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FEquilibria in Markets with
a Continuum of Agents
and Commodities

M. Al Khan and Nicholas C. Yannelis

Abstract. We prove the existence of an equilibrium for an exchange economy
with a measure space of agents and with an infinite dimensional commodity
space.

1. Introduction

The purpose of this paper is to prove the existence of a competitive
equilibrium for an economy with a measure space of agents and with an
infinite dimensional commodity space.

The principle ways our result differs from that of Bewley (1990) are:
(a) we assume that the consumption set of each agent is a weakly compact
subset of either the space of continuous functions on a compact metric
space C(X), or the Lebesgue space L ; (b) the measure space of agents
need not be atomless; and (c) we provide a direct proof, i.e., we do not
need to use the Aumann (1966) existence result as Bewley does.

The paper proceeds as follows: Section 2 contains some notation
and definitions. In Section 3 the main result of the paper is stated. An
auxiliary result is stated in Section 4 and its proof is given in Section 5.
Section 6 contains the proof of the main theorem. Finally some concluding
remarks are given in Section 7.

2. Notation and Definitions
2.1 Notation.

24 denotes the set of all nonempty subsets of the set A;

con A denotes the convex hull of the set A;

conA denotes the closed convex hull of the set A;

\ denotes the set theoretic subtraction;

R¢ denotes the £-fold Cartesian product of the set of real numbers R;
# denotes the empty set.
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234 Equilibria in Markets

2.2 Definitions. Let X, Y be two topological spaces. A set-
valued function (or correspondence) ¢ : X — 2Y is said to be upper
semicontinuous (u.s.c.) if the set {z € X : ¢(z) C V'} is open in X for
every open subset V of Y. Throughout the paper we will consider the
setting where X is a metric space and Y is a Banach space. In this setting
we will say that ¢ is norm u.s.c., if the set {z € X : ¢(z) C V} is open
in X for every norm open subset V of Y. Furthermore, we will say that
& is weakly u.s.c., if the set {z € X : ¢(z) C V} is open in X for every
weakly open subset V of Y.

Let X and Y be sets. The graph of the correspondence ¢ : X — 2%
is denoted by Gy = {(z,y) € X XY :y € ¢(z)}.

We now define the notion of a Bochner integrable function. Let
(T, T,p) be a finite measure space, and X be a Banach space. A func-
tion f : T — X is called simple if there exist z,,2,,...,2, in X and
TyyTyy«- -, T, in 7 such that f =37, z;x,., where

(t)—{l ifter
Xl =10 iftegr,.

A function f : T — X is said to be u-measurable if there exists a
sequence of simple functions f, : ' — X such that lim__, . ||f.(f) —
f()|| = 0 for almost all t € T. A p-measurable function f: T — X is
said to be Bochner integrable if there exists a sequence of simple functions
U, s n=12...} suchthat

tim [ 15,(0) - SONduce) = 0.
T

In this case we define for each E € 7 the integral to be [ f(t)du(t) =
lim,,_, fg fo(2)du(t)). It is a standard result [see Diestel-Uhl (1977,
Theorem 2, p. 45)] that, if f : T — X is a g-measurable function then ¢
is Bochner integrable if and only if [, ||f(¥)[|du(z) < oo.

Let (T,7,x) be a complete finite measure space, i.e., p is a real-
valued, non-negative countably additive measure defined on a complete
o-field 7 of subsets of T such that u(T) < oo. Let X be a Banach
space. We denote by L,(x,X) the space of equivalence classes of X-
valued Bochrner integrable functions f : T' — X normed by

17l = ]T 17O du().
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Normed by the functional || - || above, L, (i, X) becomes a Banach space
[(see Diestel-Uhl (1977, p. 50)]. A correspondence ¢ : T' — 2% is said to
have a measurable graphif G, € 7 @ (X ) where 3(X) denotes the Borel
o-algebra on X and ® denotes product o-algebra. The correspondence ¢ :
T — 2% is said to be lower measurableif for every open subset V of X the
set {t € T : #(t)NV # 0} belongs to 7. The correspondence ¢ : T' — 2% is
said to be integrably bounded if there exists a map h € L,(g,R) such that
for almost all £ € T, sup{||z]| : z € ¢(2)} < h(t). A measurable selection
for the correspondence ¢ : T' — 2X is a measurable function f: T — X
such that f() € ¢(t) for almost allt € T'. A well-known result of Aumann
(1967) says that if ¢ is a correspondence from a complete finite measure
space to a separable metric space such that ¢ has a measurable graph
and it is nonempty valued, then ¢ has a measurable selection. Following
Aumann (1965) we now define the notion of the Aumann integral. Let
T be a finite measure space, X be a Banach space and ¢ : T — 2X
be a correspondence. We denote by S}, the set of all X-valued Bochner
integrable selections for ¢(-), i.e., §§ = {z € L;(4,X) : z(t) € ¢(1)
for almost all ¢ € T'}. In the sequel we will call the above set, the set
of integrable selections. We are now ready to define the integral of the
correspondence ¢(-) as follows:

[ #0du = { [ sau): 2y € 53}

We will denote the above integral as [ ¢(-), and call it the Aumann inte-
gral. We now state a result which will play a crucial role in the sequel.
This is Diestel’s Theorem [Diestel (1977)], which says that if K : T — 2V
(here T is a finite measure space and Y is a separable Banach space) is
an integrably bounded, convex, nonempty weakly compact valued corre-
spondence, then S} is weakly compact in L;(z,Y).

3. The Main Theorem

3.1 The Model. We now turn to the main result of the paper,
i.e., the existence of a competitive equilibrium in economies with infinitely

many commodities and agents.
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Denote by E the commodity space, where E is an ordered separable
Banach space whose positive cone E, has an interior pointu. An economy
€ is a quadruple [(T, 7, 1), X, 2, €] where
(1) (T, 7,p) is a measure space of agents;

(2) X : T — 2F+ is the consumption correspondence,

(3) 2,C X(2) x X(1) is the preference relation of agent t,

(4) e: T — E_ is the initial endowment where for all t € T, e(t) € X(?)
and for all £ € T, e(t) belongs to a norm compact subset of X ().
Denote the budget set of agent t at prices p by B(t,p) = {z € X (1) :

p-z < p-e(t)}. The demand set of agent t at prices p is defined as

D(t,p) = {z € B(t,p) : for all y € B(t,p),z 2, v}

A competitive equilibrium for € is a price-consumption pair (p, f),
p € EY/{0}, f € Ly(u, E,) such that:

(i) f(t) € D(2,p) for almost all ¢ in T', and

(i) [ f()du(t) < [re()du(i).

3.2 Assumptions. The following assumptions which are stan-
dard in equilibrium analysis will be needed to prove our Main Theorem.

(3.1) (T, r,p)is a complete finite measure space.

(3.2) The correspondence X : T — 2E+ is integrably bounded, closed,
convex, nonempty, weakly compact valued, and it has a measurable
graph,ie.,Gx € T ® B(E,).

(3.2") The correspondence X : T — 2E+ is closed, convex, nonempty,
norm compact valued and it has a measurable graph.

(3.3) (a) For each t € T and each z € X(t) the set R(t,z) = {y €
X(t):y 2, ¢} is convex, and norm closed and the set R™!(t,z) =
{y € X(t) : = 2,} is norm closed, (b) 2, is measurable in the
sense that the set {(t,z,y) € T x E_ x E_ : y 2, =} belongs to
r ® A(E}) ® A(E,).

(3.4) Forallt € T, there exists 2(t) € X(t) such that e(t) — z(¢) belongs

to the norm interior of E,.

3.3 The Main Result. We are now ready to state our main
result:

Main Theorem. Let € be an economy satisfying (3.1)-(3.4). Then a
competitive equilibrium ezists in €.
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A couple of comments are in order. Note that at a first glance,
assumption (3.2) seems quite strong. In particular, traditionally the con-
sumption sets are bounded from below only. However, in economies with
a continuum of agents and commodities it has been shown by Zame (1987)
that without the upper bound on the consumption sets, an equilibrium
may not exist. Hence, if positive results need to be obtained the bound
on the consumption sets must be imposed. Of course, once the bound
on the consumption sets is imposed we are automatically in a world
of either weakly compact or weak* compact consumption sets. For in-
stance if the commodity space in any ordered (reflexive) Banach space
and the consumption sets are norm bounded and (weakly) weak* closed,
we can directly conclude by virtue of Alaoglu’s Theorem [see Dunford-
Schwartz (1966)] that the consumption sets are (weakly) weak* compact.

The weak compaciness of consumption sets is needed to ensure that
the set of all feasible allocations, i.e., F = {z € §% : [ z(t)du(t) <
Jre(t)du(t)} is weakly compact. In particular, under assumption (3.2)
it follows from Diestel’s Theorem that S is weakly compact and from
this we can conclude that F' is weakly compact as well. Notice that in
economies with finitely (or even countably) many agents and infinitely
many commodities the set of feasible allocations belongs to an order in-
terval. Since order intervals are typically compact in the “compatible”
topology that the commodity space is endowed with, the set of feasible
allocations is always compact in the “compatible” topology. For instance
if £ is an ordered (reflexive) Banach space endowed with the (weak)
weak™* topology, one can easily see that order intervals are norm bounded
and (weakly) weak” closed, hence, by Alaoglu’s Theorem (weakly) weak*
compact.

Since with a continuum of agents F does not belong to an order
interval such an argument cannot be followed. However, one can replace
assumption (3.2) by the fact that the set of all feasible allocations, i.e., F,
is weakly compact. The proof of the Main Theorem remains unchanged
in this case.

It is worth noting that even with a finite dimensional commodity
space and a continuum of agents the set of all feasible allocations F is
not compact in any topology. Nevertheless the use of the Fatou Lemma
in several dimensions enables one to dispense with the bound on the con-
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sumption sets [see for instance Aumann (1966) or Schmeidler (1969)].
However, since Fatou’s Lemma fails in infinite dimensional spaces [see for
instance Rustichini (1989) or Yannelis (1990a)] a similar argument with
that of Aumann or Schmeidler cannot be adopted. At this point we should
mention that the coalitional approach adopted by Zame does not require
the bound or the consumption set. In particular in this approach each
allocation is always in an order internal which is compact typically in the
topology that the commodity space is endowed with. However, as it was
noted by Zame (1987) the existence of a competitive equilibrium for the
conditional approach does not imply the existence of a competitive equi-
librium for the Aumann individualistic approach adopted in this paper,
unless the consumption sets are bounded. A more elaborate discussion of
the connection of the two approaches can be found in Zame.

We now briefly discuss the assumption of convexity of preferences.
One may wonder why the convexity assumption on preferences is needed.
In particular, one of the nice features of the Aumann economy is that one
can dispense with the assumption of convexity of preferences. In fact as
Aumann (1966) showed, the Lyapunov Theorem will enable us to con-
vexify the aggregate demand set and this makes applicable the standard
fixed point argument. However, in infinite dimensional spaces Lyapunov’s
Theorem fails [see Diestel-Uhl (1977)] and consequently without convex-
ity of preferences the aggregate demand set need not be convex. Hence,
again if positive results need to be obtained the assumption of convexity
of preferences must be imposed. [For further remarks on this issue see
Rustichini-Yannelis (1990).]

4. An Auxiliary Theorem

As in Aumann (1966) in order to prove our Main Theorem, we first
establish an auxiliary result. Recall that Aumann compactifies the econ-
omy and he proves a result for compact consumption sets [a similar aux-
iliary result was proved by Schmeidler (1969), as well]. Then using his
auxiliary result {(which is indeed the heart of the proof) he is able to com-
plete the proof of his main theorem. A similar idea will be adopted here.
In particular, we first establish an Auxiliary Theorem where consumption
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sets are norm compact. Once this result is available we proceed to com-
plete the proof of the Main Theorem as follows. We construct a suitable
family of truncated subeconomies each of which satisfies the assumptions
of the Auxiliary Theorem. By appealing to the Auxiliary Theorem we
can conclude that a competitive equilibrium exists in each subeconomy.
Therefore, we obtain a net of equilibrium consumption-price pairs for the
truncated subeconomies. The proof then is completed by extracting con-
verging subnets whose limit is a competitive equilibrium for the original
economy.

Below we state our Auxiliary Theorem which may be seen as the
infinite dimensional extension of Aumann’s (1966) Auxiliary Theorem.

Auxiliary Theorem. Let & be an economy satisfying (3.1), (3.2')-
(3-4). Then a competitive equilibrium ezists in E.

5. Proof of the Auxiliary Theorem

We begin by stating the following generalization of the Gale-Nikaido-
Debreu Lemma proved in Yannelis (1985).

Main Lemma. Let Y be a Hausdorff locally convez linear topological
space whose positive cone Y, has an interior point u. Let A = ipeY];
p-u = 1}. Suppose that the correspondence ¢ : A — 2Y satisfies the
Jollowing conditions:

(i) Forall p e A there exists z € ((p) such that p-z < 0,
(1) (: A — 2 is weak* u.s.c., (ie, : (A, w*)— 2Y is w.s.c.),

(iit) for allp € A, {(p) is nonempty, convezr and compact.
Then there ezists p € A, such that ((5) N (-Y,) #¢.

The Theorem below will be of fundamental importance for the proof
of our equilibrium existence theorem. It should also be noted that results
of the same nature with the Theorem below have found applications to
equilibrium points of non-cooperative models of competition [see for in-
stance Schmeidler (1973), Khan (1986), Khan-Papageorgiou (1987), and
Yannelis (1987, 1990a)].
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Theorem 5.1. Let (T,7,p) be a complete, finite, separable measure
space, Y be a separable Banach space, P be a metric space and X : T —
9Y be an integrably bounded, conver, weakly compact, nonempty valued
correspondence. Let D : TX P — 2Y be a nonempty, norm closed, convez

valued correspondence such that:

(i) for all (t,p) € T x P, D(t,p) C X(2),
(ii) for each fizedt €T, D(t,-) is norm u.s.c., and
(iii) for each fized p € P, D(: ,p) has a measurable graph.

Then the correspondence ¢ : P — 2% defined by ¢(p) = {ze Sk :z(t) €
D(t,p) for almost all t € T} is nonempty valued and weakly u.s.c.

Proof. (a) Since for each fixed p € P, D(-,p) has a measurable graph
and it is nonempty valued, it follows from the Aumann measurable selec-
tion theorem that there exists a measurable function f : T — Y such that
F(t) € D(t,p) for almost all ¢ in T'. Since D(:,-) is integrably bounded, f
is integrable and therefore f € ¢(p) for each p € P. Hence, ¢ is nonempty
valued.

(b) We now show that ¢ is weakly u.s.c. First, notice that by virtue
of Diestel’s Theorem, S is compact in the weak topology. Since by
assumption (T, 7, ) is a separable measure space, L,(p,Y) is separable
[Dunford-Schwartz (1958, p. 381)]. Since S is a weakly compact subset
of the separable Banach space L,(x,Y), by Theorem V.6.3 in Dunford-
Schwartz (1958, p. 334), 5% is metrizable. Given that §% with the weak
topology is a compact metrizable space, in order to prove that ¢ is weakly
u.s.C., it suffices to show that G ; is closed in P X 5% , where $1 isendowed
with the weak topology. To this end let p,, (n = 1,2,...) be a sequence
in P converging to p (in the metric topology), let y,, (n = 1,2,.. .) be
a sequence in S} converging weakly to y, and let y,, € #(p,). We must
show that y € ¢(p). Let A; = conlJ;y,;y; fori = 1,2,.... Since y,
converges weakly to y by Mazur’s Theorem [see for instance Dunford-
Schwartz (1958), Corollary 14, p. 422)] for each i = 1,2, ..., there exists
a sequence {z} in A; converging in norm to y. For any 5 > 0, we can
find n, such that ||z} — || < é. Similarly for m > 1, we can find n,,
such that ||z, — y|l < 5. Continuing this process we can construct a
sequence, appropriately relabeled {z,}, such that z, € con Ujsn ¥ and
z, converges in norm to y. Without loss of generality we can assume that
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z,(t) converges in norm to y(t) (otherwise pass to a subsequence) for all
teT/S,where S CT,p(S)=0. FixtinT/S. Since for each fixed t € T,
D(t,-) is norm for u.s.c., for every § > 0 we can find n, (n = 1,2,...)
such that for all ny > n we have D(t,p, ) C D(t,p) + 6B, (where B is
the open unit ball in Y'). Hence

con | J D(t,p,,) C D(t,p) + 6B = z,(t) € D(t,p) + 6B

ng2n

= y(t) € D(t,p) + éB.

By letting 6 go to zero, we conclude that y(t) € D(t,p). Sincet € T/S was
arbitrary, y(t) € D(t,p) for almost all ¢ in 7. Finally since D(t,p) C X (1)
for all t € T and D(-,-) is integrably bounded, we can conclude that
y € &(p). This completes the proof of the Theorem.

Corollary 5.1, Let D : T x P — 2Y be a correspondence satisfying all
the assumptions of Theorem 5.1. Then,

(i) [ D(:,p) is nonempty, and
(ii) [ D(t,-) is weakly u.s.c.

Proof. (i) Since for each p € P, 9(p) # ¢, it follows that [ D(-,p)is
ncnempty.

(i) We now show that [ D(t,-) is weakly u.s.c. Define ¢ : P — 25k
by ¥(p) = {y € Sk : y(t) € D(¢,p) for almost all ¢ in T}. Let f :
S% — Y be a mapping defined by f(¢(p)) = [ D(t,p). Clearly f is norm
continuous and linear. It is a standard result [see for instance Aliprantis-
Burkinshaw (1985, Theorem 9.16, p. 139) or Dunford-Schwartz (1958,
Theorem 15, p. 422)] that f is also weakly continuous. By Theorem 5.1,
1 is weakly u.s.c. and so is f(%). Hence, [ D(t,-) is weakly u.s.c. and
this completes the proof of the Corollary.

Remark 5.1. The separability assumption on the measure space
(T,7,p) in Theorem 5.1 and Corollary 5.1 is not needed provided the
reader follows the argument in Yannelis (1990a, Theorem 5.4 and Re-
mark 5.1).

Observe that conclusions (i) and (ii) of the above corollary have been
proved by Aumann (1965, 1976) for ¥ = R’ Hence the above corol-
lary may be seen as an extension of Aumann’s result. Conclusion (ii) of
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Corollary 5.1 can be also obtained as a corollary of the infinite dimen-
sional version of Fatou’s Lemma proven in Yannelis (1988). For a further
discussion on this see Yannelis (1990a).

The following result proved in Yannelis (1988, Lemma 3.1) is the
infinite dimensional extension of Theorem 4 in Aumann (1965).

Lemma 5.1. Let (T,7,1) be a complete finite measure space and ¥ be
a separable Banach space. Let ¢ : T — 2Y be a closed, convez valued
correspondence such that ¢(t) C X(t) for allt € T, where X : T —
2Y is an integrably bounded, nonemply, weakly compact, convexr valued
correspondence. Then,

/q&(t)d,u(t) is weakly compact.
T

Notice that Aumann (1965) does not require ¢(-) to be convex valued.
However, it can be easily shown that the above result is false without the
convex valuedness of ¢ [see Rustichini (1989) or Yannelis (1990a)).

We now state a recent result proved in Khan-Vohra (1985, Theo-
rem B, p. 331).

Lemma 5.2. Let {2, : k € K} be a net in B, where B is a weakly
compact subset of a Banach space, and suppose that z, converges weakly
to z. Then we can eztract a sequence {z, : n = 1,2,...} from the net
{z, : k € K} which converges weakly to z.

With all these preliminary results out of the way, we can now com-
plete the proof of the Auxiliary Theorem.

Let A = {p € E} : p-u = 1} be the price space. It follows from
Alaoglu’s Theorem [Jameson (1970, p. 123)] that A is weak™ compact.
Moreover, since E is a separable Banach space, A is metrizable, [Dunford-
Schwartz (1958, p. 426)]. For p € A and t € T, let the budget set be
B(t,p) = {z € X(t) : p-z < p-e(t)}. Since for each t € T, X(t) is
norm compact and A is weak* compact, the bilinear form (p,z) = p- =z
is jointly continuous [see for instance Yannelis-Zame (1986) Lemma A,
p. 107]. Hence, it follows from assumption (3.4) that for each fixed t € T,
B(t,-) is continuous and a standard argument can be adopted to show
that for each fixed t € T', D(t,-) is u.s.c. in the sense that the set {p € A :
D(i,p) C V} is weak™ open in A for every norm space subset V of E,.



M. Ali Khan and Nicholas C. Yannelis 243

Since 2, is convex, transitive and complete, a standard argument shows
that D(-,-) is convex and nonempty valued. We will show that for each
fixed p € A, B(-,p) has a measurable graph. To see this for p € A, define
9p : TXE — [~00,00] by g,(t,2) = p-z—p-e(t). Clearly, g, is measurable
in ¢ and continuous in z, and hence by a standard result [see for instance
Yannelis (1990, Proposition 3.1)], g,,(-, ) is jointly measurable. Therefore,
95 1([-00,0]) € 7 ® B(E). It can be easily checked that

Gp.py ={(t,2) €T X X(t):p-z < p-e(t)}
= g, ([-00,0]) N G-

Since by assumption X (-) has a measurable graph it follows that for
each fixed p € A, Gpg.,) € 7 ® B(E). Since (T,7,u) is a complete
measure space and B(-,-) is closed valued, it foliows [see for instance
Yannelis (1990, Lemma 3.1)] that for each fixed p € A, B(-,p} is lower
measurable. Hence, by Castaing’s Representation Theorem [see Yannelis
(1990)] there exists a family {f, : n = 1,2,...} of measurable functions
fo:T — Esuchthatforallt € T, cd¢{f,(t) : t € T} = B(t,p) (where cl
denotes norm closure). Forn = 1,2,... let

D.(t,p) ={y € B(t,p) 1y 24 fu(D)}-

Since >, and B(-,p) have measurable graphs so does D, (-, p). We wish
to show that D(t,p) = oz, D.(t,p). Obviously, D(t,p) C D,(t,p)
for each n, (n = 1,2,...). We now show that (., D, (¢,p) C D(t,p).
Suppose otherwise, i.e., there exists z € (o, D,(t,p) and z ¢ D(t,p),
i.e., there exists y € B(?,p) such that y 2, z. Notice that by assumption
the set {w € B(t,p) : w 2, z} is norm closed in B(t,p). Since the family
{f,(1) : n=1,2,...} is norm dense in B(Z,p) we can find an n; such that
fao(t) Z¢ 2, a contradiction. Hence, D(t,p) = (o2, D,(t,p) and since
for each fixed p € A, D, (-,p) (n = 1,2,...) have measurable graph so
does D(-,p).

Define the excess demand correspondence ¢ : A — 2F for the econ-

omy & by
((p) = ]T D(t, p)du(t) — JL e(t)dp(t).

We must show that ( satisfies all the conditions of the Main Lemma.
Clearly, for each p € A, {(p) convex valued and p - ((p) £ 0. Since
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for each fixed p € A, D(-,p) has a measurable graph and is nonempty
valued, the first conclusion of Corollary 4.1 assures that [ D(-,p) is
nonempty and therefore, ((p) is nonempty for each p € A. Since for
each fixed t € T, D(2,-) is u.s.c. and D(-,-) is convex, closed valued and
D(t,p) C X(¢) for allt € T, where X : T — 2E+ is integrably bounded,
norm compact, convex, nonempty valued, it follows from the second con-
clusion of Corollary 5.1 that [ D(2,-) is weakly u.s.c. and so ( is weakly
w.s.c. as well. Finally, it follows from Lemma 5.1 that [. D(t,p)dpu(t)
is weakly compact, and hence, {(p) is weakly compact for each p € A.
‘Consequently, ( satisfies all the assumptions of the Main Lemma and
therefore that there exist (7,Z) such that £ € ((p) and Z < 0, ie.,
z = [ f()du(t) — [re(t)du(t) < 0 and f(t) € D(1,p) for almost all
t € T. Hence (5, f) is 2 competitive equilibrium and this completes the
proof of the Auxiliary Theorem.

6. Proof of the Main Theorem

Let F be a famﬂy of all nonempty, norm compact, convex subsets
of E, containing the initial endowments. For each F' € F define the
consumption correspondence X : T — 2F+ by

XF = FnX(t).

Moreover, for each F € F let >F be the preference relation of agent ¢
induced on F. Let %, = {z € Ly(n, E,) : 2(t) € XF(2) for almost all ¢
inT}.

We now have a truncated economy £F = [(T, 7, 1), X¥, >, €] which
is easily seen that satisfies all the assumptions of the Auxiliary Theorem.
Consequently, a competitive equilibrium in EF exists, i.e., there exist
(ppy2p), pp € E3/{0}, zp € Sk F such that:

(i) zz(t) € D(t,pp) for almost all ¢ in T, and
(i) fpor(du(t) < fre(®)du(t)

Since for each X is weakly compact, nonempty, and convex valued,
by Diestel’s Theorem, S% is weakly compact in L,(g, E,). Observe that
for each F € F,zp € A= {y € §% : [ry(®)du(t) < [, e(t)dp(t)}. It can
be easily checked that A is convex and norm closed and as a consequence
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of the Separation Theorem weakly closed. Since S, is weakly compact,
we can conclude that A is weakly compact as well. Notice that for each
F e 3, zp € A, and F is net directed by inclusion. Hence, the net
{zp : F € F} has a subset, still denoted by 2z, which converges weakly
to Z € A. Moreover, for each F € F, pp liesin A = {g € Yl:q-u=1}
and the latter set is weak® compact. Hence, from the equilibrium net
{(pp,zp) : F € F} we can always extract convergent subnets. It is clear
that [ Z(t)du(t) < [, e(t)du(t), ie., Z is a feasible allocation. We must
now show that the limiting allocation Z(¢) is maximal in the budget set,
for almost all ¢ in 7', in order to complete the proof. We know that for
each FF € J, zx(t) € D(t,pp) for almost all t in T, and zp converges
weakly to Z. Since the net {zp : F € F} lies in the weakly compact
set A, by Lemma 5.2 we can extract a sequence z,, (n = 1,2,...) from
the net {zp : F € F} which converges weakly to Z € A. Corresponding
to the sequence z,,, (n = 1,2,‘..) we can also extract a sequence p,,
(n =1,2,...) from the net {pp : F € F}. Obviously, p, belongs to A,
and p, has a subsequence still denoted by p, which converges weak* to

D-

Therefore, we have a sequence {(p,,z,):n =1,2,...} such that p_
converges weak* to pand z,, converges weakly to Z. Since z, (1) € D(¢,p,,)
for almost all ¢ € T and D(¢,p,) is contained in X(z) we have that
z, € ¢(p,) = {y € S% : y(t) € D(i,p,) for almost all ¢ in T}. By
Theorem 5.1 the correspondence ¢ : A — 25x is weakly u.s.c. and closed
valued and thus we can conclude that z € ¢(p), i.e., Z(¢) € D(t,p) for
almost all ¢ in T. Hence, Z(t) is maximal in the budget set for almost all
tin T and this completes the proof of the Theorem.

7. Concluding Remarks

Remark 7.1. As in Aumann (1965), we assumed that agents’ pref-
erences are complete. Schmeidler (1969) showed that the completeness
assumption can be dropped from the Aumann model. However, this is
not the case with infinitely many commodities. Specifically, without the
completeness assumption on preferences, Mas-Colell (1974) showed that
even if preferences are convex, the demand set may not be convex and
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therefore the aggregate demand set may not be convex. Of course such a
problem does not arise in Schmeidler’s framework since with an atomless
measure space of agents and finitely many commodities the aggregate de-
mand set is always convex as a consequence of the Lyapunov Theorem.
[This is also the case in Rustichini-Yannelis (1990) where the economy
has “many more” agents than commodities and there is a convexifying

effect on aggregation.]

Remark 7.2. If the convexity assumptions on preferences is relaxed
from our model, once we assume that the measure space of agents is
atomless, then we can easily prove the existence of an approximate or 4-
competitive equilibrium. In particular, one can convexify the demand set
D(t,p) by taking its closed convex hull, i.e., cenD(t,p). [Notice that for
each fixed t € T, conD(t,p) is u.s.c. and for each fixed p € A, conD(-, p)
has a measurable graph.] Note that by Theorem 1 in Khan (1986) [see
also Yannelis (1990a, Theorem 6.3)] we have that

d /T D(t, p)du(t) = /T SaD(, p)du(t)-

Proceeding now as in the proof of the Auxiliary Theorem one can eas-
ily show that z(t) € D(,p) for almost all ¢ in T and || [ z(t)du(t) -
[re(t)du(t)l] < 6. Note that now the completeness assumption on pref-
erences is not needed (recall Remark 7.1).

Remark 7.3. The space C(X), i.e., the space of continuous functions
on the compact metric space X with the sup norm is an ordered separable
Banach space whose positive cone has a nonempty norm interior. Hence,
the Main Theorem covers C(X). It is important to note that in this
space even if the set of agents is finite one cannot relax the bound from
the consumption sets. In particular, since order intervals are not compact
in any topology, one cannot conclude that the set of all feasible allocations
(which always lie in an order interval) is compact. Finally, it is important
to note that our Main Theorem covers L__(f2), i.e., the space of essentially
bounded measurable functions on the measure space 1, with the sup
norm. This is due to the fact that weakly compact subsets of L, are
norm separable [see for instance Diestel-Uhl (1977, Theorem 13, p. 252)].
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