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This paper establishes a very general result on the existence of competitive equilibria for 
exchange economies (with a finite number of agents) with an infinite-dimensional commodity 
space. The commodity spaces treated are Banach lattices, but no interiority assumptions on the 
positive cone are made; thus, the commodity spaces covered by this result include most of the 
spaces considered in economic analysis. Moreover, this result applies to preferences which may 
not be monotone, complete, or transitive; preferences may even be interdependent. Since 
preferences need not be monotone, the result allows for non-positive prices, and an exact 
equilibrium is obtained, rather than a free-disposal equilibrium. 

1. Introduction 

Infinite-dimensional commodity spaces have become well-established in the 
literature since their introduction by Debreu (1954), Peleg and Yaari (1970) 
and Bewley (1972,1973). Infinite-dimensional commodity spaces arise natur- 
ally when we consider economic activity over an infinite time horizon, or 
with uncertainty about the (possibly infinite number of) states of the world, 
or in a setting where an infinite variety of commodity characteristics are 
possible. Many different infinite-dimensional spaces arise naturally. For 
example, Bewley (1972) uses the space 1, of bounded real sequences to model 
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the allocation of resources over an infinite time horizon,’ and the Lebesgue 
space L, of bounded measurable functions on a measure space to model 
uncertainty. Duffie and Huang (1985) use the space L, of square-integrable 
functions on a measure space to model the trading of long-lived securities 
over time. Finally, Mas-Cole11 (1975) and Jones (1983) use the space M(Q) of 
measures on a compact metric space to model differentiated commodities. 

This paper establishes a very general result on the existence of competitive 
equilibria for exchange economies (with a finite number of agents) with an 
infinite-dimensional commodity space. The commodity spaces we treat are 
Banach lattices, and include all the sequence spaces I, (15~5 co), all the 
Lebesgue spaces L,, (15~5 co) and the space M(Q) of measures. Thus we 
allow for commodity spaces which are general enough to include most of the 
spaces used in economic analysis. Moreover, we allow for preferences which 
may not be monotone, transitive or complete; preferences may even be 
interdependent. Since preferences need not be monotone, we allow for prices 
which need not be positive, and obtain an exact equilibrium rather than a 
free-disposal equilibrium. 

The central assumption we make is that preferences satisfy the non- 
transitive version of a condition used by Mas-Cole11 (1983), which he called 
‘uniform properness’ [and which is, in turn, related to a condition used by 
Chichilnisky and Kalman (1980)]. Informally, preferences satisfy this con- 
dition if there is one commodity bundle which is a uniformly good substitute 
for any other commodity bundle (in appropriate quantities). This assumption 
is quite weak; it is automatically satisfied, for example, whenever preferences 
are monotone and the positive cone has a non-empty interior. (This includes 
all finite-dimensional spaces and the infinite-dimensional spaces I, and L,.) 
It also admits many natural economic interpretations; for example, in infinite 
time horizon models it corresponds to the assumption that agents do not 
over emphasize the future. 

Our work is closely related to the work of Mas-Cole11 (1983), in the sense 
that our crucial assumption is analogous to his. However, Mas-Collell’s 
argument [which is related to an idea of Magi11 (1981) and Negishi (1960)] 
depends crucially on completeness and transitivity of preferences. On the 
other hand, the arguments of Bewley (1972), which have been generalized by 
Florenzano (1983) Toussaint (1984), Khan (1984) and others, depend cruci- 
ally on monotonicity (or free disposability) and on the assumption that the 
positive cone of the commodity space has a non-empty interior. (Of the 
commodity spaces mentioned previously, only 1, and L, enjoy this pro- 

‘The space 1, of summable sequences can also be used for such a model. Our choice between 
1, and I, should be based on the sort of resources we have in mind. If we are considering a 
renewable resource (such as food) we should use I,, since the finiteness of the earth places an 
upper bound on the amount available in any time period. If we are considering a non-renewable 
resource (such as oil), it seems more appropriate to use f,, since not only the amount available 
in each period, but also the sum total available throughout time is (presumably) bounded. 
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perty.) Since we do not assume completeness or transitivity or monotonicity 
of preferences, and make no interiority assumptions on the positive cone of 
our commodity space, our arguments are of necessity quite different. At the 
heart of our proof is a price estimate which says that, at equilibrium, 
commodities which are very desirable cannot be cheap. 

The lattice framework of our paper is superficially similar to that used by 
Aliprantis and Brown (1983) [see also Bojan (1974) and Yannelis (1985)]. 
However, these authors take, as the primitive notion, the aggregate exceess 
demand function (or correspondence). Since our primitive notion is that of 
agents’ preferences, the two approaches are not comparable. It is perhaps 
appropriate to point out however, as Aliprantis and Brown (1983, p. 196) 
point out, that if the interior of the positive cone of the commodity space is 
empty, the equilibrium price they obtain may be zero, which is not 
economically meaningful. By contrast, our equilibrium prices are never zero. 

The paper is organized as follows: the model is described in section 2 (in a 
standard way); we also give some motivation for our use of Banach lattices 
as commodity spaces. Section 3 discusses the economic and mathematical 
meaning of our assumptions on preferences. 

The Main Existence Theorem is presented in section 4. We formulate this 
result in a very general context so that more concrete results flow naturally 
and easily from it. Since the proof of this result is long, section 4 includes an 
overview of the proof, together with a detailed discussion of the failure of 
more traditional approaches. We think both this overview and this dis- 
cussion are important for understanding the proof. 

The proof of the Main Existence Theorem is spread out over 3 sections. 
Section 5 contains the key economic lemma, dealing with prices. Section 6 
contains the key mathematical lemma, dealing with finite-dimensional vector 
sublattices. Section 7 completes the argument. 

We collect a few concluding remarks in section 8. Finally, the appendix 
reviews some standard material about Banach spaces and Banach lattices. 

2. Economies in a Banach lattice 

We formalize the notion of an economy in the usual way. Let L be a 
Banach lattice.* By an exchange economy with N agents and commodity space 
L (or simply an economy in L) we mean a set E = ((Xi, Pi, eJ: i = 1,2,. . . , N} of 
triples where 

(a) Xi (the consumption set of the ith agent) is a non-empty subset of L, 

(b) Pi (the preference relation of the ith agent) is a correspondence 
Pi: njN= 1 Xj + 2” (2xi is the set of all subsets of Xi), 

(c) e, (the initial endowment of the ith agent) is a vector in Xi. 

‘For background information about Banach lattices, see the appendix. 
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We frequently refer to a vector (x,, . . . ,xN) E~X, as an allocation. The 
interpretation of preferences which we have in mind is that yi E Pi(xl,. . . , xN) 
means that agent i strictly prefers yi to Xi if the (given) components of other 
agents are fixed; this is the usual way to allow for interdependent preferences. 
Notice that preferences need not be transitive or complete or convex. 
However, in all our results we shall asume that xi #con Pi(xI,. . . , xN) for all 

(x 1,. . . ,x,) E~X~ (con A always denotes the convex hulI of the set A); in 
particular, xi 4 Pi(xI, . . . , xN) So Pi is irreflexiue. 

The graph of the correspondence Pi is a subset of ny= 1 Xj x Xi. If z is a 
topology on L, we shall say that Pi is (z,norm)-continuous if the graph of Pi 
is an open set of the product fly= 1 Xj x Xi, where we endow each of the first 
N factors with the topology z and the last factor Xi with the norm topology 
(product spaces will always be given the product topology). This is equiva- 
lent to saying that if yiEPi(xt,. . . ,xiy) then there are relatively z-open 
neighborhoods Uj of xj in Xj and relatively norm-open neighborhood q of 
yi in Xi such that yi~Pi(%,, . . . , XN) whenever yi E Vi and Xje 7Jj for each 
j=1,2 , . . . , N. Mixed continuity is common in infinite-dimensional settings; 
see Bewley (1972) for example. The topology z we shall use will be different 
in different settings; we refer to section 4 for further discussion. 

A price is a continuous linear functional 7c on L (i.e., rc~ L’). By an 
equilibrium for the economy E we mean an (N + 1)-tuple (x1,. . . , x,;n) where 
xi E Xi for each i and n is a non-zero price, such that 

(i) EYE 1 Xi=J$= 1 ei, 
(ii) x(x,) = x(e,) for each i, 

(iii) if YiEPi(Xt,..., x~) then 71(yi) > x(ei) (for each i), 

(Notice that we do not require prices to be positive and that we treat exact 
equilibria rather than free disposal equilibria.) A quasi-equilibrium3 is an 
(N + I)-tuple (x,, . . . , xN;rc) where xi E X for each i, and 7~ is a non-zero price, 
such that (i), (ii) above and the following hold: 

(iii’) if JJi E Pi(xI, . . . , x~) then Gus (for each i). 

We have restricted our attention to continuous prices because that seems 
economically natural. However, in Yannelis-Zame (1984) we show that, in 
the context we consider in this paper, discountinuous prices can safely be 
ignored. That is, allocations which can be supported in equilibrium by 
discontinuous prices can also be supported in equilibrium by continuous 
prices. 

‘Strictly speaking, this defines a compensated equilibrium, rather than a quasi-equilibrium. 
However, in the presence of our other assumptions, these two notions are equivalent. 
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We shall say that the economy E is irreducible if: whenever I and J are 
non-empty sets of agents with I n J=@ and I u J= {l,. . . ,N}, and 
(x,, . . , xN) is an allocation such that IF= 1 Xi =cr’ 1 ei, then there is an agent 
m E I, an agent neJ and a vector [EL with OSiSe, and x,+ 
[EP,(XI,... , xN). [See McKenzie (1959).] 

We will frequently refer to a vector XE Lf as a commodity bundle. We 
should caution the reader that, in our abstract framework, there are no pure 
commodities. 

Finally, we make one comment about our use of Banach lattices as 
commodity spaces. It might seem more natural (and less restrictive) to use 
ordered Banach spaces, rather than lattices, as commodity spaces. However, 
many economic ideas lose their natural meanings if the lattice structure is 
missing. Suppose for example that the economy has two agents with initial 
endowments e, and e2, and we consider the meaning of the statement ‘the 
(positive) commodity bundle b is part of the aggregate initial endowment’. 
Presumably this should mean 05 bse, +e,. On the other hand, we should 
also like it to have the meaning that the whole bundle b is the sum of two 
parts, one of which is owned by each agent. In other words, there should 
exist bundles b,, b, with 0 5 b, 5 e,, 0 5 b, 5 e2 and b = b, + b,. Unfortunately, 
if the commodity space is not a lattice, these two statements are not 
equivalent. On the other hand, if the commodity space is a lattice, these two 
statements are equivalent (this is just the Riesz Decomposition Property). 

3. Preferences 

The purpose of this section is to discuss in detail our key assumptions 
on preferences and their meaning. Throughout the remainder of this section, 
we let 

E= ((Xi, Pi, ei): i= 1,2,. . . , N) 

be an economy in the Banach lattice L. We will assume that each of the 
consumption sets Xi coincides with the positive cone L+ of L (in section 8 
we discuss ways in which this assumption can be weakened) and that 
xi$conPi(xl,..., xN) for each agent i and each (x,, . . . , xN) E njN= 1 Xj. 

Fix an agent i, a vector v E L’ and an allocation x=(x,, . . . , xN) E n Xj. Let 
T:)(x) denote the set of non-negative real numbers p such that: 

Xi+tV-_aPi(X1,...,XN) whenever O<tsl, 
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(The restriction c =( xi + tv guarantees that xi + to - r~ 10 so Xi + tu - CJ E Xi = 
L’.) It is easily checked that r:(x) is a closed interval containing 0 and 
bounded above by ((v((. 

Definition The marginal rate of desirability of v (for agent i) at x is 

pi(v, x) = max {p: p E r:(x)}. 

If A is a subset of n Xj, we say the vector v is extremely desirable (for agent 
i) on the set A if 

inf {pi(U, x): x E A} > 0. 

Finally, v is extremely desirable (for agent i) if it is extremely desirable on 
(L+)N. 

Informally, u is extremely desirable if agent i would prefer to trade any 
bundle 0 for an additional increment of the bundle v, provided that the size 
of (T (measured by [/(T//) . IS sufficiently small compared to the increment of v 
(measured by t). We stress that - even in those contexts where it makes sense 
to speak of ‘pure commodities’ - the vector v need not be a pure commodity; 
but rather a commodity bundle. Evidently, extreme desirability is a kind of 
bound on the relative marginal rates of substitution, where we compare u to 
all other bundles. 

As will become clear in the following sections, existence of extremely 
desirable commodities (for each agent) is precisely the additional assumption 
we need to obtain existence of equilibria, so its seems valuable to discuss the 
meaning of this assumption in some detail. 

Let us observe first of all that if the preference relation Pi is strictly 
monotone [in the sense that xi+y~ Pi(xl,. . . , xN) whenever y is strictly 
positive] and the positive cone L+ has a non-empty interior, then extremely 
desirable commodities exist automatically. Indeed, let v be any vector in the 
interior of L+ and choose a positive number p such that the ball B = {w E L; 

II 

v-w/I <p} is contained in the interior of L+. Now, if lloll< tp then 
t-‘OIj</l so to-cr=t(u-t -‘a) belongs to the interior of L+. (for t>O). 

Strict monotonicity now implies that xi + tv - CT E Pi(xI, . . . , xN). (Informally, 
xi + tv -0 is better than xi because it is strictly bigger.) Since the positive 
cone L+ has a non-empty interior for every finite-dimensional space L, and 
for 1, and L,, requiring existence of extremely desirable commodities imposes 
no additional restriction in these cases. 

Extreme desirability may be given a very natural geometric interpretation. 
Fix a vector u in L+ and a positive number II, and let C be the open cone 
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The vector v is extremely desirable (for agent i) with marginal rate of 
desirability at least ,u, if for each x in (L+)N; it is the case that yip, 

whenever y belongs to (C+xi) n L+. In other words, extreme desirability 
means that the portion of the forward cone C +xi which belongs to the 
consumption set of consumer i is contained in the set of vectors preferred to 
xi (keeping other components of x tixed). 

By way of comparison, Mas-Cole11 (1983) says that the (transitive, 
complete, convex) preference relation ki is uniformly proper if there is a 
vector v in L+ and a positive real number ,U such that (xi- tu+o)zix 
whenever Xi~L’,t>O, OWL and \\o\\<tp. S’ mce it is automatically the case 
that (xi-tv+a)zix if (xi-tv+o)$L+, this is equivalent to saying that 
[( - C + xi) n L+] n (yi: yi 2 ixi} = @. Thus uniform properness means that the 
portion of the backward cone -C +xi which belongs to the consumption 
set of consumer i is disjoint from the set of vectors preferred to xi. 

It should be evident, then, that the existence of extremely desirable 
commodities is simply the non-transitive analog of uniform properness. In 
fact, it may be shown [see Yannelis and Zame (1984) for the easy argument] 
that - for transitive, complete, convex, non-interdependent preferences - the 
two conditions are equivalent. All of Mas-Colell’s comments on the meaning 
of uniform properness thus apply to extreme desirability; we shall not repeat 
them here. Nor shall we repeat Mas-Colell’s example which shows that, 
without uniform properness (i.e., in the absense of extremely desirable 
commodities), an economy may fail to have an equilibrium. It does, however, 
seem natural to give one example to illustrate the economic meaning of 
extremely desirable commodities. 

Example 3.1. Let (l&5&m) be a measure space with m a positive measure 
such that m(Q) = 1. We wish to think of Q as representing the set of possible 
states of the world, so that m(E) is the probability that the true state of the 
world is one of the states in the set E, with E&2. We interpret a function 
f~ L: as representing the allocation of a single resource over all possible 
states of the world so that llf/=Jn f dm is the consumer’s expected 
allocation of this one resource. Take v to be the function which is identically 
equal to 1, so that u represents a guarantee of one unit of the resource no 
matter what the true state of the world is. If ((g(( = Ja IG( dm is small in 
comparison with t, then x+ tv--a represents a guaranteed gain of t units of 
the resource in every state of the world, and a loss of an amount which, 
although perhaps large in some states of the world, is expected to be small 
(in comparison with t). TO say that the bundle v is extremely desirable (with 
some marginal rate of desirability) is thus to place a bound on the degree to 
which the consumer is ‘risk-preferring’. 

One further comment of a mathematical nature. Notice that the marginal 
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rate of desirability &u,x) depends both on the bundle v and on the 
allocation x. As a function of x, ~~(v,x) need not be continuous, but as a 
function of u we have the following easy estimate which we shall need later: 

Lemma 3.2. Let v and w belong to L f and let x belong to fly= 1 Xj. Then: 

~i(w,x)~~i(v,x)-_JJu-wJJ. 

Proof: Let t be a real number with O<ts 1 and let CT be an element 

so that ((a+ tu-tw(( <tpi(u, w). Of course this means that xi+ tw--o= 
Xi + tv - (a + tv - tw) belongs to Pi(X) as desired. q 

4. The Main Existence Theorem 

In this section we formulate a very general existence result from which we 
can easily derive concrete applications. We begin with a definition. 

Definition. A Hausdorff topology z on the Banach lattice L will be called 
compatible if 

(a) z is weaker than the norm topology of L, 
(b) z is a vector space topology (i.e., the vector space operations on L are 

continuous in the topology r), 
(c) all order intervals [O,z] in L are z-compact. 

Note that we do not assume that the lattice operations in L are continuous 
in the topology 2. In concrete applications, the topology T will vary 
according to the underlying Banach lattice L; it may be the norm topology 
itself, or the weak topology, or the weak-star or Mackey topology (if L is a 
dual space). 

Our basic existence result is the following: 

Main Existence Theorem. Let E= ((X, Pi, ei): i = 1,2,. . . , N} be an economy 
in the Banach lattice L, and let z be a compatible topology on L. Assume that: 

(I) Xi=L’ for each agent i, 
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(2) the aggregate initial endowment e=xy= 1 ei is strictly positive, 
(3) xi $! con Pi(Xt, . . . , x,), for each agent i and each point (x1,. . . , xN) in (L’)N. 
(4) for each agent i, there is a commodity vi EL+ which is extremely desirable 

for agent i on the set 

d= x=(x1,..., 
i 

xN):xE(L+)N, f xise 
i=l I 

of feasible allocations, 
(5) each of the preference relations Pi is (z, norm)-continuous. 

Then E has a quasi-equilibrium (X1,. . . , XN;ii) with the price E belonging to L’. 
If E is irreducible, then every quasi-equilibrium is an equilibrium.4, 5 

In concrete settings, the choice of compatible topology will be dicated by 
the underlying commodity space L. For instance, if L= 1,(1 Sp < a) [the 

space of real sequences (a,) such that Il(a,Jllr=(C Ja,lp)l’p< co], then the norm 
topology itself is compatible [since order intervals in 1, are norm compact - 

see Yannelis and Zame (1984) for a proof]. If L= LP( 1 sp< co) (the space of 
equivalence classes of pth power integrable functions on a measure space) 
then the weak topology is compatible [since order intervals are weakly 

compact - see Schaefer (1974, pp. 9&92, 119)]. If L=l, or L,, then the 

weak-star topology is compatible (since order intervals are weak-star closed 
and bounded, hence weak-star compact by Alaoglu’s Theorem). With the 
appropriate choice of compatible topology, the Main Existence Theorem 
simply applies verbatim for economies in any of these commodity spaces. 

If the commodity space is M(Q) (the space of regular Bore1 measures on 
the compact space 52), the weak-star topology is again compatible. However, 
the Main Existence Theorem may not be applicable since it requires that the 
aggregate initial endowments be strictly positive, and M(Q) need not have 

any strictly positive elements. However, it is possible to adapt our result to 
cover this case - see Remark 4 of section 8 for details. 

The formal proof of the Main Existence Theorem is long and involved; we 
defer it to the following sections. At this point, however, it is appropriate to 
give an overview of the proof. 

It is helpful to recall the argument used by Bewley (1972) (and generalized 
by others) for the case L = L,. In sketch, the strategy of Bewley’s proof is to 
consider the restriction EF of the economy E to finite-dimensional subspaces 

4We have required extreme desirability on the set of feasible allocations, rather than all of 

(L’)? since that is all we shall need, and it is a bit easier to verify in practice. See Yannelis and 
Zame (1984) for example. 

‘Note that the price rr is norm continuous but need not be continuous in the topology z. 
Indeed, z need not even admit any non-zero continuous linear functionals. 
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F of L = L, which contain the initial endowments. Standard results imply 
that each of the economies &F has an equilibrium (XT,. . . , x:;pF) with pF EF’. 

Since Bewley assumes that preferences are monotone, it is necessarily the 
case that pF20 and there is no loss of generality in assuming that IIpFII= 1. 

Since e is strictly positive, it is in fact an interior point of the positive cone 
of L=L,. The Krein-Rutman Theorem then allows us to extend pF to 

an element rrF of L’ = Lb, with nF >=O and \)x~\\ = 1. The net of equilibria 

(x” i,. . .,xc;zF) has a subnet which converges (in the respective weak-star 
topologies) to (X1,. . . , X,;E). Since the functionals rcF are positive and have 
norm 1, non-emptiness of the interior of the positive cone implies that the 
(weak-star) limit functional E is also positive and also has norm 1. In 
particular, 2 is not the zero functional. It now follows that (xi,, . . ,X,; 71) is 
an equilibrium for 8. 

This argument depends crucially both on the assumption that preferences 
are monotone and on the assumption that the positive cone of the Banach 
lattice L has a non-empty interior; it will not work if either of these 
assumptions is dropped. The problem is that we must be sure that the limit 
price E is not identically zero. If preferences are not monotone, we cannot be 
sure that the prices pF (and hence their extensions n”) are positive. Since the 
functionals rcF only converge to 71 in the weak-star topology, however, there 
is then no reason to suppose that C is not identically zero. (This can happen 
in the dual of any infinite-dimensional Banach space, including L,.) On the 
other hand if the,positive cone of L has an empty interior, then the limit 
functional 5 may again be zero - even if all the functionals rcF are positive 
and have norm 1. 

The purpose of this discussion is to point out that the crucial issue is to 
guarantee that the limit functional it is not identically zero. The central idea 
of our proof is to consider, not finite-dimensional subspaces of L, but rather 
finite-dimensional vector sublattices. For vector sublattices, we can use the 
extremely desirable commodities vi to obtain an estimate (which we call the 
Price Lemma, and isolate in section 5) which will, in the limit, guarantee that 
5 is not identically zero. However, this approach creates a multitude of its 
own difficulties. The first difficulty is that, in general, a Banach lattice need 
not have ‘enough’ finite-dimensional vector sublattices; we take care of this in 
section 6 by showing that the existence of a compatible topology implies the 
existence of ‘many’ finite-dimensional vector sublattices. The second difficulty 
is that, even with an abundance of finite-dimensional vector sublattices, we 
cannot be sure of finding any finite dimensional vector sublattices which 
contain the initial endowments; we take care of this by constructing 
economies in the finite-dimensional vector sublattices which are approxi- 
mations of the original economy, rather than restrictions of it. The third 
difficulty is that the family of finite-dimensional vector sublattices is not 
directed by inclusion; we take care of this by directing them by ‘approximate 
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inclusion’ instead. The final difficulty lies in showing that the limiting 
allocation is an equilibrium allocation, since it need not lie in any of the 
approximating economies; we take care of this by another approximation 
argument. 

5. The Price Lemma 

As we discussed in the previous section, the crucial issue in our argument 
is that the limiting price we construct must be different from zero. To achieve 
this, we shall make use of the following lemma, which formalizes a very 
natural economic intuition: at equilibrium, commodities which are very 
desirable cannot be cheap. 

Price Lemma. Let L be a Banach lattice, let E = ((Xi, Pi, ei): i = 1,2,. . . , N] be 

an economy in L and let (x1,..., x,;n) be a quasi-equilibrium6 for 8 with 

I14 = 1. Assume that 

(I) Xi=Lt for each i, 

(2) e = CrE 1 ei is strictly positive, 

(3) for each i, there is a commodity VIE L’ such that the marginal rate of 
desirability ,ui(v, (x,, , . . , xN)) is not zero. 

Then 

N 
n(vif izt ,&(t+, (x,, . . . , XN)) ’ ” 

ProoJ: If this is not so, we will show how to construct vectors yi which are 
all preferred to the given allocation and have the property that, for at least 
one agent i, yi is cheaper than xi; this will violate the quasi-equilibrium 
conditions. 

To this end, we write pi=pi(vi, (x i, . . . , x,)), and suppose that C(Z(vJ/pJ < 1. 
Since Ijnj] = 1, there is a vector w EL such that llwll< 1 and rc(w) >~(r~(v~)/~~). 
Write w=w+-w-. Since e =xe, is strictly positive, the sequences 
{he A w’>;=, {ne A w->~=i and converge in norm to w+ and w- respec- 
tively. Since z is norm continuous, we can choose a positive integer k so 

large that x((ke A w’)-(ke A wp))>~(x(vi)/pLi). Write 

z=(keA w+)-(ker\ w-). 

6Notice that the lattice L need not admit a compatible topology and that the preferences need 
not enjoy any continuity properties. In this generality, quasi-equilibria need not exist (in which 
case the Price Lemma is certainly true). Of course, in our applications we will make additional 
assumptions about L and P,, but the Price Lemma seems to be of interest in itself, so we choose 
to give a proof in this more general setting. 
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Then /z/l 5 llwli < 1, ?I@) > 1 (7r(ui)/z4i)r 0 2 z + =ker\w+<ke and Osz-= 
ke A w- s ke. 

Since (x1,. . . , xN;n) is a quasi-equilibrium for E we have that c xi = C ei = e 
and Xi 2 0 for each i. Hence z’ SC kxi and z- 51 kxi. We can use the Riesz 
Decomposition Property to find vectors a,, . . . , aN, bl,. . . , b, in L+ such that 
Ojail kxi and 05 his kxi for each i, Z+ =Cai and Z- =C bi. Notice that 
Osaisz+ and Osbisz- for each i, SO that jjai-bij]~~]z’-z-]]=~]zll<l. 

We now define the desired vectors Yi by setting 

y,=xi+$ui-i(ai-bJ. 
1 

We assert that YiEPi(Xl,.. ., xN) for each i. This of course follows from the 
definition of pi as the marginal rate of desirability, provided we verify that 
(l/k)(ai-bi)~~i+(l/k~i)Ui and that Il(l/k)(ai-bi)ll <(l/kpJ ‘,u? The first of 
these inequalities follows from the facts that ai 5 kx, biz0 and Viz0 (for each 
i); the second follows from the fact that, for each i, 

II II i(ai-bi) =~llai-bili~~llzII<~=~.~i 
I 

since /z/l < 1. 
We now consider the cost of the commodity vectors Yi. We cannot 

estimate these costs individually, but the sum is easy to estimate. We obtain 

xi+$~i-~(ai-bJ 
I )> 

Since n(z) >C (n(Vi)/lli). it follows that 1 x(Y,) <I Z(XJ, SO that n(Yj) < X(Xj) = 
,(ej) for at least one agent j. Since yjEPj(X 1,. . . , .x,), this violates the 
assumption that (x1,. . . , xN;n) is a quasi-equilibrium. Since we have obtained 
a contradiction to our supposition that 
complete. 0 

Remark. For some Banach lattices L, we 
example, if L is the Lebesgue space L,, we can 
agent i. However, in the general framework, 
Price Lemma is the most that is obtainable. 

C(E(XJ/pJ < 1, the proof is 

can actually do better. For 
show that z(uJ/~~~ 1 for some 
the weaker conclusion of the 
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We stress that the Price Lemma depends crucially on the facts that L is a 
lattice and that the norm on L is a lattice norm, and may fail to be true if 

these assumptions are not satisfied. For example, the Price Lemma may fail 
if L is the two-dimensional vector lattice 1w2, equipped with a vector-space 
norm which is not a lattice norm. 

6. Finite-dimensional vector sublattices 

The object of this section is to prove that a Banach lattice which admits a 
compatible topology necessarily has a large collection of finite-dimensional 
vector sublattices. (A vector sublattice K of L is a linear subspace which is 

also a sublattice; we say K is a finite-dimensional vector sublattice if it is a 
vector sublattice and is finite-dimensional as a vector space.) We isolate the 
precise property we need in the following result: 

Theorem 6.1. Let L be a Banach lattice which admits a compatible topology. 
Let e,, e2,. . . eN, bI, b,, . . . , b, be positive elements of L such that b,sxy= 1 ei 
for each j, and let 6 >O be a positive number. Then there is a finite- 
dimensional vector sublattice K of L and there are positive elements e:, . . , e$, 

b:, . . . , b& of K such that 

(1) Osee*gei and Ie*-e,J1<6for each i, 
(2) 0 5 bj* 5 bj and I lb; - bjlJ < 6 for each j, 
(3) cfzI e: is strictly positive in K. 

It is convenient to first isolate a Lemma. Recall that L is order complete if 

every subset of L+ which has an upper bound in L actually has a supremum 
in L. 

Lemma 6.2. If the Banach lattice L admits a compatible topology, then L is 
order complete. 

Proof Let n be any indexing set and let (zJn be a family of positive 

elements of L bounded above by the positive element z. Let 9 be the set of 
finite subsets of A; for each F in Y, set zF= sup (z,: i E F}. Since 9 is 
directed by inclusion, the family {zF: FEN} is a net of positive elements of L; 
moreover, zFSz for each F, so (zr) is a net in the order interval [O,z}. By 
assumption, L admits a Hausdorff vector space topology z in which the 
order interval [O,z] is compact. Hence some subnet {zG: GE$} converges (in 
the topology r) to some element Z of [O,z]. We assert that Z= sup {z~}. 

To see this, we fix an element F, of 9”. The definition of the elements zF, 
together with the fact that {zG) is a subnet of {z~}, imply that {z,: zGzzF,,} is 
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a subnet of (~~1, and hence also converges (in the topology z) to 5. Since z 
is a vector space topology, this implies that {zG--zrO} converges (in 
the topology z) to 2-zF,. Since zc-zF, lies in the z-compact order interval 

[0, z - zF,], so does Z- zF,. In particular, Zz zFO for each F, in 35 

To see that Z= sup (zF} we consider any w in L such that w 2 zF for each 
F; we must show that w 2 Z. Since w 2 zr for each F, it follows in particular 
that wzzc for each G in $ and hence (as above) that ~25, as desired. 
Hence Z= sup {zF}, as asserted. 

Finally, since zr= sup {zl: ;1 E F}, it is clear that sup{z,} = sup {zl: 2 e/i), so 
that (zn} has a supremum. This completes the proof of Lemma 6.2. 0 

We now turn to the proof of Theorem 6.1. 

Proof of Theorem 6.1. We may assume without loss that 0~6 < 1. We set 

e = Cr= 1 e, and consider the principal order ideal 

L, = (y E t: - re 2 y 5 re for some integer r}. 

According to Schaefer (1974, pp. 102, 104), L, is an abstract M-space with e 

as order unit. and hence is order-isomorphic to the space C(Q) of continuous 
real-valued functions on some compact Hausdorff space Q. Moreover, under 

this isomorphism, the element e in L, corresponds to the function on Q 
which is identically equal to 1. Since L is order-complete, so is L,. Hence by 
Schaefer (1974, p. 108) the space 52 is Stonian; i.e., the closure of every open 

subset of s2 is open. 
In what follows, it will be convenient to suppress the isomorphism between 

L, and C(Q), and simply identify them. We will thus write e,(w) for the value 

of e, at w, etc. We continue, however, to write Ileill for the norm of ei in L, 
etc. 

Choose any 6’ with O<&<min(l/N, 6/l)e\\). Since Q is compact and each 
function e, bj is continuous (hence uniformly continuous) we can find a 

covering of R by open sets U,, . . . , U, such that, for each i, j, Jei(w)- 
ei(w’)l<& and lb,(w)-bj(w’)( ~6’ whenever w, w’ belong to the same set 

U; Let 0, denote the closure of uI, and set Vi = U,, V, = 0, - I’,, I’, = 0, - 
(Vi u V,), etc. Since 52 is Stonian, the sets I’,,. . . , V, form a cover of 52 by 
open and closed sets. (We may, without loss, assume that & #O for each 1.) 
Moreover, for each i, j, Jet(w)-ei(W’)I 56’ and [b,(w) - bj(w’)( 5 6’ whenever 
w, w’ belong to the same set V;. 

Now define K to be the subspace of C(Q)=L, consisting of functions 
which are constant on each of the sets r/;. It is evident that K is a tinite- 
dimensional vector sublattice of C(Q) =L, (and hence of L). In fact, a basis 
for K consists of the characteristic functions xv,, 1= 1,2,. . . , k. 

For each i, j, 1, let cil be the minimum of the continuous function e; on the 
compact set v, and let dj, be the minimum of bj on r/;. Set 
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k 

e* = 2 ciIXV, 
I=1 ’ 

This construction guarantees that the functions er, bj* are positive and satisfy 
the following inequalities for each w in 52: 

e:(w) sei(w) and b;(w) 5 bj(w), 

/e,*(w)-e,(w)/ 56’ and lb,*(w)-bj(W)J16’* 

The first two inequalities imply that OseF sei and 0s b; 5 bj. The second 
two inequalities, together with the fact that e(w) = 1 for each w, imply that 
(e: -ei( 5 6’e and (b? - bj/ s6’e. By the lattice property of the norm (and the 
fact that 6’(\el( ~6) this yields 

IJcT-eill<6 and (Ibj*-bjll<6. 

It remains only to show that xe: is strictly positive in K. Equivalently, we 
must show that for each 1, at least one of the coefficients cil is strictly 
positive. Fix a point wI in V,. Since e(wJ = 1, there is at least one e, such that 
ei(w,)z l/N. Since the variation of e, on v is at most 8, this means that 
cil 2 (l/N) - 6’ > 0, as required. This completes the proof of Theorem 6.1. 0 

7. Proof of the Main Existence Theorem 

We begin by isolating parts of the argument as lemmas. The first one will 
be useful elsewhere, so we establish an appropriately general version; it is 
closely related to a finite-dimensional result of McKenzie (1959). 

Lemma 7.1. Let E = {(Xi, Pi, ei): i = 1,2,. . . , N) be an irreducible economy in 
the Banach lattice L. Assume that Xi=Lf for each i, and that the preference 
relation pi is (norm, norm) continuous for each i. If ((xl,. . . , x,), X) is u quasi- 
equilibrium for E and there is a vector z E L such that 0 5 z 5 c ei and n(z) # 0, 
then (x,, . . . , xN, n) is actually an equilibrium. 

Proof. Let I denote the set of agents i for which there is a vector 5 with 
02 5 5 e, and rc([) #O; let J denote the complementary set of agents. We first 
show that the equilibrium conditions are satisfied for all agents in I. 
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Fix ill and a vector [ with Og[lei and X(C) #O. Let yi~Pi(xI,, . . ,x,); 
then 7c(yi) z$ei), and we want to show that in fact ~(yJ>n(e,). If a =n(eJ, 
we distinguish three cases. Case 1. n(eJ > 0. Then ~(ty,) < x(e,) for t < 1, while 
tyi E Pi(Xl,. . . ) XN) if t is close to 1 (by continuity of P,). This violates the 
quasi-equilibrium conditions. Case 2. n(e,) <O. Then n(syi) <7c(ei) for s> 1 and 
SYiEPi(X1,..., x3 for s near 1, again violating the quasi-equilibrium con- 
ditions. Case 3. 7c(ei) =O. By continuity of Pi, for all small real numbers r >0 
we have yi+reiEPi(xl,..., x,,J. Since Os[je, we know that y,+rei+ 
r*[ EP,(~~, . . . , xN) provided that lr*/ is sufficiently small (if )r*) <r then 
yi + rei + r*[ 20). On the other hand, ~(y, + rei + r*[) = r*c) = r*n(Q, and 
r*n([) ~0 = z(e,) if r* and n(c) have opposite signs. This again violates the 
quasi-equilibrium conditions. We conclude that the equilibrium conditions 
hold for all agents in I. 

Notice that I is not empty. For, since 0 sz sEei, we may use the Riesz 
Decomposition Property to write z =c zi with 0 gzis e, for each i. Then 
n(z) = 1 n(zi) # 0, so n(zJ # 0 for at least one agent i, and this agent belongs 
to I. 

Finally we show that J is empty. For, if not, irreducibility of E guarantees 
that there is an i~1, a ~EJ and a [EL such that Os[s;ej and xi+ 

i E pi(xl,. . .P xN). Since jE.J we know that ~([)=0, so that R(x~+~;)= 
x(xi) 5 n(e,); this violates the equilibrium conditions just established for 
agent i. We conclude that J is empty, and hence that (x,, . . . ,xN, TC) is an 
equilibrium. This completes the proof of Lemma 7.1. 0 

Throughout the remainder of this section, we assume that all the hypotheses 
of the Main Existence Theorem are satisfied (except for irreducibility of the 
economy 8). 

We are going to obtain a quasi-equilibrium for E as a limit of equilibria of 
subeconomies whose commodity spaces are finite-dimensional vector sub- 
lattices of L. Because the family of finite-dimensional vector sublattices L is 
not directed by inclusion, we need to carry along some extra information. 
The precise structure we need is an (N + 2)-tuple II= (F,, n,, e;, . . . , e$), where 
F, is a finite-dimensional vector sublattice of L, n, is a positive integer and 
et,..., e% are positive elements of F, which satisfy 

(a) cyZ 1 e: is strictly positive in F,, 
(b) /jei -eF\) < l/n, for each i, 
(c) e: 5 e, for each i. 

We shall call such an (IV+ 2)-tuple CL a special configuration. (Notice that, 
since F, is a vector sublattice of L, it follows that cer is a positive element 
of L, but it need not be strictly positive in L.) The vectors e: will be the 
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initial endowments of our approximating subeconomies. The integers n, will 
play a role when we make the family of all special configurations into a 
directed set. 

Our first task is to show that many special configurations exist. Given a 
finite subset A of L+ we cannot generally find a special configuration c1= 

(F,, n,, 4,. . . , ei) with A c F,, but we can come as close as we wish. 

Lemma 7.2 Let A be a finite subset of L’ and E>O a positive number. Then 
there is a special configuration a = (F,, n,, e:, . . . , ei) such that l/n, < E and 

dist(a,FL)=inf{lla-zll: z~F,+}<e 

for each element a of A. 

Proof: Write A = {a,, . . . , a,}, and choose an integer s with l/s < E. Since e is 
strictly positive, lim, _ ,( ne A aj) =aj (for each j). Hence we can find an 
integer R so large that 

/(Re A aj) -ajll <e/2 

for each j. Set bj= R- ‘(Re A aj) for each j, and note that 0 5 bjs e for each j. 
Hence, we may set 6 =min (l/s, 42M) and apply Theorem 6.1 to obtain a 
finite-dimensional vector sublattice K of L and elements e* 1 ,..., et, b: ,..., b& 
of K such that 

(1) O~e~~ei and IeF--e,[l<6 for each i, 
(2) OSbTsb, and IbJ-bjll<6 for each j, 
(3) I;= 1 e: is strictly positive in K. 

Then a=(K,s,eT,. . . , eg) is a special configuration. Moreover, for each j, Rb; 
belongs to K and our choice of bj and the triangle inequality imply that 
Ilaj- Rbrll <E. Hence the special configuration IX has the required proper- 
ties, and the proof is complete. 0 

We will write D for the set of all special configurations. We wish to use D 
to index nets of quasi-equilibria; to do so, we must define an ordering on D. 

Given two special configurations a =(F,, n,, et,. . . , e$) and b = 

(FB, nP, e?, . . . , e$), we will write u < /? provided that n, < ns and 

dist(z, F,+) 5 2-““I[z(( 

for each z E FL. This relation is not transitive, but it is acyclic; i.e., there is no 
finite sequence a1, CL~, . . . , ctk of special configurations such that 
c1r < LQ < . . . < ak < aI (because we cannot have nal -C ne2 .. . -c no, -C n,,). Hence 
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this relation can be extended7 to a reflexive, antisymmetric, transitive relation 
5 on D (i.e., a partial ordering) which is given by 

CI Q3 if either (i) a = p, or (ii) there are elements yr, . . . , yk Of D 
such that 

a=y,, b=Yk and yr<yz”‘<Yk. 

A simple calculation, using (ii), the triangle inequality and the fact that 
I:= I 2-“= 1, shows that if crsp then 

dist(z,PB+) 54.sPnullzII 

for each z E F:. We next show that the partial ordering 5 actually directs 
the set D. 

Lemma 7.3. The set D of special configurations, equipped with the partial 
ordering 5, is a directed set. That is, if c( and /3 belong to D then there is a y 
in D for which asy and 05~. 

Proof. Since F, and F, are finite-dimensional, their unit spheres are 
compact. Hence we can choose finite sets of vectors {x1,. . . ,x,} c F, and 
I , . . . , yK) c F, such that ((xj(( = 1 for each j; llyk/ = 1 for each k; for 
ezrh XE F, with IIxII= 1, th ere is an index j with /Ix-xjll <2-2-nu and for 

each YEF~, with ((y((= 1, there is an index k with ((y-yk((<2-2~n~. We 
now use Lemma 7.2 to choose a special configuration y such that 

l/n, < l/(n, + na) (which means nY > n, + n,), dist(xj, F:) ~2-‘~-’ for each 
j and dist(y,, F:) < 2-nfi-2 for each k. Since the norm of F,, is positively 
homogeneous, the triangle inequality and our choice of {x1,. . . , xJ> and 

{Y r,. . . , yK} imply that dist(x, F:) ~2-null~ll for each XE F,+ and dist(y, F:) 5 
2-“fl1/yll for each ~EF+~. Thus a<y and PC y; in particular, azy and 

flzy, as desired. 0 

With all of the preliminary constructions out of the way, we now turn to 
the main argument. 

Proof of the Main Existence Theorem. For each special configuration a= 

(F,,n,,e”,,..., ei) we define consumption sets Xq and preference relations 

p;: n X7 + 2xp by 

‘Any acyclic relation may always be extended to a reflexive, antisymmetric transitive relation 
by exactly this procedure. 
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PT(x 1,...,XN)=Pi(X1,...,XN)nF,. 

We set E” = ((XT, P;,ef)]; this is an economy in the finite-dimensional vector 
sublattice F, of L. The next step is to find extemely desirable commodities. 

For each i, fix a vector ui E L+ which is extremely desirable (on the set &) 

for consumer i. For each CY, the distance from vi to F,+ is acutally taken on 
(since F, is finite-dimensional); i.e., we can choose vectors up in F, so that 

llvf-u,ll= inf{((z-vJl:zE F,+j. 

For any E >O, we can use Lemma 7.2 to find a special configuration c( such 
that ((I$- i/( f u <E or each i. On the other hand, the properties of our ordering 

require that dist(z$, Fl) 54. 2-““~~u~~~ 5 4. 2-“a(\\~i// + E). whenever bz CL. Hence 
there is a vector in Fl whose distance to ui is at most 4. 2P”a(lluill +E) x E. 

The definition of I$ now yields that 

whenever /?~cc. We conclude that, for each i, IlVr-UiII tends to 0 along the 
directed set D of special configurations. It follows immediately from Lemma 

3.2 that (for each i), VT is extremely desirable for consumer i (on the set A), 
provided y is sufficiently large. Since u[ bellongs to F:, it is certainly 

extremely desirable for consumer i on A A FJ, which includes the set of 
feasible allocations for the economy E’ (provided that y is sufficiently large). 

We now want to apply the equilibrium existence result of Shafer (1976, 
Theorem 2 and Remarks) to conclude that each of the economies Ey has a 

quasi-equilibrium (x7,. . . , x);;p’), for y sufficiently large. To do so, we first 

note that the existence of extremely desirable commodities implies that 
preferences are locally non-satiated on the set of feasible allocations. Shafer’s 
continuity assumptions follow from continuity of the preferences Pi, together 
with the fact that all Hausdorff vector space topologies on a finite- 
dimensional vector space coincide. The remaining conditions of Shafer’s 
Theorem are easily verified, except for the requirement that the initial 
endowments lie in the interiors of the consumption sets. To remedy this 
small difficulty, we choose a real number t with 0~ t < 1 and define new 
endowments 

These new endowments do lie in the interiors of the consumption sets, so the 
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economy with these endowments has an equilibrium (note that 2 ft=Cej'). 
Letting t tend to zero and taking limits yields our quasi-equilibrium 

(G,. . . , xl;;p’). The price py belongs to Fk, and there is no loss in assuming 
that I(@‘([ = 1. The Hahn-Banach Theorem now provides an element rcy of L’ 
which has norm one, and agrees with py on F, 

We have thus constructed a net ((xi,. . . , x$;nY)) in L x L ‘.. x L x L’. Since 
O~~xy =xey se for each y, the vectors XT all belong to the order interval 
{O,e], which is z-compact. Moreover, since llltyll = 1, the functionals rcy all 
belong to the unit ball of L’, which is weak-star compact. Hence, passing to a 
subnet if necessary, we obtain vectors X,, . . . , X, in (0, e] and a functional 5 in 
L’ such that {xj’) converges to Xi (in the topology T) and {rc’> converges to C 
(in the weak-star topology). Note that ll?Cllz 1. 

We are now going to show that (X1,. . . , XN;71) is a quasi-equilibrium for C. 
Our first task is to show that ii is not the zero functional; as we have 
emphasized, this is the crucial point. To do this, we first recall that IJv;-t+(( 
tends to zero, for each i, so that {+‘(u;)) converges to %(uJ, for each i (by 
Lemma A of the appendix). The Price Lemma gives us an estimate involving 
the rry(viy), namely 

N ?TY( 0;) 

i?l /l.i(U~, (XT,. . . ) XL)) ’ ’ 
provided that we compute marginal rates of desirability in the economy 27. 
However, let us note that rcy(u~)20 (since UT is extremely desirable and rcy is a 
quasi-equilibrium price) and that marginal rates of desirability certainly do 
not increase if we compute them in E rather than in EY. Hence the inequality 
(*) is valid if we compute marginal rates of desirability in the economy E. Let 
us write 

,ni = inf(pi(vi, (xl,. . . , XN)): (xl,. . . , XN) Ed}. 

By extreme desirability, ,ni > 0. By Lemma 4.3, 

As we have already noted, ~~ui-uj’~l tends to 0. If we combine this fact with 
the inequality (*) and our previous observation that {?‘(uj’)} converges to 
5(ui), we obtain 

N ?qUi) c- 2 1. 
i=l Pi 

In particular, 71 is not the zero functional. 
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We now proceed to verify the quasi-equilibrium conditions. The argument 

is similar to Bewley’s (1974), but more complicated, since the endowments er 

may differ from the endowments e,. First of all, we know that xx! =xeT for 
each y. By construction. the endowments e; converge to e, in the norm 
topology and hence in the topology r (which is weaker than the norm 
topology). Since the vectors x! converge to Xi in the topology z, and z is a 
vector space topology we conclude that xXi=Cei. 

NOW let US suppose that yi~Pi(X,, . . . , TN) snd that 5(yi) < 71(ei). Proceeding 

exactly as in the construction of extremely desirable commodities, we find 
vectors yy E FY+ such that lly[-yi(( tends to 0 (with y). Since the preference 
relation Pi is (7, norm)-continuous, we conclude that yy E Pi(x:, . . . , xi) if y is 
large enough. Since the vectors in question all belong to F,, it follows that 

yy ~P/“(xl,. . . ,xi;). On the other hand, since llyy-yill and Ile-e,ll both tend 
to 0 (with y), and {z’} converges to 2 in the weak-star topology, we may 
apply Lemma A of the appendix again to conclude that rcY(yr) <nY(ey) for y 

sufficiently large. Since yl E Pj(x:, . . .,x,&) for large y, this contradicts the fact 

that (XI,... ,X&T 9) is a quasi-equilibrium for 0. We conclude that, if 
yi E P,(X,, . . . , XN), then ~(yi)z 7t(eJ. 

Finally, we need to show that ?2(Xi) =?2(ei) for each i. But if 71(Xi) # 
E(eJ for some i, we must have rr(xJ < $ej) for some j, since ~~~=~e,. On 
the other hand, Xj+ ~IJ~E Pj(X,, . . . , XN) for each t >O (since vj is extremely 
desirable) and %(Xj + tvj) < $ej) for t sufficiently small (since $xj) < $ej)). 

This contradicts the conclusion of the previous paragraph. This completes 
the proof that (X1,. . . , X,, ~7) is a quasi-equilibrium. 

It remains to show that, when E is irreducible, every quasi-equilibrium 

(6,. . .3 xR;n*) is actually an equilibrium. Since n* is a non-zero price, 
n*(z) #0 for some positive z. Since e is strictly positive, [l(ne A z)-z(( is small 

provided n is large. Hence rc*(ne~ z)#O, so that rc*(l/n)(ne AZ)#O while 
(I/n)(ne A z) se; Lemma 7.1 now implies that (XT,. . . , xc, n*) is actually an 
equilibrium. This completes the proof. q 

It is worth noting that, by the same argument, we can show that the set of 
all quasi-equilibria (X1,. . . ,x,;%) with I/Z// 5 1 is a compact subset of 
Lx L.,. x L x L’, where we give L the topology z and L’ the weak-star 
topology. (Of course, if E is irreducible, the set of equilibria is compact, since 
it coincides with the set of quasi-equilibria.) 

8. Concluding remarks 

Remark 1. Throughout, we have assumed that the consumption set of each 
agent is the positive cone L+. An examination of the proof will show, 
however, that it works equally well for (some) other consumption sets. For 
example, it would suffice to assume that the consumption set Xi of the ith 
agent has the properties: 
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(a) Xi is a closed, convex subset of L+ containing 0, 
(b) Xi is solid (i.e., if x E Xi then the order interval [O, x] is contained in Xi), 
(c) if x E Xi then x + tvi E Xi for some t >O. 

Remark 2. Much of our analysis should go through in the context of a 
countable number of agents, provided the commodity space is I, or L,. For 
more general commodity spaces, there seem to be additional serious dif- 
ficulties. (See the Remark in section 5.) 

Remark 3. Notice that, in the proofs of the Main Existence Theorem, the 
Price Lemma and Theorem 6.1, completeness of the norm of L was never 
used. The Main Existence Theorem therefore remains valid for incomplete 
normed vector lattices. 

Remark 4. As we noted in section 4, the requirement that the aggregate 
initial endowment be strictly positive rules out the commodity space M(Q), 
which has no strictly positive elements. However, our results can be extended 
to this case, if we strengthen the extreme desirability assumption slightly. 
Here is a sketch: 

We will assume that for each consumer i, there is a commodity ui which 
belongs to the order interval [O,e] and is extremely desirable for i on some 
open set containing [0, elN. For each finite set A = {a,, . . . , u,) contained in 

M(Q) +r we write fA = e + c ai, and consider the set M, of measures which are 
absolutely continuous with respect to fA; this is a closed sublattice of M(Q) 
and fA is strictly positive when viewed in the sublattice M,. If we consider 
the restriction of E to M,, and alter the initial endowment of each consumer 
to be ei= e, +cfA, for E a small positive number, then we obtain an economy 
E,,, to which the Main Existence Theorem may be applied. The economies 
I5 A,e thus have quasi-equilibria; moreover, if rc is a quasi-equilibrium price 
then C(rc(ui)/pi) 2 I. If we now take limits (as A increases and E tends to 0), 
we obtain a quasi-equilibrium (Xi,. . . , XN; 2) for E with ~(%(uJ/nJ~ 1. Hence, 
if E is irreducible, Lemma 7.2 can again be used to prove that (X1,. . .,X,$5) 
is an equilibrium. 

Note that this argument produces an equilibrium price 7t in M(Q)‘, not in 
C(Q). If we want the price to lie in C(Q), we must assume much more; see 
Yannelis-Zame (1984) for details. 

Appendix 

In this appendix we collect some basic information about Banach spaces in 
general and Banach lattices in particular. For further details, we refer the 
reader to Schaefer (1971,1974). 
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A normed vector space is a real vector space E equipped with a norm 
/.I]: E + [0, co) satisfying: 

(i) ((x11 >=O for all x in E, and ]Ix(( ==0 if and only if x =O, 
(ii) \JcLxJ( = lc(( 11x1( for all x in E and all a in [w, 
(iii) [Ix + yl( 5 [(x(1 + ([y/l for all x, y in E. 

The Banach space is a normed vector space for which the metric induced by 
the norm is complete. 

If E is a Banach space, then its dual space E’ is a set of continuous linear 
functionals on E. The dual space E’ is itself a Banach space, when equipped 
with the norm 

((4(\ = sup $#4x)l:x~E, llxll5 11. 

In addition to the norm topologies on E and E’, we shall make use of three 
other topologies. The weak topology a(E,E’) on E is the topology of 
pointwise convergence when we regard elements of E as functionals on E’. 
That is, a net {xa> in E converges weakly to an element x E E exactly when 
{f(xJ} converges to f(x) or each GEE’. Similarly, the weak-star topology 
o(E’, E) on E’ is the topology of pointwise convergence when we regard 
elements of E’ as functionals on E. Thus f, -+ f in the weak-star topology 
means that f,(x)-](x) for each XE E. Finally, the Mackey topology e(E’, E) 
on E’ is the topology of uniform convergence on weakly compact, convex, 
symmetric, subsets of E. 

It is a consequence of the Separation Theorem that the weak and norm 
topologies on E have the same closed convex sets and the same continuous 
linear functionals. The Mackey-Arens Theorem asserts that the weak-star 
and Mackey topologies on E’ have the same closed convex sets and the same 
continuous linear functionals, and that the Mackey topology is the strongest 
locally convex vector space topology on E’ with this property. By viewing 
elements of E as linear functionals on E’ we obtain a canonical injection of E 
into E” and we may identify E as the subspace of weak-star continuous 
linear functionals on E’. 

Alaoglu’s Theorem asserts that the closed unit ball of E’ (and hence every 
weak-star closed, norm bounded set) is weak-star compact. Hence every net 
{z,} in the ball of E’ has a convergent/subnet. As a final comment, let us 
note for further use the following elementary lemma: 

Lemma A. If x,+x in the norm topology of E, T(,+TI in the weak-star 
topology of E’ and {n,} is norm bounded, then n,(x,) -+ TC(X). 

Recall that a Banach lattice is a Banach space L endowed with a partial 
order 5 (i.e., 5 is a reflexive, antisymmetric, transmitive relation) satisfying: 
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(1) xzy implies x+zsy+z (for all x,y,z~L), 
(2) x 5 y implies tx 5 ty (for all x, y, E L, all real numbers t 2 0), 
(3) every pair of elements x, y E L has a supremum (least upper bound) x v y 

and an inlimum (greatest lower bound) x A y, 

(4) 1x1 s(y( implies ((x(( 5 ((y(( (for all x, ye L). 

Here we have written, as usual, [xl= x++x- where x+=xvO, x-=(-x)vO; 
we call x+, x- the positive and negative parts of x (respectively) and 1x1 the 
absolute value of x. We recall that x=x+ -x-, and that x+ A x- =O. We say 

that XE L is positive if x20; we write L+ for the set of all positive elements 

of L and refer to Lf as the positive cone of L. 
The Banach lattice structure on L induces on the dual space L’ the 

structure of a Banach lattice, where f gg in L’ means f(x)<g(x) for each 

XEL’. 

If x is a positive element of L, then by the order interval [0,x] we mean 

the set 

In any Banach lattice L, order intervals are norm closed (and thus weakly 
closed), convex and bounded. If L is a dual lattice, order intervals are also 
weak-star closed (and thus weak-star compact). 

We shall say that an element x of L is strictly positive (and write x>>O) if 

4(x)>O whenever C#J is a positive non-zero element of L+. (Strictly positive 
elements are sometimes called quasi-interior to L+.) An equivalent character- 
ization is that the element x in L is strictly positive if and only if the 

sequence (nx A y} converges in norm to y (as n tends to infinity) for each y in 
L+. We note that if the positive cone L+ of L has a non-empty (norm) 
interior, then the set of strictly positive elements coincides with the interior of 
L+. However, many Banach lattices contain strictly positive elements even 
though the positive cone L+ has an empty interior. 

Basic examples of Banach lattices include: 

(i) the Euclidean space RN, 
(ii) the space 1 (for 1 sp< 00) of real sequences (a,) for which the norm 

lJ(a,)lJ,=(Cfa,JP)l’P is finite, 
(iii) the space L,(Q, R,p) of measurable functions f on the measure space 

(Q. R,m) for which the norm ~~f(~p=(jn~~~Pd~)l~p is finite (as usual, we 
identify two functions if they agree almost everywhere), 

(iv) the space 1, of bounded real sequences (with the supremum norm), 
(v) the space L,(Q, R,m) of essentially bounded, measurable functions on a 

measure space [with the essential supremum norm, and the same 
identification as in (iii)]. 



N.C. Yannelis and W. R. Zame, Equilibria in Banach lattices 109 

(vi) the space C(Q) of continuous, real-valued functions on the compact 
Hausdorff space Sz (with the supremum norm), 

(vii) the space M(Q) of regular Bore1 measures on the compact Hausdorff 
space B (with the total variation norm). 

In examples (i), (ii), (iii), and (vi), a function (or N-tuple, or sequence) is 
strictly positive in the Banach lattice sense exactly when it is strictly positive 
as a function (almost everywhere). In (iv) and (v), a function is strictly 
positive in the Banach lattice sense exactly when it is positive and bounded 
away from zero. Finally, in (vii), a measure ,u is strictly positive in the 
Banach lattice sense exactly when p(B) > 0 for every Bore1 set B; thus if Q is 
uncountable, M(SZ) contains no strictly positive elements. 

A fundamental property of Banach lattices (actually valid more generally 
for vector lattices) which we shall use over and over, is the Riesz Decompo- 
sition Property. 

Riesz Decomposition Property. Let L be a Banach lattice and let x, y,,. . .,y, 
be positive elements of L such that 05~ SC;= 1 yi. Then there are positive 
elements x1,. . . ,x, in L such that x1= 1 xi = x and 0 5 xi 5 yi for each i. 
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