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Abstract: This paper contains the following results for ecohomies with infinite dimensional 
commodity spaces. (i) We establish a core-Walras equivalence theorem for economies with an 
atomless measure space of agents and with an ordered separable Banach commodity space 
whose positive cone has a non-empty norm interior. This result includes as a special case the 
Aumann (1964) and Schmeidler-Hildenbrand [Hildenbrand (1974, p. 33)] finite dimensional 
theorems. (ii) We provide a counterexample which shows that the above result fails in ordered 
Banach spaces whose positive cone has an empty interior even if preferences are strictly convex, 
monotone weakly continuous and initial endowments are strictly positive. (iii) Using the 
assumption of an ‘extremely desirable commodity’ (which is automatically satisfied whenever 
preferences are monotone and the positive cone of the commodity space has a non-empty 
interior), we establish core-Walras equivalence in any arbitrary separable Banach lattice whose 
positive cone may have an empty (norm) interior. 

1. Introduction 

Two of the most widely used solution concepts in economic theory are the 
competitive equilibrium and the core. The first concept is usually associated 
with Walras, and refers to the non-cooperative allocation of resources via a 
price system. The essential idea behind this concept is that when agents are 
assumed to know only the price system (which they treat parametrically) and 
their own preferences and endowments, then are allowed to trade freely in a 
decentralized market, this process results in allocations which maximize 
agents’ utilities (subject to their budgets) and equate supply with demand. 

*This is a revised version of our paper entitled ‘Core-Walras Equivalence in Economies with 
a Continuum of Agents and Commodities’, written in 1986. We are indebted to Jean-Francois 
Mertens for his thoughtful comments and suggestions. Also we would like to acknowledge 
helpful discussions with Harrison Cheng M. Ali Khan, Joe Ostroy, Ket Richter, and Bill Zame. 
A referee helped us improve the final version, and thanks are due to him for his useful 
comments. Needless to say, we are responsible for any remaining shortcomings. 
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The second concept is usually associated with Edgeworth, and refers to the 
allocation of resources via a pure quantity bargaining process. The essential 
idea behind this concept is that when agents are allowed to bargain freely 
(either multi- or bilaterally), this process leads to an allocation of resources 
where it is not possible for any coalition of agents to redistribute their initial 
endowments among themselves in any way that makes each member of the 
coalition better off. Thus, in contrast to the competitive equilibrium, the core 
allows for the possibility of cooperation among agents in the economy. 

A classical conjecture about the relationship between these two concepts, 
attributed to Edgeworth, is that the core shrinks to the competitive 
equilibrium as the number of agents in the economy becomes large. This 
conjecture, often called the Edgeworth conjecture, and indeed the notion of 
the core (although not by this name) were first discussed by Edgeworth in 
1881. However, the core was not the subject of modern research until it was 
formally introduced in the general (mathematical) theory of games by Gillies 
in 1953. Aumann (1964), in a pathbreaking paper, reformulated rigorously 
the Edgeworth conjecture by showing that in perfectly competitive economies 
(i.e., economies with an atomless measure space of agents) with finitely many 
commodities, the core coincides with the competitive (or Walrasian) equili- 
brium. Hence, in perfectly competitive economies, core allocations completely 
characterize competitive equilibrium allocations. 

The formal proof of this coincidence result has come to be known as the 
core-Walras equivalence theorem. In the past two decades, many researchers 
have studied this problem extensively in economies with finitely many 
commodities. This research has led to very general core-Walras equivalence 
results and approximate core-Walras equivalence results in economies with 
finitely many commodities. However, since our goal in this paper is to study 
core-Walras equivalence results in economies with infinitely many commod- 
ities, we will not elaborate further on these finite dimensional results except 
where they have particular bearing on our work. However, we do refer the 
reader to Anderson (1986) or Emmons and Yannelis (1985) for a survey of 
this interesting literature. 

Before proceeding to a discussion of the main results of our paper, it may 
be useful to discuss the general importance of infinite dimensional com- 
modity spaces in economics. As others have observed [e.g., Court (1941), 
Debreu (1954), Gabszewicz (1968), Bewley (1970), Mertens (1970), Peleg and 
Yaari (1970)], infinite dimensional commodity spaces arise very naturally in 
economics. In particular, an infinite dimensional commodity space may be 
desirable in problems involving an infinite time horizon, uncertainty about 
the possibly infinite number of states of nature of the world, or infinite 
varieties of commodity characteristics. For instance, the Lebesgue space L, 

of bounded measurable functions on a measure space considered by Bewley 
(1970), Gabszewicz (1968) and Mertens (1970) is useful in modeling uncer- 
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tainty or an infinite time horizon. The space L, of square-integrable 
functions on a measure space is useful in modeling the trading of long-lived 
securities over time. 

In this paper, we study core-Walras equivalence results for perfectly 
competitive economies with an infinite dimensional commodity space which 
is general enough to include all of the spaces that have been found most 
useful in equilibrium analysis. ’ The results that we obtain in this context 
are three-fold: 

Firstly, we prove core_Walras equivalence results for perfectly competitive 
economies with an infinite dimensional commodity space whose positive cone 
has a non-empty (norm) interior. Parts of this problem have been addressed 
by other researchers [i.e., Gabszewicz (1968), Mertens (1970) and Bewley 
(1973) for the space L,]. However, since our assumptions are less restrictive 
than those adopted in these previous papers, we obtain as corollaries of our 
results the finite dimensional theorems of Aumann (1964) and Hildenbrand 
(1974, Theorem 1, p. 133). The proof of this result is similar in spirit to that 
of Hildenbrand (who attributes the idea of the proof to Schmeidler), except 
that owing to the infinite dimensional setting, we appeal to results on the 
integration of correspondences having values in a Banach space. The work of 
Khan (1985) is especially helpful in this regard. 

Secondly, in infinite dimensional commodity spaces whose positive cone 
has an empty (norm) interior, we show that even under quite strong 
assumptions on preferences and endowments, core-Walras equivalence fails. 
In particular, we show. that even when preferences are strictly convex, 
monotone, and weakly continuous and initial endowments are strictly 
positive, core-Walras equivalence fails to hold. It is interesting to note that 
this failure results despite the fact that these assumptions are much stronger 
than the standard assumptions which guarantee equivalence in either 
Aumann and Hildenbrand or our first theorem. 

Thirdly, we obtain core-Walras equivalence for infinite dimensional com- 
modity spaces (in particular, Banach lattices) whose positive cone may have 
an empty (norm) interior and are general enough to cover the spaces L, 
(1 s p < co). In view of the above counterexample to core-Walras equivalence 
in spaces whose positive cone has an empty interior, we use the assumption 
of an extremely desirable commodity introduced in Yannelis and Zame 

‘Recently, substantial progress has been made in establishing existence results for the 
competitive equilibrium in exchange economies with finitely many agents and with a commodity 
space which is general enough to-encompass all the spa&s mentioned above [see for instance 
Mas-Cole11 (1986) or Yannelis and Zame (1986) among othersl. Moreover. some orogress has 
been made in odtaining equilibrium existdnce iesults for perfectly competitive e&no&es, i.e., 
economies with an atomless measure space of agents B la Aumann (1966) and with an infinite 
dimensional commodity space [see for instance, Khan and Yannelis (1986), Yannelis (1987), and 
Zame (1987)]. However, the core has received significantly less attention in infinite dimensional 
settings. 
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(1986), which in turn is related to the condition of uniform properness in 
Mas-Cole11 (1986).2 This assumption is essentially a bound on the marginal 
rates of substitution, and in practice turns out to be quite weak. For instance 
it is automatically satisfied whenever preferences are monotone and the 
positive cone of the commodity space has a non-empty (norm) interior. 
Hence, this assumption is implicit in any infinite dimensional commodity 
space whose positive cone has a non-empty interior, and is automatically 
satisfied in the finite dimensional work of Aumann (1964) and Hildenbrand 
(1974). We also wish to note that in addition to the assumption of an 
extremely desirable commodity, the lattice structure of the commodity space 
will play a crucial role in our analysis. 

The remainder of the paper is organized as follows: Section 2 contains 
notation and definitions. The economic model is outlined in section 3. In 
section 4 we state and prove a core-Walras equivalence theorem for an 
ordered separable Banach space of commodities, whose positive cone has a 
non-empty (norm) interior. The failure of this result for spaces whose positive 
cone has an empty interior is established in section 5. In section 6, we prove 
a core-Walras equivalence result for a commodity space which can be any 
arbitrary separable Banach lattice, whose positive cone may have an empty 
(norm) interior. Finally, some concluding remarks are given in section 7. 

2. Notation and definitions 

2.1. Notation 

R’ denotes the l-fold Cartesian product of the set of real numbers R. 
int A denotes the interior of the set A. 
2A denotes the set of all non-empty subsets of the set A. 
0 denotes the empty set. 

I denotes the set theoretic subtraction. 
dist denotes distance. 
If A c X where X is a Banach space, cl A denotes the norm closure of A. If X 
is a Banach space its dual is the space X* of all continuous linear functionals 
on X. 
If 4 E X* and y E X the value of q at y is denoted by q. y. 

2.2.Definitions 

Let X, Y be sets. The graph of the correspondence 4:X+2’ is denoted by 

*It should be noted that a precursor of the assumption of uniform properness is in 
Chichilnisky and Kalman (1980). In particular, in order to apply Hahn-Banach-type separation 
theorems in spaces whose positive cone has an empty interior, they introduced a related 
assumption with that of uniform properness used by Mas-Colell. 
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G, = {(x, y) E X x Y: y E &x)f. Let (T, r, p) be a finite measure space, and X be 
a Banach space [for a treatment of infinite dimensional vector spaces see 
Aliprantis and 
said to have a 
Bore1 a-algebra 
is called simple 
that 

n 

Burkinshaw (1978,1985)]. The correspondence $:-T+2’ is 
measureable graph if G+Ez@P(X), where b(X) denotes the 
on X and 0 denotes product a-algebra. A function f: T-+X 
if there exist xi, x2,. . .,x, in X and a,, a2,. . . , a, in z such 

f = 1 xiXa, where xOi(t)= 1 if team and 
i=l 

x,,(t)=0 if t$ai. 

A function f: T-+X is said to be p-measurable if there exists a sequence of 
simple functions f.: T+X such that lim,,, IIf,( f(t)lI=O p-a.e. A p- 
measurable function f: T--+X is said to be Bochner integrable if there exists a 
sequence of simple functions {f,: n = 1,2,. . . } such that 

lim j ((f,(t)-f (t)((G(t)=O. 
n+m T 

In this case we define for each EEZ the integral to be fEf(t) dp(t) = 

lim,+, jE f,(t) G(t). It can easily be shown [see Diestel and Uhl (1977, p. 
431 that if f : T-+X is a p-measurable function then f is Bochner integrable 

if and only if ST((f(t)((dA ) t < co. We denote by L,(p,X) the space of 
equivalence classes of X-valued Bochner integrable functions x: T+X 

normed by (Ix(I =JT IIx(t)ll Mt). M oreover, we denote by S, the set of all 
X-valued Bochner integrable selections from the correspondence c$: T+2x, i.e. 

S,= {~EL~(p,X):x(t)~c$(t)p-a.e.}. 

As in Aumann (1966), the integral of the correspondence 4: T+2X is 
defined as 

s d(t) d/44 = s 4~) d/4+ x ES, . 
T T 

In the sequel we will denote the above integral by 
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3. Economy, core and competitive equilibrium 

Denote by E the commodity space. Throughout this section the com- 
modity space E will be an ordered Banach space [see Aliprantis and 
Burkinshaw (1985)]. We will denote by E, and E- the positive and negative 
cones of E, respectively. 

An economy E is a quadruple [(T z, p), X, > , e], where 

(1) (T, r, p) is a measure space of agents, 
(2) X: T+2E is a consumption correspondence, 
(3) >,cX(t) x X(t) is the preference relation3 of agent t, and 
(4) e: T+E is the initial endowment, where e is Bochner integrable and 

e(t) E X(t) for all t E 7: 

An allocation for the economy E is a Bochner integrable function x: T-P 
E,. An allocation x is said to be feasible if ITx(t) d,u(t) =I=e(t)dp(t). A 
coalition S is an element of r such that p(S) > 0. The coalition S can improve 
upon the allocation x if there exists allocation g such that 

(i) g(t)>tx(t) ya.e. in S, and 

(ii) JS g(t) 444 = JS e(t) 440. 

The set of all feasible allocations for the economy E that no coalition can 
improve upon is called the core of the economy E and is denoted by C(E). 

An allocation x and a price pi E*, \{O} are said to be a competitive 
equilibrium (or a Walras equilibrium) for the economy E, if 

(i) x(t) is a maximal element of >t in the budget set 

{yEX(t):p.ySp.e(t))p-a.e., and 

(3 ST x(t) G(t) = ST e(t) 44t). 
We denote by W(E) the set of all competitive equilibria for the economy E. 

4. Cor+Walras equivalence in ordered Banach spaces whose positive cone has 
a non-empty norm interior 

We begin by stating some assumptions needed for the proof of our 
core-Walras equivalence result. 

A.1. E is an ordered separable Banach space whose positive cone E + has a 
non-empty norm interior, i.e., int E + # 0. 

3> is defined to be the asymmetric part of the weak preference relation 2, i.e., we say that 
x > y if and only if x&y and not y2.x. This is not needed for Theorem 4.1. However, it is used 
in the proof of Theorem 6.1. 
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A.2. (Perfect Competition). (17;z,p) is a finite atomless measure space. 

A.3. X(t)=E+ for all JET 

A.4. (Resource Availability). The aggregate initial endowment jTe(t) dp(t) 
is strictly positive,4 i.e., J e >>O. 

A.5. (Continuity). For each XEE, the set {yeE+:y >tx} is norm open in 
E, for all LET. 

A.6. >t is irreflexive and transitive for all t E T 

A.7. (Measurability). The set ((t,y)E T x E+:y >tx} belongs to 20/?(E+). 

A.8. (Monotonicity). If xEE+ and UEE+\{O), then x+u >,x for all te ?: 

We are now ready to state our first result. We wish to note that this result 
for E = C(X) [where C(X) denotes the space of continuous functions on a 
compact metric space X] was first proved by Gabszewicz, and it is attributed 
to him. 

Theorem 4.1. Under assumptions A.I-A& C(E) = W(E). 

Remark 4.1. Note that the assumptions of the above theorem correspond to 
those in Aumann (1964) in the setting of an ordered separable Banach space 
E of commodities. It can easily be seen that for E = R’, Theorem 4.1 gives as 
a corollary Aumann’s (1964) core equivalence result [as well as Hilden- 
brand’s (1974, Theorem 1, p. 133) core-Walras equivalence theorem]. It may 
be instructive at this point to note that Bewley’s (1973) infinite dimensional 
extension of Aumann’s core equivalence theorem does not provide the above 
results as a corollary because it is based on stronger assumptions than those 
adopted by Aumann and Hildenbrand. 

4.1. Proof of Theorem 4.1 

The fact that W(e)c C(E) is well known, and therefore its proof is not 
repeated here. We begin the proof by assuming that the allocation x is an 
element of the core of E. We wish to show that for some price p, the pair 
(x,p) is a competitive equilibrium for E. 

To this end, define the correspondence q5: T+2E+ by 

4We will say that an element x of E is strict/y positive (and write x>>O) if lZ.xrO whenever ll 
is a positive non-zero element of E, . 
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4(t)= {zc E+:z >tx(t)} u {e(t)}. 

We claim that: 

or equivalently,5 

Suppose otherwise, i.e., 

then there exists v lint E + such that 

Je-vEJf$. 

It follows from (4.4) that there exists a function y: T+E+ such that 

and y(t) E d(t) p-a.e. 
Let 

S= {t: y(t) >tx(t)), 

f={t:y(t)=e(t)}. 

Since jy#J e we have that 

and 

,u(S)>O. Detine j?S+E+ by y(t)=y(t)+v/~(S) for 
all t E S. By monotonicity (assumption A.8) F(t) boy. Since y(t) >t~(t) for 
all t E S, by transitivity (assumption A.6) y”(t) > ,x(t) for all t E S. Moreover, it 
can be easily seen that F(.) is feasible for the coalition 5, i.e., 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

5This is so since int E _ is an open set. In particular, if A and B are subsets of any topological 
space and B is open, then it can be easily seen that A n B= 0 if and only if cl A n B= 0. 
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jY=jy+u=Sy-J e+u=je- j e=Je [recall(4.5)]. 
s s T S’ T S’ s 

Therefore, we have found an allocation jj(.) which is feasible for the coalition 
S and is also preferred to the allocation x, which in turn was assumed to be 
in the core of E, a contradiction which establishes the validity of (4.2). 

We may now separate the set cl(J4-Ie)=cl j b-se from int E-. Clearly 
the set int E _ is convex and non-empty. We wish to show that cl [ 4 - j e is 
convex and non-empty as well. Observe first that by the definition of +(.), 0 
is an element of J f$ - J e and this shows that cl j 4 - j e is non-empty. Since 
(IT: z,~) is atomless (assumption A.2) by Theorem 1 in Khan (1985) or 
Theorem 4.2 in Hiai and Umegaki (1977), cl j 4 is convex. Thus, by Theorem 
9.10 in Aliprantis and Burkinshaw (1985, p. 136) there exists a continuous 
linear functional p E E*\(O), p 2 0 such that 

p.yzp.Je for all yEj& (4.6) 

Since by assumption A.6, >t has a measurable graph, so does 4, i.e., 
G$E@B(E +). Therefore, it follows from Theorem 2.2 in Hiai and Umegaki 
(1977) that 

inf p. y=J inf p.zzJp+e. 
YCld 204 

(4.7) 

It follows from (4.7) that 

I*-a.e. p.zzp.e(t) for all z >r~(t). (4.8) 

To see this, suppose that for z E +( *), p * z c p * e(t) for all t E S, p(S) ~0. 
Define the function 5: T + E + by 

z”(t) = 

i 

z(t) if t ES 

e(t) if t$S. 

Obviously, Z E b( .). Moreover, 

Jp.Z=Jp.z+ f p.e 
T S T\S 

<Sp-e+ J p-e=Sp*eP 
S T\S 

a contradiction to (4.7). 
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We now show that p-a.e. p-x(t) =p. e(t). First note that if follows directly 
from (4.8) that p.x(t)zp.e(t) Cc-a.e. If now P’x(t)>p.e(t) for all YES, 
~(5) > 0, then 

P~~x=P~.fsx+P*Jx 
s 

>p. J e+p.Je=p.Je, 

T\S s T 

contradicting ST x = jT e, since p 2 0, p # 0. 
To complete the proof we must show that x(t) is maximal in the budget 

set {z E E,: p' zsp. e(t)} p-a.e. The argument is now routine. Since Jre is 
strictly positive (assumption A.4) it follows that p({t:p.e(t)}) >O, for if 
p.e(t) =0 p-a.e., then p.jTe=O contradicting the fact that JTe is strictly 
positive since p 2 0, p # 0. 

Thus, we can safely pick an agent t with positive income, i.e., p. e(t) >O. 
Since p.e(t) >O there exists an allocation x’ such that p.x'<p*e(t). Let y be 
such that p. y jp .e(t) and let y(l) =Ix'+(l - A)y for IE(O, 1). Then for any 
;1~(0,1), p.y(A)<p.e(t) and by (4.8) y(1) #,x(t). It follows from the norm 
continuity of > f (assumption AS) that y #tx(t). This proves that x(t) is 
maximal in the budget set of agent t, i.e., {w:p.wSp.e(t)). This, together 
with the monotonicity of preferences (assumption A.8) implies that prices are 
strictly positive, i.e., p>>O. Indeed, if there exists UEE+\{O} such that p-u=0 

then p.(x(t)+u)=p.x(t)=p-e(t) and by monotonicity x(t)+u >t~(t) contra- 
dicting the maximality of x(t) in the budget set. 

Thus p>>O and x(t) is maximal in the budget set whenever p. e(t) > 0. 
Consider now an agent t with zero income, i.e., p * e(t) = 0. Since p>>O his/her 
budget set {z: p * z =0} consists of zero only, and moreover, p. x(t) =p' e(t) =O. 
Hence, x(t) =0 for almost all t E 7: with p. e(t) =O; i.e., zero in this case is the 
maximal element in the budget set. Consequently, (p,x) is a competitive 
equilibrium for E, and this completes the proof of Theorem 4.1. 

5. The failure of the cor*Walras equivalence in commodity spaces whose 
positive cone has an empty interior 

In the previous section we showed that if the commodity space is an 
ordered separable Banach space E whose positive cone has a non-empty 
norm interior (i.e., int E, #a), then the standard assumptions (i.e., the 
assumptions of Theorem 4.1) guarantee core-Walras equivalence. We now 
show that if the assumption that the positive cone of the space E has a non- 
empty norm interior is dropped, then Theorem 4.1 fails. The following 
example will illustrate this. 
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Example 5.1. Consider the economy E = [(IT: r, p), X, > , e] where, 

(1) the space of agents is T = [0, 11, r = Lebesgue measurable sets, p= 
Lebesgue measure, 

(2) the consumption set of each agent is, X(t) = Z: for all t E T, where I, is the 
space of real sequences (a,) for which the norm l\a,j/ =(c ~u,,~~)‘~~ is finite, 

(3) the preference relation of each agent bt, is represented by a strictly 
concave, monotone weakly continuous utility function, i.e., u,(x) = 
cz1 iK2(1-exp(-i2xi)) for all tE7; and 

(4) the initial endowment of each agent is e(t) = e = ( l/i2),p”_ I for all t E T. 

We will show that for the above economy, C(E) #@ and W(E) =12/. In 
particular, we will show that the core of E is unique and consists of the initial 
endowment e, i.e., C(E)= {e} and W(E) =@. The latter [i.e., W(E) =a] will 
easily follow from the fact that C(E) = {e}. Indeed, since W(s)cC(s), 
W(s)c{{e}, 0}, but the only candidate as a supporting price p for the 
allocation e are multiples of p=( 1, 1,. . .) which are not in the dual of I,. 
Hence, all we need to show is that C(s)=(e). 

To prove that C(E)= {e} we will first need to show that e is Pareto 
optimal, i.e., there does not exist a feasible allocation x such that 
u(x(t))zu(e) for all teT and u(x(t))>u(e) for all tES, ScT, p(S)>0 (note 
that the subscript t on u is dropped). To this end suppose by way of 
contradiction that there exists an allocation x such that ST x = jT e= e, 
u(x(t)) zu(e) for all TV T and u(x(t)) >u(e) for all t~s, p(S) >O. Without loss 
of generality we may assume that there exist positive real numbers v, 6, with 
u(x(t)) 2 u(e) + v, t E S, p(S) = 6. Extend x to 1 defined on the interval rO.11 as 
Z(t) =x( - [t]), ([t] = the integer part of t), and let 

Then 

1 k-l 

21 1 (l/k)u 1 t+f 
U >> 

dAt) 
0 i=O 

=bu(x(f))dp(t)>u(e)+v& (5.1) 

Notice that each coordinate of xk(.), denoted by xl(*) (an L,[O, l] function), 
converges to er p-a.e. (indeed in I,,), so 
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for almost all t in T; so xk(t) converges weakly in lz to e. Since u is weakly 
continuous it follows that u(xk(t))+u(e) p-a.e. Notice that by definition, u is 
bounded. In particular, u(x) <rc2/6 for every x~li [recall the definition of 
u(e) in (3)] and therefore by the Lebesgue dominated convergence theorem 

lim 3 u(xk(t)) dp(t) = i 1’ im u(xk(t)) dp(t) = u(e) = u(j e), 
k-m0 Ok+m 

a contradiction to (5.1). Thus, e is Pareto optimal. 
We are now ready to complete the proof of the fact that C(E) = {e}. To this 

end we first show that 

CM = M. (5.2) 

Suppose that (5.2) is false, then there exists an allocation x E C(E) such that 
x(t) #e for all YES, p(S)>O. Let Z=(x+e)/2, then f is feasible and for all 
tc7; 

u(g(t)) >fu(x(t)) +fu(e) 

[recall that u(x(t)) zu(e) for all t E T since XE C(E)]. Moreover, by strict 
concavity of u(.) we have that 

u(Z(t)) > u(e) for all t e S, 

a contradiction to the fact that e is Pareto optimal. 
We now show that 

{e> c C(E). (5.3) 

Suppose that (5.3) is false, then there exists a coalition S and an allocation 
x such that Is x = is e and u(x(t)) > u(e) for all t E S. Define the allocation Z(.) 
as follows: 

Z(t)= 

i 

x(t) if tES 

e(t) if t#S. 
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Then u(a(t))hu(e) for all t E T and u(x(t))>u(e) for all ~GS, contradicting the 
fact that e is Pareto optimal. 

It follows from (5.2) and (5.3) that C(E) = {e} and this completes the proof 
of the fact that C(E) # 0 and W(E) = 0. 

Since Example 5.1 satisfies all the conditions of Theorem 4.1 except 
assumption A.1 (note that int 1: =@), we can conclude that if positive results 
are to be obtained in spaces whose positive cone has an empty norm interior 
some additional assumption needs to be imposed. The additional assumption 
we impose is that of an extremely desirable commosity introduced in 
Yannelis and Zame (1986) [which is related to the assumption of proper 
preferences introduced by Mas-Cole11 (1986)]. 

6. Core-Walras equivalence in separable Banacb lattices whose positive cone 
has an empty interior 

We begin by defining the notion of an extremely desirable commodity. Let 
E be a Banach lattice and denote its positive cone (which may have an 
empty norm interior) by E,. Let o~E+,u#0. We say that VEE, is an 
extremely desirable commodity if there exists an open neighborhood U such 
that for each XE E, and each t E T, we have that x+au-z >,x whenever 
a> 0, z 5x +au and z E au. In other words, u is extremely desirable if an 
agent would prefer to trade any commodity bundle z for an additional 
increment of the commodity bundle u, provided that the size of z is 
sufliciently small compared to the increment of u. The above notion has a 
natural geometric interpretation. In particular, let u E E,, u#O, U be an open 
neighborhood and define the open cone C as follows: 

C={au-z:a>O,zEE,zEaU}. 

The bundle u is said to be an extremely desirable commodity, if for each 
xeE+, and each t E T we have y >,x whenever y is an element of 
(C +x) n E,. This implies that u is an extremely desirable commodity if for 
each x E E, we have that ((-C +x) n E,) n {y: y >, x} = 0, or equivalently 
-Cn(y-xEE+:y>,x}=@. 

Recall that if the preference relation > f is monotone and int E, # 0, then 
the assumption of an extremely desirable commodity is automatically 
satisfied [see for instance Yannelis and Zame (1986)]. 

We now state our assumptions: 

A.9. E is any separable Banach lattice. 

A.10. (Extremely desirable commodity). Let UEE+/{O} and U be an open 
convex neighborhood. Let C be the cone spanned by u + U. The bundle u is 
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said to be an extremely desirable commodity with respect to U, if for each 
XEE, and each TV 7: we have y >rx whenever y is an element of 
(C+x)n E,. 

Let ai, i=l,..., n be positive real numbers with x1= ,6i= 1. 

A.11. Let U of A.10 satisfy the following condition: if X~E E,, Xie 6iU, 
i=l 2 , ,..., n, thenC1=,xi$C1=16iU=U. 

We note that in assumption A.1 1 the additivity condition only concerns 
the neighborhood of the extremely desirable commodity, not the commodity 
space. To clarify this point we shall consider a specific example. Consider the 
space L,(B), 1 sp < co where Sz is a finite separable measure space. From 
Holder’s inequality, for JE&(Q) we have that JJfJJi scJJfJ\, for some 
constant C depending only on p and 0. Suppose now that assumption A.10 
is satisfied with U containing a neighborhood U’ of the form: 

U’~{fEL,:JlfII, <&). 

Then U is open in L, because of the inequality mentioned above. Moreover 
A. 11 is also satisfied. Roughly speaking we require the neighborhood U’ of 
the extremely desirable commodity to be ‘large’ in the topology of E. 

Finally we need: 

A.12. For each XEE,, the sets {yeE+:y>,x} and {y~E+:x>,y} are 
norm open in E + for all t E T. 

We can now state the following result: 

Theorem 6.1. Under assumptions A.2-A.12, C(E) = W(E). 

Proof: It can be easily shown that W(E)C C(E). Hence, we will show that if 
x E C(E), then for some price p, the pair (x, p) is a competitive equilibrium for 
E. 

Define the correspondence 4: T+2” + by 

4(t)={zEE+:z >,x(t)> u {e(t)). (6.1) 

Let C be the open cone spanned by the set o+ U given by assumptions 
A.l@-A.11, i.e., C = span (0, u + U> = UG,O CX(D + U). We claim that 

cl(jq5-Je)n -C=Qr, (6.2) 

or equivalently, 
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(jt$-je) n -C=@. 

Since -C is open it suffices to 

(6.3) 

show that for any YES, there exists a 
sequence {(jYk, d): k = 1,2,. . .} in L1(pL,E) x L,(p,E) such that jk converges in 
the &(p,E) norm to y, f ?“+je, and 

jjk-jdq -c. (6.4) 
T T 

Let S = {t: y(t) > t x(t)}, S’ = T/S. Without loss of generality we may assume 
that p(S) > 0 [for if p(S) =O, then y(t) =e(t) CL-a.e. which implies that 
jy- je=O$ -C; consequently (6.3) holds]. In the argument below y and e 
are restricted to S. Moreover, denote by ps the restriction of p to S. Since 
y:S+E+ is Bochner integrable and >, is norm continuous (assumption 
A.12) there exist y”l,. . . , y”,, in E, and T:, Ti,. . . , Tk,, in r such that yk 
converges in the L,(ps, E) norm to y, and 

yk= z y:XTf 
i=l 

(6.5) 

yf >tx(t) for all tETf and all i,i=l,...,mk, and (6.6) 

Let 

pLS(Tf)=& i=l,..., mk, (where 5 is a real positive number). (6.7) 

Claim 6.1. Is yk -ss ek 4 - C. 

Assume that Claim 6.1 holds (a proof is given at the end of this section). We 
can now construct 
jk:T+E+ by 

yk( t) = 
i 

y”(t) 

v(t) 

the sequence {(f, 2): k= 1,2,. . .}. In particular, define 

if tES 

if t#S. 

Similarly define E“: T-E, by 

P(t) = 
e’(t) if t E S 

e(t) if t$S. 
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Note that Jrjjk-sr.ti# -C and therefore (6.4) holds. 
We can now separate the convex non-empty set cl J 4 -J e from the convex 

non-empty set -C. Proceeding as in the proof of Theorem 4.1, we can now 
complete the proof. 

Proof of Claim 6.1. We will argue by contradiction, and for notational 
convenience we will drop the index k. 

Suppose that Claim 6.1 is false, then 

and therefore 

i$l y,,,-~=~$~e~, where ,=;u, ue:U. (6.8) 

Note that without loss of generality we may assume that ~20 [otherwise, 
since u=u+ -u-, we may define gi=yi+u+/mj then Ei~O and U-EUU 
(recall that U can be assumed to be solid), pi >r~(t) for all TV T and all i and 
one can proceed by substituting yi for 9i]. 

It follows from (6.8) that for any m-tuple (0,, . . . ,0,), 8i~O (i= 1,. . . , m), 
I:= 1 Oi = 1, we have that 

i$l (_Yi+eiw)-u= f ei20, 
i=l 

and therefore 

U 5 5 (_Yt + OtW). 
i=l 

(6.9) 

Applying the Riesz Decomposition Property in (6.9) we obtain ur,. . .,u, in 
E, such that 

i$l u~=u,u~~~~-~~w for all i. (6.10) 

(It is easy to see that the proof of the Riesz Decomposition Property 
provides an algorithm to choose in a unique way the u;s above). For each i, 
define jji: [0, l] + E + by jji(Q) = yi + eiW - ui. Moreover, for each i set Fi(Ji(0)) = 
dist (pi, C + yi) = S,(e). Let A = (4 E R”, : X7= 1 qi = l}. Define the continuous 
mapping 
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By Brouwer’s fixed point theorem, there exists 19* E A such that 8* =f(6*), 
i.e., 

si=e: ~ 6j, i=l ,...,m. 
j=l 

(6.11) 

If we show that E= 1 a,=0 then by the definition of Fi, j,(e*) ~cl (C + yi) n 
E, and by continuity (assumption A.12) and the assumption of an extremely 
desirable commodity (assumption A.lO) jjAe*) ztyi for all t E ‘&, and all i. 
Moreover, since yi srx(t) for all t E IT; and for all i by transitivity yi(6*), x(t) 
for all t E IT] and for all i. Also 5 ~~=r ji(e*) =cyL 1 ei5 =j e. Define ji = 
I?= r ji(8*)xTi and note that Js j = js e. Therefore we have found an allocation 
j(e) which is feasible for the coalition S and preferred to x(.) which in turn 
was assumed to be in the core of E, a contradiction. Consequently, we 
conclude that Claim 6.1 holds. Hence, all that remains to be shown is that 
ci”= 1 6j=O. 

To this end suppose that I?= 1 6,>0. Notice that by (6.11) we have that 
@=O if and only if 6,=0. Define J, KcZ={1,2,...,m} as follows: J= 
(iEZ:&=O}, K=Z\J. Note that J=(iEI:@=O}. Consider any ieJ; then by 
the definition of j$(.) we have that jJe*) = yi- ui. Now if ui ~0, by 
monotonicity yi > f ji(O*) and by virtue of continuity and extreme desirability 
we can conclude that j$(e*) $cl (C + yi). By the definition of Fi, 6, >O, a 
contradiction to the fact that i E J. Hence, ui = 0 for i E J and so 

(6.12) 

Consider any iE K, i.e., di>O, then by the definition of Fi, it follows that 
jji(e*) =yi+O:w--ui# C+y, for every iEK, and therefore, 8:w-ui$ C for all 
iE K which in turn implies that ui$ e;(a/l)U for all ie K. It follows from 
(6.12), the fact that ui# e:(a/<)U for all iEK, CieK 0: = 1 and assumption 
A.11 that Cis,ui=C. ,EK Ui = u 4 (E/O U, which contradicts (6.8), (i.e., u E 
(cr/t)U). The above contradiction establishes that X7= i 6j=O and this com- 
pletes the proof of Claim 6.1. 

7. Concluding remarks 

Remark 7.1. The separability condition on our commodity space E was 
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used in the proof of Theorems 4.1 and 6.1 at one point only. In particular, it 
was used to make the result of Hiai and Umegaki (1977) or Hildenbrand 
(1974, Proposition 6, p. 63) applicable - note that Hildenbrand’s argument 
remains valid for correspondences taking values in a separable metric space - 
[recall (4.6)]. This result is proved via the measurable selection theorem, 
which requires separability of the range of the correspondence. 

Remark 7.2. Bewley (1973) and Mertens (1970) have proved a core-Walras 
equivalence theorem for a commodity space, which is L,. Their assumptions 
on preferences and endowments are stronger than the ones used in the 
present paper. It is worth noting that Bewley and Mertens both endow L, 
with the Mackey topology (L,, Mackey), and they are in a setting of a 
separable space whose positive cone has an empty interior. Consequently, 
Bewley and Mertens may be considered as predecessors of Theorem 6.1 (of 
course without using the extreme desirability assumption in the Mackey 
sense). 

Remark 7.3. Subsequent to the writing of the present paper, Cheng (1987) 
and Zame (1987), following the coalitional approach of Vind (1964), Richter 
(1971) and Armstrong and Richter (1985) have obtained core-Walras 
equivalence theorems. Although their results are not directly comparable 
with ours, it appears that our assumptions on preferences are weaker than 
theirs. 

Remark 7.4. We now indicate how our methods can cover the space m(Q), 
used by Mas-Cole11 (1975). Specifically, Mas-Cole11 considers as commodity 
spaces the set of bounded, signed (Borel) measures on 52, denoted by m(S2). 
He endows m(Q) witht the weak* topology. Note the weak* topology on 
norm bounded subsets of m(Q) is separable and metrizable. Since preferences 
are also endowed with the weak* topology in order to obtain the counter- 
part of Theorem 6.1, one needs to work with allocations which are Gelfand 
integrable functions [see Khan (1985), for a definition]. The argument used 
to prove Theorem 6.1 remains unchanged, provided that one uses the fact 
the the weak* closure of the Gelfand integral of correspondence (5.1) is 
convex [see Khan (1985, Claim 3, p. 265)], and by noting that since we are 
in a setting of a locally convex, separable and metrizable linear topological 
space, the measurable selection theorem is applicable and therefore the 
counterpart of Hiai-Umegaki (1977) theorem for the Gelfand integral holds 
as well. Subsequent to our paper, Ostroy and Zame (1988) have provided a 
related argument. 

Remark 7.5. It is worth pointing out that as in Aumann (1964) under the 
assumptions of either Theorem 4.1 or 6.1 both the Walrasian equilibrium 
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and the core may be empty. It should also be mentioned that there is no 
convexification effect on aggregation, i.e., the aggregate demand set is not 
necessarily convex [recall that the Lyapunov theorem fails in infinite 
dimensional spaces, it is only approximately true and so is the Fatou 
Lemma, see, for instance, Yannelis (1988, 1990) and Rustichini (1989)]. 
However, recently Rustichini and Yannelis (1988) have shown that one can 
still have the convexifying effect on aggregation provided that the economy 
have ‘many more’ agents than commodities, i.e., the dimension of the 
measure space of agents in bigger than the dimension of the commodity 
space. The concept of dimension has of course to be given a rigorous 
formulation. 
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