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1 Introduction

Games with discontinuous payoffs have been used to model a variety of important

economic problems; for example, Hotelling location games, Bertrand competition, and

various auction models. The seminal work by Reny (1999) proposed the “better reply

security” condition and proved the equilibrium existence in quasiconcave compact

games with discontinuous payoffs. Since the hypotheses are sufficiently simple and

easily verified, the increasing applications of his results has widened significantly in

recent years, as evidenced by Jackson and Swinkels (2005) and Monteiro and Page

(2008) among others. A number of papers appeared in the topic of discontinuous

games and further extensions have been obtained in several directions; see, for

example, Lebrun (1996), Bagh and Jofre (2006), Bich (2009), Carbonell-Nicolau

(2011), Balder (2011), Carmona (2010, 2011, 2014), Prokopovych (2011, 2013, 2014),

de Castro (2011), McLennan, Monteiro and Tourky (2011), Reny (2011, 2013), Tian

(2012), Barelli and Meneghel (2013) and Prokopovych and Yannelis (2014) among

others.

In this paper, we consider discontinuous games with asymmetric information; i.e.,

games with a finite set of players and each of whom is characterized by his own private

information (which is a partition of an exogenously given state space representing the

uncertainty of the world), a strategy set, a state dependent (random) utility function

and a prior. This problem arises naturally in situations where privately informed

agents behave strategically. Because of its importance, the research trend in this field

has been quite active since Harsanyi’s seminal work. The main purpose of this paper

is to provide new equilibrium existence result for Bayesian games with discontinuous

payoffs.

We introduce the notions of finite/finite∗ payoff security and adopt the aggregate

upper semicontinuity condition in the ex post games. We show that the (ex ante)

Bayesian game is payoff secure and reciprocal upper semicontinuous, and hence Reny’s

theorem is applicable and a pure strategy Bayesian equilibrium exists. A key issue

here is that the quasiconcavity of the Bayesian game cannot be guaranteed even if

all ex post games are quasiconcave. We show by means of counterexamples that the

concavity and finite payoff security conditions of the ex post games are both necessary

for the existence of a pure strategy Bayesian equilibrium.1

The rest of the paper is organized as follows. In Section 2, we introduce a

discontinuous game with asymmetric information and relevant results in deterministic

discontinuous games. In Section 3, we prove the existence of a Bayesian equilibrium.

1Based on a different approach using the communication device, Jackson et al. (2002) also studied discontinuous
games with asymmetric information.
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Section 4 collects the discussions on the conditions of Theorem 2, the comparison of

our notion with the uniform payoff security condition of Monteiro and Page (2007),

and possible extensions to the case of a continuum of states. Some concluding remarks

are collected in Section 5.

2 Model

2.1 Discontinuous games with asymmetric infor-

mation

We consider an asymmetric information game

G = {Ω, (ui, Xi,Fi)i∈I}.

• There is a finite set of players, I = {1, 2, · · · , N}.

• Ω is a countable state space representing the uncertainty of the world, F is

the power set of Ω.

• Fi is a partition of Ω, denoting the private information of player i. Fi(ω)

denotes the element of Fi including the state ω.

• Player i’s action space Xi is a nonempty, compact, convex subset of a topological

vector space, X =
∏

i∈I Xi.

• For every i ∈ I, ui : X × Ω → R is a random utility function representing

the (ex post) preference of player i.

A game G is called a compact game if ui is bounded for every i ∈ I; i.e., ∃M > 0,

|ui(x, ω)| ≤ M for all x ∈ X and ω ∈ Ω, 1 ≤ i ≤ N . A game G is said to be

quasiconcave (resp. concave) if ui(·, x−i, ω) is quasiconcave (resp. concave) for

every i ∈ I, x−i ∈ X−i and ω ∈ Ω. For every ω ∈ Ω, the ex post game is

Gω = (ui(·, ω), Xi)i∈I . Suppose that each player has a private prior πi on F such that

πi(E) > 0 for any E ∈ Fi. The weighted ex post game is G′ω = (wi(·, ω), Xi)i∈I ,

where wi(·, ω) is a mapping from X to R and wi(·, ω) = ui(·, ω)πi(ω) for each ω ∈ Ω.

For every player i, a strategy is an Fi-measurable mapping from Ω to Xi. Let

Li = {fi : Ω→ Xi : fi is Fi-measurable},
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then Li is a convex and compact set endowed with the product topology. L =
∏

i∈I Li.

Given a strategy profile f ∈ L, the expected utility of player i is

Ui(f) =
∑
ω∈Ω

ui(fi(ω), f−i(ω), ω)πi(ω),

then Ui(·) is also bounded by M . Therefore, the (ex ante) Bayesian game of G

is G0 = (Ui, Li)1≤i≤N , which is compact and concave if the game G is compact and

concave. A strategy profile f ∈ L is said to be a Bayesian equilibrium if for each

player i and any gi ∈ Li,
Ui(f) ≥ Ui(gi, f−i).

Remark 1. It is well known that quasiconcavity may not be preserved under

summation or integration. Thus, the Bayesian game G0 may not be quasiconcave

even if G is quasiconcave.

2.2 Deterministic case

Hereafter, Gd = (Xi, ui)
N
i=1 will denote a deterministic discontinuous game, i.e.,

Ω is a singleton. The following definitions strengthen the notion of payoff security in

Reny (1999).

Definition 1. In the game Gd, player i can secure an n-dimensional payoff

(α1, · · · , αn) ∈ Rn at (xi, x
1
−i, · · · , xn−i) ∈ Xi × Xn

−i if there is xi ∈ Xi, such that

ui(xi, y
k
−i) ≥ αk for all yk−i in some open neighborhood of xk−i, 1 ≤ k ≤ n.

Definition 2. The game Gd is n-payoff secure if for every i ∈ I and (xi, x
1
−i, · · · , xn−i) ∈

Xi ×Xn
−i, ∀ε > 0, player i can secure an n-dimensional payoff

(
ui(xi, x

1
−i)− ε, · · · , ui(xi, xn−i)− ε

)
at (xi, x

1
−i, · · · , xn−i) ∈ Xi ×Xn

−i. The game Gd is said to be finitely payoff secure

if it is n-payoff secure for any n ∈ N.2

If n = 1, it is called payoff secure.

Given x ∈ X, let u(x) = (u1(x), · · · , uN(x)) be the payoff vector of the game Gd.

Define Γd = {(x, u(x)) ∈ X × R : x ∈ X}, i.e., the graph of the payoff vector u(·),
then Γd denotes the closure of Γd.

The following definition is due to Reny (1999).

2It is clear that the uniform payoff security condition of Monteiro and Page (2007) implies our finite payoff security
condition. See Subsection 4.2 for further discussion of this point.
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Definition 3. The game Gd is better-reply secure if whenever (x∗, α∗) ∈ Γd and

x∗ is not a Nash equilibrium, some player j can secure a payoff strictly above α∗i at

x∗.

In their pioneer paper, Dasgupta and Maskin (1986) proposed the following

condition which is weaker than the upper semicontinuity condition of the utility

functions.

Definition 4. A game Gd is said to be aggregate upper semicontinuous if the

summation of the utility functions of all players is upper semicontinuous.3

The following generalization is due to Simon (1987), which is called complimentary

discontinuity or reciprocal upper semicontinuity.

Definition 5. A game Gd is reciprocal upper semicontinuous if for any (x, α) ∈
Γd \ Γd, there is a player i such that ui(x) > αi.

Reny (1999) showed that the game Gd is better reply secure if it is payoff secure

and reciprocal upper semicontinuous.

Theorem 1 (Reny (1999)). Every compact, quasiconcave and better-reply secure

deterministic game has a Nash equilibrium.

We will use this theorem to establish our existence results. One may easily develop

analogous definitions of “n-payoff security” in the framework of many recent papers.

3 Existence of Bayesian equilibrium

In this section, we will show the existence of pure strategy Bayesian equilibrium in

discontinuous games with asymmetric information.

First, we shall prove Propositions 1 and 2, which provide sufficient conditions to

guarantee the payoff security of a Bayesian game.

Proposition 1. If the weighted ex post game G′ω is finitely payoff secure at every state

ω ∈ Ω and ui(x, ·) is Fi-measurable for every x ∈ X and i ∈ I, then the Bayesian

game G0 is payoff secure.

Proof. For any i ∈ I, suppose that Fi = {E1, · · · , Ek, · · · } is the information partition

of player i, M is the bound for ui. Given any ε > 0, there exists a positive integer

K > 0 such that πi(∪Kk=1Ek) > 1 − ε
6M

. For 1 ≤ k ≤ K, there exists a finite subset

E ′k ⊆ Ek such that πi(Ek \ E ′k) < ε
6KM

and πi(E
′
k) > 0.

3Carmona (2009) proved the existence of Nash equilibria in compact, quasiconcave games via weak versions of
both upper semicontinuity and payoff security.
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Fix ωk ∈ E ′k such that πi(ωk) > 0. Given any f ∈ L, because ui(x, ·) and fi(·) are

both Fi-measurable,

ui(fi(ω), f−i(ω), ω) = ui(fi(ωk), f−i(ω), ωk)

for any ω ∈ Ek, 1 ≤ k ≤ K.

Since G′ωk
is finitely payoff secure, there exists a point yki ∈ Xi, such that

wi(y
k
i , y

ω
−i, ωk) ≥ wi(fi(ωk), f−i(ω), ωk)−

ε

3
πi(ωk)

for all yω−i in some open neighborhood Oω of f−i(ω), ∀ω ∈ E ′k.
Let

gi(ω) =

yki , if ω ∈ Ek for 1 ≤ k ≤ K,

fi(ω), otherwise.

Then by construction gi is Fi-measurable.

Choose the open set O in L−i such that O =
(∏

1≤k≤K(
∏

ω∈E′k
Oω ×X

Ek\E′k
−i )

)
×

X
Ω\∪1≤k≤KEk

−i ,

Ui(gi, g
′
−i) =

∑
E∈Fi

∑
ω∈E

wi(gi(ω), g′−i(ω), ω)

≥
K∑
k=1

∑
ω∈E′k

wi(gi(ω), g′−i(ω), ω)−M

(
πi(Ω \ (∪Kk=1Ek)) +

K∑
k=1

πi(Ek \ E ′k)

)

≥
K∑
k=1

∑
ω∈E′k

wi(y
k
i , g
′
−i(ω), ωk)

πi(ω)

πi(ωk)
− ε

3

≥
K∑
k=1

∑
ω∈E′k

[wi(fi(ωk), f−i(ω), ωk)−
ε

3
πi(ωk)]

πi(ω)

πi(ωk)
− ε

3

≥
K∑
k=1

∑
ω∈E′k

wi(fi(ωk), f−i(ω), ω)− 2ε

3

≥
∑
E∈Fi

∑
ω∈E

wi(fi(ωk), f−i(ω), ω)− 2ε

3
−M

(
πi(Ω \ (∪Kk=1Ek)) +

K∑
k=1

πi(Ek \ E ′k)

)
> Ui(f)− ε

for every g′−i ∈ O. Thus, the game G0 is payoff secure.

Remark 2. Note that the finitely payoff security of the weighted ex post game G′ω =

(wi(·, ω), Xi)i∈I is slightly weaker than the finitely payoff security of the ex post game
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Gω = (ui(·, ω), Xi)i∈I , where ui is the ex post payoff function and wi(·, ω) = ui(·, ω) ·
πi(ω) for every i ∈ I. These two conditions will be equivalent if πi(ω) > 0 for any

i ∈ I and ω ∈ Ω.

In Proposition 1, the ex post utility functions are required to be private information

measurable. This assumption can be dropped if the finitely payoff security condition

is strengthened accordingly.

Definition 6. An asymmetric information game G is n∗-payoff secure if for every

i ∈ I, every (xi, x
1
−i, · · · , xn−i) ∈ Xi × Xn

−i and every (ω1, · · · , ωn) ⊆ D for some

D ∈ Fi, ∀ε > 0, there is xi ∈ Xi, such that ui(xi, y
k
−i, ωk) ≥ ui(xi, x

k
−i, ωk)− ε for all

yk−i in some open neighborhood of xk−i, 1 ≤ k ≤ n.

The game G is said to be finitely∗ payoff secure if it is n∗-payoff secure for any

n ∈ N.

Proposition 2. The Bayesian game G0 is payoff secure if G is finitely∗-payoff secure.

Proof. As in the proof of Proposition 1, we could find some positive integer K and

finite set E ′k for each 1 ≤ k ≤ K satisfying the same conditions therein.

Given any f ∈ L. Since G is finitely∗ payoff secure, for each 1 ≤ k ≤ K, there

exists a point yki ∈ Xi, such that

ui(y
k
i , y

ω
−i, ω) ≥ ui(fi(ω), f−i(ω), ω)− ε

3

for all yω−i in some open neighborhood Oω of f−i(ω), ∀ω ∈ E ′k.
Let

gi(ω) =

yki , if ω ∈ Ek for 1 ≤ k ≤ K,

fi(ω), otherwise.

Then the rest of the proof proceeds similarly as in the proof of Proposition 1.

Proposition 3. In the game G, if the weighted ex post game G′ω is aggregate upper

semicontinuous at every state ω ∈ Ω, then the Bayesian game G0 is reciprocal upper

semicontinuous.

Proof. By way of contradiction, suppose that the Bayesian game G0 is not reciprocal

upper semicontinuous. Then there exists a sequence {fn} ⊆ L, fn → f and U(fn)→
α as n→∞, where U(f) = (U1(f), · · · , UN(f)) and α = (α1, · · · , αN) ∈ RN . Ui(f) ≤
αi for 1 ≤ i ≤ N and U(f) 6= α.

Denote ε = max1≤i≤N(αi − Ui(f)), ε > 0. Thus,∑
i∈I

Ui(f) ≤
∑
i∈I

αi − ε.
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There exists a finite subset E ⊆ Ω such that πi(Ω \ E) < ε
2NM

for every i ∈ I, where

M is the bound of ui for all i.

Then for any i ∈ I, Ui(f
n) can be divided into two parts: µni =

∑
ω∈E wi(f

n(ω), ω)

and νni =
∑

ω/∈E wi(f
n(ω), ω), Ui(f

n) = µni + νni . Let µn = {µni }i∈I , since {µn}n∈N is

bounded, there is a subsequence, say itself, which converges to some µ ∈ RN . Since

νni ≤Mπi(Ω \ E) < ε
2N

for any i ∈ I and n ∈ N, µi ≥ αi − ε
2N

for every i ∈ I.

At each state ω ∈ E and i ∈ I, since wi(f
n(ω), ω) is bounded, there is a

subsequence which converges to some βωi . Since there are only finitely many players

and states, we can assume without loss of generality that wi(f
n(ω), ω) → βωi as

n→∞, then
∑

ω∈E β
ω
i = µi.

Since fn(ω)→ f(ω) for every ω ∈ E and G′ω is aggregate upper semicontinuous,∑
i∈I

wi(f(ω), ω) ≥
∑
i∈I

βωi .

Thus, ∑
i∈I

Ui(f) ≥
∑
i∈I

∑
ω∈E

wi(f(ω), ω) ≥
∑
i∈I

∑
ω∈E

βωi =
∑
i∈I

µi ≥
∑
i∈I

αi −
ε

2
,

which is a contradiction.

By combining Theorem 1, Proposition 1/2 and Proposition 3, we obtain the

following result which is an extension of Reny (1999) to Bayesian games with

discontinuous payoffs.

Theorem 2. Suppose that an asymmetric information game G is compact, the

corresponding Bayesian game G0 is quasiconcave, and the weighted ex post game G′ω
is aggregate upper semicontinuous at each state ω. Then a Bayesian equilibrium exists

if either of the following conditions holds.

1. The weighted ex post game G′ω is finitely payoff secure at every state ω ∈ Ω and

ui(x, ·) is Fi-measurable for every x ∈ X and i ∈ I.

2. The game G is finitely∗ payoff secure.

Remark 3. Note that the (ex ante) Bayesian game G0 is assumed to be quasiconcave.

However, Example 1 below indicates that the theorem may fail if we only require that G

is quasiconcave. To impose conditions in the primitive stage, one possible alternative

is to require that G be concave. However, the concavity of the utility function implies

that it is continuous on the interior of its domain, and hence the discontinuity only

arises on the boundary. This is a rather strong assumption and will deter many

possible applications.
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4 Discussion

In this section, we shall first provide two examples to show the necessity of the

quasiconcavity and the finite payoff security conditions. In addition, we shall also

compare our notion of finite payoff security and the uniform payoff security condition

of Monteiro and Page (2007), and discuss the possible extension of Theorem 2 to the

setting of a continuum of states based on the uniform payoff security condition.

4.1 Two counterexamples

To guarantee the existence of a Bayesian equilibrium, the expected utility of each

player is required to be quasiconcave in Theorem 2. Example 1 below shows that this

condition cannot be dropped, even if all other conditions are satisfied and the ex post

utility function is quasiconcave itself.

Example 1 (Importance of concavity).

Consider the following game G. There are two players I = {1, 2} competing for a

object. The strategy spaces for players 1 and 2 are respectively X and Y , X = Y =

[0, 1]. Player 1 has only one possible private value 1, and player 2 has two possible

private values 0 and 1.

Denote a = (1, 1) and b = (1, 0) (the first component is the private value of player

1 and the second component is the private value of player 2). The state space is

Ω = {a, b}. The information partitions and priors are as follows:

F1 = {{a, b}}, π1(a) = π1(b) =
1

2
;

F2 = {{a}, {b}}, π2(a) = π2(b) =
1

2
.

For ω = a, b, the utility function of player 1 is

u1(x, y, ω) =

1− x, if x ≥ y

0, otherwise
.

Then u1(x, y, ·) is measurable with respect to F1 for any (x, y) ∈ X × Y .

The utility function of player 2 is

u2(x, y, a) =

1− y, if y > x

0, if y ≤ x
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and

u2(x, y, b) =

−y, if y > x

−y
2
, if y ≤ x

.

1. At both states, when there is a tie, player 1 will take the good and player 2 gets

nothing.

2. At state b, the private value of player 2 is 0, bidding for positive price will harm

both, thus player 2 will be punished when he bids more than 0 even if he loses

the game.

The ex post games Ga and Gb are 2-payoff secure. Consider the ex post game Ga

and player 1. Given ε > 0, x ∈ X and (y1, y2) ∈ Y × Y . Assume y1 ≥ y2 without loss

of generality. There are three possible cases.

1. If y1 ≤ x, then let player 1 bid x = min{x+ ε
2
, 1}. For i = 1, 2, y′i ≤ min{x+ ε

2
, 1}

for any y′i in a small neighborhood of yi, hence the payoff of player 1 is at least

1− x− ε
2
.

2. If y2 > x, then let player 1 bid x = x and his payoff cannot be worse off.

3. If y2 ≤ x < y1, then let player 1 bid x = x+δ such that x+δ < y1 and 0 < δ < ε.

Similarly, one can show the 2-payoff security of player 2 at state a and b. Therefore,

the ex post game is 2-payoff secure at each state. It is easy to see that the

summations of ex post utility functions are upper semicontinuous at both states, and

the assumptions of quasiconcavity and compactness are satisfied. Thus, there are Nash

equilibria for both ex post games. At state a, the unique equilibrium is (1, 1); at state

b, the unique equilibrium is (0, 0).

However, there is no Bayesian equilibrium in this game.4 Suppose (x, y) is an

equilibrium, where y = (y(a), y(b)). In state b, player 2 will always choose y(b) = 0,

thus player 1 can guarantee himself a positive payoff by choosing x = 0. But if x < 1,

player 2 has no optimal strategy at state a. Thus, player 1 has to choose x = 1 and

gets 0 payoff, a contradiction.

Remark 4. In Example 1, although the ex post utility function is quasiconcave at

both states, the expected utility function is not quasiconcave, and hence there is no

Bayesian equilibrium.

4Note that there is mixed strategy equilibria for this game: for example, Bidder 1’s strategy is 1
2δ0 + 1

2U([0, 12 ]),
Bidder 2’s strategy is 0 when his value is 0, and U([0, 12 ]) when his value is 1, where δ0 is the delta measure
concentrated at 0 and U([0, 12 ]) is the uniform distribution on [0, 12 ]. However, we only focus on pure strategies in
this paper.
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In Theorem 2, we strengthen the payoff security of Reny (1999) to finite payoff

security . The second example shows that the payoff security of every ex post game

cannot guarantee the payoff security of the Bayesian game.

Example 2 (Ex post payoff security does not imply ex ante payoff security).

Consider the following game: the player space is I = {1, 2, 3}, the state space is

Ω = {a, b}, and the information partitions of all players are F1 = F2 = {{a, b}} and

F3 = {{a}, {b}}. Players have common prior π(a) = π(b) = 1
2
. The action space of

player i is Xi = [0, 1], i = 1, 2, 3. The games L and R are listed below.

In both states, players 1 and 2 will play the game L if x3 = 0 and the game R

otherwise. Player 1’s action is in the left and player 2’s action is in the top.

0 (0, 1) 1
0 (1, 6) (0, 7) (3, 7)

(0, 1) (5, 4) (4, 5) (3, 7)
1 (6, 3) (6, 3) (4, 5)

L

0 (0, 1) 1
0 (14, 14) (16, 10) (16, 10)

(0, 1) (13, 15) (14, 14) (14, 14)
1 (13, 15) (12, 15) (12, 15)

R

The utility function of player 3 is defined as follow:

u3(x1, x2, x3, ω) =

1, if x3 = 0 at ω = a or x3 ∈ (0, 1] at ω = b;

0, otherwise.

Below we study the ex post game Ga and show that it is payoff secure but not 2-payoff

secure. The same result holds for the ex post game Gb. However, the Bayesian game

is not payoff secure.

In the game L, player 1 can choose the dominant strategy x1 = 1 and player 2

can choose the dominant strategy x2 = 1, thus the game L is payoff secure. In the

game R, player 1 can choose the dominant strategy x1 = 0 and player 2 can choose

the dominant strategy x2 = 0, thus the game R is payoff secure.

Suppose state a realizes. The payoff of player 3 is secured since he can always

choose x3 = 0, which could guarantee his highest payoff. For players 1 and 2, if player

3’s action x3 = 0, then players 1 and 2 will play the game L and it is payoff secure

since if x3 deviates in a small neighborhood, then players 1 and 2 will play the game R

and their payoffs are strictly higher; if x3 stays unchanged and they are still in game

L, then the payoff security of the game L supports our claim. If player 3’s action

x3 ∈ (0, 1], they will play game R and it is payoff secure since a sufficiently small

neighborhood of x3 is still included in (0, 1] and the game R itself is payoff secure.

Therefore, the ex post game Ga is payoff secure.
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However, this game is not 2-payoff secure. For example, let x1 = 0, (x1
2, x

1
3) =

(1, 0) and (x2
2, x

2
3) = (1, 1), there is no action which could guarantee that player 1 can

secure the 2 dimensional payoff vector (3, 16). Similarly, one could show that the ex

post game Gb is also payoff secure but not 2-payoff secure.

Finally, we verify our claim that the Bayesian game is not payoff secure. Let the

strategy of player 3 be x3 = (x3(a), x3(b)) = (0, 1), the expected utilities for players 1

and 2 are listed as the following game E. Then player 1 cannot secure his payoff if

0 (0, 1) 1
0 (15

2 , 10) (8, 17
2 ) (19

2 ,
17
2 )

(0, 1) (9, 19
2 ) (9, 19

2 ) (17
2 ,

21
2 )

1 (19
2 , 9) (9, 9) (8, 10)

E

x1 = 1 and x2 = 0, and player 2 cannot secure his payoff if x1 = 0 and x2 = 0.

Moreover, this game does not have a Bayesian equilibrium. It is easy to see that

player 3 will choose x3(a) = 0 and x3(b) ∈ (0, 1]. Consequently, the expected payoff

matrix of players 1 and 2 is E. However, the game E has no equilibrium.

Remark 5. The game in Example 2 is obviously compact and satisfies the private

information measurability requirement. We need to show that the Bayesian game is

quasiconcave. It is clear that the expected utility of player 3 is quasiconcave. Now we

consider players 1 and 2. Given x3 = (x3(a), x3(b)). If x3 = (0, 0), then players 1

and 2 will play the game L in both states. Their expected payoff matrix is L, which

is quasiconcave. If x3 ∈ (0, 1] × (0, 1], players 1 and 2 will play the game R in both

states, and hence their expected payoff matrix is the quasiconcave game R. Otherwise,

players 1 and 2 will play the game L at one state and the game R at the other state.

That is, their expected payoff matrix is E, which is also quasiconcave.

4.2 Comparison with Monteiro and Page (2007)

Below, we compare our notion of finite payoff security with the uniform payoff security

of Monteiro and Page (2007).

The following condition is due to Monteiro and Page (2007).

Definition 7. The game Gd is uniform payoff secure if for every i ∈ I and xi ∈
Xi, ∀ε > 0, there is xi ∈ Xi such that for every x−i ∈ X−i, ui(xi, y−i) ≥ ui(xi, x−i)− ε
for all y−i in some open neighborhood of x−i.
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A game G is uniformly payoff secure if each player starting at any strategy xi ∈ Xi

has a strategy xi ∈ Xi he can move to in order to secure a payoff of ui(xi, x−i) against

all possible small deviations of all strategy profiles of others. It is obvious that the

uniform payoff security condition is stronger than our finite payoff security condition.

Below, we provide an example which shows that the uniform payoff security is strictly

stronger than the finite payoff security condition.

Example 3. Given a deterministic game G such that I = {1, 2}, X1 = X2 = [0, 1],

u1(x1, x2) =


−1, if x1 < x2 <

1
2
(x1 + 1);

0, if x1 = x2 or x1 = 2x2 − 1;

1, otherwise.

and u2 ≡ 0.

We shall show that this game is finitely payoff secure, but not uniformly payoff

secure. We only need to verify this for player 1. Fix arbitrary n ∈ N. Pick

(x1, x
1
2, . . . , x

n
2 ) ∈ X1 × Xn

2 . Without loss of generality, assume that x1
2 < x2

2 <

· · · < xn2 . If xn2 < 1, then choose x1 = 1; if xn2 = 1, then choose x1 sufficiently close

to 1 such that xn−1
2 < x1 < 1. In all these cases we can find a neighborhood Oxk2

of xk2
such that u1(x1, y

k
2) ≥ u1(x1, x

k
2) for all yk2 ∈ Oxk2

, 1 ≤ k ≤ n.

However, the uniform payoff security condition is not satisfied in this game. Thus,

the uniform payoff security condition is strictly stronger than the finite payoff security

condition.

4.3 Extension of Theorem 2 to a continuum of

states

By modifying the uniform payoff security condition of Monteiro and Page (2007)

and adopting the standard absolute continuity condition of Milgrom and Weber

(1985), Carbonell-Nicolau and McLean (2014) proved the existence of behav-

ioral/distributional strategy Bayesian equilibrium in the setting of a continuum of

states. They do not need to impose the quasiconcavity condition on the payoffs

since the concavity property is automatic by working with behavioral/distributional

strategies. We will show that our Theorem 2 can be extended to the setting of

a continuum of states by strengthening the finite payoff security to uniform payoff

security.

The model of Bayesian games with a continuum of states is as follows.

• The set of players: I = {1, 2, . . . , N}.
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• The set of actions available to each player: {Xi}i∈I . Each Xi is a nonempty

compact metric space endowed with the Borel σ-algebra B(Xi). LetX = ×ni=1Xi

and B(X) = ⊗i∈IB(Xi).

• The (private) information space for each player: Ti. Each Ti is a measurable

space endowed with a σ-algebra Ti. Let T = ×ni=1Ti and T = ⊗ni=1Ti.

• The payoff functions: {ui}i∈I . Each ui : X×T → R is a bounded measurable

mapping.

• The information structure: λ, a probability measure on the measurable space

(T, T ) with marginal λi on Ti for each i ∈ I.

The following condition is an extension of Definition 7 to the case of incomplete

information games, and it is due to Carbonell-Nicolau and McLean (2014). Based

on this condition, Carbonell-Nicolau and McLean (2014) proved the existence of a

behavioral strategy equilibrium (see Theorem 1 therein).

Definition 8. The Bayesian game is uniformly payoff secure if for each i ∈ I, ε > 0,

and a behavioral strategy fi, there exists another behavioral strategy gi such that for

all (t, x−i), there exists a neighborhood Vx−i
of x−i such that

ui(t, gi(ti), y−i) > ui(t, fi(ti), x−i)− ε

for all y−i ∈ Vx−i
.

Below, we consider the purification of behavioral strategies. He and Sun (2014)

proposed the “relative diffuseness” condition as a characterization of the relation

between two kinds of diffuseness of information, and proved a purification theorem

for Bayesian games based on this condition.

For each i ∈ I, let (Ti, Ti, λi) be the private information space, and Fi ⊆ Ti be the

smallest σ-algebra relative to which ui is measurable. The σ-algebras Ti and Fi will

represent the diffuseness of information from the aspect of strategies and from the

aspect of payoffs, respectively. The probability spaces (Ti, Ti, λi) and (Ti,Fi, λi) will

be used to model the information space and the payoff-relevant information space.

For any nonnegligible subset D ∈ Ti, the restricted probability space (D,FDi , λDi )

is defined as follows: FDi is the σ-algebra {D ∩D′ : D′ ∈ Fi} and λDi the probability

measure re-scaled from the restriction of λi to FDi . Furthermore, (D, T Di , λDi ) can be

defined similarly.

Definition 9. Following the notations above, Fi is said to be setwise coarser than

Ti if for every D ∈ Ti with λi(D) > 0, there exists a Ti-measurable subset D0 of D

such that λi(D04D1) > 0 for any D1 ∈ FDi .

15



The following assumption due to He and Sun (2014) states that on any nonnegligi-

ble set D ⊆ Ti, T Di is always larger than FDi . That is, the strategy-relevant diffuseness

of information is essentially richer than the payoff-relevant diffuseness of information.

Assumption (RD). For each i ∈ I, (Ti, Ti, λi) is atomless and Fi is setwise coarser

than Ti.

Now we are ready to prove the existence of a pure strategy Bayesian equilibrium

with a continuum of states.

Theorem 3. Suppose that

1. Assumption (RD) holds,5 ui is measurable with respect to Fi for each i ∈ I, and

λ = ⊗i∈Iλi;

2. the Bayesian game is uniformly payoff secure and that each t ∈ T , the map∑
i∈I ui(t, ·) : X → R is upper semicontinuous.

Then there exists a pure strategy Bayesian equilibrium.

Proof. By Theorem 1 of Carbonell-Nicolau and McLean (2014), there exists a

behavioral strategy Bayesian equilibrium f , and by Theorem 2 of He and Sun (2014),

f has a purification g, which is a pure strategy Bayesian equilibrium.

Remark 6. In an incomplete information game with finitely many states, one can

work with the k-payoff security condition, where k could be the number of all states in

the Bayesian game. However, as we consider a Bayesian game with countably many

states, we need to extend the k-payoff security to finite payoff security as we may

need to use a Bayesian game with arbitrarily finitely many states to approximate the

original Bayesian game. Monteiro and Page (2007) proved the existence of a mixed

strategy equilibrium m = (m1, . . . ,mn) with the stronger condition of uniform payoff

security in a simple deterministic setting. Indeed, their result can be understood as

an existence result of a pure strategy Bayesian equilibrium in a Bayesian game with

uncountable states and state-irrelevant payoffs. Thus, they need to further strengthen

the condition due to the larger size of the state space.

In particular, suppose that each player can only observe his own private signal from

the unit interval [0, 1], which is endowed with the uniform distribution η. Let Ω =

[0, 1]n be the state space. The payoff of each player only depends on the action profile,

but not on the state. Then the deterministic game is reformulated as a Bayesian game

with uncountable states and state-irrelevant payoffs.

5Instead, one can assume that (Ti, Ti, λi) is an atomless Loeb space/saturated space for each i ∈ I. The purification
result for Bayesian games still holds, see Loeb and Sun (2006) and Wang and Zhang (2012).
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The mixed strategy mi of player i in the deterministic game can be realized by his

private signal (like a randomization device) to be a pure strategy fi in the sense that

mi = η ◦ f−1
i . It is easy to check that f = (f1, . . . , fn) is a pure strategy Bayesian

equilibrium in this Bayesian game.

If we view a deterministic discontinuous game as such a Bayesian game, then

Fi = {∅, [0, 1]} for each i ∈ I since players’ payoffs do not depend on the states.

Thus, our Assumption 4.3 holds trivially, and our result goes beyond Monteiro and

Page (2007) by allowing for the payoffs to be state-dependent.6

Remark 7. If one views a deterministic game as a Bayesian game with uncountable

states and let fi and gi be pure strategies and state irrelevant in Definition 8, then this

condition reduces to the uniform payoff security in the sense of Monteiro and Page

(2007). In Theorem 3, we adopt the uniform payoff security condition in the sense

of Carbonell-Nicolau and McLean (2014) since our payoffs are state dependent, and

thus the best response of each player is typically state dependent. Therefore, one needs

to compare the state dependent strategies for each player; for more discussions, see

Carbonell-Nicolau and McLean (2014).

5 Concluding remarks

Our purpose was to impose the same assumptions of Reny (1999) on primitives and

prove new equilibrium existence theorems for Bayesian games. We showed that if

players are Bayesians, the conditions of Reny (1999) need to be strengthened. By

introducing a new payoff security condition which is a strengthening of the one of Reny

(1999), we showed that if our new condition is imposed on the weighted ex post utility

functions, then the ex ante expected utility is payoff secure. In view of this result and

by assuming that the expected utilities are quasiconcave, we proved an equilibrium

existence theorem for discontinuous games with asymmetric information. Also, we

pointed out that the concavity assumption plays an important role; specifically, if the

ex post utility function of each player is not concave, then a Bayesian equilibrium

may not exist

The results of the current paper can be extended to a social system or abstract

economies à la Debreu with asymmetric information and discontinuous expected

payoffs. Such results can be applied to concrete economies with asymmetric

information and they will enable us to obtain competitive equilibrium/rational

expectations equilibrium results with discontinuous expected payoffs. He and Yannelis

(2014) considered discontinuous games with asymmetric information under ambiguity.

6We thank an anonymous referee for suggesting us to add this remark.
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They showed that if agents face ambiguity, then Reny’s theorem can be generalized

to an asymmetric information framework.
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