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Abstract In general rational expectations equilibrium (REE), as introduced in
Radner (Econometrica 47:655–678, 1978) in an Arrow–Debreu–McKenzie setting
with uncertainty, does not exist. Moreover, it fails to be fully Pareto optimal and
incentive compatible and is also not implementable as a perfect Bayesian equilibrium
of an extensive form game (Glycopantis et al. in Econ Theory 26:765–791, 2005).
The lack of all the above properties is mainly due to the fact that the agents are sup-
posed to predict the equilibrium market clearing price (as agent’s expected maximized
utility is conditioned on the information that equilibrium prices reveal), which leads
inevitably to the presumption that agents know all the primitives in the economy, i.e.,
random initial endowments, random utility functions and private information sets. To
get around this problematic equilibrium notion, we introduce a new concept called
Bayesian–Walrasian equilibrium (BWE) which has Bayesian features. In particular,
agents try to predict the market-clearing prices using Bayesian updating and evaluate
their consumption in terms of Bayesian price estimates, which are different for each
individual. In this framework agents maximize expected utility conditioned on their
own private information about the state of nature, subject to a Bayesian estimated
budget constraint. Market clearing is not an intrinsic part of the definition of BWE.
However, both in the case of perfect foresight and in the case of symmetric information
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BWE leads to a statewise market clearing; it then becomes an ex post Walrasian equi-
librium allocation. This new BWE exists under standard assumptions, in contrast to
the REE. In particular, we show that our new BWE exists in the well-known example
in Kreps (J Econ Theory 14:32–43, 1977), where REE fails to exist.

Keywords Bayesian Walrasian expectations equilibrium · Rational expectations
equilibrium

JEL Classification D51 · D82 · C71

1 Introduction

The deterministic Walrasian equilibrium (WE) concept captures the idea of exchange
or contracts or trades of goods under complete information. Since this concept exists
(under reasonable assumptions), is Pareto optimal and is implementable as Nash equi-
librium of a game, one can automatically infer that the WE contracts lead to nice
outcomes. In reality however, most contracts are made under uncertainty. To this end
three main extensions of the deterministic WE notion were made to incorporate uncer-
tainty. The first one is due to Arrow and Debreu (see for example Chap. 7 of the classical
treatise Debreu 1959). These authors noticed that once agents’ preferences and initial
endowments are random (depend on the states of nature of the world) the standard
existence and optimality theorems for the deterministic WE continue to hold. This is
the so-called “state contingent model” or complete markets model (same number of
markets as states of nature) and everything works like the deterministic model, i.e.,
the existence, optimality and implementation results continue to hold. However, this
model does not allow for asymmetric information, because it supposes the state of
nature to be public knowledge.

The more complicated situation with differentiated information was studied by
Radner (1968). In this second extension of the WE, in addition to random prefer-
ences and initial endowments, he allowed each agent to have a private information set
(which is a partition of the exogenously given states of nature of the world). In this
model agents maximize ex ante expected utility subject to an ex ante budget constraint.
However, all trades (allocations) made are measurable with respect to the private infor-
mation of each agent and thus asymmetric information was explicitly introduced by
Radner.1 This model captures the idea of contracts made in an ex ante stage under
asymmetric information. The corresponding notion is called Walrasian expectations
equilibrium (WEE), and it exists under reasonable assumptions, as shown by Radner.
In this model one worries about the incentives that individuals have to misreport their
private information. However, it is known (see for example, Herves-Beloso et al. 2005
or Podczeck and Yannelis 2005, among others) that the WEE is coalitional Bayesian
incentive compatible, it is Pareto optimal (as it belongs to the private core) and it is
also implementable as a perfect Bayesian equilibrium of an extensive form game (see
Glycopantis and Yannelis 2005).

1 For an interpretation of the private information measurability assumption and its consequences, see
Podczeck and Yannelis (2005).
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Bayesian–Walrasian equilibria 387

The third extension was also made by Radner (1972), who introduced the con-
cept of a rational expectations equilibrium REE. This is an interim notion and agents
maximize conditional expected utility (interim expected utility) based not only on
their own private information, but also on the information that the equilibrium prices
have generated. The resulting allocation clears the market for every state of nature.
Since agents maximize their interim expected utility conditioned on the information
that the equilibrium prices have generated, this leads inevitably to the presumption
that each agent knows precisely all the primitives in the economy (i.e., random pref-
erences, random initial endowments, private information sets and priors of all other
agents). This is somewhat difficult to justify, since only rather omniscient agents could
act accordingly. Moreover, Radner could only prove the existence of such REE in a
generic sense. Hence it should not come as a surprise that in simple, well-behaved
economies the REE may not exist (Kreps 1977). Moreover, REE may not be Pareto
optimal, may not be incentive compatible and may not be implementable as a perfect
Bayesian equilibrium of an extensive form game (Glycopantis and Yannelis 2005).
In other words, the resulting contracts may not have any of the desirable properties
that we would like any reasonable contract to have. This suggests that a new notion is
called for, which is free of the undesirable properties of the REE.

In what we see as a first stage step towards this goal (in our future studies learning
effects will also be incorporated), this paper introduces a new equilibrium notion, called
Bayesian–Walrasian equilibrium (BWE). In particular, we do not assume that agents
maximize interim expected utility based on the information that the equilibrium prices
generate. To the contrary, we assume that, in what may be seen as a first, provisional
stage of the trading process, agents form price estimates based on their own private
information; in terms of those prices they can formulate estimated budget sets. Based
on his/her own private information, each agent then maximizes interim expected utility,
constrained by his/her own estimated budget set. As a consequence of the imprecision
due to price estimation, the resulting equilibrium allocation may not clear the markets
for every state of nature, unless information is symmetric or agents perfectly forecast
the equilibrium price. In general, the properties of BWE only imply that the feasibil-
ity-market clearing condition is in terms of an expectation. It turns out that, in contrast
to the REE, the BWE exists under the same standard assumptions that guarantee the
existence of the deterministic WE or the ex ante personalized Walrasian expectations
equilibrium in Aliprantis et al. (2001). In particular, this implies that a BWE exists in
the above-mentioned counterexample to existence of REE, as given in (Kreps 1977).

This paper is organized as follows. In Sect. 2 we present the new notion. In Sect. 3
we revisit the example by Kreps (1977) an show explicitly that a BWE exists in this
example. Section 4 contains the main existence result. All proofs are collected in
Sect. 5. In Sect. 6 we conclude with some remarks and open questions.

2 Bayesian–Walrasian equilibria

We consider the following model of a differential information exchange economy E ,
describing an economy with agents numbered 1, . . . , N who have private information.
We shall write I := {1, 2, . . . , N } for the set of all agents. Let � be a finite space
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388 E. J. Balder, N. C. Yannelis

of states of nature. Let F be an algebra2 on � and let P be a probability measure
on (�,F). Rather than relabeling the atoms of �, we shall suppose that F contains
all singletons {ω} (i.e., F equals 2�, the collection of all subsets of � and its only
atoms are the singletons). Thus, for every state of nature ω ∈ � the probability P(ω)

is well-defined. For every i ∈ I we let Fi ⊂ F be agent i’s informational algebra.
From now on, rather than restricting ourselves to the restrictions of the algebras Fi

and F to the F-measurable set�′ := {ω ∈ � : P(ω) > 0},3 we shall suppose without
loss of generality that P(ω) > 0 for all ω ∈ �. For every ω ∈ � there is a unique atom
of Fi that contains ω; we denote it by Fi (ω). Hence, upon the realization of ω ∈ �,
which agent i perceives through Fi (ω), she forms the conditional probability given by

Pi (ω
′ | ω) =

{
P(ω′)

P(Fi (ω))
if ω′ ∈ Fi (ω),

0 otherwise.
(2.1)

Let Xi : � → 2R
d+ be agent i’s random consumption set, let ui : � × R

d+ → R be
her random utility function and let ei : � → R

d+ be her random initial endowment.
By L Xi (Fi ) we denote the set of all information-compatible allocations for agent
i , i.e., the set of all functions fi : � → R

d+ that are Fi -measurable and such that
fi (ω) ∈ Xi (ω) for every ω. We suppose that ei belongs to L Xi (Fi ) for every i ∈ I .

Agent i’s interim expected utility is the function vi : �× R
d+ → R, defined by

vi (ω, xi ) := E(ui | Fi )(ω, xi ) :=
∑
ω′

ui (ω
′, xi )Pi (ω

′ | ω).

As usual, we suppose F = ∨N
i=1 Fi . Let � := {λ ∈ R

d+ : ∑d
j=1 λ j = 1} be the

unit simplex, consisting of all normalized price vectors (this normalization is innoc-
uous: multiplication of the prices by a common scalar does not affect the estimated
budget sets to be defined below). Given a random price vector p : � → � (i.e., p is
measurable with respect to F = 2�), every agent i adopts following the conditional
expectation:

p̂i (ω) :=
∑
ω′∈�

p(ω′)Pi (ω
′ | ω). (2.2)

In other words, p̂i (ω) is agent i’s Bayesian price estimate of the random price vector
p, given that the state ω has been realized.

Using this natural estimate for the price, given her informational algebra, agent i
forms the following estimated budget set:

B̂i (ω, p) := {xi ∈ Xi (ω) : p̂i (ω) · xi ≤ p̂i (ω) · ei (ω)}.

2 Because our space � is finite, the notions of algebra and σ -algebra coincide. Any algebra G
on � is automatically generated by a partition, namely the partition consisting of all its atoms
Neveu 1964, Proposition I.2.1. Recall that G ∈ G is an atom of G if G′ ⊂ G implies either G′ = ∅
or G′ = G for every G′ ∈ G.
3 The restriction of an algebra G on � to �′ ∈ G is the algebra defined by G′ := {G ∈ G : G ⊂ �′}.
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Bayesian–Walrasian equilibria 389

Definition 2.1 A Bayesian–Walrasian equilibrium (BWE) of the differential infor-
mation exchange economy E is a pair (p∗, f ∗) such that

(i) p∗ is a random price vector p∗ : � → �,
(ii) f ∗ = ( f ∗

i )i∈I ∈ �i∈I L Xi (Fi ) is an allocation,
(iii) f ∗

i (ω) ∈ argmaxxi ∈B̂i (ω,p∗)vi (ω, xi ) for every ω ∈ � and every i ∈ I ,
(iv) p∗(ω) · ∑

i∈I ( f ∗
i (ω) − ei (ω)) = max1≤ j≤d

∑
i∈I ( f ∗

i (ω) − ei (ω)) j for every
ω ∈ �.

Observe that (iii) states that for every state of nature agent i maximizes her utility over
her estimated budget set. It is easy to see that (iv) has the following equivalent and
alternative form (iv)alt, which can be useful for computations:

(iv)alt (p∗(ω))k > 0 implies
∑

i∈I ( f ∗
i (ω) − ei (ω))k = max1≤ j≤d

∑
i∈I ( f ∗

i (ω) −
ei (ω)) j for every ω ∈ � and every k = 1, . . . , d.

Both (iv) and (iv)alt form an unusual substitute for the classical feasibility property
of Walrasian equilibria. This must be considered the price that has to be paid when
one wishes to avoid the unrealistic hypotheses surrounding REE, but below we shall
also give special conditions under which feasibility becomes exact. We would like
to stress that, as a notion, BWE must be considered exact. This should be contrasted
to the literature on approximate REE, where the real issue is not the existence of
universal approximate (or epsilon-approximate) REE solutions, but the question of
whether the error (i.e., the epsilon) is computable and, if so, under which conditions.
It appears to us that nothing is known about this problem. To put it differently, we
know of no analogue for REE of the well-known state of affairs surrounding determin-
istic Walrasian equilibria, where, an increasing number of agents may compensate for
convexity deficiencies of the preferences. At any rate, general truths of such a nature
are out of the question for REE (the private information of a single agent may never
become negligible when the number of agents goes to infinity; thus the approximate
REE will not become an ex post Walrasian equilibrium allocation).

However, as the following result shows, in at least two different cases a BWE has
feasibility. The proof of this result is deferred to Subsect. 5.1.

Proposition 2.1 If (p∗, f ∗) is a BWE as in Definition 2.1, then for every F ∈ ∩i∈I Fi

∑
ω∈F

max
1≤ j≤d

∑
i∈I

( f ∗
i (ω)− ei (ω)) j P(ω) ≤ 0.

Moreover, (free disposal) feasibility

∑
i∈I

( f ∗
i (ω)− ei (ω)) ≤ 0 for every ω ∈ �

holds in each of the following cases:

(a) p̂∗
i = p∗ for all i ∈ I (i.e., perfect forecasting of p∗ by all agents).

(b) Fi = FN for all i ∈ I (i.e., symmetric information).
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Moreover, if in addition ui (ω, ·) is strongly monotonic on Xi (ω) := R
d+ for every

i ∈ I and every ω ∈ �, then in case (a) the above feasibility condition sharpens into

∑
i∈I

( f ∗
i (ω)− ei (ω)) = 0 for every ω ∈ �.

The same is true for case (b), provided that p∗(ω) ∈ R
d++ for every ω ∈ �.

Let us compare this new BWE notion with the classical notion of a rational expec-
tations equilibrium (REE) as in Radner (1979), etc. For ω ∈ �, λ ∈ � and i ∈ I
let

Bi (ω, λ) := {xi ∈ Xi : λ · xi ≤ λ · ei (ω)}.

This is the usual budget set for agent i under the state ω and under the price λ ∈ �.

Definition 2.2 A rational expectations equilibrium is a pair (p∗, f ∗) such that

(i) p∗ is a random price vector p∗ : � → �.
(ii) f ∗ = ( f ∗

i )i∈I ∈ �i∈I L Xi (G∗
i ) is an allocation, where G∗

i := Fi ∨ σ(p∗) with
σ(p∗) ⊂ F denoting the (σ -)algebra generated by p∗.

(iii) f ∗
i (ω) ∈ argmaxxi ∈Bi (ω,p∗(ω))E(ui | G∗

i )(ω, xi ) for every ω ∈ � and i ∈ I .
(iv)

∑
i∈I f ∗

i (ω) = ∑
i∈I ei (ω) for every ω ∈ �.

Such a REE (p∗, f ∗) is said to be fully revealing if G∗
i := Fi ∨ σ(p∗) = ∨ j∈I F j for

every i ∈ I .

Observe that in the case of a fully revealing REE one has both perfect forecasting
by all agents and symmetric information. It is well-known that rational expectations
equilibria need not exist. In contrast, it turns out that Bayesian–Walrasian equilibria
exist under fairly standard conditions: see the next section and Sect. 4.

3 The Kreps example revisited

To highlight this state of affairs, we shall now consider a well-known example of
Kreps (1977), which, does not allow a rational expectations equilibrium in the sense
of Definition 2.2. However, below we shall concretely demonstrate that in that same
example a unique Bayesian–Walrasian equilibrium exists.

Example 3.1 Let N = 2, d = 2 (2 agents, 2 goods) and let � = {ω1, ω2}, with each
state being considered equally probable by each agent, i.e., P(ωi ) = 1/2. Suppose
that F1 = 2� and that F2 = {∅,�}. Note already that this causes A1 := � to be the
only nonempty atom of F1 ∩ F2. Here agent 1 uses P1(ω

′ | ω) := 1 if ω′ = ω and
P1(ω

′ | ω) := 0 if ω′ 
= ω. Also, agent 2 uses the uniform prior P2(ω
′ | ω) = 1/2. In

Kreps’ example the initial endowments are given by e1(ω j ) = e2(ω j ) = (3/2, 3/2),
j = 1, 2, and the utility functions are

u1(ω1, ξ) : = log ξ1 + ξ2, u1(ω2, ξ) := 2 log ξ1 + ξ2,

u2(ω1, ξ) := 2 log ξ1 + ξ2, u2(ω2, ξ) := log ξ1 + ξ2,
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with ξ := (ξ1, ξ2). Then we have of course v1 = u1 and for j = 1, 2

v2(ω j , ξ) = 1

2
u2(ω1, ξ)+ 1

2
u2(ω2, ξ) = 3

2
log ξ1 + ξ2.

Standard arguments show the following for the optimal consumption bundles, chosen
by the agents according to equilibrium condition (iii) in Definition 2.1. For agent 1
we have in state ω1,

f ∗
1 (ω1) =

(
(p∗(ω1))2

(p∗(ω1))1
,

1.5 − (p∗(ω1))2

(p∗(ω1))2

)
=

(
1

α
− 1,

3

2(1 − α)
− 1

)
,

where we abbreviate by writing α := (p∗(ω1))1 and substituting (p∗(ω1))2 = 1 − α.
Simplifying in the same way with β := (p∗(ω2))1, we have for agent 1 in state ω2
that

f ∗
1 (ω2) =

⎧⎨
⎩

(
2
β

− 2, 3
2(1−β) − 2

)
if β ≥ 1

4 ,(
3

2β , 0
)

if β < 1
4 .

For agent 2 we have for j = 1, 2, in the same notation after simplifying:

f ∗
2 (ω j ) =

(
3

α + β
− 3

2
,

3

2 − α − β
− 3

2

)
.

It is easy to verify that neither α nor β can be equal to 0 or 1. Thus, by (iv)alt we
conclude that α and β satisfy

1

α
+ 3

α + β
= 3

2(1 − α)
+ 3

2 − α − β
,

2

β
+ 3

α + β
= 3

2(1 − β)
+ 3

2 − α − β
.

The unique solution of this system is α = 0.4082917393 and β = 0.5774105211.4

The corresponding excess demands are −0.007255532 in stateω1 and +0.007255532
in state ω2. The unique BWE pair (p∗, f ∗) that corresponds to these values of α and
β is given by

p∗(ω1) = (0.408, 0.592), p∗(ω2) = (0.577, 0.423),

f ∗
1 (ω1) = (1.449, 1.535), f ∗

1 (ω2) = (1.464, 1.550), f ∗
2 (ω j ) = (1.544, 1.458).

Let us observe that in the above example both WEE (Radner 1968) and private core
(Yannelis 1991) exist and coincide with the initial endowment. This underlines the fact
that BWE is a different notion altogether (also, the initial endowments always belong
to the estimated budget set, so it is not surprising that the corresponding BWE-expected
utility values are higher).

4 Analytically, calculations in MAPLE show α to be a real root of 408z5 − 963z4 + 594z3 − z2 − 64z + 8,
with β = 1

15941 (−10822α + 26640 − 39576α4 + 148899α3 − 132282α2).
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4 Main results: existence

In this section we state and prove our main existence result, for which we enlist the
following assumptions.

Assumption 4.1 For every i ∈ I and ω ∈ � the set Xi (ω) ⊂ R
d+ is closed, convex

and nonempty for every ω ∈ �.

Assumption 4.2 For every i ∈ I and ω ∈ � the initial endowment ei (ω) belongs to
the interior of Xi (ω).

Assumption 4.3 For every i ∈ I and ω ∈ � the function ui (ω, ·) is continuous and
concave on Xi (ω).

Theorem 4.1 Under Assumptions 4.1, 4.2, 4.3 there exists a Bayesian–Walrasian
equilibrium pair for the differential information economy E .

5 Proofs

5.1 Proof of Proposition 2.1

The first part of Proposition 2.1 follows by the next lemma, which states a well-known
property of conditional expectations (Neveu 1964).

Lemma 5.1 (i) For every i ∈ I and every F-measurable function φ : � → R

∑
ω∈Fi

φ(ω)P(ω) =
∑
ω∈Fi

E(φ | Fi )(ω)P(ω) for every Fi ∈ Fi .

(ii) For every i ∈ I and every F-measurable function φ : � → R

∑
ω∈�

φ(ω)ψ(ω)P(ω) =
∑
ω∈�

ψ(ω)E(φ | Fi )(ω)P(ω)

for every Fi -measurable function ψ : � → R.

In the context of this paper the proofs are elementary. Because Fi is the union of all
Fi -atoms Fi (ω), ω ∈ Fi , it is enough to prove the identity in part i when φ is of the
form φ = 1A, with A ∈ F . Then E(φ | Fi )(ω) = P(A ∩ Fi (ω))/P(Fi (ω)) and the
identity follows from the fact that the Fi -atoms Fi (ω) partition the set Fi . Part i i then
follows from part i , because ψ is actually a step function.

To prove the first part of Proposition 2.1, we apply this lemma for each i to p̂∗
i :=

E(p∗ | Fi ) and the Fi -measurable function ( f ∗
i − ei )1F . This gives

∑
ω∈F

p∗(ω) · ( f ∗
i (ω)− ei (ω))P(ω) =

∑
ω∈F

p̂∗
i (ω) · ( f ∗

i (ω)− ei (ω))P(ω), (5.1)

and by Definition 2.1 (iii) the right hand side is nonpositive. By summation over i and
the use of of Definition 2.1 (iv) in the left hand side of (5.1), the result follows.
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To prove the second part of Proposition 2.1, simply notice that in case (a) Defini-
tion 2.1 (iv) states that for every ω ∈ �,

max
1≤ j≤d

∑
i∈I

( f ∗
i (ω)− ei (ω)) j =

∑
i∈I

p̂∗
i (ω) · ( f ∗

i (ω)− ei (ω))

and appeal to Definition 2.1 (iii). Finally, notice that in case (b) the first part of the
proposition, proven above, gives

∑
ω∈F

max
1≤ j≤d

R∗(ω) j P(ω) ≤ 0

for every F ∈ FN . Here R∗(ω) := ∑
i∈I ( f ∗

i (ω) − ei (ω)) is now a FN -measurable
function, so we may apply the inequality in particular to the set F consisting of all
ω ∈ � with max j (R∗(ω)) j > 0. This gives P(F) = 0, so F = ∅ and the desired
inequality follows.

Finally, observe that if ui (ω, ·) is strongly monotone for every i ∈ I and ω ∈ �,
then so is vi (ω, ·). Therefore Definition 2.1 (iii) implies (1) budget balancedness and
(2) strict positivity of the price vector. Thus, because of p̂∗

i (ω) = p∗(ω) in case (a),
we have for every ω ∈ � (1’) p∗(ω) · ( f ∗

i (ω) − ei (ω) = 0 for every i and (2’)
p∗(ω) ∈ R

d++. Together with the free disposal feasibility, already established, this
implies the desired market clearing feasibility in case (a). As for case (b), a simple
modification of the above proof of free disposal feasibility, exploiting (1), shows that
(5.1) now holds with equality. Since (2’) is now directly postulated, the rest of the
feasibility proof is as just given.

5.2 An auxiliary result and its proof

To facilitate the proof of Theorem 4.1, this subsection is devoted to an auxiliary result
and its proof.

Proposition 5.1 Suppose that Assumptions 4.1–4.3 hold and that the set Xi (ω) is
actually compact for every i ∈ I and ω ∈ �. Then there exists a Bayesian–Walrasian
equilibrium pair for the differential information economy E .

To prove this proposition, we consider the following multifunction� from
∏

i∈I L Xi

(Fi )×�� into itself: for ( fi )i∈I ∈∏
i∈I L Xi (Fi ) and p∈�� we define�(( fi )i∈I ), p)

to be the set of all ((gi )i∈I , q ′) such that

gi (ω) ∈ argmax
xi ∈B̂i (ω,p)

vi (ω, xi ) for every i ∈ I and ω ∈ �

and

q ′ ∈ argmax
q∈��

∑
ω∈�

q(ω) ·
∑
i∈I

( fi (ω)− ei (ω))P(ω).
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394 E. J. Balder, N. C. Yannelis

Observe that for every i ∈ I the set L Xi (Fi ) contains ei ; hence it is nonempty. Observe
also that the set

∏
i∈I L Xi (Fi )×�� is clearly nonempty, convex and compact (com-

pactness holds by Tychonov’s theorem, in view of the extra hypothesis). Moreover,
observe that each set�(( fi )i∈I , p) is obviously nonempty (by Weierstrass’ theorem),
convex (by concavity) and closed (by continuity). It is a standard exercise to prove that
the graph of� is also closed, given Assumptions 4.1 and 4.2. Because of the compact-
ness of

∏
i∈I L Xi (Fi )×��, this implies that the multifunction� is upper hemicontin-

uous. Hence, by Kakutani’s fixed point theorem, there exist ( f ∗
i )i∈I ∈ ∏

i∈I L Xi (Fi )

and p∗ ∈ �� such that

f ∗
i (ω) ∈ argmax

xi ∈B̂i (ω,p∗)
vi (ω, xi ) for every i ∈ I and ω ∈ �, (5.2)

and such that for R∗(ω) := ∑
i∈I ( f ∗

i (ω)− ei (ω)),

L := max
q∈��

[∑
ω∈�

q(ω) · R∗(ω)P(ω)
]

=
∑
ω∈�

p∗(ω) · R∗(ω)P(ω) =: R.

As for L , it is easily seen that

L =
∑
ω∈�

[
max
λ∈� λ · R∗(ω)

]
P(ω) =

∑
ω∈�

max
1≤ j≤d

(R∗(ω)) j P(ω).

So we obtain

0 = L − R =
∑
ω∈�

[
max

1≤ j≤d
(R∗(ω)) j − p∗(ω) · R∗(ω)

]
P(ω).

Because all summands in the above expression are nonnegative and because P(ω) > 0
for every ω ∈ �, we conclude that p∗(ω) · R∗(ω) = max1≤ j≤d(R∗(ω)) j for every
ω ∈ �. �


5.3 Proof of Theorem 4.1

Next, we use Proposition 5.1 to prove Theorem 4.1. This goes by a standard truncation
argument. For m ∈ N, i ∈ I and ω ∈ � we let Xm

i (ω) be the set of all x ∈ Xi (ω)

such that

d∑
j=1

(x) j ≤ m
∑
ω∈�

d∑
j=1

(ei (ω)) j =: γm
i .

As a consequence of Assumption 4.1, this set is compact and convex. It is also non-
empty, for it contains ei (ω) and in fact, by Assumption 4.2 it contains an open neigh-
borhood of ei (ω) if m ≥ 2 (because

∑
j (y) j <

∑d
j=1(ei (ω)) j for y ∈ R

d+ implies
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that
∑d

j=1(ei (ω) + y) j < γ 2
i – here

∑d
j=1(ei (ω)) j is strictly positive because of

Assumption 4.2). Hence, as a consequence of Proposition 5.1, there exists for every
m ≥ 2 a pair (pm, f m) in �� ×�i∈I L Xm

i
(Fi ) such that

f m
i (ω) ∈ argmax

xi ∈B̂i (ω,pm )

vi (ω, xi ) for every ω ∈ � and every i ∈ I (5.3)

and

pm(ω) ·
∑
i∈I

( fi (ω)− ei (ω)) = max
1≤ j≤d

∑
i∈I

( f m
i (ω)− ei (ω)) j ] for every ω ∈ �.

(5.4)
Rather than extracting suitable subsequences, we can suppose without loss of gen-
erality that the sequences {pm}m ⊂ �� and { f m}m , thus obtained, are pointwise
convergent, i.e.,

p∗(ω) := lim
m→∞ pm(ω) ∈ � exists for every ω ∈ �

and for every i ∈ I ,

f ∗
i (ω) := lim

m→∞ f m
i (ω) ∈ Xi (ω) exists for every ω ∈ �.

This is because �� is obviously compact and because (5.4) implies

∑
ω∈�

[
max

1≤ j≤d

∑
i∈I

( f m
i (ω)) j

]
P(ω) ≤

∑
ω∈�

d∑
j=1

∑
i∈I

ei (ω)) j < +∞.

by the first part of Proposition 2.1. This causes the sequence { f m
i (ω)}m to be bounded

in R
d+ for every i ∈ I and ω ∈ �. By a standard limit argument we get from (5.3) in

a first stage that for every i ∈ I the inequality

vi (ω, f ∗
i (ω)) ≥ vi (ω, xi ) (5.5)

holds for every ω ∈ � and for every xi ∈ Xi (ω) with p̂∗
i (ω) · xi < p̂∗

i · ei (ω)

(observe from (2.2) that p̂m
i (ω) → p̂∗

i (ω)). In a second stage, such validity of (5.5)

is extended to all ω ∈ � with and xi ∈ B̂i (ω, p∗), by forming convex combinations
yi (θ) := (1 − θ)xi + θei (ω) with θ ↓ 0 (observe that Assumption 4.2 guarantees
p̂∗

i (ω) · yi (θ) < p̂∗
i (ω) · ei (ω)). Thus, Definition 2.1 (iii) obtains. Finally, in the limit

(5.4) immediately leads to Definition 2.1 (iv).

6 Concluding remarks

We introduced a new equilibrium notion, called here Bayesian Walrasian equilibrium.
Our preliminary research shows that in simple standard situations our new concept
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seems to be a good alternative to the REE, as it is not susceptible to the existence prob-
lems of the REE and passes the Kreps criticism (Kreps 1977). However, we believe
that more research is needed in this direction.

Let us say at the outset that what makes interim expected utility decision quite diffi-
cult to analyze, is the fact that, in the interim stage, risk sharing is limited. In particular,
the resulting equilibrium allocations must be interim individually rational and once
private measurability assumptions enter the utility functions, allocations must be ex
post individually rational. Thus, the possibilities for risk sharing are not there, so to
come up with new interim equilibrium notions is not an easy task. To reinforce this
point, consider the REE, but allow agents not to condition their interim utility func-
tions on the information that the equilibrium prices generate, but only on their own
private information.5 The Kreps example still shows that such equilibrium need not
exist. However, more is true. No private information interim individually rational and
interim Pareto optimal allocation is expected to exist in general (Hahn and Yannelis
1997, Sect. 8.2).

The above discussion suggests, that to insist on predicting market clearing (exact
feasibility of allocations) in an interim stage, is perhaps too much to expect. We think
that it would be possible to have exact market clearing (feasibility), only if the econ-
omy is repeated from period to period and agents refine their information after they
observe the BWE allocations. As the time goes to infinity, it is possible that agents have
learned everything they needed to know, i.e., their partitions may become identical
(e.g., composed of all singletons), and in this case the BWE is certainly an ex post WE.
We plan to work on this conjecture in a future paper. Two other important issues that
need to be addressed are: first, the incentive compatibility of the BWE and, second, the
implementation of the BWE as a perfect Bayesian equilibrium of an extensive form
game. The latter will provide the dynamics of the BWE and will make transparent
how BWE allocations are reached. At the moment all these issues are open questions.
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