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Many have objected to the use of  the Nash equilibrium (or more generally, 
Bayesian Nash equilibrium) concept in game theory, and similarly to the use of  
the rational expectations concept in the theory of  competitive markets, on the 
grounds that the theory assumes too much sophistication and coordination of 
beliefs on the part of  decision-markers. The papers in this volume are among 
those which study the implications of  relaxing those assumptions. 

To provide a suitable context to describe the papers in this symposium, we will 
begin with a slight digression. Consider a repeated stage game where at each stage 
there are finitely many players, each with finitely many actions. First consider the 
case where each player seeks to maximize his expected utility at each date (i.e., he 
has a zero discount factor) given specified beliefs about  the play of  his opponents. 
Let us suppose that we have eliminated all dominated actions within the stage 
game. This means, in particular, that for each of  the actions of  each player there 
is a set of  beliefs that a player could have on the actions of  the other players which 
would rationalize that action as a best response for that player. If  the stage game 
were to be played only once, each outcome to the game could be rationalized as 
the outcome of  maximizing behavior under some beliefs of  agents. Maximizing 
behavior by itself imposes absolutely no restriction on the outcome of  the one- 
shot stage game! This is true even when the payoff  matrices of  the players are 
common knowledge. Introducing imperfect information over the payoffs does 
not diminish the set of  possible utility maximizing outcomes. Indeed, by allowing 
type-dependent correlations in behavior, the introduction of  imperfect informa- 
tion over payoffs may actually increase the set of  possible (probability distribu- 
tions of) outcomes. 

Instead of  a zero discount factor, let us now suppose that the players have a 
positive discount factor and seek to maximize the expected sum of  their discount- 
ed payoffs. Then, even without eliminating strategies which are dominated in the 
normal form game, we may show via folk-theorem-type arguments that without 
placing restrictions on the beliefs of  players we can rationalize just about  a n y  

* The first author thanks the C. V. Starr Center at New York University for their generosity. 
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outcome as being optimal under s o m e  beliefs of the players. Note well that in this 
result we do not  require the beliefs of the players to be the same or to be "correct" 
in anyway. 

The above mentioned class of results is well-documented in the literature. This 
is, for example, the central message of the rationalizability literature [see Bern- 
heim (1984) and Pearce (1984)]. The result has been documented, in a form similar 
to that given above, by Feldman (1987), Jordan (1992) and Blume and Easley 
(1992) 2. Nyarko (1990) has also made this point in the context of an example of 
repeated play by firms facing imperfect information about a common demand 
curve they face. The conclusion in each of these papers is clear: maximizing 
behavior alone in most cases says nothing at all about outcomes unless we make 
restrictions on the beliefs of the agents in an economy or the players of a game. 
When we model players or agents as being in a Nash or Rational Expectations 
equilibrium, we are not only assuming that they are maximizing their expected 
utilities, but we are also saying something about their beliefs: they are correct and 
they are the same for each agent! This is obviously a very strong assumption. 

The "learning" literature addresses this issue. In particular, the learning liter- 
ature may be described as trying to impose weaker restrictions on the beliefs of 
players that still allow one to make predictions on the asymptotic behavior of 
players. The paper by Koutsougeras and Yannelis (1994), as well as those of 
Nyarko (1994), and of Kurz (1994 a, b) are written with this explicit objective. The 
papers by Koutsougeras and Yannelis (1994) and Nyarko (1994) restrict the 
beliefs of agents by assuming that ex ante beliefs of agents assign probability zero 
to the same events (i.e., their beliefs are mutually absolutely continuous), so that 
any event assigned probability zero by one agent will be assigned probability zero 
by all other agents. The paper by Kurz studies the question of selecting the 
appropriate prior beliefs of players using frequentist ideas. 

Another line of criticism of equilibrium theory argues that agents are assumed 
to be too sophisticated in the ability to arrive at an optimal response to their 
environment (which may be very complex exactly because it depends upon the 
actions of other agents, who in turn are assumed to choose highly complex 
strategies). This has led to interest in analyses that assume "bounded rationality" 
on the part of agents, where the agents are assumed to follow simple "rules of 
thumb" in choosing their actions. The motivation for this is that the real world 
is too complicated, and players do not have the capacity to perform the difficult 
optimization exercises involved in maximizing their infinite-horizon payoffs. The 
"bounded rationality" literature accordingly seeks simple and intuitive rules that 
these boundedly rational players use in choosing their actions. The paper by 
In-Koo Cho (1994) studies a neural network algorithm while that of Metrick and 
Polak (1994) studies the "fictitious play" rule. Both rules are considered by the 
authors to be simple "rules of thumb" that one could reasonably expect players 
of a game to use. 

It may seem that there is no connection between the two approaches to 
learning - the "restrictions on beliefs" approach on the one hand, and the "rules 
of thumb" approach on the other. However, the two approaches are really not as 
different as one may at first think. Indeed, on a formal mathematical level the two 

1 One should consult Blume and Easley (1992) for a nice survey of the recent literature on 
learning in games. 
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approaches are identical. The reason for this is the following: It is easy to prove 
that under fairly generic conditions, for each rule of thumb there will always exist 
a set of beliefs such that the given rule maximizes that player's total discounted 
utility under those beliefs. In many cases that belief can be chosen so that the 
given rule of thumb uniquely maximizes that player's expected utility under those 
beliefs. In that case choice of a belief for a player becomes somewhat equivalent 
to choice of a rule of thumb. In particular, rules of thumb can almost always be 
rationalized in terms of some, usually "incorrect," beliefs. 

For example, it is well known that in 2 x 2 games, fictitious play is an optimal 
response to the belief that your opponent chooses actions via a multinomial 
distribution with unknown but fixed probabilities. Of course, if contrary to your 
belief your opponent is, like you, engaging in fictitious play then your beliefs are 
incorrect. In particular you are assuming your opponent is choosing actions 
independently over time while in fact your opponent's actions are highly depen- 
dent upon the observed history. Not only are each agent's beliefs incorrect in this 
case, they even violate the mutual absolute continuity restrictions on beliefs used 
in the papers of Koutsougeras and Yannelis (1994) and Nyarko (1994). 

Finally, a response to all of the criticisms of equilibrium theory that is attract- 
ing increasing interest is to test experimentally alternative models of economic 
behavior. The paper in this symposium by EI-Gamal, McKelvey and Palfrey 
(1994) provides an example of especially careful experimental methodology. 

With the above discussion as a background we will now summarize the prin- 
cipal results of the papers in this symposium. First we present the following 
example: 
Example (Coin-Tossing): Consider a game with two players A and B. Player A 
(resp. B) has two actions to choose from at each date, TOP and BOTTOM (resp. 
LEFT and RIGHT). The payoffs are as below: 

Player B 

LEFT RIGHT 

TOP 1, 1 0, 0 
Player A 

BOTTOM 0, 0 1, 1 

Let z a be realization from infinitely many independent and identical coin-toss- 
ing experiments where an outcome from {HEADS, TAILS} is chosen with equal 
probability. Hence z a is an element of {HEADS, TAILS} oo. Let z n be another 
realization from an i.i.d, sequence of coin-tosses, {HEADS, TAILS} o~, which is 
independent of the sequence from which z a was obtained. At d~tte 0 Player A is 
told of zA (and is not informed about T B) and player B is told of z 8 (and is not 
informed about zA). We may consider ra to be player A's "type" and ~s to be 
player B's type. Suppose that each agent knows how the types are drawn. Con- 
sider the following play of the game. At date n Player A looks at the n-th 
coordinate of his sequence of coin-tosses. If it is a HEADS he plays his first 
action, TOP; if it is TAILS he plays his second action, BOTTOM. Similarly, if the 
n-th element of zB is HEADS player B plays the action LEFT at date n, otherwise 
he plays action RIGHT. Suppose further that each agent knows that the other is 
choosing actions via this rule. 



814 Y. Nyarko et al. 

Clearly, at the beginning of  date n each agent believes the other will choose 
either action with equal probability. Against this probability any action is opti- 
mal. Hence under the prescribed play each agent's strategy is a best-response to 
the others. Now fix any sample path of  play. It should be clear that along any such 
sample path (excluding a set with probability zero) each pair of  actions will occur 
infinitely often. In particular, the actions (TOP, RIGHT)  and (BOTTOM, LEFT)  
will be played infinitely often. Note that these pairs of  actions are not Nash 
equilibria of the stage game. [ ]  

The papers by Koutsougeras and Yannelis (1994) and by Nyarko (1994) 

Both papers consider very general, very "Bayesian" models. In these models the 
agents play a stage game in each and every period. The question asked in both is 
what can be said about  the play of  the game in the limit as time goes to infinity. 
As regards the basic structure of the game, the models of  these papers are general 
enough to cover all the other papers in this volume as special cases. However there 
is a difference. These papers assume a generalization of the common prior as- 
sumption: the ex ante beliefs of the agents share the same probability zero sets 
(i.e., their beliefs are mutually absolutely continuous). This assumption is for 
example violated in the fictitiou s play model studies by Metrick and Pollack 
(1994), and may be violated in the model of  Kurz (1994 a, b). The model studied 
by Koutsougeras and Yannelis (1994) and by Nyarko (1994), was first addressed 
by Blume and Easley (1984), Feldman (1987) and Jordan (1991) under the as- 
sumption of  common priors. Following Jordan (1991), Kalai and Lehrer (1993) 
also study the repeated "matr ix"  game model under asumptions which allow for 
differences in priors but which are stronger than the assumptions in Koutsougeras 
and Yannelis and by Nyarko (for example the coin-tossing example violates the 
Kalai and Lehrer (1993) assumptions). 2 

The paper of  Nyarko contains two results. The first says that the limit points 
of the empirical distributions of  play are Nash equilibria of  the true game. In the 
coin tossing example note that on each sample path (excluding a set with proba- 
bility zero) the actions TOP and BOTTOM occur an average of 1/2 of  the time 
in the limit; the same is true with the actions L E F T  and RIGHT. Player A 
choosing TOP and BOTTOM with probability 1/2 each and B choosing actions 
LEF T  and R I G H T  with probability 1/2 each constitutes a Nash equilibrium. This 
therefore verifies the first result, that the limit points of  the empirical distributions 
of  play are Nash equilibria of  the true game. 

The second result of Nyarko states that the limit points of  beliefs of  agents 
(not conditioning on own types) are equilibria of  the true underlying game. Let 

2 Indeed, associate with each play of an agent, i, a type, %. Let #~ denote the ex ante belief of 
player i so that #i (-[%) denotes the beliefs of player-type z~. The Kalai-Lehrer assumption 
requires that the true play, induced by collection {#~ (. I%)}~, be absolutely continuous with 
respect to the beliefs of each agent, #~ (. 1%) for each i. It is straightforward to see that this in turn 
implies that the set of possible types is either finite or countable, which is violated in the 
coin-tossing example. See Nyarko (1992) for details. 
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us verify this in the context of the coin-tossing example above. Fix a player, say 
Player A. Well, at the beginning of any date player A believes that player B will 
choose either LEFT or RIGHT with equal probability. However what about A's 
beliefs about A himself? Well, if we allow A to condition on A's own type, then 
A will know what he will play in that period. In particular player A will assign 
probability one to some pure date t strategy, TOP or BOTTOM. In either case, 
a pure strategy for A and probability 1/2 each on LEFT and RIGHT for B is not 
a Nash equilibrium. However, let us now look at A's beliefs about his own play 
but not conditioning on his own type. Those beliefs assign probability 1/2 to each 
of the actions TOP and BOTTOM (and probability 1/2 each to actions LEFT and 
RIGHT of B). This is indeed a Nash equilibrium. This therefore verifies the result 
that beliefs, not conditioning on own types, converge to a Nash equilibrium. 

The results of Koutsougeras and Yannelis are related to the second result of 
Nyarko mentioned above, but for a more general framework. Formally, the 
Koutsougeras and Yannelis results make statements about the Bayesian Nash 
equilibria (henceforth BNE) at each date and the BNE in the limit-information 
game. A "limit-information game" in Koutsougeras and Yannelis is defined to be 
the game where the players have the information from the observation of the 
outcomes of the Bayesian Nash equilibria in each of the dates n = 1, 2, 3, . . .  For 
the coin-tossing model, in the limit each agent will know the entire sequence of 
HEADS and TAILS drawn by the other agent, so in the limit-information game 
there is complete information about the types of agents. (In general, however, 
there is not full-information of payoffs and types in the limit-information game.) 
The results of Koutsougeras and Yannelis are of the following kind: Let {x,}~= 1 
be the sequence of date n Bayesian-Nash equilibrium (BNE) strategies where 
x, = {xl, ,}i~x and where xi,, is the date n strategy of player i mapping agent i's 
information to his/her action. Koutsougeras and Yannelis show that from {x,}.~= 1 
one may extract a subsequence which converges weakly to a limiting strategy 
vector x* which is a Bayesian Nash equilibrium for the limit-information game. 
They also show that the extraction result still holds if for all dates n, x, is merely 
an e:Bayesian-Nash equilibrium with e, ~ 0 as n ~ oe. Yet another result of 
Koutsougeras and Yannelis states that if x, is a pure-strategy BNE then the results 
just mentioned hold but where now x* may be chosen to be.a pure-strategy 
BNE. 

It appears that the following is major difference between the papers of Kout- 
sougeras and Yannelis and Nyarko: In the paper of Koutsougeras and Yannelis 
are results on strategies while the results of Nyarko are on empirical distributions 
of play and the beliefs of players. However, this difference is not so great. Consid- 
er again the coin-tossing example. Fix a sample path and fix for that sample path 
a sub-sequence of dates where the action pair (TOP, RIGHT) is chosen at each 
such date. On each sample path (excluding a set with probability zero) such a 
sequence can clearly be chosen. One may be tempted to conclude that the Kout- 
sougeras and Yannelis result predicts that one may be able to extract from this a 
sub-sequence that converges to the Bayesian Nash equilibrium of the limit-infor- 
mation game. Well, the limit information is complete information. The only 
Bayesian Nash equilibria are the Nash equilibria. Since (TOP, RIGHT) is not a 
Nash equilibrium one may want to conclude that this is a contradiction to the 
Koutsougeras and Yannelis (1994) result. This is of course not the case. The mode 
of convergence in Koutsougeras and Yannelis (1994) is convergence in the weak- 
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convergence (or convergence in distribution) of  the strategies, and not conver- 
gence almost everywhere. In the coin-tossing example, the probability distribution 
of the date n strategies of  agents assign probabilities 1/2 each to TOP and BOT- 
TOM and 1/2 each to L E F T  and RIGHT. Notice that this is the same as the 
beliefs of agents at each date. For  the coin-tossing example therefore the object 
over which the issue of  convergence is studied is the same in both the Kout- 
sougeras and Yannelis and the Nyarko papers. There is one major difference 
between statements of  the results of  two papers. Nyarko 's  results are in the spirit 
of  upper semi-continuity results, and are of  the form "limits points of beliefs are 
Nash equilibria." The main results of  Koutsougeras and Yannetis have the flavor 
of  lower semi-continuity as well. The lower-semicontinuity results of Koutsouge- 
ras and Yannelis (1994) are most probably the first in the learning literature. In 
both papers the beliefs of  agents over the type spaces (or the space of utility 
parameters) need not be product measures over the individual players' type spaces. 
For  this reason the limits obtained in that paper are more generally correlated as 
opposed to Nash equilibria. [The paper of Koutsougeras and Yannelis uses the 
more general definition of  a BNE of Aumann (1987), which includes correlated 
equilibria as well as Nash.] 

The papers by Kurz (1994 a, b) 

There are two papers by Kurz in this volume. The first provides the theoretical 
results while the second is an application of  this theory to the context of  a simple 
Muth-type continuum-of-firms market  model. These papers use frequentist ideas 
in explaining the formation of  prior probability beliefs. [See for example Hempel 
(1994).] The scenario envisioned by this paper may be summarized as follows: An 
individual needs to form a probability belief over the probability distribution 
governing a stochastic process of  interest, which we refer to as {xt}~= 1 . That  
individual is assumed to have observed a sample path of  this process for a large 
number of  times before forming his prior. The individual then estimates the 
probability distribution governing this process. This "empirical distribution" is 
obtained by proceeding as if the underlying process is stationary, in which case 
the long average number of  times the process falls in a given set will determine the 
probability of  that set under the empirical distribution. Let us denote the empir- 
ical distribution on the given sample path by m. 

With the above empirical distribution m, the agent now needs to form a belief 
over the true probability distribution governing the underlying stochastic process. 
Of course there are many probability distributions for the underlying process 
which give the same long run empirical distribution, m. This is because we are not 
restricting attention to only stationary processes. In particular, there may be 
processes which have strange behavior over the first few dates but then settle 
down over time; or processes which behave erratically on dates farther and farther 
a p a r t -  i.e., at " remote"  times. In either of  these two cases, the long run empirical 
distribution may be equal to m. Kurz imposes axions of  rationality on agents 
requiring that their beliefs be "consistent" with the observed long-run empirical 
distribution: their beliefs should generate the same long run distribution and should 
assign positive probability to any event to which rn assigns positive probability. ' 
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Kurz provides a characterization of the set of befiefs consistent with these axioms. 
Each of such beliefs is made up of two parts, a stationary part which is consistent 
with the empirical distribution and a "remainder" non-stationary part. 

To further understand the Kurz result let us go back to the coin-tossing 
example. Let us consider the repeated play of the coordination game in the 
coin-tossing game discussed earlier. Suppose that player B is just as in the coin- 
tossing experiment, and chooses actions via the coin-toss. Suppose, however, that 
player A obeys the axioms of the Kurz paper. How would Player A behave in this 
case? Well, even to, begin to analyze this problem the Kurz method requires us to 
endow Player A with observations - an infinite history of them. It is not clear 
which data we should use and where this should come from. The natural thing to 
do, it seems, is to suppose that Player A has observed a previous game where the 
same Player B played a game. Player A then uses the data from that previous 
game of player B to compute an empirical distribution m. This empirical distribu- 
tion will, of course, show that the actions of Player B are i.i.d, with probability 
of LEFT and RIGHT equal to 1/2 in each period. The axioms of Kurz reguire 
that Player A's reliefs can be decomposed into a stationary part and a non-sta- 
tionary part. All that is required of the stationary part is that it be mutually 
absolutely continuous with respect to the empirical measure. In finite time (i.e., 
on finite-dimensional events) such a measure could be very different from m. The 
mutual absolute continuity assumption will, however, pin down the stationary 
part on tail events (i.e., events which involve distant futures and limits). But then 
the non-singular part will allow us degrees of freedom to vary the beliefs of agents. 
Hence, even in very simple problems like the coin-tossing example, the Kurz 
axioms allow for a rich diversity of beliefs of agents. Indeed, the beliefs of agents 
could violate the mutual absolute continuity assumption used by Koutsougeras 
and Yannelis (1994) and by Nyarko (1994). 

In the second paper of Kurz in this volume, an application of the above ideas 
is provided. A model with a continuum of firms is studied 3. Kurz (1994a, b) 
shows how in that model, due to the diversity of beliefs, and in particular the 
non-stationary components allowed, there may be "excess volatility" in the econ- 
omy over time. By weakening the assumption of rational expectations there will 
in general be a much larger set of possible outcomes. 

The papers by Cho (1994) and by Metrick and Polak (1994) 

The paper of Cho (1994) studies a model where the players in an infinitely 
repeated game use neural networks to implement their strategies. Under the 
classification scheme mentioned earlier, this paper therefore falls in the class of 
models which have as their principal motivation the use of simple "rules of 
thumb." The particular issue this paper focusses on is the folk theorem. Recall 
that the folk theorem [see Fudenberg and Maskin (1986)] concludes that all 
individually rational payoffs can be obtained as the average payoffs of a subgame 

a Feldman (1988) also studies learning in the Muth model of firms, but imposes the mutual 
absolute continuity assumption of Koutsougeras and Yannelis (1994) and Nyarko (1994). 
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perfect Nash equilibrium of the infinitely repeated game with discounting. This 
paper takes as its starting point the observation that to obtain the folk theorem 
result one has to use very complex strategies, and that this may cast doubt on the 
appropriateness of the folk theorem as a description of the behavior of"real-life" 
players. Neural networks on the other hand, argues this paper, are indeed simple 
rules of thumb that one could expect real-life players to use. The main result of 
this paper is that the full menu of outcomes predicted by the folk theorem may 
be obtained when players are restricted to using only neural networks. 

In the equilibrium of this paper note that the players are in a Nash equilibri- 
um. In particular, each agent will know how the other is playing and then take 
a best-response to that. Agents are restricted to the use of simple strategies, but 
they optimally choose their strategies within this class. Further, the outcome 
studied is actually a Nash equilibrium where each player knows the strategy 
choice of the other. "Bounded rationality" in the sense of the Cho paper is quite 
distinct from an analysis of "learning," for Cho assumes that players' beliefs 
about the environment are correct, as in standard Nash equilibrium theory. On 
the other hand, restriction of the set of strategies in this way addresses some of 
the concerns about how agents can come to have correct information about their 
environment. A restriction on the set of strategies that can be chosen reduces the 
amount of information about a player's environment that it is relevant to obtain, 
and the knowledge that other players choose a strategy from a restricted set 
provides a restriction on beliefs that can make convergence to correct beliefs 
easier. Thus the sort of analysis undertaken here by Cho equilibria in simple 
strategies provides a natural basis for an attack on the learning problem as well, 
even if that is not attempted here. 

The paper by Metrick and Polak (1994) studies the classic fictitious play 
algorithm. This paper presents a very nice geometric proof of the convergence of 
fictitious play to Nash equilibria in 2 player-2  action games. Of course, fictitious 
play may be considered a very simple "learning" rule or "rule of thumb" where 
agents predict that the probability that any of their opponents will choose a given 
action is equal to the proportion of times that strategy has been used in the past. 
This rule of the thumb is consistent with the basic structure used in the papers of 
Koutsougeras and Yannelis and Nyarko but will violate their mutual absolute 
continuity assumption on the beliefs of agents. It should also be easy to see that 
the fictitious play rule can actually be implemented by a neural network of the 
type studied by Cho. However, unlike in the Cho paper, agents are not in a Nash 
equilibrium when they each use fictitious play against each other. 

In passing it is interesting to note how a fictitious play agent will do against 
a player in the coin-tossing game. In particular, suppose that player A is a 
fictitious play agent and plays as in the Metrick and Polak model. Suppose that 
Player B plays as in the coin-tossing model. To make the coin-tossing model 
non-trivial let us suppose that the coin which is used in obtaining Player B's type 
is not a fair coin but is a coin for which HEADS and TAILS occur with proba- 
bilities 0 and 1-0. Suppose that player A knows how B chooses his actions, but 
does not know the value of 0. Then it is easy to see that in the long-run fictitious 
play is in optimal against any prior belief over 0. In the short-run fictitious play 
is actually optimal if the prior over 0 is multinomial (with the histogram of past 
plays slightly modified to include the prior mean over 0). 
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The paper by EI-Gamal, McKelvey and Palfrey (1994) 

This paper is an experimental study of  the centipede game of  Rosenthal (1992). 
The "rat ional"  or backward induction solution is to " take"  immediately resulting 
in a low payoff  an action, typically not observed in the experiments. This paper 
supposes that some fraction, q, of  the population of  possible opponents are 
"irrational." Each pair of  experimental subjects plays the game twice. The au- 
thors look at two hypotheses about  the behavior of  the rational participants of  
this game: the myopic and the sequential hypotheses. After playing the first game 
the agents will receive information which sheds light on whether their opponent  
is irrational. In the myopic case the agents, after playing the first game, do not 
update their prior probabilities in light of  this new information. In the sequential 
model, on the other hand, the students update their probabilities. The paper then 
proceeds to first compute the sub-game perfect Nash equilibrium under these two 
hypotheses and then to test which of  the two hypotheses best fits the data from 
the experiments, and indeed whether their model fits the experimental data. 

Their first main result is that given the observed experimental data, the model 
of  irrationality used is actually not  good enough in discriminating between the 
two hypotheses, myopic versus sequential. The authors then change the model of  
irrationality. In the new model there are two types of  irrational individuals. Those 
who randomize over the available actions at each node as in the previous model; 
and, in addition, there are the altruists who pass at each node in an attempt to 
implement the cooperative solution. With this new model the authors conclude 
that the sequential model was accepted. In particular, in solving this game the 
students actually do the correct Bayesian updating! 

On such a positive note we end this summary of  the papers. Enjoy. 
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