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1 Introduction

The classical equilibrium existence theorems of Nash (1950), Debreu

(1952), Arrow and Debreu (1954) and McKenzie (1954) were generalized to

games/abstract economies where agents’ preferences need not be transitive

or complete, and therefore need not be representable by utility functions

(see for example, Mas-Colell (1974), Shafer and Sonnenschein (1975), Gale

and Mas-Colell (1975), Borglin and Keiding (1976), Shafer (1976), Yannelis

and Prabhakar (1983), and Wu and Shen (1996) among others). The need

to drop the transitivity assumption from equilibrium theory was motivated

by behavioral/experimental works which demonstrated that consumers do

not necessarily behave in a transitive way.

A different line of literature pioneered by Dasgupta and Maskin (1986)

and Reny (1999) necessitated the need to drop the continuity assumption

on the payoff function of each agent. Their works were motivated by many

realistic applications (for example, Bertrand competition and auctions),

and generalizations of the Nash-Debreu equilibrium existence theorems

were obtained where payoff functions need not be continuous. In other

words, a new literature emerged on equilibrium existence theorems with

discontinuous payoffs.1

The first aim of this paper is to generalize the equilibrium existence

theorems of Shafer and Sonnenschein (1975) and Yannelis and Prabhakar

(1983) by dispensing with the continuity assumption of the preference

correspondences. Although the proof of our equilibrium existence theorem

in an abstract economy follows the approach of Yannelis and Prabhakar

(1983), we cannot rely on continuous selections results, as it was the case

in their work (and even earlier in Gale and Mas-Colell (1975)). Indeed, the

preference correspondence may not admit any continuous selection in our

setting.2

Our second aim is to obtain the existence of Walrasian equilibria

in an exchange economy where the preference correspondences could

be discontinuous, nontransitive, incomplete, interdependent and price-

dependent. An additional point we would like to emphasize is that contrary

to the standard existence results in the literature, we do not impose

the assumption that the initial endowment is an interior point of the

1See the symposium of Carmona (2011) for additional references.
2It should be mentioned that independently of our work, Reny (2013) has also obtained related

results.
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consumption set.

The paper proceeds as follows. Section 2 collects notations and

definitions. Section 3 provides a proof of the existence of equilibrium for an

abstract economy, which extends the results of Shafer and Sonnenschein

(1975) and Yannelis and Prabhakar (1983). The existence of Walrasian

equilibrium with finite and infinite dimensional commodity spaces is proved

and discussed in Sections 4 .

2 Basics

Let X and Y be linear topological spaces, and let ψ be a correspondence

fromX to Y . Then ψ is said to be lower hemicontinuous if ψl(V ) = {x ∈
X : ψ(x) ∩ V 6= ∅} is open in X for every open subset V of Y , and upper

hemicontinuous if ψu(V ) = {x ∈ X : ψ(x) ⊆ V } is open in X for every

open subset V of Y . In addition, if the set G = {(x, y) ∈ X×Y : y ∈ ψ(x)}
is open (resp. closed) in X × Y , then we say that ψ has an open (resp.

closed) graph. If ψl(y) is open for each y ∈ Y , then ψ is said to have

open lower sections.

At some x ∈ X, if there exists an open set Ox such that x ∈ Ox

and ∩x′∈Oxψ(x′) 6= ∅, then we say ψ has the local intersection property.

Furthermore, ψ is said to have the local intersection property if this

property holds for every x ∈ X.

Clearly, every nonempty correspondence with open lower sections has

the local intersection property. Yannelis and Prabhakar (1983) proved a

continuous selection theorem and several fixed-point theorems by assuming

that ψ has open lower sections. Based on the local intersection property,

Wu and Shen (1996) generalized the results of Yannelis and Prabhakar

(1983). Recently, Scalzo (2015) proposed the “local continuous selection

property”, and proved that this condition is necessary and sufficient for

the existence of continuous selections.

Mappings with the local intersection property have found applications

in mathematical economics and game theory (see Wu and Shen (1996) and

Prokopovych (2011) among others).

We now introduce the “continuous inclusion property”, which includes

the above conditions as special cases.

Definition 1. A correspondence ψ from X to Y is said to have the

continuous inclusion property at x if there exists an open neighborhood
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Ox of x and a nonempty correspondence Fx : Ox → 2Y such that Fx(z) ⊆
ψ(z) for any z ∈ Ox and coFx

3 has a closed graph.4

The continuous inclusion property is motivated by the majorization

idea in general equilibrium (see the KF-majorization in Borglin and

Keiding (1976), and L-majorization in Yannelis and Prabhakar (1983)),

and also the “multiply security” condition of McLennan et al. (2011),

the “continuous security” condition of Barelli and Meneghel (2013), and

the “correspondence security” condition of Reny (2013) in the context of

discontinuous games.

Remark 1. If the correspondence ψ from X to Y has the local intersection

property at x, then Fx can be chosen as a constant correspondence

which only contains a singe point of ∩x′∈Oxψ(x′), and hence ψ also has

the continuous inclusion property at x. As a result, any nonempty

correspondence with open lower sections has the continuous inclusion

property.5

3 Equilibria in Abstract Economies

3.1 Results

In this section we prove the existence of equilibrium for an abstract

economy with an infinite number of commodities and a countable number

of agents.

An abstract economy is a set of ordered triples Γ = {(Xi, Ai, Pi) : i ∈
I}, where

• I is a countable set of agents.

• Xi is a nonempty set of actions for agent i. Set X =
∏

i∈I Xi.

• Ai : X → 2Xi is the constraint correspondence of agent i.

• Pi : X → 2Xi is the preference correspondence of agent i.

3For a correspondence F , coF denotes the convex hull of F .
4If the sub-correspondence Fx has a closed graph and X is finite dimensional, then coFx still has a

closed graph since the convex hull of a closed set is closed in finite dimensional spaces. However, this
may not be true if one works with infinite dimensional spaces. One can easily see that assuming the
sub-correspondence Fx is convex valued and has a closed graph would suffice for our aim.

5Reny (2013) proposed a similar condition called “correspondence security” in the setting of
discontinuous games, and proved an equilibrium existence theorem for an abstract game.
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An equilibrium of Γ is a point x∗ ∈ X such that for each i ∈ I:

1. x∗i ∈ Ai(x∗), where Ai denotes the closure of Ai, and

2. Pi(x
∗) ∩ Ai(x∗) = ∅.

If Ai ≡ Xi for all i ∈ I, then the point x∗ is called a Nash equilibrium.

For each i ∈ I, let ψi(x) = Ai(x) ∩ Pi(x) for all x ∈ X.

Theorem 1. Let Γ = {(Xi, Ai, Pi) : i ∈ I} be an abstract economy such

that for each i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff

locally convex linear topological space;

ii Ai is nonempty and convex valued;

iii the correspondence Ai is upper hemicontinuous;

iv ψi has the continuous inclusion property at each x ∈ X with ψi(x) 6= ∅;

v xi /∈ coψi(x) for all x ∈ X.

Then Γ has an equilibrium.

Proof. Fix i ∈ I. Let Ui = {x ∈ X : ψi(x) 6= ∅}.6 Since ψi has the

continuous inclusion property at each x ∈ Ui, there exist an open set

Oi
x ⊆ X such that x ∈ Oi

x and a correspondence F i
x : Oi

x → 2Xi with

nonempty values such that F i
x(z) ⊆ ψi(z) for any z ∈ Oi

x and coF i
x is

closed. Then Oi
x ⊆ Ui, which implies that Ui is open. Since X is metrizable,

Ui is paracompact (see Michael (1956, p. 831)). Moreover, the collection

Ci = {Oi
x : x ∈ X} is an open cover of Ui. There is a closed locally finite

refinement Fi = {Ei
k : k ∈ K}, where K is an index set and Ei

k is a closed

set in X (see Michael (1953, Lemma 1)).

For each k ∈ K choose xk ∈ X such that Ei
k ⊆ Oi

xk
. For each x ∈ Ui, let

Ii(x) = {k ∈ K : x ∈ Ei
k}. Then Ii(x) is finite for each x ∈ Ui. Let φi(x) =

co
(
∪k∈Ii(x)coF i

xk
(x)
)

for x ∈ Ui. For each x and k ∈ Ii(x), F i
xk

(x) ⊆ ψi(x).

Thus, coF i
xk

(x) ⊆ coψi(x), which implies that ∪k∈Ii(x)coF i
xk

(x) ⊆ coψi(x).

As a result, we have φi(x) = co
(
∪k∈Ii(x)coF i

xk
(x)
)
⊆ coψi(x).

Define the correspondence

Hi(x) =

φi(x) x ∈ Ui;
Ai(x) otherwise.

6If Ui = ∅ for all i, then the correspondence A = ×i∈IAi is nonempty, convex valued and upper
hemicontinuous. As a result, there exists a fixed-point x∗ of A which is an equilibrium.
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Then it is obvious that Hi is nonempty and convex valued. Moreover, Hi

is also compact valued (see Lemma 5.29 in Aliprantis and Border (2006)).

Since coF i
xk

has a closed graph in Ei
k and Ei

k is a compact Hausdorff

space, it is upper hemicontinuous. For each x, Ii(x) is finite, which implies

that ∪k∈Ii(x)coF i
xk

(x) is the union of values for a finite family of upper

hemicontinuous correspondences, and hence is upper hemicontinuous at

the point x (see Aliprantis and Border (2006, Theorem 17.27)). Then

φi(x) is the convex hull of ∪k∈Ii(x)coF i
xk

(x) and it is compact for all x ∈ Ui,
hence it is upper hemicontinuous on Ui (see Aliprantis and Border (2006,

Theorem 17.35)). Note that Hi(x) is φi(x) when x ∈ Ui, and Ai(x) when

x /∈ Ui. Since Ui is open, analogous to the argument in Yannelis and

Prabhakar (1983, Theorem 6.1), Hi is upper hemicontinuous on the whole

space. Let H = ×i∈IHi. Since H is nonempty, convex and closed valued,

by the Fan-Glicksberg fixed point theorem, there exists a point x∗ ∈ X

such that x∗ ∈ H(x∗).

Since φi(x) ⊆ Ai(x) for x ∈ Ui, Hi(x) ⊆ Ai(x) for any x, which

implies that x∗i ∈ Ai(x
∗). Note that if x∗ ∈ Ui for some i ∈ I, then

x∗i ∈ co
(
∪k∈Ii(x∗i )coF i

xk
(x∗i )

)
⊆ coψi(x

∗), a contradiction to assumption (v).

Thus, we have x∗ /∈ Ui for all i ∈ I. Therefore, ψi(x
∗) = ∅, which implies

that Ai(x
∗) ∩ Pi(x∗) = ∅. That is, x∗ is an equilibrium for Γ.

Remark 2. If in the above theorem, set Ai ≡ Xi, assume that ψi is convex

valued, and drop assumption (v), then one can obtain a generalization of

the Gale and Mas-Colell (1975) fixed-point theorem (see He and Yannelis

(2014)). That is, let ψi : X → Xi be a convex valued correspondence with

the continuous inclusion property at each x such that ψi(x) 6= ∅. Then

there exists a point x∗ ∈ X such that for each i, either x∗i ∈ ψi(x
∗) or

ψi(x
∗) = ∅.7

Below, we show that the theorem of Shafer and Sonnenschein (1975)

and Theorem 6.1 of Yannelis and Prabhakar (1983) on the existence of

equilibrium in an abstract economy can be obtained as corollaries. Note

that in Shafer and Sonnenschein (1975) the correspondence Ai is compact

valued for each i ∈ I, and therefore there is no need to work with the

closure of Ai. That is, an equilibrium x∗ should satisfy x∗i ∈ Ai(x
∗) and

Pi(x
∗) ∩ Ai(x∗) = ∅. In Yannelis and Prabhakar (1983), the equilibrium

notion is the same as defined above.

7For a recent related result, see Prokopovych (2014).
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Corollary 1. [Shafer and Sonnenschein (1975)]

Let Γ = {(Xi, Ai, Pi) : i ∈ I} be an abstract economy such that for each

i ∈ I:

i Xi is a nonempty, compact, convex subset of Rl
+;

ii Ai is nonempty, convex and compact valued;

iii Ai is a continuous correspondence;

v Pi has an open graph;

vi xi /∈ coψi(x) for all x ∈ X.8

Then Γ has an equilibrium x∗; that is, for any i ∈ I, x∗i ∈ Ai(x
∗) and

Pi(x
∗) ∩ Ai(x∗) = ∅.

Proof. For each i ∈ I, define a mapping Ui : Gr(Ai) → R by Ui(y, xi) =

dist((y, xi),GrC(Pi)), where Gr(Ai) is the graph of Ai, GrC(Pi) denotes

the complement of the graph of Pi and dist(·, ·) denotes the usual distance

on Rl
+. Since Pi has an open graph, Ui is continuous. Let mi(x) =

maxz∈Ai(x) Ui(x, z) and φi(x) = {z ∈ Ai(x) : Ui(x, z) = mi(x)} for each

x ∈ X. Since Ai is continuous, by the Berge Maximum Theorem (see

Aliprantis and Border (2006, Theorem 17.31)), φi is nonempty, compact

valued and upper hemicontinuous. At any point x such that ψi(x) =

Pi(x) ∩ Ai(x) 6= ∅, we have mi(x) > 0, and hence φi(x) ⊆ ψi(x). Thus,

the continuous inclusion property holds and by Theorem 1, there is an

equilibrium.

Corollary 2. [Yannelis and Prabhakar (1983, Theorem 6.1)]

Let Γ = {(Xi, Ai, Pi) : i ∈ I} be an abstract economy such that for each

i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff

locally convex linear topological space;

ii Ai is nonempty and convex valued;

iii the correspondence Ai is upper hemicontinuous;

iv Ai has open lower section;

v Pi has open lower section;

8Shafer and Sonnenschein (1975) assume that xi /∈ coPi(x) for all x ∈ X, but their proof still holds
under this more general condition. The same comment is also valid for the existence theorem of Yannelis
and Prabhakar (1983), see condition (vi) of Corollary 2 below.
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vi xi /∈ coψi(x) for all x ∈ X.

Then Γ has an equilibrium x∗; that is, for each i ∈ I, x∗i ∈ Ai(x
∗) and

Pi(x
∗) ∩ Ai(x∗) = ∅.

Proof. By Fact 6.1 in Yannelis and Prabhakar (1983), ψi has open lower

sections. As a result, ψi has the continuous inclusion property at each

x ∈ X when ψi(x) 6= ∅. Then the result follows from Theorem 1.

Remark 3. Note that our Theorem 1 also covers Theorem 10 of Wu

and Shen (1996). Wu and Shen (1996) did not impose the metrizability

condition on Xi, but directly assumed that Ui is paracompact. Our proof

still holds under this condition.

Remark 4. In condition (iv) of Theorem 1, we assume that ψi has the

continuous inclusion property at each x ∈ X with ψi(x) 6= ∅. It is natural

to ask whether we can impose conditions on the correspondences Pi and

Ai separately, and then verify that their intersection ψi has the continuous

inclusion property (for example, see conditions (iv) and (v) in Yannelis

and Prabhakar (1983, Theorem 6.1)). However, a simple example can be

constructed to show that a combination of the following two conditions

cannot guarantee our condition (iv):

1. Pi has the continuous inclusion property at x when Pi(x) 6= ∅;

2. Ai has an open graph.

Suppose that there is only one agent and X = [0, 1], A(x) = (0, 1] and

P (x) =

[0, 1], x = 1;

{0}, x ∈ [0, 1).

Then it is obvious that P has the continuous inclusion property and A has

an open graph. However,

ψ(x) =

(0, 1], x = 1,

∅, x ∈ [0, 1);

does not have the continuous inclusion property.

Note that if Ai = Xi is a constant correspondence, we can assume that

Pi has the continuous inclusion property at each x ∈ X with Pi(x) 6= ∅,
and the existence of Nash equilibrium follows as a corollary.
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Corollary 3. Let Γ = {(Xi, Pi) : i ∈ I} be a game such that for each i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff

locally convex linear topological space;

ii Pi has the continuous inclusion property at each x ∈ X with Pi(x) 6= ∅;

iii xi /∈ coPi(x) for all x ∈ X.

Then Γ has a Nash equilibrium x∗; that is, for each i ∈ I, Pi(x
∗) = ∅.

3.2 Relationship with Carmona and Pod-

czeck (2015)

Subsequent to this paper, Carmona and Podczeck (2015) dropped the

metrizability condition on Xi and generalized our conditions (4) and (5)

as follows.

Let I(x) = {i ∈ I : ψi(x) 6= ∅}. For every x ∈ X such that I(x) 6= ∅
and xi ∈ Ai(x) for all i ∈ I, there is an agent i ∈ I(x),

1. ψi has the continuous inclusion property at x;

2. xi /∈ coψi(x).

Notice that our proof above still goes through under this condition by

slightly modifying the definition of the set Ui as

{x ∈ X : ψi has the continuous inclusion property at x}.

The metrizability condition in our Theorem 1 is not needed. Following a

similar argument as in Borglin and Keiding (1976) and Toussaint (1984),

we provide an alternative proof for Theorem 1 in which the set of agents

can be any arbitrary (finite or infinite set) and Xi need not to be metrizable

for each i.9

Alternative proof of Theorem 1. For each i ∈ I, define a correspondence

9It should be noted that using the existence of maximal element theorem for L-majorized
correspondences (see Yannelis and Prabhakar (1983)), it is known that the metrizability assumption
is not needed. Indeed, the proof of Borglin and Keiding (1976) remains valid if one replaces the KF-
majorization by L-majorization. The existence of maximal element theorem for correspondences having
the continuous inclusion property can be used to show that the metrizability in our Theorem 1 is not
needed, see Footnote 10.
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Hi from X to Xi as follows:

Hi(x) =

ψi(x), xi ∈ Ai(x);

Ai(x), xi /∈ Ai(x).

We will show that Hi has the continuous inclusion property at each x such

that Hi(x) 6= ∅.

1. If xi ∈ Ai(x), then ψi(x) = Hi(x) 6= ∅, which implies that there

exists an open neighborhood Ox of x and a nonempty correspondence

Fx : Ox → 2Xi such that Fx(z) ⊆ ψi(z) for any z ∈ Ox and coFx has

a closed graph. For any z ∈ Ox, Fx(z) ⊆ ψi(z) = Hi(z) if zi ∈ Ai(z),

and Fx(z) ⊆ ψi(z) ⊆ Ai(z) = Hi(z) if zi /∈ Ai(z).

2. Consider the case that xi /∈ Ai(x). Since the correspondence Ai

is upper hemicontinuous and closed valued, it has a closed graph.

As a result, one can find an open neighborhood Ox of x such that

zi /∈ Ai(z) and hence Hi(z) = Ai(z) for any z ∈ Ox. As Ai is upper

hemicontinuous, closed and convex valued, Hi has the continuous

inclusion property.

Let I(x) = {i ∈ I : Hi(x) 6= ∅}. Define a correspondence H : X → 2X

as

H(x) =

(×i∈I(x)Hi(x))× (×j∈I\I(x)Xj), I(x) 6= ∅;
∅, I(x) = ∅.

It can be easily checked that H(x) has the continuous inclusion property

at each x such that H(x) 6= ∅.
In addition, one can easily show that x /∈ coH(x) for any x ∈ X.

Indeed, fix any x ∈ X. If I(x) = ∅, then H(x) = ∅, which implies that

x /∈ coH(x). If I(x) 6= ∅, then there exists an agent i such that Hi(x) 6= ∅.
If xi ∈ Ai(x), then xi /∈ coψ(x) = coHi(x). If xi /∈ Ai(x), then xi /∈ coHi(x)

as Hi(x) = Ai(x) (since Ai(x) is convex). Hence, x /∈ coH(x).

By Corollary 1 in He and Yannelis (2014),10 there exists a point x∗ ∈ X
such that H(x∗) = ∅, which implies that I(x∗) = ∅. That is, for any i,

Hi(x
∗) = ∅, which implies that x∗i ∈ Ai(x∗) and ψi(x

∗) = Hi(x
∗) = ∅.

10Suppose that X is a compact and convex subset of a Hausdorff locally convex linear topological
space. Let P : X → 2X be a correspondence such that x /∈ coP (x) for all x ∈ X. If P has the
continuous inclusion property at each x ∈ X such that P (x) 6= ∅, then there exists a point x∗ ∈ X such
that P (x∗) = ∅.
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Remark 5. The previous proof adapted in Theorem 1 seems to be suitable

to cover the case where the set of agents is a measure space as in Yannelis

(1987). It is not clear whether the above proof can be easily extended to a

measure space of agents.

4 Existence of Walrasian Equilibria

An exchange economy E is a set of triples {(Xi, Pi, ei) : i ∈ I}, where

• I is a finite set of agents;

• Xi ⊆ Rl
+ is the consumption set of agent i, and X =

∏
i∈I Xi;

• Pi : X × 4 → 2Xi is the preference correspondence of agent i,

where 4 is the set of all possible prices;11

• ei ∈ Xi is the initial endowment of agent i, where e =
∑

i∈I ei 6= 0.

Let 4 = {p ∈ Rl
+ :
∑l

k=1 pk = 1}. Given a price p ∈ 4, the budget

set of agent i is Bi(p) = {xi ∈ Xi : p · xi ≤ p · ei}. Let ψi(p, x) = Bi(p) ∩
Pi(x, p) for each i ∈ I, x ∈ X and p ∈ 4. Then ψi(p, x) is the set of all

allocations in the budget set of agent i at price p that he prefers to x.

A free disposal Walrasian equilibrium for the exchange economy

E is (p∗, x∗) ∈ 4×X such that

1. for each i ∈ I, x∗i ∈ Bi(p
∗) and ψi(p

∗, x∗) = ∅;

2.
∑

i∈I x
∗
i ≤

∑
i∈I ei.

Theorem 2. Let E be an exchange economy satisfying the following

assumptions: for each i ∈ I,

1. Xi is a nonempty compact convex subset of Rl
+;12

2. ψi has the continuous inclusion property at each (p, x) ∈ 4×X with

ψi(p, x) 6= ∅, and xi /∈ coψi(p, x).

Then E has a free disposal Walrasian equilibrium.

11We allow for very general preferences, which can be interdependent and price-dependent. See
McKenzie (1955) and Shafer and Sonnenschein (1975) for more discussions. For agent i, yi ∈ Pi(x, p)
means that yi is strictly preferred to xi provided that all other components are unchanged at the price
p ∈ 4.

12The commodity space Xi can be sufficiently large. For example, we can let Xi = {xi ∈ Rl
+ : xi ≤

K ·
∑

i∈I ei}, where K is an arbitrarily large positive number.
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Proof. The proof follows the idea of Arrow and Debreu (1954), which

introduces a fictitious player; see also Shafer (1976).

For each i ∈ I, p ∈ 4 and x ∈ X, let Ai(p, x) = Bi(p). Define the

correspondences A0(p, x) = 4 and P0(p, x) = {q ∈ 4 : q·
(∑

i∈I(xi − ei)
)
>

p ·
(∑

i∈I(xi − ei)
)
}. Let I0 = I∪{0}. Then for any i ∈ I0, Ai is nonempty,

convex valued, and upper hemicontinuous on 4×X.

Note that ψi(p, x) = Ai(p, x) ∩ Pi(p, x) has the continuous inclusion

property for each i ∈ I. Moreover, let ψ0(p, x) = A0(p, x) ∩ P0(p, x) =

P0(p, x). Fix any (p, x) ∈ 4×X such that ψ0(p, x) 6= ∅, pick q ∈ ψ0(p, x),

then (q − p) ·
(∑

i∈I(xi − ei)
)
> 0. Since the left side of the inequality

is continuous, there is an open neighborhood O of (p, x) such that for

any (p′, x′) ∈ O, (q − p′) ·
(∑

i∈I(x
′
i − ei)

)
> 0, which implies that the

correspondence ψ0 has the continuous inclusion property. In addition, it is

obvious that ψ0 is convex valued and p /∈ ψ0(p, x) for any (p, x) ∈ 4×X.

Thus, we can view the exchange economy E as an abstract economy

Γ = {(Xi, Ai, Pi) : i ∈ I0} which satisfies all the conditions of Theorem 1.

Therefore, there exists a point (p∗, x∗) ∈ 4×X such that

1. x∗i ∈ Ai(p∗, x∗) = Bi(p
∗) and ψi(p

∗, x∗) = ∅ for each i ∈ I, and

2. P0(p
∗, x∗) = ψ0(p

∗, x∗) = ∅.

Let z =
∑

i∈I(x
∗
i − ei). Then (1) implies that p∗ · z ≤ 0 and (2) implies

that q · z ≤ p∗ · z for any q ∈ 4, and hence q · z ≤ p∗ · z ≤ 0. Suppose

that z /∈ Rl
−. Thus, there exists some k ∈ {1, . . . , l} such that zk > 0. Let

q′ = {qj}1≤j≤l such that qj = 0 for any j 6= k and qk = 1. Then q′ ∈ 4
and q′ · z = zk > 0, a contradiction. Therefore, z ∈ Rl

−, which implies that∑
i∈I x

∗
i ≤

∑
i∈I ei.

Therefore, (p∗, x∗) is a free disposal Walrasian equilibrium.

Remark 6. We have imposed the compactness condition on the con-

sumption set. It is not clear to us at this stage if this condition can

be dispensed with. When agents’ preferences are continuous, one can

work with a sequence of economies with compact consumption sets, which

are the truncations of the original consumption set. Then the existence

of Walrasian equilibrium allocations and prices can be proved in each

truncated economy. Since the set of feasible allocations and the price set are

both compact, there exists a convergent point. By virtue of the continuity

of preferences, one can show that this is indeed a Walrasian equilibrium

of the original economy. The convergence argument fails in our setting as

13



we do not require the continuity assumption on preferences. Consequently,

relaxing the compactness assumption seems to be an open problem.13

We must add that the compactness assumption is not unreasonable at

all. The world is finite, and the initial endowment for each good is also

finite. Thus, by assuming that for each good, ‖xi‖ ≤ K ·
∑

i∈I ‖ei‖, where

K is a sufficiently large number and I is the set of all agents in the world,

no real restriction on the attainability of the consumption of each good is

imposed.

Note that in Theorem 2 we allowed for free disposal. Below we prove

the existence of a non-free disposal Walrasian equilibrium following the

proof of Shafer (1976).

Hereafter we allow for negative prices: 4′ = {p ∈ Rl : ‖p‖ =∑l
k=1 |pk| ≤ 1} is the set of all possible prices. Let Bi(p) = {xi ∈

Xi : p · xi ≤ p · ei + 1− ‖p‖} and ψi(p, x) = Pi(x, p) ∩Bi(p) for each i ∈ I,

x ∈ X and p ∈ 4′. Let K = {x :
∑

i∈I xi =
∑

i∈I ei}, and pri : X → Xi be

the projection mapping for each i ∈ I.

A (non-free disposal) Walrasian equilibrium for the exchange

economy E is (p∗, x∗) ∈ 4′ ×X such that

1. ‖p∗‖ = 1;

2. for each i ∈ I, x∗i ∈ Bi(p
∗) and ψi(p

∗, x∗) = ∅;

3.
∑

i∈I x
∗
i =

∑
i∈I ei.

If p∗ is a Walrasian equilibrium price, then ‖p∗‖ = 1 and Bi(p
∗) = {xi ∈

Xi : p
∗ · xi ≤ p∗ · ei}, which is the standard budget set of agent i.

Theorem 3. Let E be an exchange economy satisfying the following

assumptions: for each i ∈ I,

1. Xi is a nonempty compact convex subset of Rl
+;

2. ψi has the continuous inclusion property at each (p, x) ∈ 4′×X with

ψi(p, x) 6= ∅, and xi /∈ coψi(p, x).

3. for each xi ∈ pri(K) and p ∈ 4′, xi ∈ bdPi(x, p), where bd denotes

boundary.

Then E has a Walrasian equilibrium.

13As suggested by an anonymous referee, one could allow Xi = Rl by assuming that if xi ∈ Xi and
x′i ∈ Pi(x), then also (1 − λ)xi + λx′i ∈ Pi(x) for all 0 < λ < 1. With this assumption one needs
to consider only one truncation of the consumption sets (any truncation which contains the feasible
consumption points as interior points).

14



Proof. Repeating the arguments in the first two paragraphs of the proof

of Theorem 2, one could show that there exists a point (p∗, x∗) ∈ 4′ ×X
such that

1. x∗i ∈ Ai(p∗, x∗) = Bi(p
∗) for each i ∈ I, which implies that p∗ · x∗i ≤

p∗ · ei + 1− ‖p∗‖;

2. ψi(p
∗, x∗) = ∅ for each i ∈ I;

3. P0(p
∗, x∗) = ψ0(p

∗, x∗) = ∅.

Let z =
∑

i∈I(x
∗
i − ei). We must show that z = 0. Suppose that z 6= 0.

From (3), it follows that q · z ≤ p∗ · z for any q ∈ 4′. Let q = z
‖z‖ . Then

q ∈ 4′ and p∗ · z ≥ q · z > 0. Let q∗ = p∗

‖p∗‖ . Since p∗

‖p∗‖ · z ≥ p∗ · z ≥ q∗ · z, it

follows that ‖p∗‖ = 1. As a result, p∗ · x∗i ≤ p∗ · ei (since x∗i ∈ Ai(p∗, x∗)),
which implies that p∗ · z = p∗ ·

∑
i∈I(x

∗
i − ei) ≤ 0, a contradiction. Thus,

z = 0; that is,
∑

i∈I x
∗
i =

∑
i∈I ei, x

∗ ∈ K.

Note that x∗i ∈ pri(K) implies that x∗i ∈ bdPi(x
∗, p∗). Since x∗i ∈ Bi(p

∗)

and x∗i /∈ coψi(p
∗, x∗), x∗i /∈ Pi(x

∗, p∗). If there exists some i such that

p∗ · x∗i < p∗ · ei + 1 − ‖p∗‖, then due to assumption (3), x∗i ∈ bdPi(x
∗, p∗)

implies that one can find a point yi ∈ Pi(x
∗, p∗) such that x∗i and yi are

sufficiently close, and p∗ ·yi < p∗ ·ei+1−‖p∗‖. Thus, yi ∈ ψi(p∗, x∗), which

contradicts (2). Therefore, p∗ · x∗i = p∗ · ei + 1 − ‖p∗‖ for each i ∈ I, and

summing up over all i yields ‖p∗‖ = 1.

Therefore, (p∗, x∗) is a Walrasian equilibrium.

Remark 7. Shafer (1976) proved the existence of non-free disposal

Walrasian equilibrium based on the equilibrium existence result of Shafer

and Sonnenschein (1975) (see Corollary 1 above). Thus, the main theorem

of Shafer (1976) follows from our Corollary 1 and Theorem 3.

Below, we provide an alternative proof of the theorem of Shafer (1976)

without invoking the norm of the price ‖p‖ into the budget set. It requires

the nonsatiation condition for one agent only. Furthermore, the proof below

remains unchanged if the consumption set is a nonempty, norm compact

and convex subset of a Hausdorff locally convex topological vector space.

This is not the case in Shafer (1976)’s proof, since the norm of prices is

part of the budget set. Recall that the price space 4′ is weak∗ compact

by Alaoglu’s theorem, and 4′ may not be metrizable unless the space of

allocations is separable.

Theorem 4. Let E be an exchange economy satisfying the following

assumptions:

15



1. for each i ∈ I, let Xi be a nonempty compact convex set of Rl
+;

2. for each i ∈ I, ψi has the continuous inclusion property at each

(p, x) ∈ 4′ × X with ψi(p, x) 6= ∅, and for any xi ∈ Xi, xi /∈
coψi(p, x);

3. for any p ∈ 4′ and x in the set of feasible allocations

A = {x ∈ X :
n∑
i=1

xi =
n∑
i=1

ei},

there exists an agent i ∈ I such that Pi(x, p) 6= ∅.

Then E has a Walrasian equilibrium (p∗, x∗); that is,

1. p∗ 6= 0;

2. for each i ∈ I, x∗i ∈ Bi(p
∗) and ψi(p

∗, x∗) = ∅;

3.
∑

i∈I x
∗
i =

∑
i∈I ei.

Most of the proof proceeds as in Theorem 2. We repeat the argument

here for the sake of completeness.

Proof. For each i ∈ I, p ∈ 4′ and x ∈ X, let Ai(p, x) = Bi(p). Denote

X0 = 4′, and define the correspondences A0(p, x) ≡ 4′ and P0(p, x) =

{q ∈ 4′ : q
(∑

i∈I(xi − ei)
)
> p

(∑
i∈I(xi − ei)

)
}.14 Let I0 = I ∪ {0}.

Let ψ0(p, x) = A0(p, x) ∩ P0(p, x) = P0(p, x). As shown in the proof of

Theorem 2, for each i ∈ I0, the correspondence ψi is convex valued, (p, x) /∈
ψi(p, x) for any (p, x) ∈ 4′×X, and has the continuous inclusion property.

We have constructed an abstract economy Γ = {(Xi, Pi, Ai) : i ∈ {0} ∪
I}. By Theorem 1, there exists a point (p∗, x∗) ∈ 4′ ×X such that

1. x∗i ∈ Ai(p∗, x∗) = Bi(p
∗) and ψi(p

∗, x∗) = ∅ for each i ∈ I;

2. P0(p
∗, x∗) = ψ0(p

∗, x∗) = ∅.

Let z =
∑

i∈I(x
∗
i − ei). Then (1) implies that p∗(z) ≤ 0, and (2) implies

that q(z) ≤ p∗(z) for any q ∈ 4′, and hence q(z) ≤ p∗(z) ≤ 0. As a

result, z = 0;15 that is, x∗ ∈ A. To complete the proof we must show

that p∗ 6= 0. Suppose otherwise; that is, p∗ = 0. Then Bi(p
∗) = Xi and

ψi(p
∗, x∗) = Pi(x

∗, p∗) = ∅ for each i ∈ I, a contradiction to condition (3).

Therefore, (p∗, x∗) is a Walrasian equilibrium.

14The function q(x) is viewed as the inner product q ·x when q is a price vector and x is an allocation.
15If z 6= 0, then there exists a point q ∈ 4′ such that q(z) < 0, which implies that −q(z) > 0.

However, −q ∈ 4′, a contradiction.
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Remark 8. In Theorems 2, 3 and 4, the condition that ψi has the

continuous inclusion property at each (p, x) ∈ 4 × X with ψi(p, x) 6= ∅,
and xi /∈ coψi(p, x) for each i can be weakened following the argument in

Subsection 3.2. In particular, one can let I(x) = {i ∈ I : ψi(p, x) 6= ∅} and

assume that for every x ∈ X such that I(x) 6= ∅ and xi ∈ Ai(p, x) for all

i ∈ I, there is an agent i ∈ I(x),

1. ψi has the continuous inclusion property at (p, x);

2. xi /∈ coψi(p, x).

The proofs of Theorems 2, 3 and 4 can still go through under this new

condition.16 For pedagogical reasons, we work with condition (2) in

Theorem 2.

5 Concluding Remarks

Remark 9. Theorem 4 can be extended to a more general setting with

an infinite dimensional commodity space. In particular, the commodity

space can be any normed linear space whose positive cone may not have

an interior point, and the set of prices is a subset of its dual space. If the

consumption sets are nonempty, norm compact and convex, and the price

space is weak∗ compact, then the proof of Theorem 4 remains unchanged.

Remark 10. To prove the existence of a Walrasian equilibrium in

economies with infinite dimensional commodity spaces, Mas-Colell (1986)

proposed the “uniform properness” condition when the preferences are tran-

sitive, complete and convex. Yannelis and Zame (1986) and Podczeck and

Yannelis (2008) proved the existence result with non-ordered preferences

using the “extreme desirability” condition. All the above results impose on

the commodity space a lattice structure. Our Theorem 4 does not require the

extreme desirability or uniform properness condition, and no ordering or

lattice structure is needed on the commodity space. It should be noticed that

the proof of our Theorem 4 requires that the evaluation map (p, xi)→ p(xi)

from 4′×Xi to R is continuous for 4′ with the weak∗ topology, while this

joint continuity property of the evaluation map is not required in the papers

above.

Mas-Colell (1986) provided an example of a single agent economy in

which the preference is reflexive, transitive, complete, continuous, convex

16Such a remark has been also made by Carmona and Podczeck (2015).
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and monotone, but there is no quasi-equilibrium.17 We show that his

example does not satisfies our condition (2) of Theorem 4 when the

commodity space is compact.

In the example of Mas-Colell (1986), the commodity space is the space

of signed bounded countably additive measures L = ca(K) with the bounded

variation norm ‖ ·‖BV , where K = Z+∪{∞} is the compactification of the

positive integers. Let xi = x({i}) for x ∈ L and i ∈ K. For every i ∈ K,

define a function ui : [0,∞)→ [0,∞) by

ui(t) =

2it t ≤ 1
22i

;

1
2i
− 1

22i
+ t t > 1

22i
.

The preference relation P is given by U(x) =
∑i=∞

i=1 ui(xi), which is

concave, strictly monotone and weak∗ continuous.

Suppose that X = {x ∈ L+ : ‖x‖BV ≤ M} for some sufficiently large

positive integer M . Fix the initial endowment e = (0,M, 0, . . . , 0) ∈ X and

the price p0 = 0. Then ψ(p0, e) = B(p0)∩P (e) 6= ∅, as y = (M, 0, . . . , 0) ∈
ψ(p0, e). For each i ∈ K, let wi({j}) = 1 if j = i and 0 otherwise. Fix a

linear functional p ∈ L′ such that p(w2) = 0 and p(wi) > 0 for i 6= 2. Set

pn = p
n

. Then B(pn) = {0,m, 0, . . . , 0}, where 0 ≤ m ≤ M . However, for

any z ∈ B(pn), z /∈ P (e). Consequently, ψ(pn, e) = ∅. This implies that

the correspondence ψ does not have the continuous inclusion property when

the commodity space is compact, as pn → 0 when n → ∞. Therefore, the

example of Mas-Colell (1986) violates condition (2) of our Theorem 4.

Remark 11. If we interpret the infinite dimensional commodity space as

goods over an infinite time horizon, the weak, Mackey and weak∗ topologies

on preferences imply that agents are impatient, because those topologies are

generated by finitely many continuous linear functionals and they impose a

form of “myopia” (i.e., tails do not matter, see for example Bewley (1972)

and Araujo, Novinski and Páscoa (2011) among others). As our theorems

drop the continuity assumption, it will be interesting to see if one can prove

the existence theorem with patient agents relying on such discontinuous

preferences.

Remark 12. Contrary to the standard existence results of Walrasian

equilibrium, in the above theorems we do not impose the assumptions

17The pair (p∗, x∗) is called a free (non-free) disposal quasi equilibrium if: (1) for each i ∈ I, x∗i ∈
Bi(p

∗); (2) xi ∈ Pi(x
∗, p∗) implies that p∗ · xi ≥ p∗ · ei; (3)

∑
i∈I x

∗
i ≤

∑
i∈I ei (

∑
i∈I x

∗
i =

∑
i∈I ei).
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that the initial endowment is an interior point of the consumption set,

or the preference has an open graph/open lower sections. Below we give

an example in which the preferences are discontinuous, and a Walrasian

equilibrium exists. Notice that none of the classical existence theorems

cover the example below.

Example 1. Consider the following 2-agent 2-good economy:

1. The set of available allocations for both agents is X1 = X2 = [0, 1]×
[0, 1].

2. Agent 1’s preference correspondence depends on x1 = (x11, x
2
1) and

x2 = (x12, x
2
2):

P1(x1, x2) =

{(y11, y21) ∈ X1 : y11·y21 > x11·x21}\{(y11, y21) ∈ X1 : y11−x11 = y21−x21, y11 <
3

2
x11}.18

The preference of agent 2 is defined similarly.

3. The initial endowments are given by e1 = (1
3
, 2
3
) and e2 = (2

3
, 1
3
).

Note that Pi does not have open lower sections for any i = 1, 2. For

example,

P l
i (

1

2
,
1

2
) =

{(y1i , y2i ) ∈ [0, 1]× [0, 1] : y1i · y2i <
1

4
, y1i 6= y2i } ∪ {(z, z) : 0 ≤ z ≤ 1

3
}

which is neither open nor closed. As a result, Pi does not have an open

graph.

We show that the conditions of Theorem 2 hold. Pick any point (p, x) ∈
4 × X such that ψi(p, x) 6= ∅, then there exists a point yi ∈ ψi(p, x) =

Bi(p) ∩ Pi(x). Since yi ∈ Pi(x), it follows that y1i · y2i > x1i · x2i . Thus, one

can pick a point zi = (z1i , z
2
i ) such that zji < yji for j = 1, 2 and zi is an

interior point of Pi(x).19 Consequently, there exists an open neighborhood

Oi of xi such that (z1i , z
2
i ) ∈ P (x′i, x−i) for any x′i ∈ Oi and x−i ∈ X−i.

Furthermore, due to the fact that zji < yji for j = 1, 2, we have 0 < p · zi <
p · yi ≤ p · ei, which implies that there exists a neighborhood Op of p,

18Given an allocation x = (x1, x2) = ((x11, x
2
1), (x12, x

2
2)) in the edgeworth box, the set of allocations

which is preferred to x for agent 1 is the set of all points above the curve y11 · y21 = x11 · x21 such that the
segment {(y11 , y21) : y11 − x11 = y21 − x21, x11 ≤ y11 < 3

2x
1
1} is removed.

19For example, one can choose the point zi = (y1i − ε, y2i − 2ε), where ε is a positive number. It is easy
to see that if ε is sufficiently small, then zi is an interior point of Pi(x).
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zi ∈ Bi(p
′) for any p′ ∈ Op. Define the correspondence F(p,x) as follows:

F(p,x)(p
′, x′) ≡ {zi} for any (p′, x′) ∈ Op × (Oi ×X−i).

Then we have:

1. Op × (Oi ×X−i) is an open neighborhood of (p, x);

2. F(p,x)(p
′, x′) ≡ {zi} ⊆ ψi(p

′, x′) for any (p′, x′) ∈ Op × (Oi ×X−i);

3. F(p,x) is a single-valued constant correspondence, and hence is closed.

Therefore, ψ has the continuous inclusion property at (p, x). In addition,

it is easy to see that xi /∈ coψi(p, x). By Theorem 2 above, there exists a

Walrasian equilibrium. Indeed, it can be easily checked that (p∗, x∗) is a

unique Walrasian equilibrium, where p∗ = (p∗1, p
∗
2) = (1

2
, 1
2
), and x∗1 = x∗2 =

(1
2
, 1
2
). Notice that even if the endowment is on the boundary e1 = (0, 1)

and e2 = (1, 0), the equilibrium still remains the same.

Remark 13. A natural question that arises is whether or not the

continuous inclusion property is easily verifiable for an economy. In the

example above we have demonstrated that it is easily verifiable, and it

can be used to obtain the existence of a Walrasian equilibrium. Below we

present another example in which one can easily check that the continuous

inclusion property does not hold, and there is no Walrasian equilibrium. In

this example, the preferences are continuous, and the initial endowment is

not an interior point of the consumption set.

Example 2. There are two agents I = {1, 2}, and two goods x and y. The

payoff functions are given by u1(x, y) = x + y and u2(x, y) = y, which are

continuous. The initial endowments are e1 = (1
2
, 0) and e2 = (1

2
, 1). The

consumption sets for both agents are [0, 2]× [0, 2]. In this example, one can

easily see that there is no Walrasian equilibrium, but a quasi equilibrium

((x∗, y∗), p∗) exists, where (x∗, y∗) = (x∗i , y
∗
i )i∈I , and (x∗1, y

∗
1) = (1, 0),

(x∗2, y
∗
2) = (0, 1), p∗ = (0, 1).

In this example, the continuity inclusion property does not hold.

Consider agent 1 in the above quasi equilibrium. Since p∗ × e1 = 0, the

budget set of agent 1 is B1(p
∗) = {(x1, 0) : x1 ∈ [0, 2]}. In addition, the set

of allocations for agent 1 which are preferred to (x∗1, y
∗
1) is P1(x

∗, y∗) =

{(x1, y1) ∈ [0, 2] × [0, 2] : x1 + y1 > x∗1 + y∗1 = 1 + 0 = 1}. Thus,

ψ1(p
∗, (x∗, y∗)) = B1(p

∗) ∩ P1(x
∗, y∗) = {(x1, 0) : x1 ∈ (1, 2]}, which is

nonempty.

However, if we slightly perturb the price p∗ by assuming that it is q =

(ε, 1− ε) for sufficiently small 0 < ε < 1
4
, then the budget set of agent 1 is
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B1(q) = {(x1, y1) ∈ [0, 2] × [0, 2] : x1 · ε + y1 · (1 − ε) ≤ 1
2
ε}, which implies

that x1 ≤ 1
2

and y1 ≤ 1
2

ε
1−ε <

1
6
. Thus, x1 + y1 <

1
2

+ 1
6

= 2
3
< 1 for all

(x1, y1) ∈ B1(q), which implies that ψ1(q, (x
∗, y∗)) = B1(q)∩P1(x

∗, y∗) = ∅.
Therefore, in any neighborhood O of ((x∗, y∗), p∗), there is a point

((x∗, y∗), q) ∈ O such that ψ1(q, (x
∗, y∗)) = ∅, which implies that the

continuity inclusion property does not hold. It can be easily checked that

the weaker condition discussed in Remark 8 still fails in this example.
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A. Araujo, R. Novinski and M. R. Páscoa, General Equilibrium, Wariness

and Efficient Bubbles, Journal of Economic Theory 146 (2011), 785–

811.

P. Barelli and I. Meneghel, A Note on the Equilibrium Existence Problem

in Discontinuous Dame, Econometrica 80 (2013), 813–824.

T. Bewley, Existence of Equilibria in Economies with Infinitely Many

Commodities, Journal of Economic Theory 4 (1972), 514–540.

A. Borglin and H. Keiding, Existence of Equilibrium Actions and of

Equilibrium: A Note on the ‘New’ Existence Theorems, Journal of

Mathematical Economics 3 (1976), 313–316.

G. Carmona, Symposium on: Existence of Nash Equilibria in

Discontinuous Games, Economic Theory 48 (2011), 1–4.

G. Carmona and K. Podczeck, Existence of Nash Equilibrium in Ordinal

Games with Discontinuous Preferences, working paper, 2015.

P. Dasgupta and E. Maskin, The Existence of Equilibrium in Discontinuous

Economic Games. Part I: Theory, Review of Economic Studies 53

(1986), 1–26.

21



G. Debreu, A Social Equilibrium Existence Theorem, Proceedings of the

National Academy of Sciencs 38 (1952), 886–893.

D. Gale and A. Mas-Colell, An Equilibrium Existence Theorem for A

General Model without Ordered Preferences, Journal of Mathematical

Economics 2 (1975), 9–15.

W. He and N. C. Yannelis, Equilibria with Discontinuous Preferences,

working paper, The University of Iowa, 2014.

A. Mas-Colell, An Equilibrium Existence Theorem without Complete or

Transitive Preferences, Journal of Mathematical Economics 1 (1974),

237–246.

A. Mas-Colell, The Price Equilibrium Existence Problem in Topological

Vector Lattices, Econometrica 54 (1986), 1039–1053.

A. McLennan, P. K. Monteiro and R. Tourky, Games with Discontinuous

Payoffs: A Strengthening of Reny’s Existence Theorem, Econometrica

79 (2011), 1643–1664.

L. W. McKenzie, On Equilibrium in Graham’s Model of World Trade and

Other Competitive Systems, Econometrica 22 (1954), 147–61.

L. W. McKenzie, Competitive Equilibrium with Dependent Consumer

Preferences, Proceedings of the second symposium in linear program-

ming, Vol. 1, Washington, 1955.

E. Michael, A Note on Paracompact Spaces, Proceedings of the American

Mathematical Society 4 (1953), 831–838.

E. Michael, Continuous Selections I, Annals of Mathematics 63 (1956),

361–382.

J. F. Nash, Equilibrium Points in N-Person Games, Proceedings of the

National Academy of Sciences 36 (1950), 48–49.

K. Podczeck and N. C. Yannelis, Equilibrium Theory with Asymmetric

Information and with Infinitely Many Commodities, Journal of

Economic Theory 141 (2008), 152–183.

22



P. Prokopovych, On Equilibrium Existence in Payoff Secure Games,

Economic Theory 48 (2011), 5–16.

P. Prokopovych, Majorized Correspondences and Equilibrium Existence in

Discontinuous Games, working paper (2014).

P. J. Reny, On the Existence of Pure and Mixed Strategy Nash Equilibria

in Discontinuous Games, Econometrica 67 (1999), 1029–1056.

P. J. Reny, Nash Equilibrium in Discontinuous Games, Becker

Friedman Institute working paper, 2013-004. Available at

https://econresearch.uchicago.edu/sites/econresearch.

uchicago.edu/files/BFI_2013-004.pdf. .

V. Scalzo, On the Existence of Maximal Elements, Fixed Points and

Equilibria of Generalized Games in A Fuzzy Environment, Fuzzy Sets

and Systems (2015), forthcoming.

W. J. Shafer and H. Sonnenschein, Equilibrium in Abstract Economies

without Ordered Preferences, Journal of Mathematical Economics 2

(1975), 345–348.

W. J. Shafer, Equilibrium in Economies without Ordered Preferences or

Free Disposal, Journal of Mathematical Economics 3 (1976), 135–137.

S. Toussaint, On the Existence of Equilibria in Economies with Infinitely

Many Commodities and Without Ordered Preferences, Journal of

Economic Theory 33 (1984), 98–115.

X. Wu and S. Shen, A Further Generalization of Yannelis-Prabhakar’s

Continuous Selection Theorem and its Applications, Journal of

Mathematical Analysis and Applications 197 (1996), 61–74.

N. C. Yannelis and N. D. Prabhakar, Existence of Maximal Elements

and Equilibria in Linear Topological Spaces, Journal of Mathematical

Economics 12 (1983), 233–245.

N. C. Yannelis and W. R. Zame, Equilibria in Banach Lattices without

Ordered Preferences, Journal of Mathematical Economics 15 (1986),

85–110.

23

https://econresearch.uchicago.edu/sites/econresearch.uchicago.edu/files/BFI_2013-004.pdf
https://econresearch.uchicago.edu/sites/econresearch.uchicago.edu/files/BFI_2013-004.pdf


N. C. Yannelis, Equilibria in Noncooperative Models of Competition,

Journal of Economic Theory 41 (1987), 96–111.

24


	Introduction
	Basics
	Equilibria in Abstract Economies
	Results
	Relationship with CP2015

	Existence of Walrasian Equilibria
	Concluding Remarks
	References

