space, L,(p,X) is separable. Hence,
S) is metrizable as it is a weakly compact subset of L;(x, X ) [Dunford-
Schwartz (1958, Theorem V.6.3, p. 434)]. Consequently, in order to show
that S3(-) is weakly u.s.c., it suffices that to show that 53 (-) has a weakly
closed graph, i.e., if {p, : n = 1,2,...} is a sequence in P converging to
p € P, then
w-Ls S1(p,) C Si(p).z

To this end let z € w-Ls $}(p,), i.e., there exists z) (k = 1,2,...) in
L,(p,X) such that z, converges weakly to z € L,(p,X) and z,(1) €
$(t,p,,) p-a.e. We must show that z € §3(p). It follows Theorem 4.1
that z(t) € con w-Ls{z,(1)} p-a.e. and therefore,

z(t) € conw-Ls¢(t,p,) p-a.e. (5.4)
Since for each fixed t € T, (2, ) has a weakly closed graph we have that:

w-Ls¢(t,p,) C ¥(1,p) p-a.e. | (5.5)

Combining (5.2) and (5.3) and taking into account the fact that ¢ is
convex valued we have that z(t) € ¥(¢,p) p-a.e. Since 9 is integrably
bounded, we can conclude that z € §3(p). This completes the proof of
Theorem 5.5.
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Alternatively, Theorem 5.5 can be proved by means of the Mazur
lemma. As noted above, it suffices to show that §}(-) has a weakly
closed graph. To this end let (p,,,y,) € G s be a sequence such that p,
converges (in the metric topology) to p and y, converges weakly to y.
We must show that y € §}(p). Since y, € S}(p,), we have that y,(t) €
¥(t,p,) p-a.e. By Mazur’s lemma there exists z,(-) € con Une>n ¥no(*)
such that z,(-) converges in norm to y(-). Without loss of generality
we may assume (otherwise pass to a subsequence) that z,(2) converges in
norm to y(t) forallt € T/ S, where S is a set of measure zero. Fixt € T/S.
Since by assumption 9(t, -) is weakly u.s.c. for every small positive number
6, there exists n such that for all n, > =, ¥(t,p,,) C ¥(t,p) + 6B,
where B is the open unit ball in X. But then conlJ, -, ¥(¢,p,,) C
¥(t,p) + 6B which implies that z(t) € ¥(¢,p) + éB and consequently,
y(t) € ¥(t,p) + 6B. Hence, y(t) € (t,p) by letting § converge to zero.
Since t was arbitrary, y(t) € ¥(¢,p) p-a.e. Finally, since 9 is integrably
bounded, we can conclude that y € S‘lb(p). This completes the proof.

Theorem 5.6. Let (T,7,u) be a complete, finite measure space, X be
a separable Banach space and P be a metric space. Let ¢ : T x P — 2X
be an integrably bounded correspondence such that for each fizedt € T,
&(t,-) is Ls.c. and for each fized p € P, ¢(-,p) has a measurable graph.
Then

S3(-) s Ls.c.

Proof. Let {p,:n=1,2,...} be a sequence in P converging to p € P.
We must show that S3(p) C LiS}(p,). Since by assumption for each
fixed t € T, ¢(t,-) is L.s.c. we have that ¢(¢,p) C Lig(¢,p,) forall t € T,
and therefore

Ss(p) C SL; 4(pn)- (5.6)

It follows now from Theorem 5.1 that (5.6) can be written as:

54(p) C Sii4(p) C LiSy(py,)-

Hence,
S() isls.c.

The Corollary below follows directly from Theorems 5.4 and 5.6 and
Remark 5.1.
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Corollary 5.6. Let (T,7,p) be a complete, finile measure space, P be
a metric space and X be a separable Banach space. Let 1) : T x P — 2%
be an integrably bounded, nonempty valued correspondence such that for
each fized p € P, 1(-,p) has a measurable graph and for each fizedt € T,
P(t,+) in continuous. Moreover, suppose that Sy(-) is compact valued.
Then
S,li,() is continuous.

Bibliographical Notes. Theorems 5.1, 5.2 and Corollary 5.1 are
taken from Yannelis (1989). Theorem 5.3 and its proof is due to Hiai-
Umegaki (1977). Theorems 5.4 and 5.6 are variations of some results
given in Yannelis (1990). The proof of Theorem 5.5 is taken from Yan-
nelis (1990). The alternative proof of Theorem 5.5 is due to Khan-
Papageorgiou (1988).

6. Properties of the Integral
of a Correspondence

In this section we present an infinite-dimensional generalization of
the work of Aumann (1965).

Theorem 6.1. Let (T,7,p) be a finite measure space and X be a sep-
arable Banach space. Let ¢ : T — 2% be a correspondence satisfying the
following condition:

(i) ¢(t) C K(2) p-a.e., where K : T — 2% is an integrably bounded,
weakly compact, convez, nonempty valued correspondence.

Then [ cong is weakly compact.

Proof. Note that since con¢(-) is (norm) closed and convex so is
Scl()—n¢' It is a consequence of the Separation Theorem that the weak
and norm topologies coincide on closed convex sets. Thus, Sj_ow is
weakly closed. Since Sgai¢ is a subset of the set S} and the latter set is
weakly compact in L, (p,X) (recall Theorem 3.1), we can conclude that
S%se is weakly compact. Define the mapping ¥ : Ly(g,X) — X by
P(z) = [,er2(t)dp(t). Certainly ¢ is linear and norm continuous.- By
Theorem 15 in Dunford-Schwartz (1958, p. 422), 9 is also weakly continu-
ous. Hence, ¥(S%z,) = {(¥(2) : z € S&;,} = [ cone is weakly compact.

This completes the proof of the Theorem.
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Theorem 6.2. Let (T, 7,1) be a finite atomless measure space, X be
a Banach space and ¢ : T — 2X be a correspondence. Then cl [ ¢ is

CONVET.

Proof. Let z,y be elements of the set cl [ ¢, we must show that for any
§ > 0and A € (0,1) there exists 2 € cl [ ¢ such that ||z—(Az+(1-A)y]| <

6. Fix § > 0 and choose z4,y; in [ @, such that ||z — z4)| < § and

ly — ys5|| < &. By the definition of the integral of the set-valued function
¢, we have that there exist h,g in 5} such that

(Jof) o

Define the vector measure V : 7 — X X X by

0= (mf5)

Since the measure space (T, 7, 1) is atomless it follows from Uhl’s theorem
[see for instance Uhl (1969) or Diestel-Uhl (1977, p. 266)]® that the norm
closure of V is convex. Hence, we can find € 7 such that

V(@) - V(D) < 3.

Define the function z : T'— X by )

[ ht) ifteQ
40_{dﬂiﬁgﬂ.

Then z = [ 2(t)du(t) € [ ¢ and it can be easily checked that

llz = (A + (1= )l < |z = Az + (1 = Nyo)ll + Allzs — <]

+ (1= M)lys — vl
28

This completes the proof of Theorem 6.2.

3 Note that the assumptionr X has the RNP is not needed for proving that
the norm closure of the vector measure V is convex.
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Define the mapping 7 : T — X by n(z) = [, . z(t)du(t). Note that
the integral of the correspondence ¢ : T — 2% is 7(S}) = {x(z) : z € S}}.
With this observation in mind the reader can easily see that the result
below is an immediate conclusion of Theorems 5.3, 6.1 and 6.2.

Theorem 6.3. Let (T, ,u) be a finite, atomless measure space and X
be a separable Banach space. Suppose that the correspondence ¢ : T — 2%
satisfies assumption (i) of Theorem 6.1. Then

Eb‘ﬁ‘/é:fﬁqB:cljcﬁ.

The results below are w-Ls and s-Li versions of the Fatou lemma and
follow directly from Theorems 5.1 and 5.2 respectively.

Theorem 6.4. Lei (T, 7, 1) be a complete, finite measure space and X
be a separable Banach space. If ¢, : T — 2% (n=1,2,...) is a sequence
of integrably bounded correspondences having a measurable graph, i.e.,

G4, €7 Q® PB(X), then

s-Lig, C s—Li/qbn.

Theorem 6.5. Let (T, 1, u) be a finite measure space, and X be a sep-
arable Banach space. Let ¢, : T — 2X (n = 1,2,...) be a sequence of
nonemply, closed valued correspondences such that

(1) For alln (n = 1,2,...), ¢,(t) C K(t) p-a.e., where K : T — 2%
s an integrably bounded, weakly compact, convez, nonempty-valued

w~Ls/qf>,,1 C cl/w—Ls ®,-

Furthermore, if w-Ls ¢, (-) is closed and conver valued then

w-Ls/q&n C /w-quSn.

As a corollary of Theorems 6.4 and 6.5 (or alternatively from Corol-
lary 5.1), we obtain a Lebesgue-Aumann-type dominated convergence
result for the integral of a correspondence.

correspondence.

Then
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Corollary 6.1. Let éﬂ : T — 2X (n = 1,2,...) be a sequence of
correspondences salisfying all the assumptions of Theorems 6.4 and 6.5.
Suppose that

(i) $,(t) 55 4(t) p-a.e.
Then,

[o.5Ma [s

Moreover, if ¢(-) is convez valued, then

o [

It should be noted that Theorems 6.1, 6.3 and 6.5 have been estab-
lished using stronger assumptions than those adopted by Aumann (1965).
However, the following example below will show that Aumann’s results

are false in infinite-dimensional spaces. In particular, without assump-
tion (i) of Theorems 6.1, 6.3 and 6.5, all these results above become false.

Example 6.1. Let X in Theorem 6.1 be equal to £,, i.e., the space of
real sequences (a, ) for which the norm ||a, || = (3" |a,|*)!/? is finite, and
let T = [0, 2x], T the Borel sets in [0, 2] and p the Lebesgue measure on
(T,7). Let K = {z € £, : ||z]| < 4x}. Since the space X = £, is reflexive
the weak and weak* topologies coincide and thus by the Alaoglu theorem
we can conclude that K is weakly compact. Choose a complete orthogonal
system {w, :n =0,1,...} in L,(x) such that each w_ assumes only the
valued +1, wy = X[g 2 and ftefo,zw] w,(t)du(t) =0forn=1,2,.... For
each n and each F € 7 let

(F ) o,

Define the vector measure V' : 7 — £, by

A (E)=2-" /

teE

V(E) = (Xo(E), \1(E), . -..)

Then ||V(E)|| < 2u(E) for each E € 7. Therefore, the vector measure
V is countably additive, V' is of bounded variation and it is obviously
atomless. Clearly, 0 and V(T) arein V() ={z €4, : 2 = V(E), E € 7}
and note that 1VT is the convex hull of V(7). The argument now of
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Lyapunov adopted by Diestel-Uhl (1977, p. 262) can be used here to
prove that there is no E € 7 such that V(E) = 1 V(T), i.e., the {,-valued
atomless vector measure V of bounded variation is nonconvez.

Observe now that £, has the RNP. Hence, there exists a function
g € Ly(p,¢,y) such that for each E € 7, V(E) = [, xg(t)g(t)du(?).
Since the norm closure of the range of V is convex [Theorem 10, p. 266
in Diestel-Uhl (1977)] we can conclude that 1V(T) is in the closure.
Consequently, there exists a sequence {E, : n = 1,2,...} in 7 such
that lim,_, . V(E,) = 3V(T). For each n, define ¢, : T — £, by
¢,(t) = xg_ (t)g(t). It can be easily checked that w-Ls¢, is measur-
able [see for instance Yannelis (19902, Lemma 3.12 and Remark 3.1)].
We now show that the inclusion w-Ls [ ¢, C [ w-Ls ¢,, does not hold. In
particular, since s-Ls [ ¢,, C w-Ls [ ¢,, we will prove a slightly stronger
result, i.e., the inclusion s-Ls [ ¢,, C w-Ls [ ¢,, does not hold. Note that
for each n, ¢,,(t) € {0,9(¢)} p -a.e. and so w-Ls ¢, C {0, 9(2),{0,g(%)},0}.
For any ¢ € 5.1, 5. Wwe have that ¢(1) = xg(t)g(t) p-a.e, for E-€ 7. In
order now for the inclusion s-Li [ ¢, C [ w-Ls ¢, to hold, we must have
that 3V(T) € [w-Ls¢,, i.e., 3V(T) = [,cp9(t)dp(t) = V(E). But as
it was remarked above no such E € 7 exists (since the vector measure
V is not convex). hence, the w-Ls version of the Fatou Lemma fails in
infinite-dimensional spaces. Note that the above example also showed
that the integral of the closed valued correspondences F : T — 2% de-
fined by F(t) = {0,9(¢)} is not compact (in fact it is not even closed!).*
Finally, note that 3V(T) = } [, 1 9(t)du(t) € con [ F and {V(T) ¢ [ F,

i.e., the integral of the correspondence F : T — 2% is not convez.’

The results below follow directly from Theorems 5.4, 5.6 and Corol-
lary 5.3.

Theorem 6.6. Let (T, 7,1) be a complete, finite measure space, P be
a metric space and X be a separable Banach space. Let ¢ : T x P — 2%
be a nonempty valued, integrably bounded correspondence, such that for
each fizedt € T, (1,-) is q.u.s.c. and for each fized p € P, (- ,p) has a

4 Recall that Aumann (1965) demonstrated that if X is finite dimensional
and F': T — 2% is integrably bounded and closed valued, then [ F is compact.

5 Note that when X is finite dimensional the well-known result of Richter
(1963) assures that [ F is convex.
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measurable graph. Then

/qb(t,») is q.u.s.C.

Theorem 6.7. Let (T, r,p) be a complete, finite measure space, X be
a separable Banach space and P be a metric space. Let ¢ : T x P — 2%
be an integrably bounded correspondence such that for each fized t € T,
&(t,-) is Ls.c. and for each fized p € P, ¢(-,p) has a measurable graph.
Then

/ é(t,)) s Ls.c.

Remark 6.1. If in addition to the assumptions of Theorem 6.7, it
is assumed that [ 4(Z,-) is compact valued, then we can conclude that

[ ¥(t,-) is us.c.

Corollary 6.2. Let (T,7,u) be a complete, finite measure space, P be
a metric space and X be a separable Banach space. Let 1 : T X P — 2%
be a nonempty valued, integrably bounded correspondence, such that for
each fized p € P, 9(-,p) has a measurable graph and for each fizredt € T,
P(t,-) is continuous. Moreover, suppose that [..1(t,-)du(t) is compact
valued. Then

/d}(t,-)d,u(t) is continuous.
T

Below we prove a s-Ls version of the Fatou Lemma in infinite dimen-
sions.

Theorem 6.8. Let (T,7,u) be a complete, finite measure space and
X be a separable Banach space. Let ¢, : T — 2X (n = 1,2,...) be a
sequence of nonempty valued, graph measurable correspondences, taking
values in a compact, nonempty subset of X, Then

s-Ls/’rcﬁn(t)dp(t) G cl/Ts-qu{;n(t)dp(t).

Moreover, if Ls ¢, (-) is convez valued, then

s-Ls/Tan(t)dy(t)C/;S—quﬁndp(t).
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Proof. Denote by P the interval [0,1). Define the correspondence
¥:Tx P— 2% by

¢, (1) if anf <p<i
P(t,0) = ¢, (DU Gpa(t) ifp= 75
Ls () if p = 0.

It can be easily checked that for each fixed t € T, %(%,-) is u.s.c. and
that for each fixed p € P, 9(-,p) has a measurable graph. Moreover, % is
integrably bounded. Hence, 9 satisfies all the assumptions of Theorem 6.6
and thus, [, %(t,-)du(t) is qus.c. Let now z € Ls [ ¢,(1)du(?), ie.,
there exists z,, such that lim, ., z,, = &, Z,, € [7&,, (2)dpu(?) (k =
1,2,...). We wish to show that z € cl [ ¢, (t)du(?).

Since [ 9(t,-)du(t) is qu.s.c. (see Section 2 for a definition) it fol-
lows that if p, converges to 0 then [ %(2,p,, )du(t) C [r(2,0)dp(t)+vB
for all sufficiently large k (where v is a small positive number and B de-
notes the open unit ball in X). Consequently, z, € [r%(2,0)du(t)+
vB for all sufficiently large k and therefore, z € cl [.9(2,0)du(t) =
cl [, s-Ls ¢, (t)du(t) as was to be shown. If now Lsé, is convex valued
(recall that s-Ls ¢,,(-) is closed valued as well), it follows from Theorem 6.1
and the first conclusion of Theorem 6.8 that

s—Ls/Tqbndp(t) C cl/Ts-qubn(t)d,u(t) = /Ts—qubn(t)dy(t).

This completes the proof of the Theorem.

We close this section by obtaining the following dominated converge
result: |

Theorem 6.9. Let (T,7,u) be a complete, finite measure space and
X be a separable Banach space. Let ¢, : T — X == 1,80 ) Dewm
sequence of integrably bounded, nonempty valued correspondence having a
measurable graph, such that
(i) For alln (n = 1,2,...), ¢,(t) C K p-a.e., where K is a compact,

nonempty subset of X, and
(i5) 6a(2) » 9(2) p-a.e.
Then

JECITORS | #wautv.
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Moreover, if ¢(-) is convez valued then

[ a0y~ [ sauc)
T T

Proof. Since by assumption ¢,(1) — &(t) p-a.e., i.e., ¢(t) = s-Lig,(t)
= s-Ls ¢, (1) p-a.e., it follows from Theorems 6.4 and 6.8 that:

/¢= s-Li¢ﬂcS—Li[¢ncS-Ls/¢ncd/s-qu5n=cl/¢-

Therefore,

d [ saut) = oTi [ 8,0au(0) = s1s [ g0t

[ uau ~ a [ oauto.
T T

If now ¢(-) is convex valued, we can conclude (recall the second conclusion
of Theorem 6.8) that:

/gb:/s-LiqS,,Cs-Li/qbnCs-Ls/qan /s-qubn _—./qﬁ.

Thus,

/Tqb(t)d,u(t) — s-Liji‘qSﬂ(t)dp(t) — s-Ls./TQSn(t)dp(t),

i.e.,

[ ¢ut)du) ~ [ oauco),
T T
and this completes the proof of Theorem 6.9.

Bibliographic Notes. A version of Theorem 6.1 is proved by Yan-
nelis (1988). Theorem 6.2 is due to Datko (1973). The proof given here
is taken from Khan (1985). It has been useful in general equilibrium the-
ory [see for instance Rustichini-Yannelis (1989, 1991) and Ostroy-Zame
(1988)]. It should be noted that Theorem 6.2 is the infinite dimensional
version of Theorem 2 of Aumann (1965) [see also Debreu (1967)] and
it was first proved by Datko (1973) for X being a reflexive separable
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Banach space. The reflexivity assumption was subsequently relaxed by
Khan (1985). Rustichini-Yannelis (1990) showed that if the dimensional-
ity of the measure space is bigger than the dimensionality of the space X,
then the conclusion of Theorem 6.3 can be strengthened to [cong = [ ¢.

The Example 6.1 is due to Lyapunov [see also Diestel-Uhl (1977,
p. 262)]. The argument used to prove that several of the properties of
the Aumann integral fail in an infinite dimensional setting is due to Rus-
tichini (1989). Theorems 6.6-6.9 are due to Yannelis (1990). Related
results to Theorems 6.6-6.9 were obtained by Debreu (1967).

7. The Gel’fand Integral

Let (T, 7, 1) be a finite measure space and X be a Banach space. Let
f:T — X* be a function such that {f,z) € L;(p) for all z € X, then for
each A € 7 the element z% in X* is called the Gel’fand integral of f over
A, where

< /A(f(t),a:)dp,(t) for all z € X.

We denote by (S'},)"“ the set of all Gel’fand integrable selections from the
correspondence ¢ : T — 2% | i.e.,

(S3)" = {z € (Ly(1, X)) : 2(t) € (1) p-ae}
= {z € Loo(p, X™) : 2(2) € ¢(2) p-ae.}.

The Gel’fand integral of the correspondence ¢ : T — 2% is defined as
follows:

/ ¢(t)du(i) = { / (@), z)du(t): f € (S3) forall z € X}.

Note that the above integral may be empty unless ¢ admits weak™® mea-
surable selections. A very useful result due to Khan (1985) which has
found several applications in game theory and general equilibrium is the
fact that the weak* closure of the Gel’fand integral of a correspondence
is convex. This result can be proved adopting a similar argument used to
prove Theorem 6.2 except that instead of using Uhl’s Theorem one can
now appeal to a result of Kluvalek [Kluvalek (1973, p. 46, Lemma 5)].
We state below a very useful result for the Gel’fand integral of a corre-
spondence.
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Theorem 7.1. Let (T,7,p) be a complete, finite measure space, X* be
the dual of a separable Banach space and ¢ : T — 2% be a correspondence
with a weak™ measurable graph (i.e., G4 € T ® B,,-(X~), where §5,.(X™)
are the Borel subsets of X* in the weak* topology of X*) such that ¢(t)
is weak* closed and bounded for almost allt in T. Then for all A€ T,

w‘—clLé:Lw*-—&'ﬁ“ﬁ:ﬁ.

Moreover, [, w* — con ¢ is weak® compact and convez.

Bibliographical Notes. Theorem 7.1 is due to Khan (1985) and it
has found important applications in general equilibrium theory [Rustichini-
Yannelis (1989, 1991), Ostroy-Zame (1988)], game theory [Cotter (1990),
Khan (1986)] and demand theory [Border (1989), Kim (1990)].

8. An Application

In this section we will indicate how some of the results in Yan-
nelis (1990a) as well as theorems of this paper can be used to prove
the existence of an equilibrium for an abstract economy with a measure
space of agents.

An abstract economy T is a quadruple [(T, 7,u), X, P, A], where

(1) (T, 7,u) is the measure space of agents,

(2) X : T — 2Y is the stralegy correspondence (where Y is a linear
topological space),

(3) P:TxS5% — 2Y is a preferences correspondence such that P(t,z) C

X(t) for all (¢,z) € T x §%, and
(4) A:T x Sk — 2Y is a constraint correspondence such that A(t,z) C

X(t) for all (¢,2) € T x S%.

The interpretation of the preference correspondence P : T'x % — 2Y
is as follows: We read y € P(t,z) as “agent ¢ strictly prefers y to z(2) if
the given strategies of other agents are fixed.” Throughout this section
we set Y = R™ and endow S% with the weak topology.

An equilibrium for T is an z* € S such that for almost all ¢ in T
the following conditions hold:

(i) z*(t) € A(t,2*) and
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(i) P(t,2*)nN A(t,z*) = 0.
Below we state the assumptions needed for the proof of our equilib-
rium existence theorem.

(8.1) (T,7,p)is a complete finite separable measure space.
(8.2) X : T — 2Y is a correspondence such that:
(a) It is integrably bounded and for all t € T, X(¢) is a closed
convex nonempty subset of ¥';
(b) X(-) is lower measurable.
(8.3) A:T x S% — 2 is a correspondence such that:
(a) for each fixed t € T, A(t,-) is continuous;
(b) A(-,-)is closed, convex and nonempty valued;
(c) for each fixed z € Sk, A(-,z) is lower measurable.
(8.4) P:T x §% — 2Y is a correspondence such that:
(a) for each fixed t € T', P(t,-) has an open graph in S X ¥
(b) z(t) & con P(t,z) for all z € S, p-a.e;
(c) for every open subset V of Y, the set {(#,2) € T x Sk :
A(t,z) N con P(t,z) NV # 0} belongs to 7 ® B,,(S%), where
8,(8%) denotes the Borel o-algebra for the weak topology
on S%.
We are now ready to state the following result:

Theorem 8.1. LetT = [(T,r,n), X, P, A] be an abstract economy sat-
isfying (8.1)-(8.4). Then an equilibrium in ' ezists.

Proof. Define the set-valued function % : T x S% — 2¥ by ¢(¢,2) =
con P(t,z). It can be easily checked that for each fixed ¢ € T, ¥(t,-) has
an open graph in §% XY [see for instance Lemma 4.1 in Yannelis (1987))].
Define the set-valued function ¢ : T x §% — 2¥ by ¢(t,z) = ¥(¢,z)N
A(t,z). It follows from Lemma 4.2 in Yannelis (1987) that for each fixed
t € T, #(t,) is weakly u.s.c., i.e., for every open subset V of Y, the set
{z € SL : ¢(t,2)NV # 0} is weakly open in §%. By assumption (8.4)(c),
¢(-,+) is lower measurable. Let U = {(t,z) € T x §% : ¢(t,z) # 0}.
By Theorem 4.2 in Yannelis (1990a) we can guarantee the existence of
a Carathéodory-type selection, i.e., there exists a function f : U —» Y
such that f(i,z) € ¢(t,z) for all (¢,2) € U and for each t € T, f(2,) is
continuous on U, = {z € §% : ¢(t,z) # 0} and for each z € Sk, f(-,z)
is measurable on U_ = {t € T : ¢(i,z) # 0}. Moreover, f(-,-) is jointly
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measurable. Define the set-valued function F : T x §% — 2Y by

{f(t,z)} if(t,z)eU

F(t’i) - { A(t,z) if(t,z)¢U.

It follows at once from the l.s.c. of ¢(t,-) that for each t € T the set
U, = {z € §% : ¢(t,z) # 0} is weakly open in §%. Thus, by Lemma 6.1
in Yannelis-Prabhakar (1983) for each fixed t € T, F(¢,-) is weakly u.s.c.
in the sense that the set {z € S} : F(t,z) C V} is weakly open in
S% for every open subset V of Y. As in Yannelis (1987) one can easily
check that for each z € §%, F(-,z) has a measurable graph. Also, F(-,")
is closed, convex and nonempty valued. Define the set-valued function
g : S}{ — 25k by

6(z) = {v € Sk : 4(t) € F(t,) p-ae}.

Note that by Theorem 3.1, S% is weakly compact in L,(g,Y). Since
the measure space (T, 7, u) is separable, L,(p,Y) is a separable Banach
space. Since, weakly compact subsets of a separable Banach space are
metrizable, we can conclude that S is metrizable. Hence, it follows from
Theorem 5.5 that 6(-) is weakly u.s.c., i.e., for every weakly open subset
V of §% the set {z € Sk : 6(z) C V} is weakly open in §%. Appealing
to the Aumann measurable selection theorem, we can conclude that 4(-)
is nonempty valued. Similarly, the set $% is nonempty. Obviously 6(-) is
convex valued and so is the set S%. It follows from the Fan-Glicksberg
fixed point theorem that there exists z* € S% such that z* € F(z*).
It can be easily now checked that the fixed point is by construction an
equilibrium for the abstract economy T'.

Bibliographical Notes. This section is based on Yannelis (1987)
where we refer the reader for related results. A version of Theorem 8.1
was first proved by Khan-Vohra (1984). It should be noted that the no-
tion of an equilibrium for an abstract economy is due to Debreu (1952)
which in turn generalizes the notion of a noncooperative equilibrium for
a game in normal form introduced by Nash (1951). For more appli-
cations of Carathéodory-type selections theorems as well as recent re-
sults on integration of set-valued function we recommend, the papers
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of Kim-Prikry-Yannelis (1989), Yannelis-Rustichini (1990, 1991), Balder-
Yannelis (1990), and Yannelis (1990b). Finally a paper by Debreu (1967a)
uses measure theory and measurable selections extensively.
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