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a b s t r a c t

A new condition is introduced for the existence of equilibrium for an economy where pref-
erences need not be transitive or complete and the consumption set of each agent need
not be bounded from below. The new condition allows us to extend the literature in two
ways. First, the result of the paper can cover the case where the utility set for individually
rational allocations may not be compact. As illustrated in Page et al. [Page Jr., F.H., Wooders,
M.H., Monteiro, P.K., 2000. Inconsequential arbitrage. Journal of Mathematical Economics
34, 439–469], the no arbitrage conditions do not apply to an economy with a non-compact
utility set. Second, we generalize the arbitrage-based equilibrium theory to the case of
non-transitive preferences.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The consumption set need not be bounded from below in an asset market economy where unlimited short sales are
allowed. The existence of a Walrasian equilibrium with unbounded-from-below choice sets was initially addressed in Hart
(1974) who introduced a condition on preferences eventually known as a no arbitrage condition. To generalize the condition
of Hart (1974) on preferences, different arbitrage notions have been introduced in the literature (see for example, Hammond,
1983; Page, 1987; Werner, 1987; Chichilnisky, 1995; Page et al., 2000; Dana et al., 1999; Allouch, 2002, among others).

The arbitrage conditions are not only sufficient but also necessary for the existence of a Walrasian equilibrium in certain
cases. The notion of arbitrage, however, has some limitations as a conceptual framework for explaining equilibrium beyond
either the transitivity of preferences or the compactness of the utility set for individually rational allocations. First of all,
equilibrium theory with unbounded consumption sets makes use of the assumption of transitivity of preferences. The no
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arbitrage conditions of the literature are based upon a utility representation of preferences.1 One may be tempted to consider
a naive extension of the notions of arbitrage to the case with non-transitive preferences simply by dropping the transitivity
of preferences in their definition. We provide an example where the naive extension of the no arbitrage conditions fails to
explain the existence of equilibrium with non-transitive preferences. Specifically, the set of Pareto optimal allocations is
compact but the naively extended conditions fail in the example. This example illustrates the difficulty of finding sufficient
conditions for the existence of equilibrium with non-transitive preferences as an extension of the no arbitrage conditions. To
the best of our knowledge, there is no literature which attempts to extend the notion of arbitrage to the case of non-transitive
preferences in the framework of Hart (1974).

Another limitation of the arbitrage-based approach lies in its capability to explain the existence of equilibrium even in
the case with transitive preferences. As illustrated in Page et al. (2000), the no arbitrage conditions do not apply to the case
where the utility set for individually rational allocations is not compact. Specifically, the no arbitrage conditions are no longer
necessary for the existence of equilibrium in economies with a noncompact utility set.

The purpose of this paper is to prove the existence of equilibrium with unbounded consumption sets and non-transitive
preferences. To this end we introduce a new condition which subsumes as a special case all the arbitrage conditions found in
the literature in two respects. First, it covers the case where the utility set for individually rational allocations is compact and
moreover, it explains the existence of equilibrium in the counterexample of Page et al. (2000) to the no arbitrage conditions.
Second, we generalize the arbitrage-based equilibrium theory to the case of non-transitive preferences. In particular, the
result of the paper applies to the aforementioned economy with non-transitive preferences in which the set of Pareto optimal
allocations is compact, an equilibrium exists, but any known conditions are violated. In other words, the economy of the
example has all the desired properties except for the transitivity of preferences, however, the existence of equilibrium cannot
be explained by any conditions found in the existing literature. Furthermore, our analysis covers interdependent preferences.
Thus, the equilibrium existence result of the paper includes as a special case not only all the equilibrium existence results with
unbounded consumption sets but also gives as a corollary the standard equilibrium existence results without transitivity or
completeness of preferences.

One example of the economies with non-ordered preferences on unbounded choice sets is a recent development of the
capital asset pricing model (CAPM). Traditional CAPMs assume that agents’ preferences are represented by a mean-variance
utility function. Recently, Boyle and Ma (2006) show that the return–risk relationship of the CAPM can hold in the case where
agents are risk averse with respect to mean-preserving spread (MPS).2 The MPS-risk-averse preferences need not be transitive
and thus, admit no utility representation in general. It is also widely recognized in the literature that transitive preferences fail
to explain important anomalous phenomena such as preference reversal.3 For example, experimental methods, Grether and
Plott (1979) and Loomes and Sugden (1991) among others document the violation of transitivity of preferences by detecting
the preference reversal phenomenon.

There have been also controversies over the presence of money pump which is frequently mentioned as a refutable
evidence against non-transitive preferences. These controversies, however, are quite misleading from the viewpoint of equi-
librium theory. Non-transitive preferences may allow a triad of objects {A,B, C} which contributes to money pumps. Suppose
that there exists an agent who strictly prefers A to B, B to C, and C to A, and he is currently endowed with A. Then an arbitrageur
can pump money out of his pocket by offering repeatedly to exchange A for C, then C for B, and then B for A at a fee small
enough to induce him to accept each offer. The literature of decision theory argues that money pumps are hard to find in the
real world and therefore, the non-transitivity of preferences is not convincing. It will be illustrated later (Example 3.1.2) that
the naive arguments are irrelevant to confirming the non-transitivity of preferences because the money pump never works
and therefore, is not observable in equilibrium.

The paper is organized as follows: In Section 2 we present an auxiliary theorem which generalizes the standard equilibrium
existence results. In particular, the auxiliary theorem is proved via an extension of the abstract equilibrium theorem of Shafer
and Sonnenschein (1975), and Borglin and Keiding (1976), and it is the main mathematical tool used to prove our main
theorem which is the focus of Section 3. Appendix contains all the proofs of the results of the paper.

2. A first extension of the classical equilibrium existence theorem

2.1. Notation

For a set A in a finite-dimensional Euclidean space R�, the following notation will be used.

• 2A denotes the set of all subsets of the set A.

1 Allouch (2002) is an exception because preferences are allowed to be incomplete. However, Allouch (2002) assumes that preferences are transitive.
2 An agent is said to exhibit MPS-risk-aversion if for any random payoffs X and Y = X + �, he prefers X to Y whenever E(�) = 0 and Cov (X, �) = 0. For more

rigorous treatment of MPS-risk-aversion, see Boyle and Ma (2006).
3 Experimental work of Berg et al. (1985) documents that arbitrage profits can be extracted from the optimal choices which reveal the preference reversal

phenomenon. Preference reversals arise when an agent prefers lottery A to lottery B but sets a higher selling price on B than on A. Such behavior violates
transitivity of preferences.
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• conA denotes the cone generated by the set A, i.e., con A = ∪�≥0�A.
• clconA denotes the the closure of the cone generated by the set A.
• coA denotes the convex hull of the set A.
• clA denotes the closure of the set A.
• intA denotes the interior of the set A.
• ∂A denotes the boundary of the set A.
• rintA denotes the relative interior of the convex set A.4
• ∂rA denotes the relative boundary of the convex set A, i.e., ∂rA = (clA) \ (rintA).

We adopt the following additional notation.

• ‖x‖ =
√∑�

j=1x
2
j

denotes the Euclidean norm of the vector x = (x1, . . . , x�) ∈R�.
• xn → x denotes the convergence of the sequence {xn : n = 1,2, . . .} to the point x.
• C◦(x, r) denotes the open ball in R� centered at the point x with radius r > 0.
• C(x, r) denotes the closed ball in R� centered at the point x with radius r > 0.

2.2. Definitions

For two nonempty subsets Z and Y inR�, consider a correspondenceϕ : Z → 2Y . Let clϕ, intϕ and coϕdenote the correspon-
dence from Z to 2Y which has the value clϕ(z), intϕ(z) and coϕ(z) for all z ∈ Z , respectively. The correspondenceϕ is said to have
an open graph if Gϕ ≡ {(z, y) ∈ Z × Y : y∈ϕ(z)} is open in Z × Y . The correspondence ϕ is said to have open lower sections if the
setϕ−1(y) = {z ∈ Z : y∈ϕ(z)} is open in Z for every y∈Y andϕ is said to have open upper sections (or open-valued) ifϕ(z) is open
in Y for every z ∈ Z. The correspondence ϕ is said to be lower semi-continuous if for every open set V of Y, {z ∈ Z : ϕ(z) ∩ V /= ∅}
is open in Z and ϕ is said to be upper semi-continuous if for every open set V of Y, {x∈ Z : ϕ(x) ⊂ V } is open in Z.

2.3. Auxiliary theorem: a generalization of the classical Walrasian equilibrium existence theorems

We consider the exchange economy which is populated by finitely many agents in I. We let I denote both the number and
the set of agents and � the finite number of commodities. For each i∈ I, let ei ∈R� denote the initial endowment and Xi ⊂ R�
denote the choice set of agent i∈ I. We denote the exchange economy by E = {(Xi, ei, Pi) : i∈ I} where Pi : X → 2Xi is a preference
correspondence where X =∏i∈ IXi. For points x∈X and yi ∈Xi, we read yi ∈Pi(x) as “agent i strictly prefers yi to xi provided
that the other agents choose xj for all j /= i.” For example, given a binary relation 
i ⊂ X × X , we can define Pi as follows:

∀x = (x1, . . . , xI) ∈X, Pi(x) = {yi ∈Xi : (x1, . . . , xi−1, yi, xi+1 . . . , xI)
ix}.
The preference ordering 
i is so general that it allows interdependence among agents and need not be either transitive
or complete. For each p∈R� \ {0} and each i∈ I, we define the sets ˇi(p) = {xi ∈Xi : pxi < pei} and Bi(p) = {xi ∈Xi : pxi ≤ pei}.
Notice that clˇi(p) = Bi(p) whenever ˇi(p) /= ∅ and Xi is convex.

Definition 2.3.1. An equilibrium for the exchange economy E is a pair (p, x) ∈ (R� \ {0}) × X such that

(i) xi ∈Bi(p) for all i∈ I,
(ii) Pi(x) ∩ Bi(p) = ∅ for all i∈ I, and

(iii)
∑

i∈ I(xi − ei) = 0.

The pair (x, p) is a quasi-equilibrium for the economy E if it satisfies (i), (iii), and the following condition.

(ii
′
) Pi(x) ∩ ˇi(p) = ∅ for all i∈ I.

Let F denote the set of feasible allocations {x∈X :
∑

i∈ I(xi − ei) = 0}. For each x∈X and each i∈ I, let Ri(xi) = {z ∈X : xi /∈
coPi(z)}. We set R(e) = {x∈X : ei /∈ coPi(x) for all i∈ I}. An allocation x∈R(e) is called individually rational. Such individual
rationality is appropriate in the sense that if x is an equilibrium allocation, then ei /∈ coPi(x) for all i∈ I.5 We set H = F ∩ R(e).
Let clH denote the closure of H in X. A point x∈H is an allocation which is feasible and individually rational. In the special
case that the preference ordering of agent i is defined on Xi and representable by a quasiconcave utility function ui for all i∈ I,
R(e) is equal to the set {x∈X : ui(ei) ≤ ui(xi) for all i∈ I} and therefore, it is convex. We assume that E satisfies the following
conditions for all i∈ I.

4 The relative interior of A is the interior of A in the smallest affine subspace of R� which contains A.
5 For all i, let 
i denote the strict ordering on Xi induced by a reflexive ordering �∼ i on Xi , i.e., for all zi, xi in Xi , zi
ixi if zi�∼ ixi but not xi�∼ izi . In this

case, one might be tempted to define the set of individually rational allocations as
∏

i∈ I {xi ∈Xi : xi�∼ iei}. This is fine as far as 
i is transitive for all i∈ I. It
is not the case, however, with non-transitive preferences because xi
iei does not imply Pi(xi) ⊂ Pi(ei), as illustrated in Example 3.1.2.
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B1. Xi is a closed, nonempty and convex set in R�.
B2. ei is in the interior of Xi.
B3. Pi is lower semi-continuous.
B4. For all x∈X , xi /∈ coPi(x).
B5. For all x∈H, Pi(x) /= ∅.
B6. Let x be a point in H. Then for each zi ∈ coPi(x) and vi ∈Xi, there exists �∈ (0,1) such that �zi + (1 − �)vi ∈ coPi(x).

Assumption B5 states that no satiation occurs on the set of feasible and individually rational allocations. Assumption B6
holds true when Pi(x) is relatively open in Xi for all x∈H.6 As shown later, this condition is not required for the existence of
quasi-equilibrium. It is used only in verifying that a quasi-equilibrium is an equilibrium. Define�i : X → 2Xi by�i(x) = coPi(x).
For ei ∈Xi, notice that

�−1
i

(ei) = {x∈X : ei ∈�i(x)}
= {x∈X : ei ∈ coPi(x)}.

Observe that

X \ �−1
i

(ei) = {x∈X : ei /∈ �i(x)}
= {x∈X : ei /∈ coPi(x)} = Ri(ei).

Since Pi is lower semi-continuous under the condition B3, �−1
i

(ei) need not be open and therefore, Ri(ei) need not be closed.
Consequently, H need not be closed.7 By B4, ei /∈ coPi(e) for all i∈ I and therefore, e∈R(e). Since e∈ F , it follows that e∈ clH. In
particular, clH is not empty.

Below we prove a very general Walrasian equilibrium existence theorem, which will be used in the proof of our main
result.

Auxiliary Theorem 2.3.1. Suppose that E satisfies the assumptions B1–B6. Then there exists an equilibrium for the economy E
if H is bounded.

Proof. See Appendix B. �

The auxiliary theorem is based on the assumption B5 and the condition that H is bounded. Thus, this result subsumes as a
special case the classical existence theorems of Shafer (1976) and Gale and Mas-Colell (1975), among others, which are built
upon the condition that F is bounded. As shown in Appendix, the proof of Auxiliary Theorem is distinct from the standard proof
of the classical theorems because it involves delicate arguments in verifying that candidate equilibrium allocations lie in H.

3. Main results

We briefly review the notion of arbitrage used in the literature and provide generalizations of the no arbitrage conditions
to the case with non-transitive preferences. Two examples are given to motivate the need for the new conditions for the
existence of equilibrium. The first example borrowed from Page et al. (2000) illustrates that the no arbitrage conditions
are not useful to explain equilibrium when the utility set for allocations in H is not compact. Specifically, the no arbitrage
conditions are no longer necessary for the existence of equilibrium in economies with the noncompact utility set. Another
limitation of the arbitrage conditions is that they explicitly or implicity assume the transitivity of preferences. One may
be tempted to consider a naive extension of the notions of arbitrage to the case with non-transitive preferences simply by
replacing ‘transitive preferences’ by ‘non-transitive preferences’ in their definition. The second example shows that such a
naive extension of the no arbitrage conditions fails to explain the existence of equilibrium with non-transitive preferences.
Moreover, the set of Pareto optimal allocations in H is compact but the naively extended conditions fail in the example.8 The
second example illustrates the difficulty of finding sufficient conditions for the existence of equilibrium with non-transitive
preferences as an extension of the no arbitrage conditions. This example is also used to demonstrate the irrelevance of the
money pump arguments against non-transitive preferences. In the second subsection, we introduce a new condition which
can cover the cases not only of non-transitive preferences, but also of noncompact utility sets. In particular, this condition
subsumes all the previous no arbitrage conditions as a special case. Moreover, it covers the counterexample of Page et al.
(2000). Finally, the main theorem of the paper is provided under the condition which further generalizes the condition of
the second subsection.

6 Suppose that Pi(x) is relatively open in Xi . Let zi be a point in coPi(x). Then there exist z′
i
∈Pi(x), z

′′
i

∈Pi(x) and ˛∈ [0,1] such that zi = ˛z′
i
+ (1 − ˛)z

′′
i
.

Let vi be a point in Xi . Since Pi(x) is relatively open in Xi , there exists �∈ (0,1) such that �z′
i
+ (1 − �)vi ∈Pi(x) and �z

′′
i

+ (1 − �)vi ∈Pi(x). It follows that

�zi + (1 − �)vi = ˛[�z′
i
+ (1 − �)vi] + (1 − ˛)[�z

′′
i

+ (1 − �)vi] ∈ coPi(x).
7 If each Pi has open lower sections and is convex-valued, then R(e) is closed. But this is not warranted by B3. For example, the budget correspondence is

lower semi-continuous but does not have open lower sections. See Yannelis and Prabhakar (1983) for an example of a lower semi-continuous correspondence
which does not have open lower sections.

8 A feasible allocation x∈X is said to be Pareto optimal if there is no feasible allocation y∈X such that yi ∈Pi(xi) for every i∈ I.
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3.1. Arbitrage conditions and counterexamples

For illustrative purposes, we consider the case where preferences for agent i are represented by a reflexive ordering �∼ i on
Xi for all i∈ I. Let 
i denote the strict ordering on Xi induced by �∼ i; for all zi, xi in Xi, zi
ixi if zi�∼ ixi and not xi�∼ izi. Define the
correspondence Pi : Xi → 2Xi by Pi(xi) = {zi ∈Xi : zi
ixi}. In this section, we assume that for all x∈X and all i∈ I, Pi(x) = Pi(xi),
and Pi is convex-valued.9 For each xi ∈Xi, we set Ri(xi) = {zi ∈Xi : not(xi
izi)}.10 Then it is easy to see that R(e) =

∏
i∈ IR

i(ei).
Dana et al. (1999) and Page et al. (2000) extend the notions of arbitrage used in Werner (1987) and Page and Wooders (1996)

to the case where H need not be bounded, and they compare various notions of arbitrage. Remarkably, Dana et al. (1999)
provide a condition which is equivalent to the compactness of the utility set {�∈RI+ : ∃x∈H s.t. 0 ≤ �i ≤ ui(xi) for all i∈ I}
when preferences of agent i are represented by a quasiconcave function ui : Xi → R.11Allouch (2002) further generalizes the
notion of arbitrage to the case where preferences are transitive but need not be complete.

CPP. (i) The preference ordering �∼ i on Xi is transitive and reflexive for each i∈ I. (ii) For each sequence {xn} in H, there
exist a subsequence {xnk } and a sequence {ynk } in X convergent to some point y∈ clH which satisfies ynk

i

ixnki for all nk and

for all i∈ I.
Allouch (2002) shows that the CPP condition is equivalent to the compactness of the utility set of allocations in H when

preferences are numerically representable.
The aforementioned literature, however, does not explain the existence of equilibrium in the following two examples.

Example 3.1.1. Page et al. (2000), and Monteiro et al. (2000) provide an example where the economy has an equilibrium
but the utility set is not compact. They show that the example does not satisfy any known conditions based on arbitrage.

It is assumed in the economy that I = {1,2}, X1 = X2 = R2, e1 = e2 = (0,0). Agent 1’s utility function is given by

u1(v) =
{
v1, if v1 ≤ 0, or v2 ≥ −1

−v1

v2
, if v1 ≥ 0, and v2 ≤ −1

while preferences of agent 2 is given by

u2(w) = w1 + 2w2.

The utility set is not compact.12 It is easy to see that the economy has an equilibrium (p, v,w) where p = (1,2), and v = (2,−1)
and w = (−2,1) are an optimal choice for agent 1 and 2, respectively.

Example 3.1.2. We consider a two-agent, two-good economy where agents have non-transitive preferences in R2 with
e1 = e2 = (0,0) ∈R2. For all v = (v1, v2) ∈R2, we introduce the sets

W1(v) =
{

{v′ = (v′
1, v

′
2) ∈R2 : v′

1 > 0 & v′
2 ≥ 0} ∪ {(0,0)} if v = (0,0)

{v′ = (v′
1, v

′
2) ∈R2 : v′

2 ≥ v2} if v /= (0,0)

W2(v) =
{

{v′ = (v′
1, v

′
2) ∈R2 : v′

1 ≥ 0 & v′
2 > 0} ∪ {(0,0)} if v = (0,0)

{v′ = (v′
1, v

′
2) ∈R2 : v′

1 ≥ v1} if v /= (0,0).

For each i = 1,2, we define �∼ i on R2 such that v′ �∼ iv if v′ ∈Wi(v). Then it follows that for all v∈R2,

P1(v) =
{
R2++ if v = (0,0)
{v′ = (v′

1, v
′
2) ∈R2 : v′

2 > v2} if v /= (0,0)

P2(v) =
{
R2++ if v = (0,0)
{v′ = (v′

1, v
′
2) ∈R2 : v′

1 > v1} if v /= (0,0).

Since (−1,2) ∈P1(1,1) and (1,1) ∈P1(0,0) but (−1,2) /∈ P1(0,0), P1 is not transitive. Preferences of agent 1 are incomplete
because (0,0) and (−1,1) are not comparable. Similarly, we can show that P2 is non-transitive and incomplete.

It is easy to see that the sets R1(e1) and R2(e2) is written as

R1(e1) = {v = (v1, v2) ∈R2 : v2 ≥ 0}
R2(e2) = {v = (v1, v2) ∈R2 : v1 ≥ 0}.

We show that the economy satisfies all the conditions imposed by B1–B6. Clearly, P1 and P2 are convex and open valued.
We claim that they are lower semi-continuous. For a point v∈R2, let z = (z1, z2) be a point in P1(v). Let vn → v in R2.
Suppose that v = (0,0). Then we see that z1 > 0 and z2 > 0. Since vn → (0,0), z2 > vn2 for sufficiently large n and therefore,
z ∈R2++ ∩ {v = (v1, v2) ∈R2 : v2 > v

n
2}. It implies that z ∈P1(vn).

9 By Proposition A.1 of Appendix, the convexity assumption can replace B4 without loss of generality.
10 Notice that “not (xi
izi)” means either “not (xi�∼ izi)” or “zi�∼ ixi”.
11 Dana et al. (1999) and Page et al. (2000) also provide an excellent review of various notions of arbitrage and their economic implications.
12 It is easy to see that u1(n,−n) → 1 and u2(−n, n) → ∞ as n→ ∞.
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Suppose that v /= (0,0). Since R2 \ {(0,0)} is open, vn is in R2 \ {(0,0)} for sufficiently large n. On the other hand, z2 > vn2
so that we have z ∈P1(vn) for sufficiently large n. Therefore, we conclude that P1 is lower semi-continuous. By the same
argument we can show that P2 is lower semi-continuous. Since P1 and P2 are convex and open valued, B6 trivially holds for
the economy. Thus, we see that the economy satisfies B1–B6.

In Section 1, we argue that money pumps are not observable in equilibrium. Clearly, the triad {(0,0), (1,1), (−1,3)}
constitutes a money pump against agent 1. For any equilibrium price p∈R2+, (1,1) is not budget-feasible in equilibrium.
Agent 1 cannot accept the offer to exchange (0,0) for (1,1) at any positive fee because of the budget constraint. Thus, the
money pump does not work in equilibrium.

We consider an extension of the CPP condition to economies with non-transitive preferences simply by dropping (i) and
keeping (ii) of the CPP condition. We show that the naive extension of the CPP condition is not satisfied with the example.
For each n, set xn1 = (−an, bn) and xn2 = (an,−bn) for some an and bn in R. We assume that xn = (xn1, x

n
2) is in H for all n. Then

we have an ≥ 0 and bn ≥ 0. Suppose that an and bn are strictly positive and increasing for all n, and an → ∞ and bn → ∞.
Then the distance of Pi(xn

i
) from the origin goes to infinity as n→ ∞. Thus, there is no bounded sequence {yn} which satisfies

yn
i

∈Pi(xn
i
) for all n and all i = 1,2, and therefore, (ii) of the CPP condition is violated.

Remark 3.1.1. The economy of Example 3.1.2 has the desired properties in terms of preferences except for the non-
transitivity. Moreover, the initial allocation {(e1, e2)} is the unique Pareto optimal allocation in H and thus, the set of Pareto
optimal allocations in H is trivially compact. Nonetheless, there is no literature which covers Example 3.1.2. The classical
works do not apply simply because consumption sets have no lower bound. The arbitrage-based literature following the
seminal work of Hart (1974) is not applicable because preferences are not transitive. Moreover, the existence of equilib-
rium in Example 3.1.2 cannot be explained by the version of the CPP condition of Allouch (2002) where the transitivity of
preferences is dropped.

In the subsequent sections, we will discuss new conditions which can cover Examples 3.1.1 and 3.1.2.

3.2. New conditions without transitivity

We provide a new sufficient condition for the existence of equilibrium without transitivity of preferences. This condition
encompasses all the arbitrage-related conditions as a special case. Remarkably, it is illustrated that the utility set need not
be compact under this condition. In particular, our new condition is satisfied in the economy of Example 3.1.1 which is given
by Page et al. (2000).

For a point x∈X and i∈ I, we set

ri(x) = max{‖xj‖, j /= i}.
Note that the closed ball C(0, ri(x)) contains xj for all j /= i. We make the following assumption.

B7a. There exists h∈ I such that for any sequence {xn} in H, there exist a subsequence {xnk }, and a sequence {ynk } convergent
to a point y∈ clH such that for all nk,

Ph(y
nk ) ⊂ con[Ph(x

nk ) − {eh}] + {eh} (1)

and for all i /= h,

Pi(y
nk ) ∩ C(0, rh(x

nk )) ⊂ con[Pi(x
nk ) ∩ C(0, rh(x

nk )) − {ei}] + {ei}. (2)

It will be illustrated that B7a may hold in economies with a noncompact utility set and therefore, it is strictly more general
than the no arbitrage conditions of the literature. The asymmetric treatment of agents in the condition B7a deserves a special
remark.

Remark 3.2.1. The asymmetric treatment of agents in B7a plays a crucial role in extending the no arbitrage conditions
beyond the class of economies which have the compact utility set for individually rational allocations. There are two con-
ceivable conditions which give symmetric treatment to agents. The first one is the following alternative to B7a: for any
sequence {xn} in H, there exist a subsequence {xnk }, and a sequence {ynk } convergent to a point y∈ clH such that for all nk and
all i∈ I,

Pi(y
nk ) ∩ C(0, r(xnk )) ⊂ con[Pi(x

nk ) ∩ C(0, r(xnk )) − {ei}] + {ei}. (3)

where for a point x∈X , r(x) = max{‖xi‖, i∈ I}. This alternative condition is quite restrictive because, as illustrated below, it
may fail to explain the existence of equilibrium in economies with a noncompact utility set.

The other conceivable symmetric treatment of agents is to apply the restriction on agent h represented by (1) to the other
agents: for any sequence {xn} in H, there exist a subsequence {xnk }, and a sequence {ynk } convergent to a point y∈ clH such
that for all nk and all i∈ I,

Pi(y
nk ) ⊂ con[Pi(x

nk ) − {ei}] + {ei} (4)

This condition is weaker than B7a but is not required for the existence of equilibrium. For example, the condition is satisfied in
the economy with two agents and two goods where preferences of the agents are represented by a utility function u1(v) = v2
and u2(v) = v1 on R2, but the economy has no equilibrium.
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Fig. 1. A non-compact utility set.

The following condition is a simple extension of the CPP condition of Allouch (2002) to the case where preferences need
not be transitive.

B7b. For any sequence {xn} in H, there exist a subsequence {xnk }, and a sequence {ynk } convergent to a point y∈ clH such
that for all nk and all i∈ I,

Pi(y
nk ) ⊂ Pi(xnk ). (5)

Condition B7b can be considered as a simple extension of the CPP condition of Allouch (2002) to the case where preferences
need not be transitive. Clearly, B7a subsumes B7b and therefore, the CPP condition of Allouch (2002) becomes a special case.

As mentioned earlier, the CPP condition is equivalent to the compactness of the utility set of allocations in H when
preferences are numerically representable. Moreover, the no arbitrage conditions used by Werner (1987); Page (1987) or
Dana et al. (1999) imply the compactness of the utility set and therefore, they also imply B7a.13 The following example
shows that B7a may hold with the noncompact utility set for allocations in H.

Example 3.2.1. We continue with Example 3.1.1. The utility set for allocations in H is not compact. As illustrated below,
however, the economy satisfies B7a. We recall that there exists an equilibrium (p, v,w) where p = (1,2), and v = (2,−1) and
w = (−2,1). Note that w + v = 0.

Let {(vn,−vn)} be a sequence of allocations in H. By setting xn1 = vn and xn2 = −vn for all n, we can match the notation of
B7a. If {(vn,−vn)} is bounded, we set yn1 = vn and yn2 = −vn for each n. Then it is trivial to see that {xn} and {yn} satisfy (1) and
(2).

From now on, we assume that ‖vn‖ → ∞. We set yn1 = v and yn2 = w for all n, and y1 = v and y2 = w. Note that for each
n, P2(yn2) = P2(w) is the open half space above the line through b and B. Since (vn,−vn) ∈H and ‖vn‖ → ∞, without loss of
generality, we can assume that vn lies in the fourth quadrant of R2 and ‖vn‖> √

5 for all n (see Fig. 1). Then −vn lies in the
arc AB while vn in the arc ab.

Noting that e2 = (0,0), we see that for all n, con[P2(−vn) − {e2}] − {e2} = conP2(−vn), and conP2(−vn) is the open half
space above the line through b and B. Recalling that w = −v, for all n we have

P2(w) = con[P2(−vn) − {e2}] + {e2}.
Since e1 = (0,0) and b is the best point for agent 1 in the arc ab, it follows that P1(b) = P1(v) ⊂ P1(vn) for all n and therefore,

P1(v) ∩ C(0, ‖vn‖) ⊂ P1(vn) ∩ C(0, ‖vn‖)
= [P1(vn) ∩ C(0, ‖vn‖) − {e1}] + {e1}
⊂ con[P1(vn) ∩ C(0, ‖vn‖) − {e1}] + {e1}.

Thus, we conclude that the economy satisfies B7a.

13 A complete comparison of the no arbitrage conditions can be found in Dana et al. (1999), and Page et al. (2000).
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In Remark 3.2.1, we have mentioned that the alternative condition to B7a where every agent is subject to the restriction
represented by (3) may fail to explain the existence of equilibrium. This is true in this example. It is easy to see that for each
n with −vn ∈P2(w),

P2(w) ∩ C(0, ‖vn‖) /⊂ P2(−vn) ∩ C(0, ‖vn‖),

and therefore,

P2(w) ∩ C(0, ‖vn‖) /⊂ con[P2(−vn) ∩ C(0, ‖vn‖) − {e2}] + {e2}.
Thus, the restriction on each agent imposed by (3) does not hold for the economy.

3.3. Main existence theorems

In this section, we provide the main existence theorem of the paper based on a condition which generalizes B7a. As
illustrated below, B7a calls for further generalization because it does not cover the economy of Example 3.1.2. The exem-
plary economy is standard except for the non-transitivity of preferences. Nevertheless, the existence of equilibrium of the
economy cannot be explained by any known conditions including B7a. The main existence result of the paper is based on a
generalization of B7a which covers the economy of Example 3.1.2.

The new condition to be discussed is motivated by the following distinct characterization of the equilibrium conditions.
For a point x∈X , we define the set

G(x) =
∑
i∈ I

clcon[Pi(x) − {ei}].

It is shown below that the set G(·) summarizes the conditions for x to be a quasi-equilibrium for the economy E.

Lemma 3.3.1. Suppose that for all x∈H and all i∈ I, Pi(x) is convex and xi ∈ clPi(x). Then for a point x∈H, G(x) /= R� if and only
if there exists a nonzero vector p∈R� such that pz ≥ 0 for all z ∈G(x), i.e., pei ≤ pzi for all zi ∈ clPi(x) and all i∈ I.
Proof. See Appendix B. �

This lemma shows that for a point x∈H, G(x) /= R� is a necessary and sufficient condition for the existence of p∈R� such
that (p, x) is a quasi-equilibrium for the economy E. The condition that G(x) /= R� will be guaranteed in the proof of the main
theorem of the paper by a fixed point theorem. In addition to the conditions of Lemma 3.3.1, suppose that B2 and B6 hold
for the economy. Then by the same arguments made in Step 5 of the proof of Theorem 2.3.1, we can show that (p, x) is an
equilibrium for the economy E. The following result is immediate from the assumptions B2 and B6 and the results of Lemma
3.3.1.

Proposition 3.3.1. Suppose that B2 and B6 hold, and for all x∈H and all i∈ I, Pi(x) is convex and xi ∈ clPi(x). Then for any x∈X ,
x∈H and G(x) /= R� if and only if there exists a nonzero p∈R� such that (p, x) is an equilibrium for the economy E.

Proposition 3.3.1 shows that for an allocation x∈H, G(x) /= R� is a necessary and sufficient condition for the existence of
equilibrium. Thus for an allocation x∈H, the set G(x) fully characterizes the conditions for x to be an equilibrium allocation.

For a point x∈X and i∈ I, we define the set

Gi(x) = clcon[Pi(x) − {ei}] +
∑
j /= i

clcon[Pj(x) ∩ C(0, ri(x)) − {ej}].

Let Ei(x) denote the economy which is the same as E except for that agent i has the consumption set Xi and each j /= i has the
consumption set Xj ∩ C(0, ri(x)) which is equal to the consumption set Xj truncated by the closed ball C(0, ri(x)). The economy
Ei(x) will be used in the proof of the main theorem of the paper. The following corollary shows that the set Gi(x) summarizes
the conditions for x to be equilibrium of the economy Ei(x).

Corollary 3.3.1. Suppose that for all x∈H and all i∈ I, xi ∈ clPi(x). Let x∈H and i∈ I such that Pj(x) ∩ C(0, ri(x)) /= ∅ for every
j /= i.14Then Gi(x) /= R� if and only if there exists a nonzero p∈R� such that (p, x) is an equilibrium for the economy Ei(x).

Example 3.1.2 illustrates that arbitrage-related conditions may not be useful for the existence of equilibrium with non-
transitive preferences. By taking advantage of the properties of the set Gi(·) for each i, we provide new conditions which
subsume the no arbitrage conditions as a special case and are relevant to the case of non-transitive preferences.

B7. There exists h∈ I such that for any sequence {xn} in H with {rh(xn)} increasing to infinity, there exist a subsequence
{xnk }, and a sequence {ynk } convergent to a point y∈ clH such that for all nk,

Ph(y
nk ) − {xnkh } ⊂ Gh(xnk ) (6)

14 By the same arguments made in Step 2 of the proof of Theorem 3.1.1, we can show that xj ∈ clPj(x) and Pj(x) ∩ C(0, ri(x)) /= ∅ for every j /= i imply
xj ∈ cl[Pj(x) ∩ C(0, ri(x))].
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Fig. 2. A simple example without satisfying B7a.

and for all j /= h,

[Pj(y
nk ) ∩ C(0, rh(x

nk ))] − {xnkj } ⊂ Gh(xnk ). (7)

Remark 3.3.1. We have emphasized the importance of the asymmetric treatment of agents in Remark 3.2.1. Since B7 is a
generalization of B7a as shown below, Remark 3.2.1 applies to B7 as well.

Lemma 3.3.2. Suppose that xi ∈ clPi(x) for all x∈X and for all i∈ I.15Then B7a implies B7.

Proof. See Appendix B. �

The following illustrates an economy which satisfies B7 but does not B7a. Thus, B7 is strictly more general than B7a.

Example 3.3.1. We show that the economy of Example 3.1.2 satisfies B7 but does not satisfy B7a. For each n, set xn1 = (−an, bn)
and xn2 = (an,−bn) for some an and bn in R. We assume that xn = (xn1, x

n
2) is in H for all n and ank + bnk → ∞. The condition

xn ∈H implies that an ≥ 0 and bn ≥ 0. Since ‖xn1‖ = ‖xn2‖, we have ri(xn) = ‖xn
i
‖ for all i = 1,2 and all n.

For each n, we take xn such that xn2 is on the line a. Let {yn2} be a bounded sequence inR2(e2). Since ‖xn2‖ → ∞, without loss of
generality, we can assume that ‖yn2‖< an. Then yn2 ∈Q2(e2) ∩ C(0, ‖xn2‖). As shown in Fig. 2, the cone con[P2(xn2) − {e2}] + {e2}
is an open set which has the lines 0a and 0b as its boundaries. Thus, we see that

P2(yn2) ∩ C(0, ‖xn2‖) /⊂ con[P2(xn2) − {e2}] + {e2}.
Let {yn1} be a bounded sequence in R1(e1). By the same argument, we can show that P1(yn1) ∩ C(0, ‖xn1‖) /⊂ con[P1(xn1) − {e1}] +
{e1}. Thus, B7a does not hold for the economy.

It is trivial to see that (e1, e2) is a unique equilibrium allocation for each E1(xn). That is, any nonzero allocation in F cannot
be an equilibrium allocation of E1(xn). Then by Corollary 3.3.1, G1(xn) = R2 and therefore, B7 holds trivially in this example.

With all these preliminary results out of the way, we can now turn to the main existence theorem of this paper.

Theorem 3.3.1. Suppose that E satisfies the assumptions B1–B6. Then there exists an equilibrium for the economy E if the condition
B7 is satisfied.

Sketch of Proof. The rigorous proof of the theorem will be given in Appendix B. The following sketch will be useful to
understand the idea of the proof.

When the consumption sets are not bounded, traditional approaches to the existence proof rely on the truncation method
introduced by Debreu (1959). Moreover, truncations of the consumption sets need to be taken sequentially so that the whole
consumption sets can be covered in the limit when F is bounded. In the case where F is unbounded, however, the truncation
method alone does not work because no sequential truncations can contain F as a whole.

Assumption B7 allows us to circumvent this problem. The idea is to take advantage of information elicited from each
truncated economy. (It is worth noting that the truncation method used here differs from the conventional truncation
methods in that one agent is allowed to make choices in the whole consumption set in all the truncated economies.) By
applying Auxiliary Theorem 2.3.1, we show that each economy with the truncated consumption sets has an equilibrium

15 As mentioned earlier in this section, this condition does no harm to the existence result as far as B4 is satisfied.
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under Assumption B7. Again by B7, there exists a bounded sequence of allocations which are asymptotically supported by
the sequence of equilibrium prices for the truncated economies. The limit of those prices and bounded allocations turns out
to be an equilibrium of the economy E. �

This theorem is a generalization of all the existence results in the literature in several respects. The condition B7 along
with the other conditions B1–B6 are sufficient for the existence of equilibrium. As illustrated in Example 3.2.1, the utility
set for allocations in H need not be compact under the condition B7. Preferences need not be transitive and moreover, they
are interdependent and satisfy the condition B3, weak continuity assumptions on preferences. Most importantly, B7 is much
weaker than the no arbitrage conditions used in the literature because all other arbitrage conditions cannot apply to the case
where either the utility set is not compact or agents have non-transitive preferences.

Remark 3.3.2. One of the referees of the paper suggested an interesting alternative condition for B7 where agents are
treated symmetrically. Its formulation is based upon the following definition.

Definition 3.3.1. A sequence {Tn} of sets in R� is called a compactification procedure of the economy E if it satisfies the
following conditions

(i) for each n, Tn is non-empty, closed and satisfies Tn ⊂ Tn+1,
(ii) for each x∈R� and each � > 0, there exists n such that C(x, �) ⊂ Tn,

(iii) for each n, the set H ∩ TIn is bounded, and
(iv) for each i∈ I and each x∈R(e), it holds that Pi(x) ∩ T1 /= ∅.

If each Xi is bounded from below, then there exists z ∈R� such that Xi ⊂ {x∈R� : x ≥ z} for all i∈ I. In this case, a trivial
compactification procedure {Tn} is available where Tn = {x∈R� : x ≥ z} for all n. The following is the condition suggested by
the referee as a possible substitute for B7.

B7s. There exists a compactification procedure {Tn} such that for each {xn} with xn ∈H ∩ Tn, there exist � > 0 and y∈ clH
which satisfy16

Pi(y) ∩ C(yi, �) − {ei} ⊂ Ls{con[Pi(x
n) ∩ Tn − {ei}]}.

Clearly, agents are symmetrically treated in B7s. As shown below, an advantage of B7s over B7 is it makes the existence proof
much simpler. It is easy to check that B7s is weaker than B7b. We also see that the compactification procedure {Tn} defined
by

Tn =
{

(v1, v2) ∈R2 : v2 ≥ −
(

1
2

+ 1
n

)
(v1 + n) − n, v2 ≥ −

(
1
2

− 1
n

)
(v1 + n) − n

}
satisfies B7s in the economy of Example 3.1.1. A disadvantage of B7s, however, is that no systematic theory is yet available
which answers the existence of a compactification procedure {Tn} which satisfies the conditions of B7s. Indeed, there would
be no definite way of checking B7s in the simple economy mentioned in the end of Remark 3.2.1.17 We now provide an
existence theorem based on assumption B7s.

Theorem 3.3.1s. Suppose that E satisfies the assumptions B1–B6. Then there exists an equilibrium for the economy E if the
condition B7s is satisfied.18

Proof. See Appendix B. �

4. Concluding remarks

We have shown the existence of equilibrium in an economy with non-ordered preferences and unbounded-from-below
consumption sets. The consequences of the paper not only subsume the arbitrage-based equilibrium theory as a special case
but also can cover the case with non-compact utility sets.

The main results of the paper stated in Theorem 3.3.1 depend critically on the assumption B5 which excludes the satiability
of preferences. One possible extension is to examine the effect of satiation on equilibrium. Such an extension is attempted in
Won and Yannelis (2002a,b) as a sequel to the current paper. Allouch and Le Van (2006); Allouch et al. (2006), and Martins-
da-Rocha and Monteiro (2007) address the equilibrium existence problem with satiable preferences under the condition that
satiation occurs both inside and outside the set of feasible and individually rational allocations. Won and Yannelis (2002a,b)
differ from them in that it also covers the case where preferences are possibly satiated only inside the set of feasible and

16 If {An} is a sequence of subsets of R� , then Ls{An} is the set of limit points of {An}, i.e., b∈ Ls{An} if and only if there exists a subsequence {ank } such that
ank ∈Ank for each nk and ank → b.

17 Let us call the aforementioned economy ‘economy Z’. Any compactification procedure could be picked up to be tested against the conditions of B7s
in the economy Z. It would fail. But this does not say anything about whether B7s holds in the economy Z because there is still an inexhaustible set of
compactification procedures to be tested. That is, there is no way of seeing whether B7s holds in the economy Z.

18 The proof of Theorem 3.3.1s to be shown in Appendix B heavily rely on the suggestions of the referee.
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individually rational allocations. As mentioned in Won and Yannelis (2002a,b), such a distinction is particularly important
in the context of the capital asset pricing models. By specializing the framework of Won and Yannelis (2002a,b) in asset
pricing models, Won et al. (2008) show the existence of equilibrium in the capital asset pricing model with heterogeneous
expectations where mean-variance utility functions reach satiation due to the absence of risk-free assets. One challenging
problem is to extend the outcomes of the paper to cover the case discussed in Won (2001) where contract curves are
unbounded.

Appendix A. Equilibrium in abstract economies

As a preliminary step for the existence of equilibrium, we introduce an abstract economy. For each i∈ I, letXi be a nonempty
set inR�. We setX =

∏
i∈ IXi. An abstract economy	 = {(Xi, Ai, Pi) : i∈ I} is a set of ordered triples (Xi, Ai, Pi) whereAi : X → 2Xi

and Pi : X → 2Xi are correspondences. The abstract economy provides a simple but powerful conceptual framework for
studying an exchange economy in a general setting.

Definition A.1. A quasi-equilibrium for 	 is a point x∈X such that for all i∈ I,
(i) xi ∈ clAi(x)

(ii) Pi(x) ∩ Ai(x) = ∅.

The point x∈X is an equilibrium for 	 if it satisfies (i) and the following condition

(ii
′
) Pi(x) ∩ clAi(x) = ∅.

We are now ready to provide the following preliminary theorem which will be useful in proving the existence of quasi-
equilibrium of an exchange economy.

Theorem A.1. Let 	 = {(Xi, Ai, Pi) : i∈ I} be an abstract economy satisfying the following conditions for each i∈ I

A1. Each Xi is convex, compact and nonempty in R�.
A2. Each Pi is lower semi-continuous.
A3. Ai is convex-valued, nonempty-valued and has an open graph.
A4. clAi is upper semi-continuous.
A5. xi /∈ coPi(x) for all x∈X .

Then 	 has a quasi-equilibrium, i.e., there exists x∗ ∈X such that for all i∈ I,

(i) x∗
i
∈ clAi(x∗), and

(ii) Pi(x∗) ∩ Ai(x∗) = ∅.

Proof. For each i∈ I, define i : X → 2Xi by i(x) = [coPi(x)] ∩ Ai(x). Clearly, i is convex-valued. For each i∈ I, letUi = {x∈X :
 i(x) /= ∅}. Since Pi is lower semi-continuous, by Proposition 2.6 in Michael (1956) coPi is lower semi-continuous. Hence, by
Lemma 4.2 of Yannelis (1987),  i is lower semi-continuous.19 It follows from the lower semi-continuity of  i that for each
i∈ I, Ui is open in X (recall that Ui = {x∈X :  i(x) ∩ X /= ∅}).

There are two cases to be examined: either (a) Ui = ∅ for all i∈ I or (b) Ui /= ∅ for some i∈ I. It is easily seen in case (a)
that for all i and for all x∈X , i(x) = [coPi(x)] ∩ Ai(x) = ∅ and therefore, Pi(x) ∩ Ai(x) = ∅. Hence, condition (ii) of the theorem
holds. To show that (i) is also fulfilled, we define the correspondence A : X → 2X by A(x) =

∏
i∈ IclAi(x). Since each clAi is

upper semi-continuous, closed-valued, convex-valued and nonempty-valued, so is A. By the Kakutani fixed point theorem
there exists x∗ ∈X such that x∗ ∈A(x∗), which implies that x∗

i
∈ clAi(x∗) for all i∈ I. Thus (i) also holds.

We turn to case (b). For each i with Ui /= ∅, we denote by  i|Ui the restriction of  i to Ui, i.e.,  i|Ui : Ui → 2Xi . Since Ui is
open in X, it is also paracompact.20 By applying Theorem 3.1

′′′
of Michael (1956, p. 368) to  i|Ui , there exists a continuous

function fi : Ui → Xi such that fi(x) ∈ i(x) for all x∈Ui. For each i∈ I, define gi : X → 2Xi by

gi(x) =
{

{fi(x)}, if x∈Ui,
clAi(x), if x /∈ Ui.

By Lemma 6.1 in Yannelis and Prabhakar (1983), gi is upper semi-continuous and it is clearly convex-valued, nonempty-valued
and closed-valued. Define g : X → 2Xi by g(x) =

∏
i∈ Igi(x). Then g is upper semi-continuous, convex-valued, nonempty-

valued, and closed-valued. By the Kakutani fixed point theorem, there exists x∗ ∈X such that x∗ ∈ g(x∗), i.e. x∗
i
∈ gi(x∗) for all

i∈ I. If x∗ ∈Ui for some i∈ I, then x∗
i

= fi(x∗) ∈ coPi(x∗) ∩ Ai(x∗) ⊂ coPi(x∗) which contradicts A5. Hence, for all i∈ I, x∗ /∈ Ui, i.e.,

19 Let T and Y be any topological spaces, and 
1 : T → 2Y and 
2 : T → 2Y be correspondences. Then Lemma 4.2 of Yannelis (1987) shows that if 
1 has an
open graph and 
2 is lower semi-continuous, the correspondence 
 : T → 2Y defined by 
(t) = 
1(t) ∩ 
2(t) is lower semi-continuous.
20 X is metrizable because it is a countable product of metric spaces. It is also well-known (Stone’s Theorem) that metrizable spaces are paracompact.
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x∗
i
∈ clAi(x∗) and coPi(x∗) ∩ Ai(x∗) = ∅, which impliesPi(x∗) ∩ Ai(x∗) = ∅ for each i∈ I. Thus, we can conclude thatPi(x∗) ∩ Ai(x∗) =

∅, i.e., x∗ is a quasi-equilibrium for 	 . �

If each Pi has open upper sections, Pi(x∗) ∩ Ai(x∗) = ∅ implies that Pi(x∗) ∩ clAi(x∗) = ∅. Thus, the following corollary is
immediate from Theorem A.1.

Corollary A.1. Suppose that 	 satisfies A1–A5 of Theorem A.1.If each Pi has open upper sections, then 	 has an equilibrium.

Remark A.1. Corollary A.1 does not follow from Borglin and Keiding (1976); Shafer and Sonnenschein (1975) or Yannelis
and Prabhakar (1983) because the assumptions on the correspondences Pi are weaker here than those papers. In particular,
Yannelis and Prabhakar (1983) assume that Pi must have open lower sections which implies that Pi is lower semi-continuous
but the reverse is not true. Shafer and Sonnenschein (1975) and Borglin and Keiding (1976) assume that preference corre-
spondences must have an open graph which implies that both sections (upper and lower) must be open.

Remark A.2. The assumptions on the constraint correspondences in Theorem A.1, however, are slightly stronger than those
of Shafer and Sonnenschein (1975). Nonetheless, they are automatically fulfilled by the standard exchange economy, and as
we will see in the next section Theorem A.1 will enable us to provide a more general Walrasian equilibrium existence result
than that of Shafer (1976).

The condition A5 can be replaced by a more tractable condition without losing any generality. Since Pi is lower semi-
continuous, by Proposition 2.6 in Michael (1956), the convex hull correspondence coPi is lower semi-continuous. Now we
consider the economy 	̃ = (Xi, Ai, P̃i)i∈ I where P̃i is defined as follows: for all xi ∈Xi,

P̃i(x) = {(1 − ˛)xi + ˛x′
i : 0< ˛ ≤ 1, x′

i ∈ coPi(x)}.

For each x∈X , P̃i(x) is convex. Clearly, Pi(x) ⊂ coPi(x) ⊂ P̃i(x), and xi is in the boundary of P̃i(x) for all x∈X and all i∈ I. By
the lower semi-continuity of coPi, P̃i is lower semi-continuous (for details, see Gale and Mas-Colell (1975, 1979) or Allouch
(2002)).

For each i∈ I, we consider the following condition.

A5
′
. For all x∈X with Pi(x) /= ∅, Pi(x) is convex, xi /∈ Pi(x), and for each yi ∈Pi(x), (xi, yi] is in Pi(x).21

This condition is stronger than A5 but the following result shows that instead of A5, A5
′
can be used together with the other

assumptions to prove Theorem A.1.

Proposition A.1. If 	 satisfies the assumptions A1–A5, then 	̃ satisfies the assumptions A1–A4 and A5′. Moreover, if x∈X is an
equilibrium (a quasi-equilibrium) of 	̃ , it is also an equilibrium (a quasi-equilibrium, resp.) of 	 .

Proof. Suppose that	 satisfies the assumptions A1–A5. As discussed above, P̃i is lower semi-continuous and convex-valued.
Let x be a point in X with Pi(x) /= ∅. By A5 we immediately see xi /∈ P̃i(x) and by construction, xi is in the relative boundary of
P̃i(x). Thus, 	̃ satisfies A1–A4 and A5

′
.

Suppose that x∈X is an equilibrium of 	̃ . Then x∈ clAi(x) and P̃i(x) ∩ clAi(x) = ∅ for all i∈ I. Since Pi(x) ⊂ P̃i(x), we trivially
see that x∈ clAi(x) and Pi(x) ∩ clAi(x) = ∅ for each i. Thus x is also an equilibrium of 	 . Similarly, we can show that if x∈X is a
quasi-equilibrium of 	̃ , then it is a quasi-equilibrium of 	 . �

Lemma A.1. Suppose that Pi satisfies B6. Let x be a point in H. Then for each zi ∈ P̃i(x) and vi ∈Xi, there exists �∈ (0,1) such that
�zi + (1 − �)vi ∈ P̃i(x).
Proof. Let zi be a point in P̃(x). Then there exist ˛∈ (0,1] and x′

i
∈ coPi(x) such that zi = (1 − ˛)xi + ˛x′

i
. Let vi be a point in

Xi. Since x′
i
∈ coPi(x), by B6 there exists �∈ (0,1) such that �x′

i
+ (1 − �)vi ∈ coPi(x). We set �̃ = �/(˛− ˛�+ �). It follows that

�̃∈ (0,1) and

�̃zi + (1 − �̃)vi
= �̃[(1 − ˛)xi + ˛x′

i
] + (1 − �̃)vi

= �̃(1 − ˛)xi + [1 − �̃(1 − ˛)]

(
�̃˛

1 − �̃(1 − ˛)
x′
i +

1 − �̃
1 − �̃(1 − ˛)

vi

)
= �̃(1 − ˛)xi + [1 − �̃(1 − ˛)][�x′

i
+ (1 − �)vi] ∈ P̃i(x).

�

Appendix B. Proofs of the results of the main text

Proof of Auxiliary Theorem 2.3.1. By Proposition A.1 and Lemma A.1, without loss of generality we may assume that E
satisfies B1–B3, B5 and instead of B4 and B6, the following conditions B4

′
and B6

′
.

21 For two vectors x and y in R� , we denote by (x, y] the set {z ∈R� : z = (1 − �)x + �y for some�∈ (0,1]}.
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B4
′
. For all x∈X with Pi(x) /= ∅, Pi(x) is convex, xi /∈ Pi(x), and for each yi ∈Pi(x), (xi, yi] is in Pi(x).

B6
′
. Let x be a point in H. Then for each zi ∈Pi(x) and vi ∈Xi, there exists �∈ (0,1) such that �zi + (1 − �)vi ∈Pi(x).

For each i∈ I, let XH
i

denote the projection of clH onto Xi. Since H is bounded, so is clH and therefore, XH
i

is bounded for all
i∈ I. Hence, we can choose a closed and bounded ball K centered at the origin in R� which contains XH

i
and ei in its interior

for all i∈ I. We introduce the truncated economy Ê = (X̂i, ei, P̂i) where for all i∈ I,

X̂i = Xi ∩ K, X̂ =
∏
i∈ I
X̂I and P̂i(x) = Pi(x) ∩ K for all x∈ X̂.

We will break the proof into several steps.

Step 1. We introduce the sets� and�1 in R� defined by

� = {p∈R� : ‖p‖ ≤ 1}
�1 = {p∈R� : ‖p‖ = 1}.

To apply Theorem A.1, we need to convert Ê into our abstract economy	 = (X̂i, Ai, Gi)i∈ I′ where I′ = I ∪ {0} by adding
the agent 0 as follows; if i = 0, we set X̂0 =� and define

G0(p, x) =
{
q∈� : q

(∑
i∈ I

(xi − ei)
)
> p

(∑
i∈ I

(xi − ei)
)}

,

A0(p, x) =� for all (p, x) ∈�× X̂,

and if i∈ I, for all (p, x) ∈�× X̂ we set

Gi(p, x) = P̂i(x), and
Ai(p, x) = {xi ∈Xi : pxi < pei + 1 − ‖p‖} ∩ K.

Since ei is in the interior of both Xi and K, Ai(p, x) is not empty for all (p, x) ∈�× X̂ . On the other hand, clAi :
�× X̂ → 2K has a closed graph and K is compact. These imply that the correspondence clAi is upper semi-continuous.
Thus, 	 satisfies A1–A4 and A5

′
(B4

′
) of Theorem A.1, and consequently, 	 has a quasi-equilibrium, i.e., there exists

(p̂, x̂) ∈�× X̂ such that

(a) p̂∈ clA0(p̂, x̂) =� and G0(p̂, x̂) ∩� = ∅ and for all i∈ I,
(b) x̂i ∈ clAi(p̂, x̂), i.e., p̂x̂i ≤ p̂ei + 1 − ‖p̂‖, and
(c) Gi(p̂, x̂) ∩ Ai(p̂, x̂) = ∅, i.e., P̂i(x̂) ∩ Ai(p̂, x̂) = ∅.

We will show that (p̂, x̂) is an equilibrium for the original exchange economy E.
Step 2. We show that x̂∈ F , i.e.,

∑
i∈ I(x̂i − ei) = 0. Since p̂∈ clA0(p̂, x̂) and G0(p̂, x̂) ∩� = ∅, we see that ‖p̂‖ ≤ 1 and for all

q∈�,

p̂

(∑
i∈ I

(x̂i − ei)
)

≥ q
(∑

i∈ I
(x̂i − ei)

)
.

Suppose that x̂ /∈ F . We set q′ = (
∑

i∈ I(x̂i − ei))/‖
∑

i∈ I(x̂i − ei)‖. It follows that q′ ∈� and therefore,

p̂

(∑
i∈ I

(x̂i − ei)
)

≥ q′
∑
i∈ I

(x̂i − ei) = ‖
∑
i∈ I

(x̂i − ei)‖> 0.

In particular, this implies that ‖p̂‖ = 1. On the other hand, x̂i ∈ clAi(p̂, x̂) for each i∈ I implies that p̂(x̂i − ei) ≤ 1 − ‖p̂‖.
Summing up over i∈ I, we obtain p̂(

∑
i∈ I(x̂i − ei)) ≤ I(1 − ‖p̂‖) and therefore, ‖p̂‖< 1, which is impossible. Therefore,

x̂ is in F.
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Step 3. We claim that x̂∈R(e). Suppose otherwise, i.e., ei ∈Pi(x̂) for some i∈ I. Since ei ∈ intK , ei is in P̂i(x̂). If ‖p̂‖< 1, then ei is
inAi(p̂, x̂). This implies that P̂i(x̂) ∩ Ai(p̂, x̂) /= ∅, which contradicts (c). We turn to the case that ‖p̂‖ = 1. Since ei is in the
interior of X̂i and ‖p̂‖ = 1, we can pick x′

i
∈ X̂i such that p̂x′

i
< p̂ei. Recalling that ei ∈Pi(x̂), by B6

′
there exists �∈ (0,1)

such that �ei + (1 − �)x′
i
∈Pi(x̂) and therefore, �ei + (1 − �)x′

i
∈ P̂i(x̂). Then (c) implies that p̂[�ei + (1 − �)x′

i
] ≥ p̂ei or

p̂x′
i
≥ p̂ei, which is impossible. Thus, we conclude that x̂∈R(e).

Step 4. The results of Steps 2 and 3 imply that x̂∈H. We want to show that

‖p̂‖ = 1 and p̂x̂i = p̂ei for all i∈ I.

By B5, we have Pi(x̂) /= ∅ for all i∈ I. Let yi be a point in Pi(x̂). Then by B4
′
, (x̂i, yi] is in Pi(x̂). Since x̂i is in the interior

of K, we have K ∩ (x̂i, yi] /= ∅ and thus, P̂i(x̂) /= ∅. Then we can choose ti ∈ P̂i(x̂). By B4
′
, ˛ti + (1 − ˛)x̂i is in P̂i(x̂) for any

˛∈ (0,1]. By (c), we have P̂i(x̂) ∩ Ai(p̂, x̂) = ∅, which implies that for all ˛∈ (0,1],

p̂(˛ti + (1 − ˛)x̂i) ≥ p̂ei + 1 − ‖p̂‖.

By letting ˛→ 0, we have p̂x̂i ≥ p̂ei + 1 − ‖p̂‖. On the other hand, (b) gives p̂x̂i ≤ p̂ei + 1 − ‖p̂‖. Hence, for all i∈ I,

p̂x̂i = p̂ei + 1 − ‖p̂‖.

Summing it over I, we see that

∑
i∈ I
p̂(x̂i − ei) =

∑
i∈ I

(1 − ‖p̂‖).

Since
∑

i∈ I(x̂i − ei) = 0, we obtain ‖p̂‖ = 1. Moreover, we can conclude that p̂x̂i = p̂ei for all i∈ I.
Step 5. What is proved up to Step 4 is that (p̂, x̂) is a quasi-equilibrium for the truncated economy Ê. Now we show that (p̂, x̂) is

an equilibrium of E by verifying that Pi(x̂) ∩ Bi(p̂) = ∅ for all i∈ I. By Steps 3 and 4, x̂ is in clH. Since XH
i

⊂ intK , it implies
that x̂i ∈ intK for all i∈ I. Suppose thatPi(x̂) ∩ ˇi(p̂) /= ∅ for some i∈ I. Let zi be a point inPi(x̂) ∩ ˇi(p̂). Then we can choose
˛′ ∈ (0,1) such that˛′x̂i + (1 − ˛′)zi ∈K . It follows from B4

′
that˛′x̂i + (1 − ˛′)zi ∈ P̂i(x̂). Recalling that ‖p̂‖ = 1, p̂x̂i = p̂ei

and p̂zi < p̂ei, we have˛′p̂x̂i + (1 − ˛′)p̂zi < p̂ei = p̂ei + 1 − ‖p̂‖, and therefore,˛′x̂i + (1 − ˛′)zi ∈ P̂i(x̂) ∩ Ai(p̂, x̂), which
contradicts (c). Thus, we have Pi(x̂) ∩ ˇi(p̂) = ∅ for each i∈ I.

We claim that p̂xi > p̂ei for all xi ∈Pi(x̂). Suppose that there exists x′
i
∈Pi(x̂) such that p̂x′

i
= p̂ei. Since ei ∈ intXi,

we can pick vi ∈Xi such that p̂vi < p̂ei. By B6
′
, there exists �∈ (0,1) such that �x′

i
+ (1 − �)vi ∈Pi(x̂). On the

other hand, we have p̂[�x′
i
+ (1 − �)vi]< p̂ei, and therefore, �x′

i
+ (1 − �)vi ∈ˇi(p̂). This contradicts the fact that

Pi(x̂) ∩ ˇi(p̂) = ∅. We conclude that Pi(x̂) ∩ Bi(p̂) = ∅ for all i∈ I and therefore, (p̂, x̂) ∈�1 × X is an equilibrium
for E. �

Proof of Lemma 3.3.1. For a point x∈H, suppose that G(x) /= R�. Since G(x) is a convex cone, by the separating hyperplane
theorem there exists a nonzero p∈R� such that for all z ∈G(x), 0 ≤ pz. Recalling that xi ∈ clPi(x) for all i∈ I, we have xi −
ei ∈ cl[Pi(x) − {ei}] and therefore, xi − ei ∈ clcon[Pi(x) − {ei}] for all i∈ I. Since x∈H, it follows that

clcon[Pi(x) − {ei}] − {xi − ei} = clcon[Pi(x) − {ei}] +
∑
j /= i

{
xj − ej

}
⊂ G(x).

This implies that for all z′
i
∈ clcon[Pi(x) − {ei}],

0 ≤ p[−(xi − ei) + z′i]. (8)

In particular, for any � > 0 we have −(xi − ei) + �(xi − ei) ∈G(x). This implies that for each i∈ I, 0 ≤ p[−(xi − ei) + �(xi − ei)] =
(�− 1)p(xi − ei). If � > 1, then 0 ≤ p(xi − ei), and if � < 1, then 0 ≥ p(xi − ei). Thus, we have pxi = pei for all i∈ I.

Let zi ∈ clPi(x). Then there exist � ≥ 0 and z′
i
∈ clcon[Pi(x) − {ei}] such that z′

i
= �(zi − ei). Since pxi = pei, it follows from (8)

that 0 ≤ pz′
i
= �p(zi − ei) or pei ≤ pzi.

Suppose that G(x) = R�. Then it is easy to see that 0 ≤ pz for all z ∈G(x) implies p = 0, which is impossible. �

Proof of Lemma 3.3.2. Suppose that B7a holds for agent h. Let {xn} be a sequence in H where rh(xn) increases to infinity. Then
there exist a subsequence {xnk } and a sequence {ynk } convergent to a point y∈ clHwhich satisfy (1) and (2). Since rh(xnk ) → ∞
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and {ynk } is bounded, we have Pi(ynk ) ∩ C(0, rh(xnk )) /= ∅ and by (2), Pi(xnk ) ∩ C(0, rh(xnk )) /= ∅ for all i /= h and for sufficiently
large nk. Thus, we have Gh(xnk ) /= ∅ for sufficiently large nk.

It follows from (1) and (2) that for sufficiently large nk,

Ph(ynk ) − {xnk
h

} ⊂ con [Ph(xnk ) − {eh}] − {xnk
h

− eh}
= con [Ph(xnk ) − {eh}] +

∑
i /= h

{
xnki − ei

}
⊂ Gh(xnk ),

and for each j /= h,

Pj(ynk ) ∩ C(0, rh(xnk )) − {xnk
j

} ⊂ con[Pj(xnk ) ∩ C(0, rh(xnk )) − {ej}] − {xnk
j

− ej}
= con[Pj(xnk ) ∩ C(0, rh(xnk ))] +

∑
i /= j

{
xnki − ei

}
⊂ Gh(xnk ).

Therefore, we conclude that B7a implies B7. �

Proof of Theorem 3.3.1. As mentioned earlier in this section, without loss of generality we can assume that E satisfies B4
′

instead of B4. (For details, we refer the reader to the proof of the Auxiliary Theorem 2.3.1) Then Pi is convex-valued, and for
all x∈X , xi ∈ clPi(x).

Let {Kn} denote a sequence of increasing closed balls centered at the origin in R� such that

R
� ⊂ ∪∞

n=1K
n.

We can take K1 to be a sufficiently large ball that ei is contained in the interior of K1 for all i∈ I. Since Kn is increasing, all ei’s
are contained in the interior of Kn for all n.

Let h be an agent which satisfies Assumption B7. Since the following arguments do not rely on the choice of h, without
loss of generality, we can assume that h = 1.

For each n, we set

Xn1 = X1, Xnj = Xj ∩ Kn for all j /= 1, and Xn =
∏
i∈ I
Xni .

Let x∈Xn and p∈�. For all n and i∈ I, we set

Pn
i

(x) = Pi(x) ∩ Xn
i
,

ˇn
i
(p) = {xi ∈Xni : pxi < pei}.

Note that Pn1 (x) = P1(x) and ˇn1(p) = ˇ1(p) for all n. For each n, let En = {(Xn
i
, ei, P

n
i

) : i∈ I} denote the truncated economy of E.

Remarks B.1. For each n, the first agent’s choices are not restricted in any En while the other agents’ choices are restricted
to Kn in En for all n. Since Xn

i
’s are bounded except for the first agent, it is easy to check that H ∩ Xn is bounded for all n.

Step 1. Since En satisfies B1–B4 and H ∩ Xn is bounded for all n, by the same arguments made in Steps 1–3 of the proof of
the Auxiliary Theorem 2.3.1, there exists a pair (pn, xn) ∈�× Xn for each n such that xn ∈H, and for all i∈ I,

(a) pnxn
i

≤ pnei + 1 − ‖pn‖ and
(b) Pn

i
(xn) ∩ {xi ∈Xni : pnxi < pnei + 1 − ‖pn‖} = ∅.

For each i /= 1, xn
i

∈Kn and therefore, C(0, r1(xn)) ⊂ Kn. First, we consider the case that there exists n such that xn
i

is in the interior of Kn for each i /= 1, or C(0, r1(xn)) is in the interior of Kn. Then by B4
′
, Pn
i

(xn) = Pi(xn) ∩ Kn is not
empty for each i /= 1. Recalling that the choices of agent 1 are not restricted, we have Pn

i
(xn) /= ∅ for all i∈ I. Thus,

by applying the arguments of Steps 1–4 of the proof of the Auxiliary Theorem 2.3.1 to the truncated economy En,
we see that (pn, xn) is an equilibrium for En. Since P1(xn) = Pn1 (xn) and xn

i
is in the interior of Kn for each i /= 1, it

follows by applying the arguments of Step 5 of the proof of the Auxiliary Theorem 2.3.1 for each i /= 1 that (pn, xn) is
an equilibrium for E, and in this case, we are done.

Thus, we only need to examine the case that for each n there exists some in /= 1 such that xn
in

is in the boundary
of Kn. In this case, we have C(0, r1(xn)) = Kn for all n. This implies that r1(xn) increases to infinity and therefore, {xn}
has no bounded subsequences, and for all n and i /= 1,

Pni (xn) = Pi(xn) ∩ C(0, r1(xn)). (9)
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By Assumption B7, there exist a subsequence {xnk } of {xn}, and a sequence {ynk } convergent to a point y∈ clH such that
for all nk,

Pnk1 (ynk ) = P1(ynk ) ⊂ G1(xnk ) + {xnkh } (10)

and for all i /= 1,

Pnki (ynk ) = Pi(ynk ) ∩ C(0, r1(xnk )) ⊂ G1(xnk ) + {xnki }. (11)

In particular, (10) implies that G1(xnk ) is not empty for all nk. Therefore, Pi(xnk ) ∩ C(0, r1(xnk )) /= ∅, and by (9),
Pnk
i

(xnk ) /= ∅ for all nk and for all i /= 1. Since Pnk1 (xnk ) = P1(xnk ), Pnk1 (xnk ) is also not empty for all nk.
Step 2. We show that (pnk , xnk ) is an equilibrium of the economy Enk (xnk ). First, we claim that xnk

i
is in the relative boundary

of Pnk
i

(xnk ). By B4
′
, this trivially holds for i = 1. For each i /= 1, we choose a point yi in Pnk

i
(xnk ). By B4

′
, (xnk

i
, yi] is in

Pi(xnk ). Since xnk
i

and yi are in Knk , we have (xnk
i
, yi] ∈Pnk

i
(xnk ) and therefore, xnk

i
is in the relative boundary of Pnk

i
(xnk ).

For a given nk, we choose ti ∈Pnki (xnk ) for each i∈ I. By B4
′
, ˛ti + (1 − ˛)xnk

i
is in Pnk

i
(xnk ) for any ˛∈ (0,1]. It follows

from (b) that for all ˛∈ (0,1],

pnk (˛ti + (1 − ˛)xnki ) ≥ pnkei + 1 − ‖pnk‖.

By letting ˛→ 0, we have pnkxnk
i

≥ pnkei + 1 − ‖pnk‖. On the other hand, (a) gives pnkxnk
i

≤ pnkei + 1 − ‖pnk‖. Hence,
for all i∈ I,

pnkxnki = pnkei + 1 − ‖pnk‖.

Summing it over I, we see that

∑
i∈ I
pnk (xnki − ei) =

∑
i∈ I

(1 − ‖pnk‖).

Since
∑

i∈ I(x
nk
i

− ei) = 0, we obtain ‖pnk‖ = 1. Moreover, we can conclude that pnkxnk
i

= pnkei for all i∈ I.
Thus, it follows from the conditions (a) and (b) that (pnk , xnk ) is an equilibrium of the economy Enk (xnk ), or

(A) ‖pnk‖ = 1, and pnkxnk
i

= pnkei for all i∈ I,
(B) pnke1 ≤ pnkz1 for all z1 ∈P1(xnk ), and
(C) pnkei ≤ pnkzi for all zi ∈Pi(xnk ) ∩ C(0, r1(xnk )) and each i∈ I \ {1}.

Since G1(xnk ) has the form

G1(xnk ) = clcon[P1(xnk ) − {e1}] +
∑
j /= 1

clcon[Pj(x
nk ) ∩ C(0, r1(xnk )) − {ej}],

the last two outcomes (B) and (C) lead to the following relation.

pnkz ≥ 0 for all z ∈G1(xnk ). (12)

Step 3. It follows from (10) and (12) that for all z1 ∈P1(ynk ),

p(z1 − xnk1 ) ≥ 0. (13)

Since ynk
i

is in the interior of C(0, r1(xnk )) for sufficiently large nk and for all i /= 1, Pnk
i

(ynk ) is not empty for sufficiently
large nk and for all i /= 1. Thus, it follows from (11) and (12) that for all i /= 1 and for all zi ∈Pi(ynk ) ∩ C(0, r1(xnk )),

p(zi − xnki ) ≥ 0. (14)

Since ynk
i

belongs to the relative boundary of Pi(ynk ) for all i∈ I and nk, (13) and (14) imply that for sufficiently large
nk and for all i∈ I,

pnk (ynki − xnki ) ≥ 0.
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Recalling that pnkxnk
i

= pnkei, we see that pnkynk
i

≥ pnkei for all nk and all i∈ I. By passing to the limit, this implies that
pyi ≥ pei for all i∈ I. By summing up the inequalities over i∈ I, we obtain p

∑
i∈ Iyi ≥ p

∑
i∈ Iei. Since y∈ F , this implies

that for all i∈ I,

pyi = pei.

Step 4. To complete the proof we must show that Pi(y) ∩ Bi(p) = ∅ for all i. First, we claim that Pi(y) ∩ ˇi(p) = ∅. Suppose
otherwise. Then we can pick zi ∈Pi(y) ∩ ˇi(p). By Lemma 4.2 of Yannelis (1987), the correspondence Pi ∩ ˇi defined
by Pi(x) ∩ ˇi(p) for all (p, x) ∈�× X is lower semi-continuous.22 Thus, there exists znk

i
∈Pi(ynk ) ∩ ˇi(pnk ) for each nk

which converges to zi. In particular, it implies that

pnkznki < pnkei.

Since znk1 ∈P1(ynk ) and znk
i

∈Pi(ynk ) ∩ C(0, r1(xnk )) for all i /= 1 and sufficiently large nk, by Step 3 we must have

pnkei = pnkxnki ≤ pnkznki ,

which leads to a contradiction. Thus, we have Pi(y) ∩ ˇi(p) = ∅ for all i∈ I. By the same arguments made in Step 5 of
the proof of Theorem 2.3.1, we see that Pi(y) ∩ Bi(p) = ∅ for all i∈ I.

Step 5. By the results of Steps 1–5, we see that y∈ F , ‖p‖ = 1, and yi ∈Bi(p) and Pi(y) ∩ Bi(p) = ∅ for all i. Therefore we conclude
that (p, y) is an equilibrium of E. �

Proof of Theorem 3.3.1s. Let {Tn} denote the compactification procedure of the assumption B7s. For each n, we denote by
En = {(Xn

i
, ei, P

n
i

) : i∈ I} the truncated economy defined such that

Xni := Xi ∩ Tn and Pni (x) = Pi(x) ∩ Tn, ∀x∈Xn :=
∏
i∈ I
Xni .

For a sufficiently large n, En satisfies B1–B4. The set clH ∩ TIn contains the set of individually rational and feasible allocations
for En, and by (iii) of Definition 3.3.1, it is compact. By (iv) of Definition 3.3.1, Pn

i
(x) /= ∅ for all x∈R(e) and thus, En satisfies B5.

Then by Auxiliary Theorem 2.3.1, there exists an equilibrium (pn, xn) of En with pn ∈�1. In particular, {pn} has a subsequence
convergent to a point p∈�1. By Assumption B7s, there exist � > 0 and y∈ clH such that

Pi(y) ∩ C(yi, �) − {ei} ⊂ Ls
{
con
[
Pi(x

n) ∩ Tn − {ei}
]}
. (15)

We claim that (p, y) is an equilibrium of the economy E. All we have to show is that if zi ∈Pi(y), then pzi > pei for all i∈ I.
For each ˛∈ (0,1), we set zi(˛) = ˛zi + (1 − ˛)yi. Then for each ˛ sufficiently close to 0, the point zi(˛) is in Pi(y) ∩ C(yi, �).
It follows from (15) that there exist {zn

i
(˛)} and �n ≥ 0 such that �n(zn

i
(˛) − ei) → zi(˛) − ei and zn

i
(˛) ∈Pi(xn) ∩ Tn for each n.

Since (pn, xn) is an equilibrium of En, we have pn(zn
i
(˛) − ei)> 0 and by passing to the limit, pzi(˛) ≥ pei. By letting ˛→ 0,

we obtain pyi ≥ pei. It follows from the market clearing condition that pyi = pei for each i∈ I. Since zi(˛) = ˛zi + (1 − ˛)yi and
pzi(˛) ≥ pei, this implies that pzi ≥ pei for each i∈ I. By the same arguments made in Step 5 of the proof of Theorem 2.3.1, one
can show that zi ∈Pi(y) implies that pzi > pei for each i∈ I. �
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