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1 Introduction

The deterministic Arrow–Debreu–McKenzie Walrasian Equilibrium (WE) concept
captures the idea of exchange, or contacts, or trades of goods under complete infor-
mation. Since, under reasonable assumptions, such an equilibrium exists, it is Pateto
optimal and implementable as Nash equilibrium of a game, one can automatically
infer that the WE contacts lead to agreeable outcomes. In reality however, most con-
tracts are made under conditions of uncertainty. As it was explained in Glycopantis
and Yannelis (2005b, p. V) three main extensions of the deterministic WE notion were
made to incorporate uncertainty.

The first one is due to Arrow and Debreu (see Chap. 7 of the classical treatise
Theory of Value, Debreu 1959). These authors point out that once preferences and
initial endowments are random, i.e. they depend on the states of nature of the world,
the standard existence and optimality theorems for the deterministic WE continue to
hold. This is the “state contingent model” or complete markets model (i.e. there is
the same number of markets as the states of nature), and the existence, optimality
and implementation results continue to hold. However, this model does not allow for
asymmetric information. This was investigated by Radner and it leads to the concept
of a differential information economy.

Indeed, in this second extension of the WE idea, Radner (1968), in addition to
random preferences and initial endowments, allowed each agent to have a private
information set, which is a partition of the exogenously given states of the world space.
In this model agents maximize ex ante expected utility subject to an ex ante budget
constraint. However, the initial endowments and all trades are required to be measur-
able with respect to the private information of each agents. Thus this model captures
the idea of contacts made ex ante under asymmetric information. The corresponding
notion is called Walrasian expectations equilibrium (WEE), and it exists under rea-
sonable assumptions. One is concerned about the possible incentives that individuals
might have to misreport their private information. However, it is known that without
free disposal, (see for example, Hervés et al. 2005 or Podczeck and Yannelis 2007,
among others), that the WEE allocation is coalitional Bayesian incentive compatible,
Pareto optimal, as it belongs to the private core, and also implementable as a perfect
Bayesian equilibrium (PBE) of an extensive form game, (see Glycopantis et al. 2001,
2003).

The third extension was also made by Radner (1979), who introduced the concept
of a rational expectations equilibrium (REE) (see also Allen 1981). This is an interim
notion and agents maximize conditional expected utility, i.e. interim expected utility,
based not only on their own private information, but also on the information that the
equilibrium prices have generated. Of course the resulting allocation clears the market
for every state of nature.

The REE is said to be fully revealing if the equilibrium prices reveal all the private
information, (in technical terms they are measurable with respect to the join of all
the private information), otherwise it is called non-revealing. It follows that the fully
revealing and the non-revealing REE generate different outcomes and therefore they
could be considered as different equilibrium concepts.

123



On non-revealing rational expectations equilibrium 353

In Glycopantis et al. (2005a) it was shown that the fully revealing REE can result
in allocations (contracts) which do not satisfy coalitional Bayesian incentive com-
patibility (CBIC) and cannot be implemented as a PBE or a sequential equilibrium
of an extensive form game. REE allocations might not even exist in well behaved
economies, as in the Kreps (1977) example. In other words the resulting contacts may
not have any of the desirable properties that we would like any reasonable contract to
have.

Moreover, the fully revealing REE allocation does not necessarily belong to the
weak fine core (WFC), and hence have the property of being fully Pareto optimal. This
might not be surprising because the WFC is an ante concept and the fully revealing
REE is reduced to a completely ex post concept.

According to the fully revealing REE, since agents maximize their interim expected
utility based on the information that the equilibrium prices have generated, it is pre-
sumed that each one knows precisely all the primitives in the economy (i.e., random
preferences, random initial endowments, private information sets and priors of all
other agents). This is quite a strong assumption to the extend that it is not easy to
justify.

The question now arises whether the non-revealing REE behaves any better. Prices
in this case do not reveal all the information and thus the implicit assumption that
agents know all the characteristics in the economy does not hold. Indeed the main
purpose of this paper is to study the non-revealing REE and investigate whether it has
better properties than the fully revealing one. In particular, we investigate the issues
of CBIC, implementability as a PBE, and the relation to WFC. This is significant to
investigate, for completeness, because a non-revealing REE is an interim concept, i.e.
between an ex ante and an ex post, concept. This follows from the fact that possibly
some but not all the information has been revealed to all the agents through the equi-
librium prices. Furthermore, in the case in which prices reveal no information, the
criticism of the fully revealing REE, namely that if prices reveal all the information
then the agents must known all the characteristics of the economy, is not relevant
here. This poses the question whether the non-revealing REE behaves better the fully
revealing one.

We will show that the non-revealing REE, does not have any better properties than
the fully revealing one. It can result to an allocation which is not consistent with
Bayesian rationality. That is it is not implementable as a PBE, it is not Pareto optimal,
it is not coalitionally Bayesian incentive compatible, and also, as it is known from
Kreps (1977) example, it may not exist. Hence the non-revealing REE has no attrac-
tive properties which would allow us to use it as a solution concept to capture contracts
(trades) under asymmetric information.

We also get as a by-product of our analysis, insights into how the extensive form,
game tree formulation of a dynamic model can be replaced by a game in terms of nor-
mal form matrices. The presentation of the analysis also in terms of a more compact,
normal form approach is due to the fact that the resulting game tree for our model is
relatively large.

Following the ideas of Glycopantis et al. (2001), we investigate whether or not
the REE can be implemented as a perfect Bayesian equilibrium (PBE) of an exten-
sive form game. A PBE consists of optimal behavioral strategies of the players and
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the consistent with these decisions, beliefs attaching a probability distribution to the
nodes of each information set. It is a variant of the Kreps and Wilson (1982) concept
of sequential equilibrium.

The paper is organized as follows. Section 2 gives the definitions of a DIE, an REE
and the WFC. Section 3 discusses briefy the idea of incentive compatibility and Sect. 4
discusses fully the non-revealing REE of a decomposable model. Section. 4.1 presents
the explicit model, it explains that it can be decomposed into two sub-models, calcu-
lates its non-revealing REE and shows that it is not incentive compatible. Section. 4.2
sets up a dynamic, game tree model and shows that, under reasonable rules of behav-
ior, the non-incentive compatible REE cannot be implemented as a PBE. Section 4.3
shows how the results of the game tree analysis can also be obtained through appro-
priately interpreted normal form tables. Section 4.4 discusses the relation between the
non-revealing REE and the WFC and Sect. 6 concludes the discussion.

2 Differential information economy and REE

A DIE consists of set of agents each of which in characterized by a random utility
function, a random consumption set, random initial endowments, a private information
set and a prior probability distribution on a set of states of nature.

We consider exchange economies which are finite in all dimensions. The set of
states of nature is denoted by �. I = {1, 2, . . . , n} is the set of agents and there are �

goods per state of nature. R
l+ will denote the l-fold Cartesian product of R+ the set

of positive real numbers.
A differential information exchange economy E is a set

{((�,F), Xi ,Fi , ui , ei , qi ) : i = 1, . . . , n}
where

1. F is a σ -algebra generated by the singletons of �;
2. Xi : � → 2R

l+ is the set-valued function giving the random consumption set of
Agent (Player) i, who is denoted by Pi;

3. Fi is a partition of � generating a sub-σ -algebra of F , denoting the private infor-
mation1 of Pi. We assume that2 F = ∨

i∈I Fi ;
4. ui : �×R

l+ → R is the random utility function of Pi; for each ω ∈ �, ui (ω, .)

is continuous, concave and monotone;
5. ei : � → R

l+ is the random initial endowment of Pi, assumed to beFi -measurable,
with ei (ω) ∈ Xi (ω) for all ω ∈ �;

6. qi is an F-measurable probability function on � giving the prior of Pi. It is
assumed that on all elements of Fi the aggregate qi is strictly positive. If a com-
mon prior is assumed on F , it will be denoted by µ.

We refer to a function with domain �, constant on elements of Fi , as Fi -measurable.
It is assumed that the players’ information partitions are common knowledge.

1 Sometimes Fi will denote the σ -algebra generated by the partition, as will be clear from the context.
2 The “join”

∨
i∈S Fi denotes the smallest σ -algebra containing all Fi , for i ∈ S ⊆ I .
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For any consumption xi : � → R
l+ we define

vi (xi ) =
∑

�

ui (ω, xi (ω))qi (ω). (1)

Equation (1) gives the ex ante expected utility of Pi.
Let G be a partition of (or σ -algebra on) �, belonging to Pi. For ω ∈ � denote by

EG
i (ω) the element of G containing ω; in the particular case where G = Fi denote this

just by Ei (ω). Pi’s conditional probability for the state of nature being ω′, given that
it is actually ω, is then

qi

(
ω′|EG

i (ω)
)

=
⎧
⎨

⎩

0 ω′ /∈ EG
i (ω)

qi (ω
′)

qi

(
EG

i (ω)
) ω′ ∈ EG

i (ω).

The interim expected utility function of Pi, vi (xi |G), is given by

vi (xi |G)(ω) =
∑

ω′
ui (ω

′, xi (ω
′))qi

(
ω′|EG

i (ω)
)

. (2)

Equation 2 defines a G-measurable random variable.
We denote by L1(qi , R

l) the space of equivalence classes of F-measurable
functions fi : � → R

l ; when a common prior µ is assumed L1(qi , R
l) will be

replaced by L1(µ, R
l). L Xi is the set of all Fi -measurable selections from the random

consumption set of Agent i, i.e.,

L Xi = {xi ∈ L1(qi , R
l) : xi : � → R

l is Fi -measurable and xi (ω) ∈ Xi (ω) qi -a.e.}

and let L X = ∏n
i=1 L Xi .

Also let

L̄ Xi = {xi ∈ L1(qi , R
l) : xi (ω) ∈ Xi (ω) qi -a.e.}

and let L̄ X = ∏n
i=1 L̄ Xi .

An element x = (x1, . . . , xn) ∈ L̄ X will be called an allocation. For any subset of
players S, an element (yi )i∈S ∈ ∏

i∈S L̄ Xi will also be called an allocation, although
strictly speaking it is an allocation to S.

For the notion of REE we shall need the following. Let σ(p) be the smallest sub-
σ -algebra of F for which a price system p : � → R

l+ is measurable and let
Gi = σ(p) ∨ Fi denote the smallest σ -algebra containing both σ(p) and Fi .

Definition 2.1 An REE is a pair (p, x), where x = (x1, . . . , xn) ∈ L̄ X is an allocation,
such that

123



356 D. Glycopantis et al.

(i) for all i the consumption function xi (ω) is Gi -measurable;
(ii) for all i and for all ω the consumption function maximizes vi (xi |Gi )(ω) subject

to the budget constraint at state ω,

p(ω)xi (ω) ≤ p(ω)ei (ω);

(iii)
∑n

i=1 xi (ω) = ∑n
i=1 ei (ω) for all ω ∈ �.

An REE requires that we condition also on information from prices and therefore
it is, in general, an interim concept. An REE is said to be fully revealing if Gi = F for
all i = 1, 2, . . . , n. Otherwise it will be non-revealing.

Next we define the WFC (see Yannelis 1991; Koutsougeras and Yannelis 1993)
which is a development of the fine core concept of Wilson (1978). WFC allocations
always exist, provided the utility functions are concave and continuous.

Definition 2.2 An allocation x = (x1, . . . , xn) ∈ L̄ X is said to be a WFC allocation
if

(i) each xi (ω) is FI -measurable;
(ii)

∑n
i=1 xi (ω) = ∑n

i=1 ei (ω), for all ω ∈ �;
(iii) there do not exist coalition S and allocation (yi )i∈S ∈ ∏

i∈S L̄ Xi such that
yi (·) − ei (·) is FS-measurable for all i ∈ S,

∑
i∈S yi = ∑

i∈S ei and vi (yi ) >

vi (xi ) for all i ∈ S.

It is not surprising that a fully revealing REE, which is really an ex post concept, need
not be in the WFC which is ex ante “full information” Pareto optimal. We show below
that an interim, non-revealing REE is also not in the WFC.

3 Incentive compatibility

Agents make contracts in the ex ante stage. In the interim stage, i.e. after they have
received a signal as to what the realized state of nature could be, one considers the
incentive compatibility of the contract. The basic idea is that an allocation is incentive
compatible if no coalition can misreport the realized state of nature and have a distinct
possibility of making its members better off.

Suppose we have a coalition S, with members denoted by i . Their pooled infor-
mation

∨
i∈S Fi will be denoted by FS and we assume that FI = F . Let the realized

state of nature be ω∗. Each member i ∈ S sees Ei (ω
∗). Obviously not all Ei (ω

∗) need
be the same, however all Agents i know that the actual state of nature could be ω∗.

Consider a state ω′ such that for all j ∈ I \ S we have ω′ ∈ E j (ω
∗) and for at least

one i ∈ S we have ω′ /∈ Ei (ω
∗). Now the coalition S decides that each member i will

announce that she has seen her own set Ei (ω
′) which, of course, contains a lie. On the

other hand we have that ω′ ∈ ⋂
j /∈S E j (ω

∗).
The idea is that if all members of I \ S believe the statements of the members of

S then each i ∈ S expects to gain. For CBIC of an allocation we require that this
is not possible. Individually Bayesian incentive compatibility (IBIC), refers to the
case when S is a singleton. In multilateral contracts the appropriate concept is that
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of CBIC. Contracts which are IBIC are not necessarily CBIC (see Glycopantis and
Yannelis (2005b, p. VIII), Example 0.3).

The following strengthening of the concept of CBIC allows for transfers between
the members of a coalition3

Definition 3.1 An allocation x = (x1, . . . , xn) ∈ L̄ X , with or without free disposal,
is said to be transfer coalitionally Bayesian incentive compatible (TCBIC) if it is
not true that there exists a coalition S, states ω∗ and ω′, with ω∗ different from ω′
and ω′ ∈ ⋂

j /∈S E j (ω
∗) and a random, net-trade vector, among the members of S:

z = (zi )i∈S , such that
∑

i∈S zi = 0, such that for all i ∈ S there exists Ēi (ω
∗) ⊆

Zi (ω
∗) = Ei (ω

∗) ∩ (
⋂

j /∈S E j (ω
∗)), for which

∑

ω∈Ēi (ω
∗)

ui (ω, ei (ω) + xi (ω
′) − ei (ω

′) + zi )qi
(
ω|Ēi (ω

∗)
)

>

∑

ω∈Ēi (ω
∗)

ui (ω, xi (ω))qi
(
ω|Ēi (ω

∗)
)
. (3)

We condition the interim expected utility on Ēi (ω
∗) which implies that we require

consistency between the declaration of the members of S and the observations of the
agents in the complementary set. CBIC corresponds to z = 0 and then IBIC to the
case when S is a singleton. It follows that TCBIC ⇒ CBIC ⇒ IBIC.

Definition 3.1 implies that no coalition of agents has an incentive to misreport the
realized state of nature. That is, they do not expect that it is possible to become better off
if they are believed, by adding to their initial endowment the net trade corresponding
to the state they declare.

In terms of game trees, an allocation will be IBIC if there is a profile of optimal
behavioral strategies and equilibrium paths along which no player misreports the state
of nature he has observed. Players might lie from information sets which are not visited
by an optimal play.

In general the extensive form game forces the players to consider earlier decisions
by other players and what the payoffs will be if a lie is detected, through, for exam-
ple, incompatibility of declarations. In this fuller description the players can make a
decision to tell a lie or not.

Finally we note that, as shown in Glycopantis et al. (2005a), in a differential infor-
mation economy with one good per state and monotonic utility functions any REE is
TCBIC.

4 On the non-revealing REE of a decomposable model

In this section, we discuss the following. First, we present a model which can be decom-
posed in two sub-models, we calculate the REE and argue that it is non-revealing and

3 For related incentive compatibility concepts see Koutsougeras and Yannelis (1993) and Hahn and Yannelis
(1997).
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not CBIC by explaining which agent, and under which circumstances, can misreport
what he has observed. Second by considering sequential decisions, in which P1 acts
first and when P2 is to act he has heard the declaration of P1, we show that, under
reasonable rules, the non-revealing REE is not implementable as a PBE. The analysis
is also cast in terms of normal form games which must now be interpreted with care
as they correspond to a dynamic game tree. Finally we discuss the relation of the REE
and the WFC.

The fact that the REE is not revealing complements the analysis of the case when
the REE is fully revealing. In general an REE does not belong to the WFC. If it so
happens that REE does belong to this set then a slight modification of the utility func-
tions implies that this is no longer the case. Throughout, payoffs are given in terms of
utility.

4.1 A decomposable model and its REE

The idea is to construct a model such that we have a non-revealing REE which does not
belong to the WFC. At the same time we want to show how a model decomposes into
two independent ones. We also use this model for comparisons between the dynamic,
extensive form formulation of a game and the static, normal form approach. We explain
that static tables have to be interpreted with care as they are not independent.

Example 4.1 We assume that there two agents, I = {1, 2}, two commodities, i.e.
Xi = R

2+ for each i ∈ I , and five states of nature � = {a, b, c, d, e}.
We further assume that the endowments, per state a, b, c, d and e respectively, and

information partitions of the agents are given by

e1 = ((7, 1), (7, 1), (4, 1), (4, 0), (4, 0)), F1 = {{a, b}, {c}, {d, e}};
e2 = ((1, 10), (1, 7), (1, 7), (0, 4), (0, 4)), F2 = {{a}, {b, c}, {d}, {e}}.

We shall denote A1 = {a, b}, c1 = {c}, D1 = {d, e}, a2 = {a}, A2 = {b, c}, d2 =
{d}, e2 = {e}.

It is also assumed that ui (ω, xi1, xi2) = x
1
2
i1x

1
2
i2, where the second index refers to

the good, which is a strictly quasi-concave, and monotone function in xi j , and that
every player expects that each state of nature occurs with the same probability, i.e.

µ({ω}) = 1

5
, for ω ∈ �. Some calculations are u1(7, 1) = 2.65, u1(4, 1) = 2,

u2(1, 10) = 3.16, u2(1, 7) = 2.65 u1 = (4, 0) = 0, u2 = (0, 4) = 0.

The expected utilities, multiplied by 5, are given by U1 = 7.3 and U2 = 8.46.
At least from the point of view of calculating the REE allocation, the model in

effect decomposes into two sub-models, one concerning states a, b and c and the other
one referring to the data of d and e. The reason is that the private information of
either agent does not overlap over this two sets of states. This decomposition allows
us to obtain the equilibrium allocation rather easily by appealing to some previously
obtained results.
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The REE for states a, b and c are described in Example 3.1 of Glycopantis et al.
(2005a). For states d and e the prices are equal and the allocations are (2, 2), per agent,
per state. For suppose that the normalized prices were different per state. This would
be contradicted by the fact that calculations per state give the same prices. On the
other hand the calculations of the agents for the same prices would imply that they
are equal. Since no information is provided to Player 1 concerning states d and e the
REE is non-revealing.

Straightforward calculations show that there is only one, non-revealing REE.4 The
prices, the allocations and the corresponding utilities are:

In state a : (p1, p2) =
(

1,
8

11

)

; x∗
11 = 85

22
, x∗

12 = 85

16
, x∗

21 = 91

22
, x∗

22

= 91

16
; u∗

1 = 4.53, u∗
2 = 4.85.

In state b : (p1, p2) = (1, 1); x∗
11 = 4, x∗

12 = 4, x∗
21 = 4,

x∗
22 = 4; u∗

1 = 4, u∗
2 = 4.

In state c : (p1, p2) =
(

1,
5

8

)

; x∗
11 = 37

16
, x∗

12 = 37

10
, x∗

21

= 43

16
, x∗

22 = 43

10
; u∗

1 = 2.93, u∗
2 = 3.40.

In state d : (p1, p2) = (1, 1); x∗
11 = 2, x∗

12 = 2, x∗
21 = 2,

x∗
22 = 2; u∗

1 = 2, u∗
2 = 2.

In state e : (p1, p2) = (1, 1); x∗
11 = 2, x∗

12 = 2, x∗
21 = 2,

x∗
22 = 2; u∗

1 = 2, u∗
2 = 2.

The normalized expected utilities of the non-revealing REE are U1 = 15.46, U2 =
16.25.

We wish to show that the non-revealing REE allocation is not CBIC. We use and
extend the static argument in Glycopantis et al. (2005a). We also give an explanation
as the reason why a formulation in terms of a sequence of decisions by the agents is
desirable.

Suppose that the realized state of nature is {a}. This means that P1 sees {a, b},
and P2 sees {a} but misreports {b, c}. If P1 believes that state b has occured, he
agrees to get the allocation (4, 4). P2 receives the allocation e2(a) + x2(b) − e2(b) =
(1, 10) + (4, 4) − (1, 7) = (4, 7) with u2(4, 7) = 5.29 > u2

(
91

22
,

91

16

)

= 4.85.

4 If the model contained only states a, b, c as in Example 3.1, then the REE would be fully revealing, as it
can also been seen from the prices below. The addition or states d, e makes the REE of the whole model
non-revealing.
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Hence P2 has a possibility of gaining by misreporting and therefore the non-revealing
REE is not CBIC (IBIC). He gets his initial endowments under the realized state plus
his allocation under state b and he pays for this with his allocation under the assumed
state b.

An alternative and probably more direct explanation of the allocation that P2
receives is as follows. P1 agrees to get (4, 4), and P2 receives the rest of the total
initial endowments in state a, i.e. e1(a)+ e2(a)− x1(b) = (7, 1)+ (1, 10)− (4, 4) =
(4, 7) as obtained above. The expression e1(a) + e2(a) − x1(b) matches up with
e2(a)+ x2(b)− e2(b). By measurability of allocations we have e1(a) = e1(b) and by
feasibility e1(b) + e2(b) = x1(b) + x2(b).

On the other hand if P2 sees {b, c} and P1 sees {c}, the latter cannot misreport
{a, b} and hope to gain. If b is believed to be the true state, the calculations now
give e1(c) + x1(b) − e1(b) = (4, 1) + (4, 4) − (7, 1) = (1, 4) with u1(1, 4) = 2 <

u1

(
37

16
,

37

10

)

= 2.93.

In a simple manner if P2 believes that {b} has occured then he expects the allocation
(4, 4) which subtracted from the total endowments, (5,8), under state {c} leaves P1
with the allocation (1,4) which gives him less utility than if he had not lied. Therefore
P1 will not misreport because it is not to his advantage to do so. Indeed he ends up
with less utility.

Finally we mention that if P1 sees {d, e}, and P2 sees either {d} or {e} than the latter
is indifferent in terms of utility between misreporting and not doing so.

We have considered above a case in which a player will gain if his lie is believed and
one in which it is to his disadvantage if he misreports. If the conditions of incentive
compatibility are satisfied then one could say that the proposed allocation is in a sense
stable. However, as we have pointed out in Glycopantis et al. (2003) and above, CBIC
is not concerned in detail with what happens if the lie is detected. It is in the extensive
form formulation that we are forced to consider the sequence of events that will follow
and therefore whether a player will risk a lie. In the fuller description of the situation in
terms of a game tree describing the sequence of moves (decisions) following the play-
ers observations and the rules for calculating payoffs the analysis is more satisfactory.
In this extensive form formulation to which we now turn the equilibrium notion we
employ is that of a PBE. We recall that a PBE consists of optimal behavioral strategies
of the players and the, consistent with these decisions, beliefs attaching a probability
distribution to the nodes of each information set.

4.2 The non-implementation of the non-revealing REE allocation as a PBE

We now wish to see how the overall model decomposes into two separate ones.
The decision of nature is flashed on a screen but each player sees the informa-
tion sets to which this choice belongs. We assume that the players can choose to
tell the truth or to lie with respect to what they have observed. We assume that P1
plays first and that when P2 is to act he knows what P1 has chosen. We specify
the rules for calculating payoffs, i.e. the terms of the contract (payoffs are in utility
terms):
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(i) If the declarations of the two players are incompatible, that is one of (A1, d2),
(A1, e2), (c1, a2), (c1, d2), (c1, e2), (D1, a2), (D1, A2), then this implies that
no trade takes place.

(ii) If the state is a, b, or c and the declarations of the two players are (A1, A2) then
this implies that state b is really declared. The player who believes it (because he has
no reason to disbelieve it) gets his allocation (4, 4) and the other player gets the rest.
So a A1 A2 means P2 has lied but P1 believes it is state b and gets (4, 4). P2 gets the
rest under state a that is (4, 7); bA1 A2 means that both believe that it is the (actual)
state b and each gets (4, 4); cA1 A2 means that P2 believes it is state b and gets (4,
4) and P1 gains nothing from his lie as he gets (1, 4). If the state is d or e and the
declarations of the two players are (D1, e2) or (D1, d2), respectively, then the state
in the overlap is believed and the two players get their non-revealing REE allocation
under this state and end up with allocation (2, 2) each, which implies ui = 2.

(iii) a A1a2, bA1 A2, cc1 A2, d D1d2, eD1e2, imply that everybody tells the truth and
the contract implements the non-revealing REE allocation under state a, b, c, d and
e respectively (bA1 A2, d D1d2 and eD1e2, in (ii) and (iii) give of course an identical
result).

(iv) ac1 A2, aD1d2, aD1e2, bD1d2, bD1e2, cD1d2, cD1e2, imply that both
lie but their declarations are not incompatible. Each gets his non-revealing REE allo-
cation under the overlapping state and there is free disposal of the difference between
the total endowments under the true state and the allocation which the agents receive.

(v) cA1a2, d A1a2, d A1 A2, dc1 A2, eA1a2, eA1 A2, ec1 A2 means that both
lie and stay with their initial endowments as they cannot get the non-revealing REE
allocations under the state in the overlap of their declarations.

(vi) bA1a2 implies that P2 misreports and P1 believes and gets his non-revealing

REE under a; P2 gets the rest under b, that is

(
91

22
,

43

16

)

. Then u2 = 3.33 < 4 and

u1 = 4.53 > 4 and the lie of P2 really benefits P1.
(vii) bc1 A2 means that P1 lies and P2 believes that it is state c. P2 gets his non-

revealing REE allocation under c and P1 gets the rest under b, that is the allocation(
85

16
,

37

10

)

. Then u1 = 4.43 > 4 and u2 = 3.4 < 4 and P1 benefits from lying.

We are looking for a PBE and we analyse Fig. 1 by considering first optimal deci-
sions of P2. From information sets corresponding to states a, b, c, player P2 will never
play d2 or e2, since these are dominated by strategy A2. In states d or e, P2 never gains
anything by lying and optimal decisions are to play truthfully, d2 or e2. Figure 2
contains only these optimal decisions of P2.

We now consider optimal decisions of P1 on the basis of Fig. 2. In states a, b, c,
player P1 does not need to play D1 since, this is dominated, for example, by c1,

and in states d or e he will always play D1. Hence we obtain Fig. 3, in which
heavy lines show plays of the game, i.e. directed paths from the initial node to a
terminal node, corresponding to choices by nature and optimal behavior strategies
of the players. Their beliefs are also indicated and the conditions for a PBE are
satisfied.

The equilibrium paths give under state a payoffs which are different from those of
the non-revealing REE allocation. Hence this is not implementable and this matches
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Fig. 1

up with the fact that it is not CBIC. However comparing the normalized expected
utility of the PBE with those corresponding to the initial allocation we conclude that
the proposed contract will be signed. This follows from the fact that both agents
gain from this arrangement. On the other hand P2, because it is advantageous to him
to do so, stops P1 from realizing his normalized non-revealing REE utility under
state a.
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Fig. 2

4.3 The analysis in terms of normal form games

Note that instead of analyzing the example through a game tree which is larger than
usual, we can tabulate the payoffs for strategy pairs in each state, as it is shown below
in Tables 1 to 4. However, these tables have to be interpreted with care as they are not
independent. This follows from the fact that in the game tree there exist information sets
with more than one node. In general, P1 looks at his equally probable Tables 1 and 2
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Fig. 3

Table 1 Strategies and payoffs;
state of nature a

P2

P1 a2 A2 d2 e2

A1 (4.53, 4.85) (4, 5.29) (2.65, 3.16) (2.65, 3.16)

c1 (2.65, 3.16) (2.93, 3.40) (2.65, 3.16) (2.65, 3.16)

D1 (2.65, 3.16) (2.65, 3.16) (2, 2) (2, 2)

simultaneous and P2 considers together his own equally probable Tables 2 and 3.
Table 4 puts together two equally probable states for P1 and can also be considered
as referring to e and d separately for P2. The fact that the players consider tables
simultaneously gives rise to behavioral strategies.

The idea is to produce optimal behavioral strategies and, consistent with these,
beliefs, by analyzing the normal form matrices. We read the tables assuming P2 plays

123



On non-revealing rational expectations equilibrium 365

Table 2 Strategies and payoffs;
state of nature b

P2

P1 a2 A2 d2 e2

A1 (4.53, 3.33) (4, 4) (2.65, 2.65) (2.65, 2.65)

c1 (2.65, 2.65) (4.43, 3.40) (2.65, 2.65) (2.65, 2.65)

D1 (2.65, 2.65) (2.65, 2.65) (2, 2) (2, 2)

Table 3 Strategies and payoffs;
state of nature c

P2

P1 a2 A2 d2 e2

A1 (2, 2.65) (2, 4) (2, 2.65) (2, 2.65)

c1 (2, 2.65) (2.93, 3.40) (2, 2.65) (2, 2.65)

D1 (2, 2.65) (2, 2.65) (2, 2) (2, 2)

Table 4 Strategies and payoffs;
state of nature d or e

P2

P1 a2 A2 d2 e2

A1 (0, 0) (0, 0) (0, 0) (0, 0)

c1 (0, 0) (0, 0) (0, 0) (0, 0)

D1 (0, 0) (0, 0) (2, 2) (2, 2)

second having heard the declaration (strategy) of P1. Therefore adopting the backward
induction approach we consider first the optimal decisions of P2 from the various alter-
native situations he might find himself in. The first observation is that in the cases of
states a, b, c player P2, irrespective of what he sees on the screen and hears P1 declare,
will never play d2 or e2, since these are dominated by behavioral strategy A2. This does
not contradict the fact that P2 cannot distinguish between states b and c. Therefore the
last two columns in Tables 1, 2 and 3 are eliminated from consideration by P1 who,
on the basis of these reduced tables, has to consider his decision.

It is precisely at this point that a connection exists between the two subgames,
because the possibility of decision D1 is present. If P1 plays D1 from both {a, b} and
{c} he will be gaining more than under decisions A1 from c, if the game can be forced
to the right hand side of I 1

2 .
On the other hand consistent strategies and beliefs are for P1 to play A1 from {a, b}

and c1 from c and for P2 to believe that he can detect the correct states of nature, i.e.
to choose each time the correct table between 2 and 3. The game never enters I 3

2 to
the nodes of which P2 can attach arbitrary probabilities. Consistency between optimal
decisions and beliefs is guaranteed as follows. When P2 see a he knows where he is,
and he plays A2. When he sees A2 and he hears A1, he believes he is definetly in state
b and he plays A2. Similarly if he sees A2 and he hears c1, he believes he is definitely
in state c and he plays A2.
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With respect to P1, he reaches his decisions as follows. He considers Tables 1 and
2 together and chooses as optimal behavioral strategy A1 from the (conditionally)
equi-probable, to him, states a and b. This follows from the fact that his expected

return will be
1

2
(4+4) which is larger than

1

2
(2.93+4.43), the return under c1. From

state c he plays c1.
In states d and e, player P2 knows exactly where he is, i.e. his position is confirmed

with probability 1, and, no matter what P1 does he can play either d2 or e2, and there-
fore it is also optimal to play truthfully. Hence in Table 4 there is only one column
for the rational P1 to consider and he plays D1. It does not matter that he cannot

distinguish between d and e, to which he attaches equal probabilities

(
1

2
,

1

2

)

.

Hence the game can be fully analyzed through the tables. In effect it is seen through
these tables that it splits into two non-overlapping sub-games. The analysis enables
us to conclude that a non-revealing REE may not be implementable as a PBE of an
extensive form game. This follows from the fact that the non-revealing REE of the
model considered here is not implementable as a PBE.

4.4 Non-revealing REE and the WFC

D. WFC
We now consider the relation between the non-revealing REE allocation and the

WFC. Originally this allocation is in the WFC, as it is also in the sub-models which
make up Example 4.1. However, as we shall see, attaching a different weight than 1
to the utility function of Player 2, for example in state d will imply that the allocation
will no longer lie in the WFC.

First we show that in Example 4.1 the non-revealing REE is in the WFC. These
allocations are obtained by solving the following problem, where we use superscripts
to characterize the states. Superscripts 1, 2, 3, 4, 5 correspond to states a, b, c, d and
e respectively. The WFC allocations are characterized as follows:

Problem

Maximize U1 = (x1
11x1

12)
1
2 + (x2

11x2
12)

1
2 + (x3

11x3
12)

1
2 + (x4

11x4
12)

1
2 + (x5

11x5
12)

1
2

subject to

((8 − x1
11)(11 − x1

12))
1
2 + ((8 − x2

11)(8 − x2
12))

1
2 + ((5 − x3

11)(8 − x3
12))

1
2

+((4 − x4
11)(4 − x4

12))
1
2 + ((4 − x5

11)(4 − x5
12))

1
2 = U2(fixed)

U1 ≥ 7.3, U2 ≥ 8.46.

The conditions on the utility functions imply that if there is an interior maximum
per U2 then it is unique. Setting up the Lagrangean function we obtain the first order
conditions:
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1.
x1

12

1
2

x1
11

1
2

= �
(11 − x1

12)
1
2

(8 − x1
11)

1
2

6.

⎛

⎝
x1

12

1
2

x1
11

1
2

⎞

⎠

−1

= �

(
(11 − x1

12)
1
2

(8 − x1
11)

1
2

)−1

2.
x2

12

1
2

x2
11

1
2

= �
(8 − x2

12)
1
2

(8 − x2
11)

1
2

7.

⎛

⎝
x2

12

1
2

x2
11

1
2

⎞

⎠

−1

= �

(
(8 − x2

12)
1
2

(8 − x2
11)

1
2

)−1

3.
x3

12

1
2

x3
11

1
2

= �
(8 − x3

12)
1
2

(5 − x3
11)

1
2

8.

⎛

⎝
x3

12

1
2

x3
11

1
2

⎞

⎠

−1

= �

(
(8 − x3

12)
1
2

(5 − x3
11)

1
2

)−1

4.
x4

12

1
2

x4
11

1
2

= �
(4 − x4

12)
1
2

(4 − x4
11)

1
2

9.

⎛

⎝
x4

12

1
2

x4
11

1
2

⎞

⎠

−1

= �

(
(4 − x4

12)
1
2

(4 − x4
11)

1
2

)−1

5.
x5

12

1
2

x5
11

1
2

= �
(4 − x5

12)
1
2

(4 − x5
11)

1
2

10.

⎛

⎝
x5

12

1
2

x5
11

1
2

⎞

⎠

−1

= �

(
(4 − x5

12)
1
2

(4 − x5
11)

1
2

)−1

11. ((8 − x1
11)(11 − x1

12))
1
2 + ((8 − x2

11)(8 − x2
12))

1
2 + ((5 − x3

11)(8 − x3
12))

1
2

+((4 − x4
11)(4 − x4

12))
1
2 + ((4 − x5

11)(4 − x5
12))

1
2 = U2 (fixed).

These conditions are satisfied by the non-revealing REE allocations with the
Lagrange multiplier � = 1. On the other hand this relation is very unstable. For
example, attaching to the utility function of Player 2 in state d a weight α different
than 1 leaves the REE allocation the same but this does not belong to the WFC any
longer.

First it is easy to see that the non-revealing REE allocation stays the same. On the
other hand with respect to the WFC we see that Eqs. 4, 5, and 11 turn into the ones
below, while all other first order conditions stay the same.

4′.
x4

12

1
2

x4
11

1
2

= � × α
(4 − x4

12)
1
2

(4 − x4
11)

1
2

9′.

⎛

⎝
x4

12

1
2

x4
11

1
2

⎞

⎠

−1

= � × α

(
(4 − x4

12)
1
2

(4 − x4
11)

1
2

)−1

11′. ((8 − x1
11)(11 − x1

12))
1
2 + ((8 − x2

11)(8 − x2
12))

1
2 + ((5 − x3

11)(8 − x3
12))

1
2

+α((4 − x4
11)(4 − x4

12))
1
2 + ((4 − x5

11)(4 − x5
12))

1
2 = U2(fixed).

However the new set of conditions is inconsistent because 1, 2, 3, 5, 6, 7, 8, 10, require
� = 1 while 4′, 9′ require � �= 1. Therefore we obtain a corner solution. But the non-
revealing REE is not in the corner of the feasible set as can be seen from inspection
of the indifference curves corresponding to the ui ’s. It follows that the non-revealing
REE is not in the WFC.

We note that one could have obtained the result that the non-revealing REE allo-
cation is not in general in the WFC by considering only the sub-model consisting of
states a, b and c (see Glycopantis and Yannelis 2005b, pp. 44–47). On the other hand
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the model with five states discussed here is much richer. Also the fact that the game
tree of the overall model is rather large provides an incentive to conduct the analysis
in terms of a more compact, normal form formulation.

5 Concluding remarks

The fully revealing REE is completely ex post, as all states of nature are revealed to the
agents through the prices, and we compared it previously with the WFC which is an
ex ante concept. This follows from the fact that for the WFC all possible information
is shared among the agents but the calculations take place in expectation, before any
finer information becomes available.

In this paper we have enlarged our enquiry of REE by considering the non-reveal-
ing REE. This is an interim concept, because some agents perform their calculations
without complete information, as not all states of nature are revealed through prices,
and therefore it is of interest to investigate its properties. As we did in Glycopantis
et al. (2005a); Glycopantis and Yannelis (2005b) for the fully revealing REE, we show
here that the non-revealing REE is not CBIC, non-implementable, under reasonable
rules, as a PBE, and in general does not belong to WFC and thus may not be fully
Pareto optimal.

We have cast the analysis in terms of a decomposable model which is easy to analyze
in terms of its equilibrium. As a by product of the analysis of the dynamic model we
discuss a normal form representation, in which the non-independent payoff matrices
have to be interpreted carefully. Strategies and payoffs of the players are presented per
relevant state and in reading the tables we assume, as in the construction of the tree,
that P2 plays second having his own information and knowing what P1 has declared.
P1 takes into account the optimal response of P2 and the game can be fully analyzed,
including the calculations of the probabilities of the alternative situations in which the
players can find themselves. We can conclude that the non-revealing REE allocation
is not implementable as a PBE. This approach can be useful in circumstances, as it is
the case here, in which the game trees are larger than usual.

The analysis in this paper enables us to conclude that the non-revealing REE is
not a sensible solution concept. This was also the case with the fully revealing REE.
Both concepts lack basic properties that one wishes to have, e.g. existence, optimal-
ity, incentive compatibility and implementation. A reformulation of these concepts is
needed which will enable us to advance matters more satisfactorily.
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