
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Existence of an interim and ex-ante minimax point for an asymmetric
information game☆

Marialaura Pesce a, Nicholas C. Yannelis b,c,⁎
a Dipartimento di Matematica e Statistica, Universitá di Napoli Federico II, Napoli 81026, Italy
b Department of Economics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
c Economics — School of Social Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

a b s t r a c ta r t i c l e i n f o

Article history:
Received 27 November 2009
Received in revised form 20 February 2010
Accepted 25 February 2010
Available online 19 March 2010

Keywords:
Interim and ex-ante minimax point
Asymmetric information game

JEL classification:
C7
D8

We introduce the notions of ex-ante and interim minimax point for an asymmetric information game
and prove the existence of such points. Our new results include as a special case the theorem in (Aliprantis
et al., 2009).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper Aliprantis et al. (2009) provide an existence proof
of a minimax point for a strategic (normal) form game. This theorem
is useful as it has found applications in game theory (see for example
Fudenberg-Maskin (1986), Myerson (1991), Thomas (1995) among
others). Our objective is to extend the above result of Aliprantis et al.
(2009) to an asymmetric information game. To this end we introduce
the notions of ex-ante and interim minimax points and prove the
existence of such points. Although the idea of the proof is the same
with that in (Aliprantis et al., 2009) the introduction of asymmetric
information necessitates the use of some non trivial theorems. In
particular, wemake use of Diestel's theorem on weak compactness on
the space of Bochner integrable functions and the Kuratowski and
Ryll-Nardzewski measurable selection theorem. As the deterministic
result proved in (Aliprantis et al., 2009) has found interesting appli-
cations in repeated games, we think that our new results will be of
interest and applicable to a framework of repeated games with asym-

metric information. Obviously, our new general setting includes as a
special case the result in (Aliprantis et al., 2009).

2. The strategic game with asymmetric information

Let (Ω,F , μ) be a finitemeasure space denoting the states of nature
of the world, let I be the set of players, which may be any finite or
infinite set, and Y be a separable Banach space denoting the strategy
sets. A strategic game with asymmetric information G={(Xi, F i, ui,
qi)i2 I} is a set of quadruples (Xi, F i, ui, qi), where for each player i,

1. Xi : Ω→2Y is the random strategy set,
2. F i is a measurable partition1 of (Ω, F) denoting the private infor-

mation of player i,
3. ui : Ω×∏i2I Xi(⋅)→R is the random payoff function,
4. qi: Ω→R++ is the prior of player i (i.e., qi is a Radon-Nikodym

derivative having the property that ∫ω2Ωqi(ω) dμ(ω)=1).

As usual if x2∏i2 IXi(⋅), then for eachplayer i, wewrite x=(x− i, xi),
where x− i=(x1,…, xi−1, xi+1,…).

Theσ-field of events discernable by everyplayer is the “coarse”σ-field
⋀i2IF i, which is the largestσ-algebra contained in eachF i.While, players
by pooling their information, discern the events in the “fine” σ-field ⋁i2I
F i, which denotes the smallest σ-algebra containing all F i.
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We denote by L1 (μ, Y) the space of equivalence classes of Y-valued
Bochner integrable functions x: Ω→Y.

For each player i2 I define the set of all Bochner integrable and F i

measurable selections from the strategy set of player i, i.e.,

LXi
= xi∈L1 μ; Yð Þ: xi ⋅ð Þ is F i−measurable and xi ωð Þ∈XiðωÞ for almost all ω∈Ωf g;

and let LX=∏i2I LXi
. Similarly, for each player i2 I, define LX− i

=∏j2I\{i}
LXj

and notice that for each i, LX=LX− i
×LXi

.
For each player i, the ex-ante expected payoff vi: LX− i

×LXi
→R is

defined by

vi x−i; xið Þ = ∫ω∈Ωui ω; x−i ωð Þ; xi ωð Þð Þqi ωð Þdμ ωð Þ:

For each player i, denote by EF i ωð Þ the event in F i con-
taining the realized state of nature ω. Suppose that for all ω,
∫ω′∈EF i ωð Þqi ω

′
� �

dμ ω′
� �

N 0. For each player i, given EF i ωð Þ, the interim
expected payoff Vi:Ω×LX− i

×LXi
→R is defined by

Vi ω; x−i; xið Þ = ∫ω′∈EF i ωð Þui ω′; x−i ω′
� �

; xi ω′
� �� � qi ω′ð Þ

∫ω′∈EF i ðωÞqi ω
′

� �
dμ ω′

� �dμ ω′
� �

:

3. Definitions of ex-ante and interim minimax point

We now introduce the definitions of a minimax point in the
context of asymmetric information games, by considering the ex-ante
as well as the interim case.

The minimax payoff of player i gives the maximal punishment that
all the other players can inflict on him. Using the notation above, the
maximal punishment that the players I∖{i} can inflict to player i is
represented by actions in the set LX− i

, i.e., the set containing all the
private information strategies of the players I∖{i}. The best player i can
do is to maximize her payoff based on her own private information.
This leads to the following definitions.

Definition 3.1. The ex-ante minimax point of a strategic game with
asymmetric information G is a sequence of extended real numbers
v⁎=(v1⁎, v2⁎,…), where for each player i we have

v�i = inf
x−i∈LX−i

sup
xi∈LXi

vi x−i; xið Þ:

We shall say that the ex-ante minimax point is attainable, if vi⁎ is
attained for each player i, i.e.,

v�i = min
x−i∈LX−i

max
xi∈LXi

vi x−i; xið Þ: ð1Þ

Similarly, we define the interim minimax point for which the
actions are made after all players have received their own private
information, that is, at an interim stage.

Definition 3.2. The interim minimax point of a strategic game with
asymmetric information G is a sequence of extended real valued
functions V⁎(⋅)=(V1⁎(⋅), V2⁎(⋅),…), where for each player i and ω2Ω,
we have

V�
i ωð Þ = inf

x−i∈LX−i

sup
xi∈LXi

Vi ω; x−i; xið Þ:

We shall say that the interim minimax point is attainable, if for
each player i and ω2Ω, we have

V�
i ωð Þ = min

x−i∈LX−i

max
xi∈LXi

Vi ω; x−i; xið Þ: ð2Þ

Definitions 3.1 and 3.2 do not take into account the fact that
players I∖{i} may cooperate against player i. Even if, an explicit
cooperation is not allowed, player i may not know this. Therefore, the
worst punishment (most severe punishment) player i may expect to
receive is when the others cooperate against him. This idea can be
formalized by assuming that players in I∖{i}, pool their own private
information. In other words, the strategy vector x− i(⋅) is assumed to
be ⋁j2 I\{i} F j-measurable.

On the other hand, the least severe punishment that player i may
expect to receive is when all the other players use the common
knowledge information strategies, that is the strategy vector x− i(⋅) is
⋀j2I\{i} F j-measurable.

To this end, define for each fixed player i and each j2 I∖{i} the sets2

Lp
Xj
−i

= fxj∈L1 μ ;Yð Þ : xj ⋅ð Þ is ∨
j∈I∖fig

F j−measurable and xj ωð Þ∈Xj ωð Þμ−a:e:g;

LcXj
−i

= fxj∈L1 μ ;Yð Þ : xj ⋅ð Þ is ∧
j∈I∖fig

F j−measurable and xj ωð Þ∈Xj ωð Þμ−a:e:g:

Let LpX−i
= ∏j∈I∖fig L

p
Xj
−i

and LcX−i
= ∏j∈I∖ fif gLcXj

−i

.

Observe, that if the players had used the common knowledge
information strategies or the private information (i.e., F j), then since
LX− i

c and LX− i
are subsets of LX− i

p, the punishment inflicted to player i
would have been less severe. Indeed, the larger the set, the bigger the
punishment. Notice that, since for each i2 I, LX− i

c p LX− i
p LX− i

p
, it follows

that

inf
x−i∈LcX−i

sup
xi∈LXi

vi x−i; xið Þ≥ inf
x−i∈LX−i

sup
xi∈LXi

vi x−i; xið Þ≥ inf
x−i∈LpX−i

sup
xi∈LXi

vi x−i; xið Þ:

Definitions 3.1 and 3.2 can be formulated in terms of the sets LX− i

p

and LX− i

c and the existence Theorems 4.1 and 4.2 remain valid.
As noted above, player imaximizes her payoff using her own private

information, i.e., xi(⋅) is F i-measurable. For each player i2 I, we call an
action x satisfying (1) an ex-ante optimizer for the ex-ante minimax
value vi⁎. Similarly,we call anaction x satisfying (2) an interimoptimizer
for the interim minimax value Vi⁎. Clearly optimizers, if they exist, may
be different for different players. Furthermore, if the minimax point is
attainable, the sets of ex-ante and interim optimizers may differ, as
shown in (Pesce and Yannelis, 2009) (see example 3.3). If the payoff
functions are not continuous or if the random strategy sets are not
compact, then the set of ex-ante and interim optimizers may be empty
(see example 4.1 and example 4.2 in (Pesce and Yannelis, 2009)). By
imposing compactness and continuity in theweak topology3,wewill be
able to prove the existence of an ex-ante and an interimminimax point
in the next section.

4. Existence theorems

4.1. Assumptions

Wenow list themain assumptions needed to prove that an ex-ante
as well as an interim minimax point is attainable.

A.1. For each i, Xi: Ω→2Y is F i-lower measurable4, non-empty,
integrably bounded, closed, weakly compact and convex valued
correspondence,

A.2. For each x2∏i2 I Xi(⋅) and for each player i2 I, ui(⋅, x): Ω→R is
F -measurable. Moreover, for all ω and for all i, ui(ω, ⋅): ∏i2 I Xi

(⋅)→R is weakly jointly continuous and integrably bounded.

2 The apexes “p” and “c” stand respectively for “pooled” and “common” information.
3 By weak compactness and weak continuity we mean with respect to the weak

topology σ(L1(μ, X), L∞(μ, X⁎)), where L∞(μ, X⁎) is the dual of (L1 (μ, X), ∥ ⋅ ∥1).
4 A correspondenceϕ:X→2Y fromameasurable space(X,α) intoa topological spaceY is

said to be lower measurable if {x2X: ϕ (x)∩V≠∅}2α for every V open in Y.
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4.2. Theorems

Theorem 4.1. Assume that (A.1) and (A.2) hold. Then the ex-ante
minimax point is attainable.

Theorem 4.2. Assume that (A.1) and (A.2) hold. Then the interim
minimax point is attainable.

Clearly, the theorem in the deterministic case, proved by Aliprantis
et al. in (2009), can be viewed as a corollary of ours. Indeed, in the special
case of full information, i.e.,when theprivate informationof eachplayer is
singletons, the interimexpected payoff function reduces to be the ex-post
one. Therefore, Theorem 4.2 includes as a special case a version of the
existence of a deterministic minimax point, in (Aliprantis et al., 2009).

4.3. Proof of the Theorem 4.1

Claim 4.3. If (A.1) holds, then LX is non-empty and weakly compact.

Proof. We first prove that LX is non-empty. Since, for each fixed i, Xi is
F i-measurable, all the conditions of Kuratowski and Ryll-Nardzewski
Measurable Selection Theorem (see (Aliprantis and Border, 2006) p.
600) are satisfied and hence there exists an F i-measurable function
xi⁎: Ω→Y such that xi⁎(ω)2Xi(ω) for all ω2Ω. Therefore, we just need
to show that xi⁎2L1(μ, Y), that is xi⁎ is a Bochner integrable function. But
this follows directly from the assumption that Xi is integrably
bounded. Thus, for all i, LXi

is non-empty, and so is LX=∏i2I LXi
.

We are now ready to prove that LX is weakly compact. First, notice
that for all i2 I, LXi

is a weakly closed subset of the weakly compact set
{xi2L1(μ, Y): xi(ω)2Xi(ω) for almost all ω2Ω}, (recall Diestel's
theorem, see (Yannelis, 1991)). Therefore, for each fixed i, LXi

is
weakly compact, since it is weakly closed subset of a weakly compact
set. Consequently, the set LX=∏i2 I LXi

is also weakly compact by
Tychonoff's Theorem. □

Claim 4.4. Assume that (A.1) and (A.2) hold, then for each i and ω,
the functions vi(⋅) and Vi(ω, ⋅) are weakly continuous.

Proof. See Yannelis (1991, p. 191).
We can now complete the proof of the theorem by applying the

BergeMaximumTheorem. For each fixed player i, consider the constant

correspondenceΦi : LX− i
→2LXi defined by ϕi (x− i)=LXi

for all x−i2LX− i
.

Obviously Φi(⋅) is weakly continuous (because it is constant), non-
empty and weakly compact-valued correspondence (by Claim 4.3).

It can be easily checked that the graph of Φi coincides with LX.
Define the function fi : GrΦi

=LX→R by fi(x− i, xi)=vi(x− i, xi). By Claim
4.4 it is weakly continuous.

From Claims 4.3 and 4.4 it follows that all conditions of the Berge
Maximum Theorem are satisfied and hence the value function mi :
LX− i

→R defined by miðx�iÞ = max
xiaΦi ðx�i Þ

fiðx�i; xiÞ = max
xiaLXi

viðx�i; xiÞ is

weakly continuous and the correspondence μi : LX− i
→2LXi of

maximizers, defined by μi (x− i)={xi2LXi
: vi(x− i, xi)=mi (x− i)}, has

non-empty and weakly compact values.
Thus, by virtue of the weak compactness of the set LX− i

, the weakly
continuous function mi attains its minimum over LX− i

. □

Proof of Theorem 4.2. Similar arguments to the ones used above can
be adopted to complete the proof. We refer the reader to (Pesce and
Yannelis, 2009) for the details.

Open question: The separability assumption plays an important
role to apply the Kuratowski and Ryll-Nardzewski Measurable
Selection Theorem. We do not know if the existence theorem can be
proved without the separability assumption on the strategy space.
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