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ABSTRACT. Employing recent results of M. Ali Khan we provide an infinite-

dimensional version of the Fatou Lemma, which includes as a special case the

result of Khan and Majumdar [15].

1. Introduction. Recently in an interesting paper, Khan and Majumdar [15]

proved an approximate version of the well-known Fatou Lemma, for a separable

Banach space. The purpose of this paper is to provide another approximate ver-

sion of the Fatou Lemma which includes as a special case the result of Khan and

Majumdar [15] (a more detailed comparison with their work is given in §5). More-

over, by adding an extra assumption to those of Khan and Majumdar, an exact

version of Fatou's Lemma in infinite-dimensional spaces is also established.

The Fatou Lemma (see for instance Dunford and Schwartz [8, p. 152]), in ad-

dition to its significance in mathematics, has played an important role in mathe-

matical economics. In particular, it was used by Aumann to prove the existence

of a competitive equilibrium for an economy with an atomless measure space of

traders and a finite-dimensional commodity space. Different versions of the Fa-

tou Lemma in n-dimensions have been obtained by Aumann [2], Schmeidler [18],

Hildenbrand and Mertens [10], and Artstein [1]. These results have found very

interesting applications in economic theory (see, for example, Hildenbrand [9]).

Recently however, work in economies with a measure space of traders and in-

finitely many commodities necessitated an infinite-dimensional version of the Fatou

Lemma (see for instance Yannelis [20, Remark 6.5]). More specifically, the desir-

able theorem was an infinite-dimensional version of Schmeidler's extension of the

Fatou Lemma. Khan and Majumdar [15] tackled this interesting problem by em-

ploying some results of Khan [13]. They first obtained an approximate version of

the Fatou Lemma for a separable Banach space. The approximate nature of their

result arises from the fact that the Fatou Lemma is false in infinite dimensions.

In particular, Uhl's [19] counterexample (see also [5, p. 262]) on the failure of the

Lyapunov Theorem in infinite-dimensional spaces can be easily modified to indicate

this as shown in Rustichini [17]. In this paper we build on Khan's recent work on

integration in Banach spaces to provide an alternative approximate version of the

Fatou Lemma. In particular, our Main Theorem is an approximate version of the

Fatou Lemma for a separable Banach space or a Banach space whose dual has the

Radon-Nikodym Property (RNP). Moreover, with additional assumptions we show
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that an exact version of the Fatou Lemma can be obtained. Our Main Theorem

enables us to prove easily that integration preserves upper-semicontinuity, i.e., if a

correspondence taking values in a separable Banach space is upper-semicontinuous

(u.s.c.) so is its integral.

The paper is organized as follows. §2 contains notation and definitions. The Main

Theorem and its proof are given in §3. In §4 we show that integration preserves

upper-semicontinuity. Finally, in §5 a comparison of our work with that of Khan

and Majumdar [15] is given.

2. Notation and définitions.

2.1 NOTATION. 2A denotes the set of all nonempty subsets of the set A.

con A denotes the closed convex hull of A.

If A C X, where X is a Banach space, cl A denotes the norm closure of A.

0 denotes the empty set.

If y is a linear topological space, its dual is the space Y* of all continuous linear

functionals on Y, and if p E Y* and x E Y the value of p at x is denoted by (p, x).

Finally if y is a Banach space and Fn (n = 1,2,... ) is a sequence of nonempty

subsets of y we will denote by LsFn the set of its weak limit superior points, i.e.,

Ls Fn = vf-hmn^oo Fn = {y EY: y = -w-hmyk, ykEFnk, k = 1,2,...}.

2.2 DEFINITIONS. Let X and Y be sets. The graph of the correspondence

<t>:X -» 2Y is denoted by G0 = {(x,y) E X x Y:y E (j>(x)}. Let (T,r,p) be

a complete finite measure space (i.e., p is a real-valued, nonnegative countably

additive measure defined on a complete cr-field t of subsets of T such that p(T) <

oo) and y be a Banach space. The correspondence dr.T —► 2Y is said to have a

measurable graph if G$ E r <g> B(Y), where B(Y) denotes the Borel cr-algebra on Y

and ® denotes the product cr-field. The correspondence <f>:T —► 2Y is said to be

lower measurable if for every open subset V of Y the set {t E T: <j>(t) n V / 0} is

an element of r. For the relationship between the above notions of measurability

see [11].

Following Diestel and Uhl [5] we define the notion of a Bochner integrable func-

tion. Let (T, t, p) be a finite measure space and y be a Banach space. A function

/: T —► y is called simple if there exist yi,y2,. ■ ■ ,yn in Y and cti, a2,..., an in r

such that / = 5Zr=i ViXai, where Xa,(0 = 1 if í € Oj and Xa¡(t) = 0 if í £ a¿. A
function f:T —► Y is said to be p-measurable if there exists a sequence of simple

functions fn:T —► Y such that lim„_0O ||/„(i) - /(£)|| = 0 for almost all t E T. A

/i-measurable function /: T —» Y is said to be Bochner integrable if there exists a

sequence of simple functions {/„} (n = 1,2,... ) such that

lim   / \\fn(t)-f(t)\\dp(t)=0.
n—*oo Jj,

In this case we define for each E Et the integral to be

/ f(t)dp(t)=  lim   f fn(t)dp{t).
Je ™^°°Je

It can be shown (see Diestel and Uhl [5, Theorem 2, p. 45]) that if f:T —> Y is a

/z-measurable function then / is Bochner integrable if and only if fT \\f(t)\\ dp(t) <

oo. We denote by L\(p,Y) the space of equivalence classes of y-valued Bochner

integrable functions x: T —> Y normed by ||z|| = fT \\x(t)\\ dp(t). As was noted in
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Diestel and Uhl [5, p. 50], it can be easily shown that normed by the functional

|| • || above, ¿i(//, Y) becomes a Banach space.

A Banach space Y has the Radon-Nikodym Property with respect to the measure

space (T,r,p) if for each ¿¿-continuous vector measure G:r-tV of bounded vari-

ation there exists g E Li(p,Y) such that G(E) — fEg(t)dp(t) for all E E r. A

Banach space Y has the Radon-Nikodym Property (RNP) if Y has the RNP with

respect to every finite measure space. It is a standard result (see for instance [5, p.

98 or 6, p. 112]) that if Y* has the RNP then (Li(p,Y))" = Loo{p,Y*).
Let (T,T,p) be a finite measure space and y be a Banach space. The cor-

respondence (f>:T —» 2Y is said to be integrably bounded if there exists a map

g E L\(p) such that for almost all t in T, sup{||x||:a; E (j>(t)} < g(t). We de-

note by Ztj) the set of all Y-valued Bochner integrable selections of (¡>: T —* 2Y, i.e.,

Ü0 = {x E L\(p,Y):x(t) E (¡>(t) for almost all t in T}. Following Aumann [2] the

integral of the correspondence cf> is defined as

j  <t>(t)dp(t) = j j x(t)dp(t):x ecA.

It is a standard result (see for instance Himmelberg [11]) that if T is a com-

plete finite measure space, y is a separable Banach space, and </>: T —► 2Y is a

nonempty-valued correspondence with a measurable graph (or equivalently </>(•) is

lower measurable and closed valued), then </>(■) admits a measurable selection, i.e.,

there exists a measurable function f:T —> Y such that f(t) E c/>(i) for almost all t

in T. By virtue of this result and provided that <j> is integrably bounded, we can

conclude that Cj> ̂  0 and therefore fT <j>(t) dp(t) ^ 0.

Finally we wish to note that Diestel's Theorem [4] tells us that if K is a nonempty,

weakly compact, convex subset of a separable Banach space Y (or more generally

if K:T —► 2Y is an integrably bounded, nonempty, weakly compact convex valued

correspondence, see [16, p. 570]) then f¿¡< is weakly compact in L\(p,Y). Diestel's

Theorem (which is an easy consequence of James's Theorem as Khan [14] showed)

will play an important role in the sequel.

3. The Main Theorem.

3.1 An approximate version of the Fatou Lemma in infinite-dimensional spaces.

Below we state the main result of the paper, i.e., an approximate version of the

Fatou Lemma in infinite-dimensional spaces.

MAIN THEOREM. Let (T,r,p) be a complete finite atomless measure space and

Y be a separable Banach space whose dual Y* has the RNP. Let (¡)n:T —* 2Y (n —

1,2,... ) be a sequence of nonempty closed valued correspondences such that:

(3.i) For all n (n = 1,2,... ), <pn(t) C X(t) for all t E T, where X: T -* 2Y is an

integrably bounded, weakly compact, convex, nonempty valued correspondence, and

(3.ii) Ls<f>n(-) (n = 1,2,...) is lower measurable.

Then

Ls / <¡)n(t)dp(t) c cl / Ls tf>n{t)dp(t).
Jt Jt

PROOF. Let x E Ls fT 4>n(t) dp(t); we will show that x E cl fTLs(j>n(t)dp(t).

Now x E Ls /T 4>n(t)dp(t) implies that there exists xk E fT(pnk(t)dp(t) such

that xk converges weakly to x.    By the definition of the integral there exists
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fk E Z<¡>n such that xk = fT fk(t) dp(t). Notice that Z^,n C Zx and by as-

sumption the correspondence X: T —► 2Y is integrably bounded, nonempty, weakly

compact and convex valued. Hence, by Diestel's Theorem, Zx is weakly com-

pact in L\(p,Y). Consequently, without loss of generality we may assume (oth-

erwise pass to a subsequence) that fk converges weakly to / E Zx (recall the

Eberlein-Smulian theorem). Therefore, x = fT f(t)dp(t). We now show that

f(t) E coñLs{/fc(í)} for almost all t E T. Notice that fk converges weakly to

/ implies that (p, fk) converges to (p,f) for any p E (Li(p,Y))* = Loo(p,Y*).

Since (p,fk) = ¡T(p(t),fk(t))dp(t) and (p,f) = ¡T{p(t),f{t))dp(t) we conclude

that fT{p(t), fk(t))dp(t) converges to jT(p(i),f(t))dp(t). Define the functions

hk:T -h. R and h:T -» R by hk(t) = (p(t)Jk{t)) and h(t) = (p{t),f(t)} re-
spectively. Since fk lies in a weakly compact set, hk is bounded and uniformly inte-

grable. Moreover, hk converges weakly to h. To see this let g E (Li(p))* — ¿oo(p)

and let M = \\g\loo. Then

(3.1)

I / g(t)(hk(t) - h(t))dp(t)   <m\[ (hk(t) - h{t))dp(t)
\Jt \Jt

= m\['((p(t),fk(t))-(p(t),f(t)))dp(t)
\Jt

and (3.1) can become arbitrarily small since fT(p(t),fk(t))dp(t) converges to

fT(p(t),f(t)) dp(t). By Proposition C in [1], for almost all t E T,

h(t) = {p(t)J(t))EconLs{hk(t)} = conLs{(p(t)Jk(t))}

CccñLs{(p(t),fk(t))} = {p(t),ämLs{fk(t)}).

Hence for almost all t E T, (p(i), f(t)) E (p{t), co~nLs{fk(t)}} and so

(3.2) f(t) E cönLs{/fc(i)}    for almost all t E T.

It follows from (3.2) that f(t) E coñLsc/>n(í) for almost all t E T and, consequently,

x = fT f(t)dp(t) E fTco~ïïLs<fin(t)dp(t). Since, by assumption, Ls<f>n(-) is lower

measurable and (T, r, p) is a complete finite atomless measure space, it follows from

Theorem 1 in [13] that1

/ coñLscA„(í)dp(t) = cl /  Ls<f>n(t)dp(t).
Jt Jt

Therefore, x E c\JT Lsc6„(i) dp(t) and this completes the proof of the Main Theo-

rem.

REMARK 3.1. The assumption that Y* has the RNP was only used to en-

sure that (L\(p,Y))* = Loo(p,Y*) and consequently for / E Li(p,Y) and p E

Loo{p,Y*) we can write (p, /) = JT{p(t),f(t))dp(t). However, the Main Theorem

remains true if Y is an arbitrary separable Banach space. In particular, in this case

as Khan and Majumdar [15] noted, p can be represented by a function tf)\T —► y*

such that (ip,y) is measurable for every y E Y and ||^|| E ¿oo(m) (Dinculeanu [6, p.

'It should be noted that Theorem 1 of Khan [13] is true in separable Banach spaces and

Banach spaces whose dual have the RNP.
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112]). Hence, (p, /) = JT(ip(t), f(t)) dp(t) and the argument of the Main Theorem

used to prove that hn converges weakly to h remains the same.2

3.2 An exact version of the Fatou Lemma in infinite-dimensional spaces. We now

show how our Main Theorem can be used to obtain an exact version of the Fatou

Lemma in infinite-dimensional spaces. We will first need the following lemma.

LEMMA 3.1. Let (T,r,p) be a complete finite measure space and Y be a sep-

arable Banach space. Let tf>:T —► 2Y be a nonempty, closed, convex valued corre-

spondence such that cf>(t) C X(t) for all t ET, where X: T —► 2Y is an integrably

bounded, nonempty, weakly compact, convex valued correspondence.  Then

cl / <p(t)dp(t) = f (¡)(t)dp(t).
Jt Jt

PROOF. Notice that Z<$, C Zx and the latter set is weakly compact in L\(p, Y)

(recall Diestel's Theorem). Since <j>(-) is norm closed and convex, so is Z<¡,. Hence,

£0 is a weakly closed subset of Zx and consequently Z<p is weakly compact.3 Define

the mapping ip:Li(p,Y) —► Y by ip(x) = fTx(t)dp(t). Certainly, tp is linear and

norm continuous. By Theorem 15 in Dunford-Schwartz [8, p. 422], %¡) is also weakly

continuous. Therefore, ^(Zç) = {^(x): x E Z4,} = JT <fi(t) dp(t) is weakly compact

and we conclude that

cl /  <p(t)dp(t) = [ 4>(t)dp(t).
Jt Jt

REMARK 3.2. The assumption that tf>:T —► 2Y is convex valued cannot be re-

laxed from the above lemma. In particular, Rustichini [17] has shown that without

convex valueness of (f>, Lemma 3.1 is false.

Now combining the Main Theorem with the above lemma we can obtain an exact

version of the Fatou Lemma in infinite-dimensional spaces.

THEOREM 3.1. Let (T,r,p) be a complete finite atomless measure space and

Y be a separable Banach space. Let <j>n:T —* 2Y (n = 1,2,...) be a sequence

of nonempty closed valued correspondences such that assumption (3.i) of the Main

Theorem is satisfied. Moreover, suppose that Ls </>„(•) is closed and convex valued.

Then

Ls /  <t>n(t)dp(t) c  / Ls qbn(t)dp(t).
Jt Jt

PROOF. It follows from the Main Theorem and Remark 3.1 that

Ls / (f>n(t)dp{t) c cl / Ls4>n(t)dp(t).
Jt Jt

2The Main Theorem also remains true if Y is a Banach space whose dual Y* has the RNP,

provided that (3.i) is replaced by

(3.i)' For all n, </>n(i) C X for all t 6 T where X is a weakly compact, convex, nonempty

subset of Y.

In this case Lx is still weakly compact (see Diestel [4] or Khan [14]) and the proof of the Main

Theorem remains unchanged.

3Recall that it is a consequence of the separation theorem that the norm and weak topologies

coincide on closed convex sets.
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Since Ls(t>n(-) is closed and convex by virtue of Lemma 3.1 we have that

Ls / (¡>n(t)dp(t) C cl / Ls<pn(t)dp(t) = / Ls<¡>n(t)dp(t).

This completes the proof of the theorem.4

REMARK 3.3. Notice that the counterexample of Rustichini [17] on the failure

of the Fatou Lemma in infinite-dimensional spaces does not upset Theorem 3.1

since it does not satisfy the assumption that Ls0n() is convex valued.

4. Integration preserves upper-semicontinuity. If X, Y are topological

spaces we will say that tp: X —+ 2Y has a closed graph if G^ is closed in X x Y.

In our setting below, X is a metric space and y is a Banach space. In this latter

setting tp:X —► 2Y is said to have a weakly closed graph if 67,/, is closed in the

product topology X xY, where Y is endowed with the weak topology. Following

Aumann [3] we will say that the correspondence tp: X —► 2Y is weakly u.s.c. if ip

has a weakly closed graph.

Let T be a measure space, P be a metric space, y be a Banach space, and

<j>: T x P —* 2Y be a nonempty valued correspondence. For Y = Rl Aumann [2]

showed that if <¿>(í, •) is u.s.c. for each fixed t E T, then so is jT (j>(t, ■) dp(t). Aumann

[2] proved this result by means of the Fatou Lemma in several dimensions (a similar

result can also be found in Hildenbrand [9, p. 73]). An alternative elementary proof

of the same result was also given by Aumann [3]. Below we show that an infinite-

dimensional version of the above fact follows directly from our Main Theorem.

THEOREM 4.1. Let (T,r,p) be a complete, finite, atomless measure space, P

be a metric space, and Y be a separable Banach space. Let <j>: T x P —» 2Y be a

nonempty convex valued correspondence such that:

(4.i) For each fixed t ET, <f>(t, ■) is weakly u.s.c,
(4.ii) for all (t,p) ET x P, </>(t,p) C X(t), where X:T -» 2Y is an integrably

bounded, weakly compact, convex, nonempty valued correspondence, and

(4.iii) for each fixed p E P, Ls(j>(-,p) is lower measurable.

Then JT <¡>(t, ■) dp(t) is weakly u.s.c.

PROOF. Let pn (n = 1,2,...) be a sequence in P converging to p. We must

show that Ls /</>(•, p„) C /</>(•, p). Since, by assumption, <f>(t, ■) is weakly u.s.c. for

each fixed t E T, we have that for all t ET, Ls^(f,pn) C <f>(t,p). Therefore,

(4.1) ( Ls4>(t,pn)dp(t)E [ <t>(t,p)dp(t).
Jt Jt

By virtue of Lemma 3.1, (4.1) can be written as

cl / Ls (f>(t,pn)dp(t) C / 4>(t,p)dp(t).
Jt Jt

It follows now from the Main Theorem that

Ls /  <h(t,pn) dp(t) C cl / Ls (¡)(t,pn)dp(t) C /  <t>(t,p)dp(t).
Jt Jt Jt

This completes the proof of the theorem.

4It should be noted that fTLsd>n(t)du.(t) = f coñLs</>n(í) dfi{t) since Ls</>„() is convex

valued, and in this case Khan's approximate version of the Lyapunov-Richter Theorem is not

needed in the proof of the Main Theorem. Therefore, Theorem 4.1 remains true without the

nonatomicity assumption on the measure space.
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REMARK 4.1. It should be noted that in the case that instead of correspon-

dences we deal with functions, i.e., qb:T x P —» Y is a function such that <j> is

integrably bounded and for each fixed t E T, <j>(t, ■) is continuous, then we can au-

tomatically conclude (by virtue of the Lebesgue Dominated Convergence Theorem

[5, p. 45]), that fT (¡>(t, ■) dp(i) is also continuous.

REMARK 4.2. Results similar to Theorem 4.1 have been obtained in Khan [12]

and Yannelis [20] (among others). In particular, in the above works it has been

shown that if a correspondence is u.s.c, then the set of its integrable selections is

also u.s.c.

5. Relationship with the Khan-Majumdar work. Our Main Theorem, as

well as the idea of the proof, were both inspired by reading the work of Khan [13,

14] and Khan and Majumdar [15]. The contribution of our paper is to simplify

and slightly generalize the theorem of Khan and Majumdar by integrating three

major results: Diestel's Theorem on weak compactness, Artstein's Lemma, and

Khan's approximate version of the Lyapunov-Richter Theorem. In particular, the

following corollary of our Main Theorem is the infinite-dimensional version of the

Fatou Lemma proved by Khan and Majumdar.

COROLLARY 5.1. Let (T,r,p) be a finite, complete, atomless measure space

and Y be a separable Banach space. Let fn (n = 1,2,... ) be a sequence of func-

tions from L\(p,Y) such that for all n, fn(t) E K for all t in T, where K is a

nonempty, weakly compact, convex subset of Y and suppose that the weak limit w-

Limn_00 Jr fn(t)dp(t) exists. Then for all e > 0 there exists f E L\(p,Y) such

that:

(5.i) f(t) E Ls{/n(i)} for almost all t in T, and

(5.ii) || /T f(t) dp(t) - w-Lim^oo ¡T fn(t) dp{t)\\ < £.

PROOF. The proof follows directly from the Main Theorem by setting cf>„(t) —

ifn(t)} (n » 1,2,...) for all t in T and X(t) = K for all t in T. One only needs to

use Lemma 4.1 in Dsosu and Shaozhong [7] in order to show that Ls{/„} is lower

measurable and thus to conclude that assumption (3.ii) of the Main Theorem is

satisfied.

Notice that Corollary 5.1 remains true if y is a Banach space whose dual Y*

has the RNP (recall footnote 2).

NOTE ADDED IN PROOF. I wish to thank David Schmeidler for informing me

that Erik Balder using different arguments, has independently proved a version of

our Main Theorem. Professor Balder's work in forthcoming in the J. Math. Anal.

Appl. The author has benefited from the comments and suggestions of M. Ali Khan

and Aldo Rustichini.
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