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1. INTRODUCTION 

The classical model of exchange under perfect competition is the 
Arrow-Debreu-McKenzie model. The existence of an equilibrium for this 
model was proved in Arrow-Debreu [2] and McKenzie [25]. The heart of 
the proof of the Arrow-Debreu equilibrium result is an equilibrium 
theorem for an abstract economy given in Debreu [9], which in turn is a 
generalization of the Nash [30] noncooperative equilibrium result. The 
prominent features of the classical model are: First, its finiteness, i.e., both 
the set of agents and the number of commodities are finite. Second, agents 
behave in a transitive and complete fashion, i.e., agents’ preferences are 
assumed to be transitive and complete and consequently are representable 
by utility functions. 

Three major extensions of the Arrow-Debreu-McKenzie model have 
been made. The first is a generalization of the set of agents to a measure 
space of agents by Aumann [3,4]. Aumann argued that the 
Arrow-Debreu-McKenzie model is clearly at odds with itself as the 
finitude of agents means that each agent is able to exercise some influence. 
Aumann resolves this problem by assuming that the set of agents is an 
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atomless measure space, and consequently the influence of each agent is 
“negligible.” In this sense the Aumann model, captures precisly the mean- 
ing of perfect competition. Bewley [6] provides the second major extension 
of the Arrow-Debreu-McKenzie model. Bewley amends the classical model 
to permit the dimensionality of the commodity space to be infinite. This 
extension is of great importance since infinite dimensional commodity 
spaces arise very naturally in general equilibrium analysis. In particular, an 
infinite dimensional commodity space may be desirable in problems involv- 
ing infinite time horizons, uncertainty about an infinite number of states of 
the world, or infinite varieties of commodity characteristics. The third 
important contribution is a substantial improvement of the Arrow- 
Debreu-McKenzie model made by Mas-Cole11 [27]. In particular, Mas- 
Cole11 builds on an idea of Sonnenschein [36] and shows that even if 
preferences are not transitive or complete (i.e., preferences need to be 
ordered), an equilibrium still exists. This result of Mas-Cole11 has been 
further improved by Shafer-Sonnenschein [35] and subsequently by 
BorglinKeiding [7], GaleeMas-Cole11 [ 141, Kim-Richter [22], McKen- 
zie [26], and Shafer [34] among others. 

The purpose of this paper is to prove the existence of an equilibrium in a 
game theoretic setting (abstract economy), a la Debreu [9] and 
Shafer-Sonnenschein [35] with a broader structure. In fact, our setting is 
general enough to include the three major extensions of the classical model 
mentioned above. It encompasses both the Aumann [3,4] economy of per- 
fect competition and the nonordered preferences setting of Mas-Cole11 
1271. Moreover, since the dimensionality of the strategy space may be 
infinite it contains Bewley-type [6] results and may be useful in obtaining 
existence results for economies with a measure space of agents and 
infinitely many commodities. It also provides an answer to the question 
posed in Khan [IS], as to whether equilibria in abstract economies exist in 
this general setting. In fact, the paper has been inspired by Kahn’s work on 
nonatomic games with an infinite dimensional strategy space. 

Our generalization of the Debreu-Shafer-Sonnenschein existence of an 
equilibrium result for an abstract game or economy with a measure space 
of agents has several implications. First it extends the Aumann [4] and 
Schmeidler [33] results, to allow agents’ preferences to be both non- 
ordered and interdependent (i.e., it allows for externalities in consumption). 
Second, it may be seen as a first step in providing a synthesis of the 
Aumann [4] model of perfect competition with the Bewley [6] model of 
an infinite dimensional commodity space. Finally, our result extends the 
theorems of Khan Cl83 and Schmeidler [32] on the existence of Nash 
equilibria with a continuum of players to a more general class of games 
where agents’ preferences need not be ordered, and therefore need not be 
representable by utility functions; it also extends the KhanVohra [20] 
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equilibrium in abstract economies result to infinite dimensional strategy 
spaces. 

The paper is organized in the following way. Section 2 contains some 
notation and definitions. The main existence theorem of the paper as well 
as its relationship with the literature is given in Section 3. Several technical 
Lemmata and Facts needed for the proof of the main existence theorem are 
concentrated in Section 4. The proof of the main result is given in Sec- 
tion 5. Finally, some concluding remarks are given in Section 6. 

2. NOTATION AND DEFINITIONS 

2.1. Notation. 

2 .A denotes the set of all subsets of the set A, 

[w denotes the set of real numbers, 

R’ denotes the I-fold product of R, 

con A denotes the convex hull of the set A, 

cl A denotes the closure of the set A, 

\ denotes the set theoretic subtraction. 

If 4: X-+ 2’ is a correspondence then 41 U: U--t 2’ denotes the restriction 
of d to U 

proj denotes projection. 

2.2. D<finitions. Let X, Y be two topological spaces. A correspondence 
#:X+2’ is said to be upper-semicontinuous (u.s.c.) if the set 
(X E X: &x) c Vi is open in X for every open subset V of Y. The graph of 
the correspondence 4: X--f 2 ’ is denoted by G, = {(x, y) E Xx Y: Y E &x)}. 
The correspondence 4: X + 2’ is said to have a closed graph if the set G, is 
closed in Xx Y. A correspondence 4: X+ 2 r is said to be lower-semicon- 

tinuous (1.s.c.) if the set {XE X: d(x) n V# 0} is open in X for every open 
subset V of Y. A correspondence 4: X + 2’ is said to have open lower sec- 

tions if for each J E Y, the set I--‘= (X E X: v E 4(x)} is open in X. If for 
each XE X, 4(x) is open in Y, d is said to have open upper sections. Let 
(T, r, ,u) be a complete finite measure space, i.e., p is a real-valued, non- 
negative, countable additive measure defined in a complete a-field r of sub- 
sets of T such that p(T) < cc. L,(p”, R’) denotes the space of equivalence 
classes of R’-valued Bochner integrable functions f: T+ R’ normed by 
llfll =jTll.f(~W~(t), (see [IllI). 

A correspondence 0: T+ 2 ” is said to be integrably bounded if 
there exists a map g E L,(p) such that for almost all t E T, 
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sup{ llx/l: XE 4(t)} < g(f). The correspondence 4: T -+ 2” is said to have a 
measurable graph if G@E r@B(R’), where W(R’) denotes Bore1 c-algebra 
and @ denotes a-product field. A correspondence 4: T+ 2x is said to be 
lower measurable if the set {t E T:& f) n V# a} E T for every open subset V 
of X. Note that, if T is a complete measure space, X is a complete separable 
metric space and if the correspondence (6: T -+ 2” has a measurable graph, 
then 4 is lower measurable. Moreover, if # is closed valued and lower 
measurable then 4 has a measurable graph, (see [S, Theorem 111.30, p. SO] 
or [ 16, Proposition 4, p. 611). 

Let now X be a topological space and Y be a linear topological space. 
Let 4: X+ 2’ be a nonempty valued correspondence. A function f: X+ Y 
is said to be a corrtintlous selection from 4 iff(x) E d(s) for all .v E X, and,fis 
continuous. Let T be an arbitrary measure space. Let $: T -+ 2’ be a non- 
empty valued correspondence. A function f: T + Y is said to be a 
measurable selection from II/ if f( t) E $(t) for all t E T, and f is measurable. 

We now detine the concept of a Caratheodory-type Selection which 
roughly speaking combines the notions of continuous selection and 
measurable selection. Let Z be a topological space and d: T x Z + 2 ’ be a 
nonempty valued correspondence. A function f: TX Z 4 Y is said to be a 
Caratheodory-type .seleclion from 4 if ,f(t. r) E +( f ,  z) for all (1, z) E T x Z 
and f’( , r) is measurable for all I E 2 and,f‘(t, . ) is continuous for all t E T. 

3. THE MAIN THEOREM 

3.1. A hstract Economies and Equilibrium 

Let (T, T, p) be a finite, positive, complete measure space. For any 
correspondence X: T + 2 “, L,(p, X) will denote the subset of L,(p, IX’) 
consisting of those XE L,(p, R’) which satisfy .x(t) E X(t) for almost all t in 
T. Following the Debreu 193, Arrow-Debreu [23 and Shafer-Son- 
nenschein [35] setting, we define an abstract economy as follows: 

An abstract economJ1 r is a quadruple [(T, T, ,u ), X, P, A], where 

(I ) (T, T, p) is a measure space of agents; 

(2) X: T+ 2” is a strategy correspondence; 

(3) P: T+ L,(p, X) -+ 2 Ihs’ is a preference correspondence such that 
P(t, x)cX(t) for all(t, x)~TxL~(p, X); 

(4) A: TX L,(p, X) 3 2 Iw’ is a constraint correspondence such that 
A(r, r)cX(f) for all (t, x)c TX L,(p, X). 

Observe that since P is a mapping from TX L,(p, X) to 2”: we have 
allowed for interdependent preferences. The interpretation of these 
preference correspondences is that 1’ F P(f, x) means that agent t strictly 
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prefers y to x(t) if the given strategies of other agents are fixed. Note that 
L,(p, X) is the set of all joint strategies. As in [32] and [20] we endow 
L,(p, X) throughout the paper with the weak topology. This signifies a 
natural form of myopic behaviour on the part of the agents. In particular, 
an agent has to arrive at his/her decisions on the basis of knowledge of 
only finitely many (average) numerical characteristics of the joint 
strategies. 

An equilibrium for f is an x* E L1 (pi, X) such that for almost all t in T 
the following conditions are satisfied: 

(i) .u*(t) E A(t, x*) and 

(ii) P(r, ,u*)nA(t, x*)=@. 

3.2. The Main Theorem 

We can now state the assumptions needed for the proof of the main 
theorem. 

(A.1 ) (T, z, p) is a finite, positive, complete, separable measure 
space. ’ 

(A.2) X: T + 2” is a correspondence such that: 

(a) it is integrably bounded and for all t E T, X(t) is a non- 
empty, convex, closed subset of R’; 

(b) foreveryopensubset VofR’. (t~T:X(t)nV#raj~~. 

(A.3) A: T x L, (p, X) + 2”’ is a correspondence such that: 

(a) for each te T, A(t, ) : L,(p, X) -2” is continuous; 

(b) for all (t, x) E T x L,(p, X), A(t, x) is convex, closed, and 
nonempty; 

(c) for each fixed x E L, (/.L, X), A( ., .Y) is lower measurable. 

(A.4) P: TX L,(p, X) -+ 2R’ is a correspondence such that: 

(a) foreachtET,P(t,.):L1(~,X)-+2”hasanopengraph 
in L,(p, X) x R’; 

(b) .x(t)$con P(t, x) for all XEL~(/-~, X) for almost all t in T; 

(c) for every open subset V of R’, {(t, x)~TxL,(p, A’): 
A(t,.u)nconP(t, .u)n V#@2(:~~@.9Zl,,.(L~(p, X)), where 
:#,, (L, , p, X) is the Bore1 a-algebra for the weak topology 
on L,(p, Xl 

We can now state our main result. 

’ The reascm we assume that (T, I. p) is a separable measure space is that we want L,(& X) 
to be separable. 
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MAIN THEOREM. Let r= [(T, z, ,a), X, P, A] be an abstract economy 
satisfjGng (A.1 )-(A.4). Then r is an equilibrium. 

3.3. Comparisons with Related Results 

It may be instructive to compare our assumptions with those of 
Shafer-Sonnenschein [35]. First notice that (A.2)(a) implies that X(t) is a 
compact subset of [w’ for almost all t in T. Assumptions (A.3)(a), (b) and 
(A.4)(a), (b) are the same as those of Shafer-Sonnenschein and conse- 
quently, are the corresponding Shafer-Sonnenschein asssumptions in a 
measure theoretic framework. Assumptions (A.2)(b), (A.~)(c), and (A.~)(c) 
are the measurability conditions and are natural in models with a measure 
space of agents; they constitute no real economic restriction. 

Let us now compare our assumptions with those of Khan-Vohra [20]. 
Apart from the measurability assumptions, all other conditions are iden- 
tical. In particular, Khan-Vohra assume that the correspondences X, A, P 
have measurable graphs rather than assuming lower measurability. 
Therefore, our main existence theorem is closely related to theirs but the 
methods of proof are different. Specifically, the Khan-Vohra approach 
follows the Shafer-Sonnenschein construction of a utility indicator. Our 
proof is based on selection-type arguments given in Yannelis-Prabhakar 
[39]. The approach adopted by Khan-Vohra does not extend to infinite 
dimensional strategy spaces. It fails due to the fact that the convex hull of 
an U.S.C. correspondence in an infinite dimensional strategy space need not 
be U.S.C. (see[3 1, Ex. 27, p. 721). In contrast, our selection type arguments 
can be directly extended to separable Banach strategy spaces (see 
Remark 6.4 in Sec. 6). 

We now compare our assumptions with those of Khan-Papageorgiou 
[Zl] and Kim-Prikry-Yannelis [23]. Our continuity assumption (A.4)(a), 
on the preference correspondence P, is stronger than that in [21, 231 
which require that P have open upper and lower sections. In particular, it 
is known that if a preference correspondence satisfies (A.4)(b) and it has 
open upper and lower sections, it may not have an open graph. However, 
our assumptions (A.3)(a), (b) on the constraint correspondence A are 
weaker than those in [21] and [23]. In particular, in [21, 231 it is 
assumed that2: 

(i) for all t E T, A( t, . ), is u.s.c.; 

(ii) there exists a correspondence B: T x L, (p, X) --f 2” such that: 

‘The work in [21] and 1231 follows closely the Borglin-Keiding [7] abstract economy 
setting rather than Shafer-Sonnenschein [3S]. It is exactly for this reason that the results in 
[21] and 1231 do not generalize Shafer-Sonnenschein [35]. In contrast, Khan-Vohra 1203 
and the present paper, constitute direct generalization of the Shafer-Sonnenschein 1351 result. 
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(a) clB(t, ,y)=A(t, x) for all (t, x)~TxL,(p, X); 

(b) B has open lower sections; and 

(c) B is convex, nonempty valued. 

We now show that (i) and (ii)(a), (b), ( ) c are stronger than (A.3)(a), (b). 
More formally we can prove the following proposition. 

PROPOSITION 3.1. Assumptions (i))(ii)(a), (b), (c) imp& (A.3)(a), (b) 
hut the reverse is not true. 

Proof We first show that (i)-(ii)(a), (b), (c) * (A.3)(a), (b). Since B 
has open lower sections, i.e., for each (I, .v) E TX R’, B-‘(t, y) = 
(X E L,(p, X): Y E B(t, X) ) is weakly open in L, (,u, X), it follows from 
Proposition 4.1 in [38, p. 237-J that for each t E T, B( t, ) is 1s.~. By fact 
4.3 (see next section) for each t E T, cl B( t, . ) is 1.s.c. Since cl B = A and for 
each t c T, A(t, . ) is U.S.C. it follows that for each tc T, A(t, ) is con- 
tinuous. Since B is convex nonempty valued so is A. 

To show that the reverse need not be true we construct the following 
simple counterexample. Suppose that there is one agent. Let Xc R’ and for 
each XEX, let A(x) = (x}. Note that A satisfies (A.3)(a), (b). However, 
there does not exist a mapping B: X -+ 2.’ satisfying (ii)(a), (b), (c). Indeed, 
the only mapping B which is convex, nonempty valued, cl B= A and cl B is 
u.s.c., is A itself. However, A I’ = {x: y E A(x)) = { y} is not open for 
every JJ E X. The proof of Proposition 3. I is now complete. 

Apart from the above differences we may also note that in [21] it was 
assumed that the measure space is a locally compact subset of a metric 
space with a countably generated c-field. The latter assumption is stronger 
than (A.l). Moreover, the measurability assumptions in [21] and [23] 
were made on the graphs of the correspondences X, P, A. Furthermore, 
notice that our main existence result extends the equilibrium theorems for 
abstract economies in Toussaint [37] and Yannelis-Prabhakar [38, 391 to 
a measure space of agents. Also, it generalizes the result in Khan [IS] and 
Schmeidler [32] to nonordered preferences. Finally, it should be noted 
that a different approach to equilibrium in abstract games with a con- 

tinuum of agents has been followed by Green [ 151 and Mas-Cole11 [28]. 
We can now turn to some technical lemmata needed for the proof of our 

main result. 

4. LEMMATA AND FACTS 

FACT 4.1. Let X be a linear topological space. 

(i ) If A c X is open in X and a # 0 is a rea/ number then aA is open 
in X. 
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(ii) I f  A c X is open in X and B is any set in X then A + B is open 

in X. 

Proof: Trivial. 

LEMMA 4.1. Let X, Y he any two linear topological spaces and 4: X + 2’ 
he a correspondence such that G, = ((x, y) E Xx Y: y  E 4(x)} is open 
in Xx Y. Define $:X-+2’ by $(.X)=con&s) for all x~X. Then 
G,= [(x, y)~Xx Y:.vE~)(x)) is open in Xx Y. 

Proojl Let (.u,, y,,) E G IL ; we must show that there exist A, open in X 
and B, open in Y such that (x,, y,,)~ A, x B,,c G,. Since (.u,, yo)6 G,, 
there exist y, ,..., y,, in &.u,) and reals a, ,..., a, such that ai > 0, C;=, ai = 1 
and yO = C:‘=, a,y,. Thus, (x,, yi) E G, and since G, is open in Xx Y there 
exist A, open in X and Bi open in Y such that (x,, ,v~)E Ajx Bjc G,. 
Define A, = fly=, A, and B,=C:=, a,B,. Then A,, is open in X and by 
Fact. 4.1, B,, is open in Y. Note that (.x0, y”)~ A, x B,. To complete the 
proof we must show that A, x f&c G,. Let (s, y)~ A, x B,, then 
J’ = C;=, a,:; where z, E Bj for all i = l,..., n. Since s E A,,, s E A i and so 
t-u, --, ) E A, x Bi. Since Ai x B; c G,, zr E d(x) for all i= l,..., n, and so 
J’ E It/(s), i.e., (.v, y) E G,. Hence (.x0, y,,) E A, x B, c G,. This completes the 
proof of the lemma. 

LEMMA 4.2. Let X, Y he an)’ topological spaces, and 4: X + 2 ‘, 
$: X + 2 ’ he correspondences such that 

(i) G,= ((x, y)~Xx Y:J’E&x)~ is open in Xx Y, 

(ii) $ is I.s.c. 

Then the correspondence 8: X --+ 2’ defined by 0(x) = d(x) n It/(.x) is ~.s.c.~ 

Proof: Let V be an open subset of Y and K be the set 
{.y E X: H(x) n V# @ ). Let .x0 E K, we must find an open set U in X such 
that .vo E U c K. Since 0(x,) n V# @ we can choose yO E (9(x,) n V. Thus, 
(.x0, yO) E G, and since G, is open in Xx Y there exist A open in X and B 
open in Y such that (x,, yo)g A x Bc G,. Since $ is I.s.c. the set 
E= js~X:$(.t)nBn V#@) is open in X and .u,eE since 
yoe$(x,)nBn V. Let U-AnE. Then U is open in X and .~,EU. To 
complete the proof we must show that U c K. Let 2 E U, then z E E and 
-EA. Since 
L 

z E E, $(z) n B n V # 0. Choose w E e(z) n B n V. Then 
W)E A x Bc G, and so WE#(Z). Hence, w~qS(z)nI(/(z)n V, i.e., ZE K. 

Consequently, x0 E UC K, and this completes the proof of the Lemma. 

3 Green [ 151 has proved a related Lemma [ 15. Lemma 3, p, 9841. His result is implied by 
ours. 
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Remark 4.1. Michael [29, Proposition 2.5, p. 3661 has proved the 
following related result: 

Let X, Y be two topological spaces and 4: X-t 2 ‘, II/: X-t 2’ be 
correspondences such that: 

(i) $J is I.s.c. and for all x E X, 4(x) is open in Y, 

(ii) * is l.s.c., 

(iii) for all x E X, 4(x) A +(x) # 0. 

Then the correspondence 0: X-+ 2’ defined by O(x) = d(x) A $(?c) is 1.s.c. 
However, we will show in Section 6 (Remark 6.3) by means of a coun- 

terexample that in Lemma 4.2 assumption (i) cannot be replaced by the 
assumption that 4 is 1s.~. and open valued. 

FACT 3.2. Let A, B he nonempty subsets of a topological space X. Sup- 
pose that A is open in X. Then A n B # 0 if and only if A n cl B # 0. 

Proof Trivial. 

FACT 3.3. Let X, Y be two topological spaces and 4: X-+ 2’ be a 1.s.c. 
correspondence. Then cl (6: X -+ 2’ is 1s.~. 

Proof We must show that the set A = (XE X: cl #(x)n V# @} is 
open in X for every open subset I/ of Y. By assumption the set 
E= (x~X:rj(x)n I’#@) is open in X for every subset V of Y. Let x0 E A, 
i.e., cl 4(x,) n Vf 0. By Fact 3.2 cl 4(x,,) n T/Z 0 if and only if 
4(-x0) n V # 0. Hence, +x0 E A o ,Y,, E E, i.e., A = E. Consequently A is open 
in X for every open subset V of Y and this completes the proof of Fact 3.3. 

FACT 3.4. Let (T, z) be a measurable space, and X be any topological 
space. The correspondence 4: T + 2 x is lower measurable if and only tf  

cl I++ T + 2.” is louler measurable. 

ProoJ: The proof is trivial. Simply note that by virtue of Fact 3.2, for 
every opensubset VofX, {t~T:~(t)nV#~}={t~T:cl~(t)nV#~~. 

We now state a Caratheodory-type selection result whose proof can be 
found in Kim-PrikryyYannelis [24, Theorem 3.23. 

CARATHEODORY-TYPE SELECTION THEOREM. Let (T, 7, p) be a complete 
measure space, Z be a complete, separable metric space. Let 4: T x Z + 2 Iw’ 
be a convex (possibly empty) valued correspondence such that: 

(i) q5( . , ) is lower measurable, 

(ii) for each t E T, #(t, . ) is 1.s.c. 

Let U={(t, x)ETxZ:&t, x)#@) and for each tET, let 
U’= {XEZ: (t, X)E U} andfor each XGZ, let V,= {tE T: (t, X)E U}. Then 
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there exists a Caratheodory-type selection ,from r&o, i.e., there exists a 
function f: U -+ [WI such that f(t, x) E $( t, x) for all (t, x) E U and for each 
XEZ,f( ., x) is measurable on U, andfor each t E T, f(t, ) is continuous on 
U’. Furthermore, f ( . , . ) is jointly measurable. 

LEMMA 4.3. Let (T, z, u) be a finite positive complete separable measure 
space, and A’: T -+ 2” be an integrabl-y bounded correspondence with 
measurable graph, such that for all t E T, X(t) is a nonempty, convex, closed 
subset of Iw’. Then L,(u, X) is nonempty, convex, weakly compact and 
metrizable. 

Proof. Since the correspondence X: T -+ 2”’ has a measurable graph, 
Aumann’s measurable selection theorem [S] assures that L,(p, X) is non- 
empty. Since X( . ) is convex valued, L,(u, X) is convex. Notice that since 
X( . ) is integrably bounded L,(p, X) is bounded and uniformly integrable. 
Hence, from Dunford’s Theorem [ 12, p. 76 and p. 1011 it follows that 
L,(p, X) is a relatively weakly compact subset of L,(u, [w’). Since L,(u, X) 
is convex and norm closed by Theorem 17.1 in [ 17, p. 1541, it is weakly 
closed. Therefore, L,(u, X) is a weakly compact subset of L,(u, Iw’). It 
follows from Theorem 3 in DunfordPSchwartz [ 12, p. 4343 that L,(u, X) is 
metrizable. This completes the proof of the lemma. 

Remark 4.2. Lemma 4.3 remains true if the correspondence X maps 
points from T into Y, where Y is a separable Banach space, provided that 
X is convex, nonempty, weakly closed valued with measurable graph and 
for all t E T, X(r) c K, where K is a weakly compact, convex subset of Y, 
(see [lo] ). 

LEMMA 4.4. Let (T, t, u) be a complete separable measure space, and Y 
be a separable Banach space. Let X: T + 2 ’ be an integrablv bounded, non- 
empty: convex, weakly closed valued correspondence with measurable graph 
such that ,for all t E T, X( t ) c K where K is a weakly compact, convex subset 
of Y. Let 4: Tx L,(u, X) -+ 2’ be a convex, closed, non-empty valued 
correspondence4 such that &t, x) c X(t) .for all (t, x) E T x L, (u, X) and for 
each x E L,(p, X), q5( , s) has a measurable graph, and for each t E T, 
#(t, . ) is U.S.C. in the sense that the set {x E L,(u, X): q5(t, x) c V) is weakly 
open in L ,(u, X) for every norm open subset V of Y. Then the correspon- 
dence @: L,(u, X) + 2L”A’, .” defined by 

Q(x)= {y~L~(,u, X) :for almost all IE T, y(t)E&t, x))- 

is nonempty valued and weakly U.S.C. 

’ I!.,(P, X) will now denote the subset of L,(p, Y) consisting of those XE L,(p, Y) which 
satisfy x(t) E X(f) for almost all f E T. Note that following the previous notation, L,(p, Y) 
denotes the space of equivalence classes of Y-valued Bochner integrable functions. 
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ProoJ: Several proofs of this Lemma have been given in [ 18, 20, 21, 
23, 321. The proof given below is based on an argument given in [21] and 
seems to be the simplest. First, note that nonempty valueness of (D is a 
direct consequence of the Aumann measurable selection theorem [S], 
(simply observe that for each s E L,(p, X), & . , X) has a measurable 
graph). We now show that @J is weakly U.S.C. Denote by B the open unit 
ball in Y. Since by Lemma 4.3 and Remark 4.2, L,(p, X) with the weak 
topology is compact and metrizable, it suffices to show that the graph of @, 
i.e., G, is weakly closed. To this end let (s,,, I!,,) be a sequence converging 
weakly to (x, JJ) where (X ,1, y,) E G,, i.e., .r,, E @(.u,,). We must show that 
J’ E Q(x). Since y,, E a(~,,), we have that v,,(r) c&t, I,,) for almost all t E T. 
By Corollary 17.2 in [ 17, p. 1541, there exists z,,( ) E con U,rOa ,2 J,~~( . ) 
such that z,,( . ) converges in norm to J(. ). Without loss of generality we 
may assume that z,,(t) converges in norm to I (otherwise pass to a sub- 
sequence) for all TV r\S where S is a negligible set of agents. Fix an agent t 
in r\S. Since &t, . ) is u.s.c., for every small positive number E there exists 
II such that for all 11” 3 n we have that &t, x,,“) z&t, .u) + EB. But then 

con U ,,o 2 n d( t, .Y,,~) G &t, X) + EB which implies that z,,(t) E d( t, s) + EB and 
so JI( t) E &t, X) + EB. Therefore, v(t) E &t, X) by letting F converge to zero. 
Since t is any arbitrary agent in r\S, y(t) g&t, s) for almost all t in T, i.e., 
J’E G(s). Hence, G, is weakly closed, as was to be shown. This completes 
the proof of the lemma. 

5. PROOF OF THE MAIN THEOREM 

Define $: TX L,(p, X) + 2”’ by $( t, s) = con P( t, s) for all (t, s) E 
T x L,(p, X). By Lemma 4.1 for each t E T, $( t, . ) has an open graph 
in L,(p, X) x Iw’ where L ,(~l, X) is endowed with the weak topology. 
Define (1: TxL,(p, X)+2” by Il(t, s)=A(t, .\-)n$(t, X) for all (t, S)E 
T x L,(p, X). Then 0 is convex valued and it follows from Lemma 4.2 that 
for each TV T, O(t, ) is 1,s.~. in the sense that the set (SE L,(p, A’): 
fI( t. X) r\ Vf 0 ) is weakly open in L,(p, X) for every open subset V of (w’. 
Moreover, it follows from assumption (A.~)(c) that 0: TX L,(p, A’) --f 2”’ is 
lower measurable. Let U = ((t, X) E TX L,(p, A’): q5( t, x) # $3). For each 
.v~L,(p,x), let U,={tET:0(t,.v)#IZJ) and for each tET, let 
U’ = {X E L,(p, X): 0( t, x) # 0). It follows from the Caratheodory-type 
selection theorem that there exists a function ,f: U+ R’ such that 
f( t, x) E Q(t, X) for all (t, X) E U and for each x E L,(p, X), .fl , X) is 
measurable on U,. and for each t E T, ,f( t, . ) is continuous on U’. Further- 
more, ,f‘( , . ) is jointly m easurable. Note that for each .Y E L ,(p, X), 
U,= (teT: e(f,.~)#jZj) = (teT: f?(t,.~)nR’#(25~ =proj.({(t..y)~Tx 



NONCOOPERATIVE MODELS 107 

,5,(/c, X):B(r,.~)n[W’#@ZI)n(Txjx})).Since8(., .)islowermeasurable, 
it follows from Theorem 11 in [ 16, p. 441 that for each XE L,(p, X), U, is 
a measurable set. Define the correspondence 4: T x L,(p, X) -+ 2”’ by 

d(r, .x1= 
(f-(4 .x)1 if (t. x)E U 

A( t, X) if (t, x)4 U. 

Since for each t E T, H( t, . ) is I.s.c., for each t E T, the set lJ’= 
[xcL,(p, X):U(t, x)#@)= [x~L,(p, X):8(t, .u)nR’#@) is weakly 
open in L,(p, X). Hence, by Lemma 6.1 in [38, p. 2411 &t, . ) is U.S.C. in 
the sense that the set {.YEL,(~, X): &t, .u)c Y) is weakly open in L,(p, X) 
for every open subset V of I&. Since A is closed valued it follows from 
(A.3 )( c ) that for each N E L ,(p, X), A( , ?c) has a measurable graph. It can 
be easily seen that for each .Y E L,(p, X), 4( , x) has a measurable graph. 
In fact, for all s E L, (p, X), G,, . yl = [(t,y)~TxR’:y~&t, x))=CuD, 
where C= {(t, .v)E Tx [W’:yEf(t, -u) and tE U,] and D= ((t, X)E 
T x iw’: y E A( t, s) and t 4 U, 1. Since C, D are in r @ 99((w’), we have that 
C u D = G,, . . Y, is in t 0 JQ[w’). Obviously 4 is convex and nonempty 
valued. Define @: L,(p, X) + 2’-‘@, .‘I by Q(x) = {JJEL,(~, X): for almost 
all f in T J,(t) E &I, s)}. By Lemma 4.4, @ is nonempty valued and weakly 
U.S.C. Since 4 is convex valued so is @. Moreover by Lemma 4.3, L,(p, X) 
is nonempty, convex and weakly compact. Hence, by Fan’s fixed point 
theorem [13, Theorem 1, p. 1221 there exists .K* E L,(p, X) such that 
.Y* E @(x*), i.e., x*(t) E &t, .I-*) for almost all t in T. Suppose that for a 
nonnegligible set of agents S, (t, .u*) E U for all t E 5’. Then by the definition 
of y5, x*(t)=f(t, -Y*)E Ott, s*) c con P(t, -Y*) for all YES, a contradiction 
to (A.4)( b). Therefore, (t, .Y*) $ U for almost all t in T and consequently for 
almost all TV T, .~*(t)eA(t, -u*) and t3(t, .u*)=con P(l, x*)n A(t, .~*)=a 
which implies that P( t, .u*) n A( t, .u*) = 0, i.e., s* is an equilibrium for f. 
This completes the proof of the main theorem. 

6. CONCLUDING REMARKS 

Remark 6.1. Our main existence theorem can be used to prove directly 
the existence of a competitive equilibrium for an economy with a con- 
tinuum of agents whose preferences may be interdependent and need not be 
transitive or complete (see for instance Khan-Vohra [20, Theorem 3, 
p. 1371). Therefore, an extension of the Aumann [4] and Schmeidler [33] 
results to economies with non-ordered and interdependent preferences can 
be obtained. Moreover, combining such a result with the techniques used 
in Armstrong-Richter [ 11, a competitive equilibrium existence theorem for 
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the coalitional preference framework adopted in [l] seems to be easily 
obtained as‘ well. 

Remark 6.2. Note that in the Aumann [4] model the convexity 
assumption on preferences is not required, since the Lyapunov theorem 
convexities the aggregate demand set. However, without transitivity and 
completeness the convexity assumption on preferences cannot be relaxed 
(see Mas-Cole11 [27, p. 2431). Moreover, even if preferences are transitive, 
complete, and interdependent, the convexity assumption still cannot be 
relaxed. In fact, as KhanVohra [20] pointed out, with externalities in 
consumption there is no convexifying effect on aggregation. Therefore, it 
appears that the convexity assumption (A.4)(b) cannot be relaxed in 
models with a continuum of agents and interdependent preferences. 

Remark 6.3. Assumption (A.4)(a), i.e., for each t E T, P(t, . ) has an 
open graph in L,(p, X) x R’, cannot be relaxed to open upper and lower 
sections in our framework. In particular, if (A.4)(a) is weakened to open 
lower and upper sections, the correspondence 0: T x L,(p, X) -+ 2” defined 
in Section 5 by e( t, x) = A(t, .u) n con P(t, .u), need not be 1.s.c. in 1. 
Hence, Lemma 4.2 fails, and the proof of the main existence theorem does 
not go through. The following simple example illustrates this. 

EXAMPLE. Consider the following mappings: 

i 

R 
P(x) = 

if x<O 

R\ix) if x>O 

and A(s) = {x}. Note that for any x E R, P(x) is always open in R’ and for 
any y E R, P-‘(y) = {x: JJ E P(x)] is open in R. Further, P is 1.s.c. since the 
set (x: P(x) n V# a} = R! is open in R for every P’ open subset of R. Also, 
A is continuous, i.e., U.S.C. and 1.s.c. However, the correspondence 
elx) = P(x) n A(x) is not 1.s.c. Indeed, note that for V= R the set 
{X ecx) n vf 0) = 1.~1 - oo<.x<O}=(-m, 0] is not open in R. 

Remark 6.4. We now indicate how our main existence theorem can be 
extended to separable Banach strategy spaces. One must modify 
assumptions (A.2) and (A.3)(b) as follows: 

(A.2)’ The correspondence X: T-t 2 ‘, (where Y is a separable Banach 
space) is integrably bounded, nonempty, convex, weakly closed valued, 
lower measurable and for all t E T, X(t) c K where K is a convex, weakly 
compact subset of Y. 

(A.3)( b)’ For each (t, x) E T x L I( p, X), A( t, x) is convex, closed and has 
a nonempty interior in X(r). 
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Note from (A.2)’ it follows that L,(p, X) is weakly compact (Diestel 
[ 10, Theorem 2 and Remark, p. 891). Hence the argument used to prove 
weak compactness of Lr(p, X) in Lemma 4.3, becomes redundant. Note 
that all other lemmata and facts in Section 4 are true for a separable 
Banach space Y. Moreover, the Caratheodory-type selection result is true 
for any separable Banach space provided that the correspondence 
cj: TX X-2’ has a nonempty interior for all (t, x) E U (see 
[24, Theorem 3.21). The proof of the main existence result remains the 
same. One only needs to check that from assumption (A.3)(b’) it follows 
that the correspondence 8: T x L , (,u, X) -+ 2 ’ (defined in Sec. 5) has a non- 
empty interior in X(t) and consequently a trivial modification of our 
Caratheodory-type selection theorem assures that there exists a 
Caratheodory selection ,f: U -+ Y from 8,,,. The rest of the proof remains 
unchanged. 

Rrnmrk 6.5. In a subsequent paper we hope to show how the main 
existence result of this paper can be used to obtain a generalization of 
Bewley’s [6] result to economies with a measure space of agents. The fact 
that the abstract economy approach can be used to prove Bewley’s 
existence result (recall that the set of agents in the Bewley model is finite) 
has been demonstrated already in Toussaint [37]. However, in an 
economy with a measure space of agents, if consumption sets are norm 
compact, one can prove the existence of a competitive equilibrium very 
easily. First, one can convert the exchange economy into an abstract 
economy (this can be done as in [20] and [34]). Next, the price space can 
be endowed with the weak* topology to obtain bilinear forms that are 
jointly continuous. Our main theorem can then be used to ensure the 
existence of an equilibrium for the abstract economy. It is straightforward 
to show that the existence of an equilibrium for the abstract economy 
implies the existence of a competitive equilibrium for the exchange 
economy. However, without norm compact consumption sets a rather 
major difficulty needs to be overcome. 

The nature of the difficulty introduced by consumption sets which need 
not be norm compact appears to be quite fundamental. First, recall that in 
economies with finitely many agents and infinitely many commodities one 
usually constructs a suitable family of truncated subeconomies and proves 
the existence of a competitive equilibrium in each subeconomy. Hence, a 
net of competitive equilibrium allocations for the truncated economies is 
obtained. It is easy to verify that the set of all feasible allocations lies on an 
order interval which is compact (typically in the topology that the com- 
modity space is endowed with), Thus, one can extract convergent subnets 
of competitive equilibrium allocations whose limit is a competitive 
equilibrium for the original economy. However, even in [w’ if the set of 



110 NICHOLAS C. YANNELIS 

agents is an atomless measure space a similar argument does not readily 
apply, since the set of all feasible allocations is not compact in any 
topology. Nevertheless, in this case the FatouPSchmiedler Lemma can be 
used to extract convergent subsequences of competitive equilibrium 
allocations whose limit is a competitive equilibrium allocation for the 
original economy (see, e.g., [4, 16, 331). However, since an infinite dimen- 
sional version of the Fatou Lemma is not yet available, it is not clear 
whether with infinitely many commodities and agents one can dispense 
with some type of compactness on consumption sets and still show that a 
competitive equilibrium exists. This seems to be an important open 
question. 
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