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Part I

MATHEMATICS

1 Topological Space

DEFINITION 1.1: A topology τ on a set X is a collection of subsets of X satisfying:

(1) ∅, X ∈ τ ,

(2) τ is closed under finite intersections.

(3) τ is closed under arbitrary unions.

The pair (X, τ) is called a topological space. We call a member of τ an open set in X.

The complement of an open set is a closed set.

DEFINITION 1.2: Let (X, τ) be a topological space, and let A be any subset of X.

(1) The interior of A, denoted by intA, is the largest open set included in A.

(2) The closure of A, denoted by Ā, is the smallest closed set including A.

(3) A neighborhood of a point x is any set V containing x in its interior. In this case

we say that x is an interior point of V .

(4) A point x is closure point of the set A if every neighborhood of x meets A. Note

that Ā coincides with the set of all closure points of A.

(5) A point x is accumulation point ( or a limit point, or a cluster point) of the

set A if every neighborhood V of x we have (V \ {x}) ∩ A 6= ∅. The set of all

accumulation points of A is denoted by A’.

(6) A point x is a boundary point of A if each neighborhood V of x satisfies both

V ∩A 6= ∅ and V ∩Ac 6= ∅. The set of all boundary points of A is denoted by ∂A.

DEFINITION 1.3: A function f : X → Y between two topological spaces is continu-

ous if f−1(U) is open for every open set U . We say that f is continuous at the point

x if f−1(V ) is a neighborhood of x whenever V is a neighborhood of f(x).
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NOTE: In a metric space, continuity at a point x reduces to the familiar ε− δ definition:

For every ε > 0, there exists δ > 0 such that d(x, y) < δ implies d(f(x), f(y)) < ε.

THEOREM 1.1: For a function f : X → Y between topological spaces, the following

are equivalent :

(1) f is continuous on X.

(2) If C is an closed subset of Y , then f−1(C) is an closed subset of X.

(3) For every subset B of X, f−1(intB) ⊂ int[f−1(B)].

(4) For every subset A of X, f(Ā) ⊂ f(A).

DEFINITION 1.4: An open cover of a set K is a collection of open sets whose

union includes K. A subset K of a topological space is compact if every open cover of K

includes a finite subcover. That is, K is compact if every family {Vi : i ∈ I} of open sets

satisfying K ⊂ ⋃i∈I Vi has a finite subfamily Vi1 , Vi2 , · · · , Vin such that K ⊂ ⋃n
j=1 Vij .

THEOREM 1.2: Every continuous function between topological spaces carries com-

pact sets to compact sets.

Proof: Let f : X → Y be a continuous function between two topological spaces, and let

K be a compact subset of X. Also, let {Vi : i ∈ I} be an open cover of f(K). Then

{f−1(Vi) : i ∈ I} is an open cover of K. By the compactness of K, there exists i1, . . . , in

satisfying K ⊂ ⋃n
j=1 f

−1(Vij ). Hence,

f(K) ⊂ f(
n⋃

j=1

f−1(Vij )) =
n⋃

j=1

f(f−1(Vij )) ⊂
n⋃

j=1

Vij

which shows that f(K)is a compact subset of Y .

Corollary (Weierstrass) : A continuous real-valued function defined on a compact

space achieves its maximum and minimum values.

2 Metric Space

DEFINITION 2.1: A metric on a set X is a function d : X ×X → < satisfying:

(1) d(x, y) ≥ 0.
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(2) d(x, y) = 0 iff x = y.

(3) d(x, y) = d(y, x).

(4) d(x, y) + d(y, z) ≥ d(x, z).

The pair (X, d) is called a metric space.

Given a metric d, let Bε(x) = {y : d(x, y) < ε}, the open ε-ball around x. A set U is

open in the metric topology generated by d if for each point x in U there is an ε > 0

such that Bε(x) ⊂ U . A topological space is metrizable if there exists a metric d on X

generating the topology of X.

The Euclidean metric on <n, d(x, y) = {∑n
i=1(xi − yi)

2}1/2, defines its usual topology,

called Euclidean topology.

The metric, a real-valued function, allows us to analyze spaces using what we know about

the real numbers. The distinguishing features of the theory of the metric spaces, which are

absent from the theory of topology, are the notions of uniform continuity and completeness.

DEFINITION 2.2: For a nonempty subset A of a metric space (X, d), its diameter

is defined by diam A = sup{d(x, y) : x, y ∈ A}. A set A is bounded if diam A <∞.

THEOREM 2.1(Heine-Borel) : Subsets of <n are compact if and only if they are

closed and bounded.

From now on, let the space be Rn (Euclidean space).

DEFINITION 2.3: Define R` = {(x1, x2, . . . , x`) : xi ∈ R, i = 1, 2, . . . , `} and let

x ∈ R` and y ∈ R`.

(1) x ≤ y means xi ≤ yi for every i = 1, . . . , `.

(2) x < y means xi ≤ yi and x 6= y.

(3) x� y means xi < yi for every i = 1, . . . , `.

(4) R`
+ = {x ∈ R` : x ≥ 0}.

(5) R`
++ = {x ∈ R` : x� 0}.
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(6) R`
− = {x ∈ R` : x ≤ 0}.

(7) The sum of sets X1 ⊂ R`, X2 ⊂ R` is defined by X1 +X2 = {x1 + x2 : xi ∈ Xi, i =

1, 2}.

(8) Let α ∈ R and X ⊂ R`. αX = {αx : x ∈ X}.

(9) The product of sets X1 ⊂ R`, X2 ⊂ R` is defined by
∏2

i=1Xi = X1 × X2 =

{(x1, x2) : xi ∈ Xi, i = 1, 2}.

(10) The dot product of x and y is definded by x · y =
∑`

k=1 xkyk .

(11) The Euclidean norm ‖x‖ of x is defined by ‖x‖2 = x · x.

THEOREM 2.2: Let X and Y be sets and let f : X → Y be a function. Let A and

Ai’s be subsets of X, and B and Bi’s be subsets of Y . Then the following hold:

(1)
⋂

i∈I f
−1(Bi) = f−1(

⋂

i∈I Bi).

(2)
⋃

i∈I f
−1(Bi) = f−1(

⋃

i∈I Bi).

(3) X \ f−1(B) = f−1(Y \B).

(4)
⋃

i∈I f(Ai) = f(
⋃

i∈I Ai).

(5) f(
⋂

i∈I Ai) ⊂
⋂

i∈I f(Ai).

(6) f(f−1(B)) ⊂ B, and f(f−1(B)) = B iff f is onto.

(7) A ⊂ f−1(f(A)), and A = f−1(f(A)) iff f is one-to-one.

DEFINITION 2.4: If x ∈ R`, then the open ball at x with radius ε > 0 is the set

Bε(x) = {x′ ∈ R` : d(x, x′) < ε}.

DEFINITION 2.5: A subset S of R` is open if for every x ∈ S, there exists a open

ball Bε(x) ⊂ S.

DEFINITION 2.6: A subset S of R` is open relative to (in) X if there exists an

open subset A of R` such that S = A ∩X.

DEFINITION 2.7: A point x ∈ R` is an interior point of S ⊂ R` if there exists an

open ball Bε(x) ⊂ S. The set of all interior points of S is the interior of S and is denoted
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by intS.

DEFINITION 2.8: A neighborhood U of x ∈ R` is a subset which contains an open

set B containing x. A neighborhood U of S ⊂ R` is a subset which contains an open

set B containing S.

DEFINITION 2.9: A subset S of R` is closed if its complement is an open set.

DEFINITION 2.10: A subset S of R` is closed relative to (in) X if there exists a

closed subset A of R` such that S = A ∩X.

DEFINITION 2.11: A point x ∈ R` is a closure point (adherent point) of S ⊂ R`

if every open ball at x contains at least one element of S. The set of all closure points of

S is the closure of S and is denoted by S̄.

DEFINITION 2.12: A point x ∈ R` is an accumulation point (cluster point,

limit point) of S ⊂ R` if every open ball at x contains one element of S which is distinct

from x. The set of all accumulation points of S is the derived set of S and is denoted

by S′.

N. B. Note that x need not be an element of S. Clearly, every accumulation point of a

set must be a closure point of that set. It should be clear that S̄ = S ∪ S′. In particular,

it follows that a set is closed iff it contains its accumulation points.

DEFINITION 2.13: A sequence {xn} in R` is convergent to x in R` if

lim
n→∞

d(xn, x) = 0

We write limn xn = x or xn → x.

THEOREM 2.3: Let S be a subset of R`. Then a point x ∈ R` belongs to S̄ iff

there exists a sequence {xn} of S such that xn → x. In particular, if x is an accumu-

lation point of S, then there exists a sequence of S with distinct terms that converges to x.

N. B. A subset S of R` is closed iff the limit of every convergent sequence in S belongs to S.

DEFINITION 2.14: A point x is a boundary point of S ⊂ R` if every open ball of

x has a nonempty intersection with S and R` \ S. The set of all boundary points of S
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is the boundary of S and is denoted by ∂S. N. B. By the symmetry of the definition,

∂S = ∂(Sc). Also, a simple argument shows that ∂S = S̄ ∩ S̄c.

DEFINITION 2.15: A subset S of R` is bounded if there are two points x′ and x′′

in R` such that x′ ≤ x ≤ x′′ for every x ∈ S.

THEOREM 2.4: A bounded sequence has a convergent subsequence.

DEFINITION 2.16: Let X ⊂ R` and Y ⊂ Rm. A function f : X → Y is continuous

at x ∈ X if, for every ε > 0, there exists δ > 0 such that d(f(x), f(x′)) < ε whenever

d(x, x′) < δ. A function f is continuous on X if f is continuous at every point of X.

DEFINITION 2.17: A family of subsets {Ai : i ∈ I} of R` is a cover of S ⊂ R` if

S ⊂ ⋃

i∈I Ai. If a subfamily of {Ai : i ∈ I} also covers S, then it is a subcover. Any

cover of S consisting of open sets is an open cover of S.

DEFINITION 2.18: A subset S of R` is compact if every open cover of S can be

reduced to a finite subcover.

THEOREM 2.5: Let S be a subset of R`. The following are equivalent :

(1) S is compact.

(2) S is closed and bounded.

(3) Every sequence of S has a convergent subsequence whose limit belongs to S.

(4) Every infinite subset of S has an accumulation point in S.

(5) Every collection of closed subsets of S with the finite intersection property (i.e.,

every finite subcollection has a nonempty intersection) has a nonempty intersection.

THEOREM 2.6:

(1) Every closed subset of a compact set is compact.

(2) If f : X → Y is continuous, and K is compact in X, then f(K) is compact in Y .

(3) Si is compact for every i ∈ I iff
∏

i∈I Si is compact.

(4) Si is compact for every i = 1, . . . ,m iff
∑m

i=1 Si is compact.
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3 Convex Sets

DEFINITION 3.1: A subset S of R` is convex if for x, x′ ∈ S, xα = αx+(1−α)x′ ∈ S

for every α ∈ [0, 1].

DEFINITION 3.2: x is an extreme point if x = αx′ + (1 − α)x′′ with α ∈ (0, 1)

implies x = x′ = x′′.

DEFINITION 3.3:
∑m

i=1 αxi is a (finite) convex combination of x1, x2, . . . , xm if

α1, α2, . . . , αm satisfies
∑m

i=1 αi = 1 and αi ≥ 0 for every i. A strict positive convex

combination is a convex combination where αi > 0 for every i.

DEFINITION 3.4: The convex hull of S ⊂ R` is the set of all finite convex combi-

nations from S and is denoted by coS.

THEOREM 3.1 (Carathéodory): Let S be a subset of R`. Then, every point x ∈ coS

is a convex combination of `+ 1 points in S.

THEOREM 3.2 (Krein-Milman): Let S be a nonempty compact convex subset of

R`. Then S = co(exS) where exS is the set of extreme points.

THEOREM 3.3 (Shapley-Folkman): Let Si be nonempty subsets of R` for every

i = 1, 2, . . . ,m. For every x ∈ co(
∑m

i=1 Si), there exist xi ∈ coSi, i = 1, 2, . . . ,m such that

x =
∑

i xi and #{i : xi 6∈ Si} ≤ `.

THEOREM 3.4:

(1) If Si is convex for every i ∈ I, so is
⋂

i∈I Si.

(2) If Si is convex for each i = 1, . . . ,m, so are
∑

i Si and
∏

i Si.

(3) Let α ∈ R. If S is convex, so is αS.

(4) If S is convex, so are intS and S̄.

(5) If S is open (compact), so is coS.

(6) coS :=
⋂{C ⊂ R` : C is convex and S ⊂ C}.

(7) coS̄ ⊂ ¯coS
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(8) co(
∑

i Si) =
∑

i coSi.

N. B. It follows from (6) that coS is the smallest convex set containing S.

EXAMPLE 3.1: Consider

S = {(x, y) ∈ R2 : y ≥ 1

|x|}.

Then S is closed, but S is not compact and coS is not closed.

DEFINITION 3.5: A hyperplane in R` is a set {x ∈ R` : p·x = α} where p ∈ R`\{0}
and α ∈ R. We denote it by H(p, α). The vector p is normal to the hyperplane H(p, α).

N. B. A hyperplane is the set of solutions of one linear equation in ` variables.

DEFINITION 3.6: A set {x : p · x ≤ α} is a closed lower half space H(p, α). A set

{x : p · x < α} is an open lower half space H(p, α).

DEFINITION 3.7: Two sets A and B in R` are separated by a hyperplane H(p, α)

if there are p ∈ R` \ {0} and α ∈ R such that for every x ∈ A and y ∈ B

p · x ≤ α ≤ p · y

They are strictly separated if the inequalities are replaced by strict inequalities. They

are strongly separated if supx∈A p · x < α < infy∈B p · y.

THEOREM 3.6 (Separating Hyperplane Theorem):

(1) Let S be a nonempty closed and convex subset in R` and z 6∈ S. Then there exists

a point x∗ ∈ S and a hyperplane H(p, α) through x∗ such that

p · z < α = p · x∗ = inf
x∈S

p · x.

(2) Let S be a nonempty convex set of R` and z 6∈ S. Then there exists a hyperplane

H(p, α) through z such that for every x ∈ S

p · z = α ≤ p · x

(3) Let A and B be disjoint nonempty convex subsets of R`. Let A be closed and B be

compact. Then A and B can be strongly separated by a hyperplane.
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(4) Let A and B be disjoint nonempty convex subsets of R`. Let A and B be closed.

Then A and B can be strictly separated by a hyperplane.

(5) Let A and B be disjoint nonempty convex subsets in R`. Then there exists a hyper-

plane separating the sets A and B.

N. B. In (2), if z is on the boundary of S, the hyperplane is called supporting hyper-

plane.

DEFINITION 3.8: Let X be a convex subset of R` and let f : X → R be a function.

(1) A function f is concave if for x, x′ ∈ X, f(αx+ (1 − α)x′) ≥ αf(x) + (1 − α)f(x′)

for α ∈ [0, 1].

(2) A function f is convex if −f is concave.

(3) A function f is quasi-concave if {x ∈ X : f(x) ≥ α} is convex for every α ∈ R.

(4) A function f is quasi-convex if (−f) is quasi-concave.

4 Correspondences

A correspondence is a set-valued function and arise naturally in many economic appli-

cations, for instance, budget correspondence, excess demand correspondence, etc. The

biggest difference between functions and correspondences has to do with the definitions of

an inverse image. The inverse image of a set A under a function f is the set {x : f(x) ∈ A}.
For a correspondence, there are two reasonable generalizations, the upper inverse and the

lower inverse. Having two definitions of the inverse leads to two definitions of continuity,

that is, lower hemicontinuity and upper hemicontinuity.

Let X ⊂ R` and Y ⊂ Rm.

DEFINITION 4.1: A correspondence ϕ : X → 2Y is a function from X to the

family of all subsets of Y .

A correspondence ϕ : X → 2Y is compact-valued (nonempty-valued, convex-valued, open-

valued, closed-valued, bounded-valued) if ϕ(x) is a compact (nonempty, convex, open,

closed, bounded) subset of Y for every x ∈ X.
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DEFINITION 4.2: The graph of a correspondence ϕ : X → 2Y is defined by

Gϕ = {(x, y) ∈ X × Y : y ∈ ϕ(x)}.

A correspondence ϕ : X → 2Y has open (closed) graph if the set G := {(x, y) ∈ X×Y :

y ∈ ϕ(x)} is open (closed) in X × Y .

DEFINITION 4.3: Let ϕ : X → 2Y be a correspondence, A ⊂ X, and B ⊂ Y .

(1) The image of A by ϕ is defined by ϕ(A) =
⋃

x∈A ϕ(x).

(2) The inverse of B by ϕ is defined by ϕ−1(B) = {x ∈ X : ϕ(x) = B}.

(3) The upper inverse of B by ϕ is defined by ϕ+(B) = {x ∈ X : ϕ(x) ⊂ B}.

(4) The lower inverse of B by ϕ is defined by ϕ−(B) = {x ∈ X : ϕ(x) ∩B 6= ∅}.

(5) The upper section of ϕ at x is defined by ϕ(x).

(6) The lower section of ϕ at y is defined by ϕ−1(y) = {x ∈ X : y ∈ ϕ(x)}.

NOTE : ϕ−1(y) = ϕ−({y}).

THEOREM 4.1: Let ϕ : X → 2Y be a correspondence and B ⊂ Y .

(1) ϕ−1(B) ⊂ ϕ+(B) ⊂ ϕ−(B).

(2) ϕ+(Bc) = [ϕ−(B)]c.

(3) ϕ−(B) =
⋃

y∈B ϕ
−({y}) =

⋃

y∈B ϕ
−1(y).

DEFINITION 4.4: Let ϕ : X → 2Y be a correspondence.

(1) ϕ has open (closed) upper sections if ϕ(x) is open (closed) for every x ∈ X.

(2) ϕ has open (closed) lower sections if ϕ−1(y) is open (closed) for every y ∈ Y .

(3) ϕ has open (closed) sections if it has both open (closed) upper sections and open

(closed) lower sections.

N. B. ϕ has open (closed) upper sections iff ϕ is open-valued (closed-valued).

EXAMPLE 4.1: Define the correspondence P : X → 2X by P (x) := {x′ ∈ X : x′ � x}
and P−1 : X → 2X by P−1(x) := {x′ ∈ X : x � x′}. The upper section P (x) of P at
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x is the upper contour set of � at x and the lower section P−1(x) of P at x is the lower

contour set of � at x.

DEFINITION 4.5: Let ϕ : X → 2Y be a correspondence.

(1) ϕ is closed at x if (xn, yn) → (x, y) and yn ∈ ϕ(xn) for every n imply y ∈ ϕ(x). It

is closed (has closed graph) if it is closed at every x ∈ X.

(2) ϕ is upper hemi-continuous (u.h.c.) at x if, for every open set V containing

ϕ(x), there exists a neighborhood U of x such that ϕ(x′) ⊂ V for every x′ ∈ U . ϕ is

upper hemi-continuous if it is upper hemi-continuous at every x ∈ X.

(3) ϕ is lower hemi-continuous (l.h.c.) at x if, for every open set V with ϕ(x)∩V 6=
∅, there exists a neighborhood U of x such that ϕ(x′) ∩ V 6= ∅ for every x′ ∈ U . A

correspondence ϕ is lower hemi-continuous if it is lower hemi-continuous at every

x ∈ X.

(4) ϕ is continuous at x if ϕ is both upper hemi-continuous and lower hemi-continuous

at x. It is continuous if it is continuous at every x ∈ X.

THEOREM 4.2: Let ϕ : X → 2Y be a correspondence. The following are equivalent.

(1) ϕ is upper hemi-continuous.

(2) For each open subset B of Y , ϕ+(B) is open.

(3) For each closed subset C of Y , ϕ−(C) is closed.

THEOREM 4.3: Let ϕ : X → 2Y be a correspondence. The following are equivalent.

(1) ϕ is lower hemi-continuous.

(2) For each open subset B of Y , ϕ−(B) is open.

(3) For each closed subset C of Y , ϕ+(C) is closed.

COROLLARY : Let ϕ : X → 2Y be a correspondence.

(1) If ϕ is upper hemi-continuous, then {x ∈ X : ϕ(x) 6= ∅} is closed.

(2) If ϕ is lower hemi-continuous, then {x ∈ X : ϕ(x) 6= ∅} is open.

THEOREM 4.4: Let ϕ : X → 2Y be a correspondence.
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(1) Let ϕ be compact-valued and upper hemi-continuous. If K is compact, then ϕ(K)

is compact (closed).

(2) If ϕ has open (closed) graph, then it has open (closed) sections.

(3) If ϕ has open lower sections, then it is lower hemi-continuous.

(4) If ϕ has open graph, then it is lower hemi-continuous.

(5) If ϕ is singleton-valued at x and either upper hemi-continuous or lower hemi-continuous

at x, then it is continuous at x.

N. B. Note that (4) is a corollary of (2) and (3).

THEOREM 4.5: An upper hemicontinous correspondence ϕ : X → 2Y is closed if either:

(1) ϕ is closed-valued and Y is regular 1, or

(2) ϕ is compact-valued and Y is Hausdorff 2.

For a correspondence having a compact Hausdorff range, the properties of being closed

and being upper hemicontinous coincide.

THEOREM 4.6(Closed Graph Theorem): A closed-valued correspondence with

compact Hausdorff range is closed if and only if it it upper hemicontinuous.

Similarly, ϕ is lower hemi-continuous at x iff xn → x and y ∈ ϕ(x) imply that there exists

a sequence {yn} such that yn ∈ ϕ(xn) for every n and yn → y.

EXAMPLE 4.2: Consider a correspondence ϕ : R→ 2R.

(1) Define ϕ by

ϕ(x) =

{

1/x if x > 0

{0} if x = 0

Then ϕ has closed graph and compact-valued, but is not upper hemi-continuous.

1A topological space is regular if every nonempty closed set and every singleton disjoint from it can

be separated by open sets
2A topology is called Hausdorff if any two distinct points can be separated by disjoint neighborhood

of the points. That is, for each pair x, y ∈ X with x 6= y there exist neighborhoods U ∈ Nx and V ∈ Ny

such that U ∩ V = ∅
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(2) Let ϕ(x) = (0, 1). Then it is upper hemi-continuous but does not have closed graph.

THEOREM 4.7 (Closure): Let ϕ : X → 2Y be a correspondence. Define the

correspondence ϕ̄ : X → 2Y by ϕ̄(x) = ¯ϕ(x).

(1) If ϕ is upper hemi-continuous at x, so is ϕ̄.

(2) ϕ is lower hemi-continuous at x iff ϕ̄ is lower hemi-continuous at x.

EXAMPLE 4.3: Consider ϕ : R → 2R with ϕ(x) = {x}c. It is not upper hemi-

continuous but its closure is upper hemi-continuous.

THEOREM 4.8 (Intersection): Let ϕ, µ, and ϕi’s be correspendences from X to Y .

Define the correspondence
⋂

i∈I ϕi : X → 2Y by (
⋂

i∈I ϕi)(x) =
⋂

i∈I ϕi(x). Suppose the

intersection is nonempty-valued.

(1) G∩ϕi
=
⋂

i∈I Gϕi
.

(2) If ϕi is closed-valued and upper hemi-continuous at x for every i ∈ I, so is
⋂

i ϕi.

(3) If ϕ is lower hemi-continuous at x and µ has open graph, then ϕ ∩ µ is lower hemi-

continuous at x.

(4) If ϕ and µ have open (closed) sections, so does ϕ ∩ µ.

THEOREM 4.9 (Union): Let ϕi : X → 2Y be a correspondence for every i ∈ I.

Define the correspondence
⋃

i∈I ϕi : X → 2Y by (
⋃

i∈I ϕi)(x) =
⋃

i∈I ϕi(x).

(1) G∪ϕi
=
⋃

i∈I Gϕi
.

(2) If ϕi is upper hemi-continuous (closed) at x for every i = 1, . . . , n, so is
⋃

i ϕi.

(3) If ϕi is lower hemi-continuous at x for every i ∈ I, so is
⋃

i ϕi.

THEOREM 4.10 (Composition): Let ϕ : X → 2Y and µ : Y → 2Z be correspon-

dences. Define the correspendence µ ◦ ϕ : X → Z by (µ ◦ ϕ)(x) =
⋃

y∈ϕ(x) µ(y).

(1) If ϕ and µ are upper semi-continuous at x, so is µ ◦ ϕ.

(2) If ϕ and µ are lower semi-continuous at x, so is µ ◦ ϕ.

13



THEOREM 4.11 (Product): Let ϕi : X → 2Yi be a correspondence for every

i ∈ I. Define the correspondence
∏

i∈I ϕi : X → 2Y by (
∏

i∈I ϕi)(x) =
∏

i∈I ϕi(x), where

Y =
∏

i∈I Yi.

(1) If ϕi has open (closed) graph for every i ∈ I, so does
∏

i ϕi.

(2) If ϕi is compact-valued and upper hemi-continuous at x for every i ∈ I, so is
∏

i ϕi.

(3) If ϕi is lower hemi-continuous at x for i = 1, . . . , n, so is
∏

i ϕi.

THEOREM 4.12 (Sum): Let Yi ⊂ R` and ϕi : X → 2Yi be a correspondence for i =

1, 2, . . . , n. Define the correspondence
∑m

i=1 ϕi : X → 2Y by (
∑m

i=1 ϕi)(x) =
∑m

i=1 ϕi(x),

where Y =
∑

i Yi.

(1) If ϕi is compact-valued and upper hemi-continuous at x for i = 1, · · · , n, so is
∑

i ϕi.

(2) If ϕi is lower hemi-continuous at x for i = 1, . . . , n, so is
∑

i ϕi.

(3) If ϕi has open (closed) graph for i = 1, . . . , n, so does
∑

i ϕi.

THEOREM 4.13 (Convex Hull): Let Y be convex. Let ϕ : X → 2Y be a correspon-

dence. Define the correspondence coϕ : X → 2Y by (coϕ)(x) = co[ϕ(x)].

(1) If ϕ is compact-valued and upper hemi-continuous at x, so is coϕ.

(2) If ϕ is lower hemi-continuous (has open graph, has open lower sections) at x, so is

(does) coϕ.

EXAMPLE 4.4: Consider a correspondence ϕ : R→ 2R.

ϕ(x) =

{

{0, 1/x} if x 6= 0

{0} if x = 0

Here, ϕ has a closed graph but coϕ does not have a closed graph.

5 Maximum Theorem

THEOREM 5.1(Berge): Let ϕ : X → 2Y be a continuous correspondence with

nonempty, compact-valued, and suppose f : Grϕ→ < is continuous. Then
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(1) The ”value function” m : X → < defined by m(x) = sup{f(x, y) : y ∈ ϕ(x)} is

continuous and

(2) The correspondence µ : X → 2Y defined by

µ(x) = {y ∈ ϕ(x) : f(x, y) = m(x)}

is upper hemicontinuous with nonempty, compact-valued.

6 KKM Theorem, Existence of Maximal Element

THEOREM 6.1(Knaster-Kuratowski-Mazurkewicz) : Let X be an arbitrary con-

vex subset of Rl. For x ∈ X, let F (x) be a closed set in Rl satisfying the following

assumptions:

(1) For any arbitrary set of points {x1, . . . , xn} of X,

co{xi, . . . , xn} ⊂
n⋃

i=1

F (xi).

(2) F (x) is compact for at least one x ∈ X.

Then
⋂

x∈X F (x) 6= ∅.

THEOREM 6.2(Existence of Maximal Element) : Let X be a nonempty compact

convex subset of R` and a correspondence P : X → 2X be a preference correspondence

such that:

(1) x 6∈ P (x) for all x ∈ X

(2) P (x) is convex for all x ∈ X

(3) P has open lower sections

Then there exists x′ ∈ X such that P (x′) = ∅.

NOTE (1),(2) can be replaced by x 6∈ conP (x) for all x ∈ X.

REMARK

KKM Theorem ⇔ Browder Fixed Point Theorem ⇔ Existence of Maximal Elements The-

orem
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7 Selection Theorems

DEFINITION 7.1: A selection from ϕ : X → 2Y is a function f : X → Y such that,

for every x ∈ X, f(x) ∈ ϕ(x). If X and Y are topological spaces, then we say that f is a

continuous selection if f is a selection and is continuous.

THEOREM 7.2(Yannelis-Prabhakar): Let X be paracompact3, Y be topological

vector space a correspondence ϕ : X → 2Y be nonempty-valued and convex-valued. If ϕ

has open lower sections, then there exists a continuous selection of ϕ.

THEOREM 7.3(Michael): Let X be paracompact, Y be separable Banach space 4

and a correspondence ϕ : X → 2Y be nonempty-valued and convex-valued. If ϕ is lower

hemi-continuous, then there exists a continuous selection of ϕ.

N. B.

(a) If Y = Rn then Theorem 5.1 is a corollary of Theorem 5.2.

(b) If Y is any arbitrary linear topological space then Theorem 5.1 does not follow from

Theorem 5.2.

8 Fixed Point Theorems

DEFINITION 8.1:

(1) Let f : X → X be a function. A fixed point of f is a point x∗ ∈ X such that

x∗ = f(x∗).

(2) Let ϕ : X → 2X be a correspendence. A fixed point of ϕ is a point x∗ such

x∗ ∈ ϕ(x∗).

THEOREM 8.1 (Brouwer): Let X be a nonempty compact convex subset of R` and

f : X → X be a continuous function. Then there exists a fixed point of f .

THEOREM 8.2 (Browder): Let X be a nonempty compact convex subset of R` and

a correspondence ϕ : X → 2X be nonempty-valued and convex-valued. If ϕ has open

3A Hausdorff space is paracompact if every cover has an open locally finite refinement cover
4A Banach space is a normed space that is also a complete metric space under the metric induced by

its norm
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lower sections, then there exists a fixed point of ϕ.

THEOREM 8.3: Let X be a nonempty compact convex subset of R` and a correspon-

dence ϕ : X → 2X be nonempty-valued and convex-valued. If ϕ is lower hemi-continuous,

then there exists a fixed point of ϕ.

THEOREM 8.4 (Kakutani): Let X be a nonempty compact convex subset of R` and

the correspondence ϕ : X → 2X be nonempty-valued and convex-valued. If ϕ has closed

graph (or is closed-valued and upper hemi-continuous), then there exists a fixed point of ϕ.

N. B. Note that Theorems 6.1 is a corollary of Theorem 6.4, and that Theorem 6.2 is a

corollary of Theorem 6.3.

9 Probability

DEFINITION 9.1: Ω is a state space (set of states of nature). A ⊂ Ω is an event.

DEFINITION 9.2: A family F of subsets of Ω is a σ-algebra if

(1) Ω ∈ F ,

(2) A ∈ F ⇒ Ac ∈ F ,

(3) An ∈ F ,∀n ∈ N ⇒ ⋃

n∈N An ∈ F .

The pair (Ω,F) is called a measurable space.

DEFINITION 9.3 : Let A be a family of subsets of Ω. We denote by σ(A) the smallest

σ-field containing A.

DEFINITION 9.4: For a topological space (X, τ) , B(X) := σ(τ) is the Borel σ-field

on X.

Example

(1) 2Ω is a σ-field.

(2) Ω = {ω1, ω2, ω3}. F = {{ω1, ω2}, {ω3}, ∅,Ω} is a σ-field.
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(3) Ω = {ω1, ω2, ω3, ω4, ω5}.
F = {{ω1}, {ω5}, {ω1, ω5}, {ω2, ω3, ω4}, {ω1, ω2, ω3, ω4}, {ω2, ω3, ω4, ω5}, ∅,Ω} is a σ-

field.

DEFINITION 9.5 : Let F1,F2 be σ-fields on Ω.

(1) F1 is finer than F2 and, F2 is coarser than F1 if F2 ⊂ F1.

(2) The join F1 ∨ F2 of F1 and F2 is the smallest σ-field containing both F1 and F2.

(3) The meet F1 ∧F2 of F1 and F2 is the largest σ-field contained in both F1 and F2.

Example :

Ω = {ω1, ω2, ω3},
F1 = {{ω1, ω2}, {ω3}, ∅,Ω},
F2 = {{ω1, ω3}, {ω2}, ∅,Ω}.

Then

F1 ∨ F2 = {{ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, ∅,Ω},
F1 ∧ F2 = {∅,Ω}.

DEFINITION 9.6: A finite partition of Ω is a finite family of disjoint subsets of Ω,

whose union is Ω.

DEFINITION 9.7: A partition F ′ of Ω is a measurable partition of Ω if F ′ ⊂ F .

N. B. An information of an agent can be described by a measurable partition of Ω.

DEFINITION 9.8: Let (Ω,F) be a measurable space. A mapping µ : F 7→ <+ is a

measure if

(1) µ(∅) = 0,

(2) An ∈ F ,∀i ∈ N with Ai ∩Aj = ∅,∀i 6= j ⇒ µ(∪n∈NAn) =
∑

n∈N µ(An).

(Ω,F , µ) is called a measure space.

NOTE µ is a probability measure with additional condition µ(Ω) = 1, and (Ω,F , µ)

is called a probability space.
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DEFINITION 9.9: Let (Ω,F) and (Ω′,F ′) be two measurable spaces. f : Ω → Ω′ is

(F ,F ′) -measurable if f−1(A) ∈ F ,∀A ∈ F ′.

DEFINITION 9.10: Let f : Ω → R. f is measurable with respect to F (or F-

measurable) if f−1(A) ∈ F ,∀A ⊂ B(R).

NOTE A random variable is a real-valued measurable function in probability space.

DEFINITION 9.11: Let Xi’s be random variables. σ(X1, . . . , Xn) is the smallest

σ-field with respect to which X1, . . . , Xn are measuarble.

N. B. σ(X1, . . . , Xn) =
∨n

i=1 σ(Xi).

Example : Let Ω = {ω1, ω2, ω3} and F = 2Ω. A consumer has a random en-

dowments : e(ω1) = 1, e(ω2) = 0, e(ω3) = 0. Then e is measurable with respect to

σ(e) = {{ω1}, {ω2, ω3},Ω, ∅}

DEFINITION 9.12: Let (Ω,F , µ) be a finite measure space. Let f be a nonnegative

measurable simple function, i.e., f =
∑n

i=1 an1Ai
where ai ∈ R+,∀i = 1, . . . , n and

(A1, . . . , An) be a finite measurable partition of Ω. The integral of f on Ω is defined by

∫

fdµ =
n∑

i=1

aiµ(Ai)

DEFINITION 9.13: Let (Ω,F , µ) be a finite measure space. The integral of a

nonnegative random variable f on Ω is defined by
∫

fdµ = sup{
∫

f ′dµ : f ′ is simple and f ′ ≤ f}

DEFINITION 9.14: Let (Ω,F , µ) be a finite measure space and A1, . . . , An be a finite

measurable partition Ω. The integral of a random variable f on Ω is defined by
∫

fdµ =

∫

f+dµ−
∫

f−dµ,

where f = f+ − f− and f+ = f ∨ 0, f− = (−f) ∨ 0.

Monotone Convergence Theorem : Let (Ω,F , µ) be a finite measure space and (fn)

be a sequence of measurable functions on Ω.

0 ≤ fn ≤ fn+1,∀n ∈ N and fn → f, µ-a.e.⇒
∫

fndµ→
∫

fdµ.
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Lemma (Fatou) : Let (Ω,F , µ) be a finite measure space and (fn) be a sequence of

measurable functions on Ω.
∫

lim inf fndµ ≤ lim inf

∫

fndµ

Dominated Convergence Theorem : Let (Ω,F , µ) be a finite measure space and (fn)

be a sequence of measurable functions on Ω. Suppose that g is a nonnegative integrable

function on Ω and f is a measurable function Ω such that

|fn| ≤ g,∀n ∈ N and fn → f, µ-a.e..

Then f and fn, n ∈ N are integrable and
∫
fndµ→

∫
fdµ.

10 Information Structure

We have a probability measure space (Ω,F , µ). There are m agents and µ is their

common prior.

DEFINITION 10.1: An information correspondence is a nonempty-valued corre-

spondence P : Ω → F .

The interpretation is that when the state is ω the decision-maker knows only that the

state is in P (ω). When we use information correspondence to model a decision-maker’s

knowledge we usually assume the following two conditions:

(i) For every ω ∈ Ω, ω ∈ P (ω),

(ii) If ω′ ∈ P (ω), then P (ω′) = P (ω).

(i) says that the decision maker never excludes the true state from the set of states he

regards as feasible. (ii) says that the decision-maker uses the consistency or inconsistency

of states with his information to make inferences about the state.

DEFINITION 10.2: An information correspondence P is an information partition

if there is a partition P such that for every ω ∈ Ω, ω ∈ P (ω) ∈ P. The partition P is said

to be generated by P .

N. B. An information partition P can be identified with the partition that it generates.
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Lemma An information correspondence P is an information partition if and only if it

satisfies (i) and (ii).

The (private) information of agent i is represented by an information partition Pi on

Ω. The information set of agent i at ω is given by Pi(ω).

Definition :

(1) An information P ′ is finer than an information P and P is coarser than P ′ if

P ′(ω) ⊂ P (ω), ∀ ω ∈ Ω.

(2) A meet,
∧

i∈S Pi, of {Pi : i ∈ S} is the finest information that is coarser than Pi for

every i ∈ S.

(3) A join,
∨

i∈S Pi, of {Pi : i ∈ S} is the coarsest information that is finer than Pi for

every i ∈ S.

N. B. Note that P ′ is finer than P iff σ(P ) ⊂ σ(P ′) where σ(P ) is the smallest σ-field

containing the partition generated by P .

N. B. The finest information is given by P such that P (ω) = {ω} for every ω ∈ Ω. The

coarsest information is given by P such that P (ω) = Ω for every ω.

THEOREM 10.1: The following hold :

(1) For every ω ∈ Ω, (
∧

i∈S Pi)(ω) =
⋃

i∈S{Pi(ω
′) : ω′ ∈ (

∧

i∈S Pi)(ω)},

(2) σ(
∧

i∈S Pi) =
⋂

i∈S σ(Pi),

(3) For every ω ∈ Ω, (
∨

i∈S Pi)(ω) =
⋂

i∈S [Pi(ω)],

(4) σ(
∨

i∈S Pi) = σ(
⋃

i∈S Pi).

THEOREM 10.2: If P ′ is finer than P , then P ′ ∧ P = P and P ′ ∨ P = P ′.

Given our interpretation of an information correspondence, a decision-maker for whom

P (ω) ⊂ A knows, in the state ω, that some state in the event A has occurred. In this case

we say that in the state ω the decision-maker knows A. For every ω ∈ Ω, agent i knows

that Pi(ω) occurs at ω because of property (i).
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DEFINITION 10.3: An event A occurs at ω if ω ∈ A.

DEFINITION 10.4: Agent i knows that A occurs at ω if Pi(ω) ⊂ A. N. B. For

every ω ∈ Ω, agent i knows that Pi(ω) occurs at ω.

DEFINITION 10.5: An event A is common knowledge of S at ω if (
∧

i∈S Pi)(ω) ⊂ A.

In the game theory context, common knowledge is defined by different, but equivalent way.

For more, refer to chapter 5 of Osborne-Rubinstein or chapter 14 of Fudenberg-Tirole.

DEFINITION 10.6: A function x : Ω → R is Pi-measurable if x−1(B) ∈ σ(Pi) for

every B ∈ B(R).

DEFINITION 10.7: A partition P (x1, . . . , xn) is the smallest partition with respect to

which x1, . . . , xn are measurable. It is said to be generated by x1, . . . , xn.

THEOREM 10.3 Let xi be Pi-measurable for every i.

(1) If P ′
i is finer than Pi, then xi is P ′

i -measurable.

(2) If λ ∈ R, then λxi is Pi-measurable.

(3)
∑

i∈S xi is (
∨

i∈S Pi)-measurable, where (
∑

i∈S xi)(ω) =
∑

i∈S xi(ω).

(4) (xi)i∈S is (
∨

i∈S Pi)-measurable, where ((xi)i∈S) (ω) = (xi(ω))i∈S .

(5)
∏

i∈S xi is (
∨

i∈S Pi)-measurable, where (
∏

i∈S xi)(ω) =
∏

i∈S xi(ω).

Example

Let Ω = {ω1, ω2, . . . , ω5} and F = 2Ω. Consider three agents whose information is given

by

P1(Ω) = {{ω1}, {ω2, ω3}, {ω4}, {ω5}},
P2(Ω) = {{ω1, ω2}, {ω3, ω4}, {ω5}},
P3(Ω) = {{ω1, ω2}, {ω3}, {ω4}, {ω5}}

We will use Pi instead of Pi(Ω) by abusing of notation.
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1. The information set of agent 2 at ω3 is P2(ω3) = {ω3, ω4}.

2. An event A1 = {ω1, ω2, ω3} occurs at ω2.

3. Agent 1 knows that A1 occurs at ω1, and knows that P1(ω2) = {ω2, ω3} occurs at ω2.

4. P3 is finer than P2 and P2 is coarser than P3.

5 σ(P2) = {{ω1, ω2}, {ω3, ω4}, {ω5}, {ω1, ω2, ω3, ω4}, {ω1, ω2, ω5}, {ω3, ω4, ω5}, ∅,Ω}.

6. We can show that

P1 ∧ P2 = {{ω1, ω2, ω3, ω4}, {ω5}},
P1 ∧ P3 = {{ω1, ω2, ω3}, {ω4}, {ω5}},
P2 ∧ P3 = P2.

Note that P1 ∧ P2 is coarser than P1.

7. We can show that

P1 ∨ P2 = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}},
P1 ∨ P3 = P1 ∨ P2,

P2 ∨ P3 = P3.

Note that P1 ∨ P2 is finer than P1.

8. We can show that

∧3
i=1 Pi = P1 ∧ P2,

∨3
i=1 Pi = P1 ∨ P2.

9. A2 = {ω1, ω2, ω3, ω4} is common knowledge of {1, 2, 3} at ω2 and A3 = {ω5} is commom

knowledge of {1, 2, 3} at ω5, but A1 = {ω1, ω2, ω3} is not common knowledge of {1, 2, 3} at

any ω ∈ Ω. Note that at ω2, every agent knows that A1 occurs. However, A1 is common

knowledge of {1, 3} at ω2.

10. Let us write x = (x(ωk))
5
k=1. Consider the following random variables x1, . . . , x8 :

x1 = (1, 2, 3, 4, 5), x2 = (0, 1, 1, 4, 2),

x3 = (1, 1, 3, 3, 2), x4 = (0, 0, 2, 4, 5),

x5 = (1, 1, 1, 1, 1), x6 = (1, 1, 1, 1, 5),

x7 = (1, 0, 0, 3, 1), x8 = (0, 0, 0, 1, 2);
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(1) We can show that

P (x8) = {{ω1, ω2, ω3}, {ω4}, {ω5}},
P (x2, x3) = {{ω1}, {ω2}, {ω3}, {ω4}, {ω5}} = P (x2) ∨ P (x3),

σ(x7) = {{ω1, ω5}, {ω2, ω3}, {ω4}, {ω1, ω4, ω5}, {ω2, ω3, ω4}, {ω1, ω2, ω3, ω5}, ∅,Ω},
σ(x3, x6) = {{ω1, ω2}, {ω3, ω4}, {ω5}, {ω1, ω2, ω5}, {ω3, ω4, ω5}, {ω1, ω2, ω3, ω4}, ∅,Ω}

= σ(x3) ∨ σ(x6).

(2) x1 and x7 are (P1 ∨ P2)-measurable, x6 is (P1 ∧ P2)-measurable, x8 is (P1 ∧ P3)-

measurable and x5 is Pi-measurable for every i.

(3) Since x3 is P2-measurable and P3 is finer than P2, x3 is also P3-measurable.

(4) Since x2 is P1-measurable, 3x2 = (0, 3, 3, 12, 6) is still P1-measurable.

(5) x2 − 2x3 = (−2,−1,−5,−2,−2) is (P1 ∨ P2)-measurable.

(6) (x3, x4) = ((1, 0), (1, 0), (3, 2), (3, 4), (2, 5)) is (P2 ∨ P3)-measurable.

(7) x2x4 = (0, 0, 2, 16, 10) is (P1 ∨ P3)-measurable.
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Part II

GENERAL EQUILIBRIUM

1 Walrasian Equilibrium

1.1 Preferences

DEFINITION 1.1.1 A relation R is a correspondence from X to 2X . The properties

of R are defined as follows.

(1) R is reflexive if, for every x ∈ X, x ∈ R(x).

(2) R is irreflexive if, for every x ∈ X, x 6∈ R(x).

(3) R is complete if, for every x, x′ ∈ X, x′ ∈ R(x) or x ∈ R(x′).

(4) R is transitive if x′′ ∈ R(x′) and x′ ∈ R(x) implies x′′ ∈ R(x).

(5) R is negatively transitive if x′′ 6∈ R(x′) and x′ 6∈ R(x) implies x′′ 6∈ R(x).

(6) R is symmetric if x′ ∈ R(x) implies x ∈ R(x′).

(7) R is asymmetric if x′ ∈ R(x) implies x 6∈ R(x′).

(8) R is antisymmetric if x′ ∈ R(x) and x ∈ R(x′) implies x′ = x.

THEOREM 1.1.1 Let P : X → 2X be a relation.

(1) If P is asymmetric, then it is irreflexive.

(2) If P is asymmetric and negatively transitive, then it is transitive.

THEOREM 1.1.2 Define relations R : X → 2X and I : X → 2X by R(x) := {x′ ∈ X :

x 6∈ P (x′)} and I(x) = {x′ ∈ X : x′ ∈ R(x) and x ∈ R(x′)}. Then

(1) P is asymmetric iff R is complete.

(2) P is negatively transitive iff R is transitive.

(3) P is asymmetric and negatively transitive implies that I is reflexive, symmetric, and

transitive.
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N. B Note that R(x) = X \ P−1(x) and I(x) = R(x) ∩R−1(x).

DEFINITION 1.1.2 Define a relation R : X → 2X by R(x) = {x′ ∈ X : x′ � x}. The

properties of � (or R) are defined as follows. 5

(1) � is reflexive if, for every x ∈ X, x � x.

(2) � is complete if, for every x, x′ ∈ X, x′ � x or x � x′.

(3) � is transitive if x � x′ and x′ � x′′ implies that x � x′′.

(4) � is weakly monotonic if x′ ≥ x implies x′ � x.

(5) � is monotonic if x′ � x implies x′ � x.

(6) � is strongly monotonic if x′ > x implies x′ � x.

(7) � is nonsatiated if, for every x ∈ X, there is x′ ∈ X such that x′ � x.

(8) � is locally nonsatiated if, for every x ∈ X, for every ε > 0, there is a x′ ∈
Bε(x) ∩X such that x′ � x.

(9) � is convex if x′ � x and x′′ � x implies αx′ + (1 − α)x′′ � x for every α ∈ [0, 1].

(10) � is semi-strictly convex if x′ � x implies αx′ + (1 − α)x � x for α ∈ (0, 1] and

x′ ∼ x implies αx′ + (1 − α)x � x for every α ∈ [0, 1].

(11) � is strictly convex if x′ � x and x′′ � x and x′ 6= x′′ implies αx′ + (1− α)x′′ � x

for every α ∈ (0, 1).

(12) � has an extremely desirable bundle v if for every x ∈ X and for every α ∈ R+,

x+ αv ∈ {x′ ∈ X : x′ � x}.
5Define a relation P : X → 2X by P (x) = X \R−1(x) = {x′ ∈ X : x′ � x}.
(1) � is irreflexive if x 6∈ P (x).

(2) � is transitive if x ∈ P (y) and y ∈ P (z) implies x ∈ P (z).

(3) � is continuous if P (x) and P−1(x) are open for every x ∈ X.

(4) � is monotonic if x′ � x implies x′ ∈ P (x).

(5) � is strictly monotonic if x′ > x implies x′ ∈ P (x).

(6) � is convex if P is convex-valued.

(7) � is strictly convex if x 6= x′ implies that αx+ (1− α)x′ ∈ P (x)∪ P (x′) for every
α ∈ (0, 1).
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(13) � is proper at x if there exists a v ∈ R`
+ \ {0} and a neighborhood V of zero such

that z ∈ R` and x− αv + z � x with α ∈ R+ implies z 6∈ αV .

(14) � is uniformly proper if it is proper at every x ∈ X.

N. B We can define the convexities of preference � in the following forms.

(i) x′ � x implies αx′ + (1 − α)x � x for every α ∈ [0, 1].

(ii) x′ � x implies αx′ + (1 − α)x � x for every α ∈ (0, 1].

(iii) x′ ∼ x with x′ 6= x implies αx′ + (1 − α)x � x for every α ∈ (0, 1).

THEOREM 1.1.3 We assume that � is complete and transitive.

(1) If � continuous. Then (iii) implies (ii), which,in turn, implies (i).

(2) (i) holds for every x ∈ X iff � is convex.

(3) � is convex iff � is convex.

(4) If � is convex, continuous, strictly monotone, then (ii) holds.

(5) If � is continuous, then (iii) holds iff � is strictly convex.

THEOREM 1.1.4 A preference � is proper iff there is a non-trivial open cone Γ ∈ R`

such that for every x ∈ X,

Γ ∩ (−R`
+) 6= ∅, ({xi} + Γ) ∩R(xi) = ∅.

N. B There is a commodity which is very desirable in the sense that its marginal rates

of substitution with respect to any other commodity are uniformly bounded above. It is

always satisfied by monotone preference. It can be equivalently formulated as : there is a

non-trivial open cone Γ such that

({xi} + Γ) ∩Xi ⊂ P (xi)

for every i and xi ∈ Xi.

THEOREM 1.1.5 Every uniformly proper vector is extremely desirable.

THEOREM 1.1.6 If a preference � is monotonic and has extremely desirable bundle,

then it is uniformly proper.

28



1.2 Gale-Debreu-Nikaido Lemma

THEOREM 1.2.1 (Gale-Debreu-Nikaido) : Let Z : ∆ → 2R`
be an excess demand

correspondence satisfying the following conditions:

(1) Z is nonempty-valued, compact-valued, convex-valued, and upper hemi-continuous,

(2) for every p ∈ ∆,∃z ∈ Z(p) such that p · z ≤ 0.

Then, ∃p∗ ∈ ∆ such that Z(p∗) ∩R`
− 6= ∅.

PROOF: Suppose otherwise, i.e., ∀p ∈ ∆, Z(p) ∩ R`
− = ∅. Since Z(p) is nonempty

compact convex and R`
− is nonempty closed convex, by the separating hyperplane theorem,

∃q∗ ∈ R` \ {0} such that supy∈R`
−
q∗ · y < infz∈Z(p) q

∗ · z. Note that supy∈R`
−
q∗ · y = 0 so

that q∗ · z > 0,∀z ∈ Z(p). Without loss of generality, we can take q∗ ∈ ∆.

Define F : ∆ → 2∆ by F (p) := {q ∈ ∆ : q · z > 0,∀z ∈ Z(p)}. Then, we want to show

that F is nonempty, convex valued and lower-hemicontinuous, so that we can apply the

Michael selection theorem.

Since for every p ∈ ∆, q∗ · z > 0,∀z ∈ Z(p), q∗ ∈ F (p), i.e., F is nonempty valued. Pick

q1, q2 in F (p). Then for every p ∈ ∆, q1 · z > 0 and q2 · z > 0,∀z ∈ Z(p). Thus for every

p ∈ ∆ and for every α ∈ [0, 1], (αq1 + (1 − α)q2) · z > 0,∀z ∈ Z(p), which implies that

αq1 + (1 − α)q2 ∈ F (p), i.e., F is convex valued.

For each q ∈ ∆,

F−1(q) = {p ∈ ∆ : q ∈ F (p)} (1)

= {p ∈ ∆ : q · z > 0,∀z ∈ Z(p)} (2)

= {p ∈ ∆ : Z(p) ⊂ {z : q · z > 0}}. (3)

Since V := {z : q · z > 0} is open and Z is upper-hemicontinuous, ∀q ∈ ∆, F−1(q) is open

in ∆, i.e., F has open lower sections. Thus, F is lower-hemicontinuous6.

By the Michael selection theorem, there exists a continuous function f : ∆ → ∆ such that

f(p) ∈ F (p) for all p ∈ ∆. This function maps points from the nonempty compact convex

set into itself. Therefore, it fulfills the condition of the Brouwer’s fixed point theorem.

6Note that for every open subset W of ∆,
⋃

q∈W F−1(q) = {p ∈ ∆ : F (p) ∩W 6= ∅}. In

fact, p′ ∈ ∪q∈WF−1(q) iff p′ ∈ F−1(q) for some q ∈W iff q ∈ F (p′), q ∈W iff q ∈ F (p′)∩W
iff F (p′) ∩W 6= ∅ iff p′ ∈ {p ∈ ∆ : F (p) ∩W 6= ∅}. Since the union of open sets is open,
{p ∈ ∆ : F (p) ∩W 6= ∅} is open for every open subset W of ∆.
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By the Brouwer’s fixed point theorem, there exists a p∗ = f(p∗) ∈ F (p∗) Hence, p∗ · z >
0,∀z ∈ Z(p∗). This contradicts the condition (2), which is the Walras law. 2

ALTERNATIVE PROOF: ( by applying KKM Theorem)

Define F : ∆ → 2∆ by F (p) = {q ∈ ∆ : q · z > 0,∀z ∈ Z(p)}. Then F is convex valued

and has open lower sections. Since F−1(q) is open ∀q ∈ ∆, G(q) = ∆\F−1(q) is closed

∀q ∈ ∆. Need to show that G(q) satisfies conditions of KKM theorem.

i) For any set of points {q1, . . . , qn} ⊂ ∆, co{qi, . . . , qn} ⊂ ⋃n
i=1G(qi).

Suppose not. Let p ∈ co{qi, . . . , qn} and p 6∈ ⋃n
i=1G(qi) ⇒ p 6∈ G(qi),∀i ⇒ p ∈ F−1(qi),∀i

⇒ qi ∈ F (p),∀i ⇒ co{qi, . . . , qn} ⊂ coF (p) = F (p) ⇒ p ∈ F (p), which is a contradiction

to condition (2).

ii) G(q) is compact for each q ∈ ∆, since it is a closed subset of a compact set ∆.

Therefore, by applying KKM theorem,
⋂

q∈∆G(q) 6= ∅.
Let p ∈ ⋂q∈∆G(q) ⇒ p ∈ G(q),∀q ∈ ∆ ⇒ p 6∈ F−1(q),∀q ∈ ∆ ⇒ q 6∈ F (p),∀q ∈ ∆

⇒ F (p) = ∅, for some p ∈ ∆

But F (p) = ∅ for some p ∈ ∆ implies that ∀q ∈ ∆, q · z ≤ 0 for some z ∈ Z(p), which in

turn implies that Z(p) ∩R`
− 6= ∅.

To see this, suppose otherwise, i.e., Z(p) ∩ R`
− = ∅. Since Z(p) is nonempty, compact,

convex and R`
− is nonempty closed convex, by the separating hyperplane theorem, ∃q∗ ∈

R` \ {0} such that supy∈R`
−
q∗ · y < infz∈Z(p) q

∗ · z. Note that supy∈R`
−
q∗ · y = 0 so that

q∗ · z > 0,∀z ∈ Z(p), a contradiction. Hence for some p ∈ ∆, Z(p) ∩R`
− 6= ∅, as it was to

be shown. 2

1.3 Existence of Walrasian Equilibrium

THEOREM 1.3.1 : Let E = {(Xi, ui, ei) : i ∈ I} be an exchange economy satisfying

the following assumptions for each i ∈ I.

(a) Xi : is a nonempty, compact, convex subset of R`,

(b) ui : Xi → R+ is quasi-concave and continuous,

(c) ei ∈ intXi.

Then E has a free disposal equilibrium, i.e., there exist (p∗, x∗) ∈ ∆×X with X =
∏

i∈I Xi

such that

(1) ∀i ∈ I, x∗i ∈ ϕi(p
∗) := {xi ∈ Bi(p

∗) : ui(xi) ≥ ui(x
′
i),∀x′i ∈ Bi(p

∗)}, where Bi(p
∗)

:= {xi ∈ Xi : p∗ · xi ≤ p∗ · ei},
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(2)
∑

i∈I x
∗
i ≤∑i∈I ei

PROOF: Since ∀p ∈ ∆, ei ∈ Bi(p), Bi is nonempty-valued. Clearly, Bi is closed-valued.

Since a closed subset of a compact set is compact, Bi is compact-valued. It is easy to

verify that Bi is convex-valued. Finally, Bi is continuous. Let vi(x, p) := ui(x). By the

Maximum Theorem, the demand correspondence ϕi is nonempty-valued, compact-valued

and upper hemicontinuous. Furthermore, the quasi-concavity of the utility function and

the convex-valuedness of Bi implies that ϕi is convex-valued. Define the excess demand

correspondence Z : ∆ → 2R`
by Z(p) :=

∑

i∈I ϕi(p)−
∑

i ei. Then Z is nonempty compact

convex valued and upper-hemicontinuous. Moreover, for every i ∈ I, ∀p ∈ ∆, p · xi ≤ p · ei
so that p ·z ≤ 0,∀z ∈ Z(p). By the DGN lemma, ∃p∗ ∈ ∆ such that Z(p∗)∩R`

− 6= ∅. Take

z∗ ∈ Z(p∗) ∩ R`
−. Then for every i, there exists x∗i ∈ ϕi(p

∗) such that
∑

i x
∗
i −∑i ei =

z∗ ≤ 0. Hence (p∗, x∗) constitutes a free disposal equilibrium. 2

LEMMA 1.3.2 : If ei ∈ intXi, then Bi is lower hemi-continuous.

1.4 Equilibrium in an Abstract Economy

DEFINITION 1.4.1 : A game (in a normal form) Γ = {(Xi, Pi)i : i ∈ I} is a set

of pairs (Xi, Pi), where

(1) Xi is the strategy set of player i,

(2) Pi : X → 2Xi is the preference correspondence player i.

DEFINITION 1.4.2 : x∗ ∈ X is a Nash equilibrium if for every i ∈ I, Pi(x
∗) :=

{yi ∈ Xi : (x∗1, . . . , yi, . . . , x
∗
n) �i (x∗1, . . . , x

∗
i , . . . , x

∗
n)} = ∅.

DEFINITION 1.4.3 : An abstract economy Γ is a set of triplets {(Xi, Pi, Ai) : i ∈ I}
where

(1) Xi is the strategy set of agent i,

(2) Pi : X → 2Xi is the preference correspondence of agent i,

(3) Ai : X → 2Xi is the constraint correspondence of agent i.

DEFINITION 1.4.4 : An equilibrium for the abstract economy Γ is x∗ ∈ X such

that, for every i ∈ I,
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(1) x∗i ∈ Ai(x
∗),

(2) Pi(x
∗) ∩Ai(x

∗) = ∅.

THEOREM 1.4.1 : Let Γ = {(Xi, Pi, Ai) : i ∈ I} be an abstract economy satisfying

the following assumptions for every i ∈ I.

(1) Xi is a nonempty, compact, convex subset of R`,

(2) Pi has an open graph in X ×Xi,

(3) xi 6∈ coPi(x),∀x ∈ X,

(4) Ai : X → 2Xi is nonempty, closed, convex valued and continuous correspondence.

Then Γ has an equilibrium, i.e., there exists x∗ ∈ X such that for every i ∈ I,

(a) x∗i ∈ Ai(x
∗),

(b) Pi(x
∗) ∩Ai(x

∗) = ∅

PROOF: For each i, define a correspondence ϕi : X → 2Xi by ϕi(x) := coPi(x). Since

Pi has open graph, so does ϕi. For each i, define a correspondence ψi : X → 2Xi by

ψi(x) := ϕi(x) ∩ Ai(x). Since ϕi has an open graph and Ai is lower-hemicontinuous, it

follows that ψi is lower-hemicontinuous. Moreover ψi is convex-valued. For each i, define

Vi := {x ∈ X : ψi(x) 6= ∅}.

(i) If Vi is empty, (b) is satisfied for all x ∈ X. Since Ai is nonempty, closed, convex val-

ued and continuous, so is A, where A(x) =
∏

i∈I Ai(x). By the Kakutani fixed point

theorem, there exists x∗ ∈ A(x∗) so that x∗i ∈ Ai(x
∗). Hence x∗ is an equilibrium of

Γ.

(ii) Suppose Vi is not empty. Since ψi is lower-hemicontinuous, Vi = {x ∈ X : ψi(x) ∩
Xi 6= ∅} is open. Let ψi|Vi

: Vi → 2Xi be a restriction of ψi to Vi. Then it is nonempty

convex valued and lower-hemicontinuous. By the Michael selection theorem, there

exists a continuous function fi : Vi → Xi such that fi(x) ∈ ψi|Vi
(x) for all x ∈ Vi.

For each i, define a correspondence Fi : X → 2Xi as follows.

Fi(x) :=

{

{fi(x)} if x ∈ Vi

Ai(x) if x 6∈ Vi
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Then Fi is nonempty closed convex valued and upper-hemicontinuous. Define Ψ : X → 2X

by Ψ(x) :=
∏n

i Fi(x). Then Ψ is nonempty closed convex valued and upper-hemicontinuous.

Therefore, by the Kakutani fixed point theorem, there exists x∗ ∈ X such that x∗ ∈ Ψ(x∗).

If for some i, x∗ ∈ Vi, it follows from the definition of Fi that x∗i = fi(x
∗) ∈ ψi(x

∗) ⊂
coPi(x

∗), which is a contradiction to (3). Thus for every i, x∗ 6∈ Vi which implies that

x∗i ∈ Ai(x
∗) and ψi(x

∗) = ∅, i.e., Pi(x
∗)∩Ai(x

∗) = ∅. Hence x∗ is an equilibrium of Γ. 2

Next we use the above Theorem to prove the existence of Nash equilibrium for a game in

a normal form as a Corollary.

COROLLARY 1.4.1: Let G = {(Xi, ui) : i = 1, 2, ..., n} be a game in normal form

satisfying for all i the following assumptions:

i) Xi is compact, convex and non empty subset of Rl,

ii) ui : Πn
j=1Xj → R is quasi - concave and continuous.

Then G has a Nash equilibrium, i.e., there exists an x∗ ∈ X = Πn
i=1Xi such that forall i,

ui(x
∗
1, ..., x

∗
n) ≥ ui(x

∗
1, ..., yi, ..., x

∗
n),∀yi ∈ Xi

PROOF: ∀i set Ai(x) = Xi. Also, ∀i define the correspondence Pi : X → 2Xi by,

Pi(x1, ..., xn) = {yi ∈ Xi : ui(x1, ..., yi, ..., xn) > ui(x1, ..., xn)}

Hence, we have an abstract economy Γ = {(Xi, Pi, Ai) : i = 1, 2, ..., n}.We can easily verify

the following: a) Pi has an open graph, b) Pi is convex - valued, c) xi /∈ Pi(x1, .., xn),∀x ∈
X and d) Ai : X → 2Xi is non empty, closed - valued, convex - valued and continuous.

Thus, Γ has an equilibrium, i.e., there exists an x∗ ∈ X such that,

i) x∗i ∈ Ai(x
∗),∀i,

ii) Ai(x
∗) ∩ Pi(x

∗) = ∅,∀i.
From i) and ii) we can deduce that for all i, x∗i ∈ Xi and Pi(x

∗) = ∅. That is,

∀yi ∈ Xi, ui(x
∗
1, ..., yi, ..., x

∗
n) ≤ ui(x

∗
1, ..., x

∗
n)

2

Now we provide an alternative proof of the existence of a Nash equilibrium in a normal

form game (Corollary 1.4.1), by using the Berge Maximum Theorem and the Kakutani

Fixed point Theorem.

PROOF: Let X = Πn
i=1Xi and X̃i = Πi6=jXj . For all i define ϕi : X̃i → 2Xi by,

ϕi(x̃i) = {yi ∈ Xi : ui(yi, x̃i) = max
zi∈Xi

ui(zi, x̃i)}
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By the Berge Maximum Theorem, for all i, ϕi is u.h.c and compact-valued. Also ϕi is

nonempty since ui is a continuous function defined on a compact set (Weierstrass The-

orem). Moreover, for all i, ϕi, is convex-valued, since ui is quasi-concave. Now define a

new correspondence Φ : X → 2X by,

Φ(x) = Πn
i=1ϕi(x̃i)

Notice now, that Φ carries all the properties of ϕi. Hence, Φ has a closed graph (since it

is uhc and closed-valued and X is compact), is nonempty and convex-valued. Therefore,

by the Kakutani fixed point theorem, there exists an x∗ ∈ X such that x∗ ∈ Φ(x∗). It can

be easily seen that the fixed point by construction is a Nash equilibrium. 2

DEFINITION 1.4.5 : An exchange economy E is {(Xi, Pi, ei) : i ∈ I} where, for

every i ∈ I,

(1) Xi is the consumption set of agent i,

(2) Pi : X → 2Xi is the preference correspondence of agent i,

(3) ei ∈ Xi is the initial endowment of i.

DEFINITION 1.4.6 : An equilibrium for the exchange economy E is (p∗, x∗) ∈
∆ ×X such that

(a) ∀i ∈ I, p∗ · x∗i ≤ p∗ · ei,

(b) ∀i ∈ I, Pi(x
∗) ∩ {xi ∈ Xi : p∗ · xi ≤ p∗ · ei} = ∅,

(c)
∑

i∈I x
∗
i =

∑

i∈I ei.

THEOREM 1.4.3 : Let E = {(Xi, Pi, ei) : i ∈ I} be an exchange economy satisfying

the following assumptions for each i ∈ I.

(1) Xi : is a nonempty compact convex subset of R`,

(2) Pi has an open graph in X ×Xi and xi 6∈ coPi(x),∀x ∈ X,

(3) ei ∈ intXi.

Then E has a free disposal equilibrium, i.e., there exist (p∗, x∗) ∈ ∆ ×X such that

(a) ∀i ∈ I, p∗ · x∗i ≤ p∗ · ei,
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(b) ∀i ∈ I, Pi(x
∗) ∩ {xi ∈ Xi : p∗ · xi ≤ p∗ · ei} = ∅,

(c)
∑

i∈I x
∗
i ≤∑i∈I ei.

PROOF: Define P̄n+1 : ∆ × X → 2∆ by P̄n+1(p, x) := {q ∈ ∆ : q · (
∑

i∈I(xi − ei)) >

p · (
∑

i∈I(xi − ei))} and Ān+1 : ∆ × X → 2∆ by Ān+1(p, x) := ∆ := Xn+1. For each

i ∈ I, define P̄i : ∆ × X → 2Xi by P̄i(p, x) := Pi(x) and Āi : ∆ × X → 2Xi by

Āi(p, x) := {xi ∈ Xi : p · xi ≤ p · ei}.

Then we have converted the exchange economy E to an abstract economy Γ = {(Xi , P̄i,

Āi) : i = 1, . . . , n+ 1} which satisfies all the conditions of the previous theorem.

Thus, there exists (p∗, x∗) ∈ ∆ ×X such that

(i) ∀i ∈ I, x∗i ∈ Āi(p
∗, x∗), which is equivalent to (a),

(ii) ∀i ∈ I, Pi(x
∗) ∩ Āi(p

∗, x∗) = ∅, which is equivalent to (b),

(iii) P̄n+1(p
∗, x∗) ∩ Ān+1(p

∗, x∗) = ∅

However, (iii) implies that ∀q ∈ ∆, q · z∗ ≤ p∗ · z∗ ≤ 0, where z∗ =
∑

i∈I(x
∗
i − ei). Now

suppose that z∗ 6≤ 0. Since −z∗ 6∈ R`
+, by separating hyperplane theorem, there exists

v ∈ R` \ {0} such that v · (−z∗) < 0. Without loss of generality, v ∈ ∆. Thus v · z∗ > 0,

which is a contradiction. Hence z∗ ≤ 0, i.e.,
∑

i x
∗
i ≤∑i ei. 2

1.5 Uniqueness of Walrasian Equilibrium

Uniqueness of the equilibrium is obtained under strong assumptions. With less restrictive

assumptions we can have economies with multiple equilibria. This may be still satisfactory

provided that all the equilibria are locally unique which is equivalent to the finiteness of

equilibria when the set of equilibria is compact.

Here, we are going to show that ”almost every” economy has a finite set of equilibria.

That is, outside of a null closed subset of the space of economies, every economy has a

finite set of equilibria. We will begin with some notation and some preliminary concepts.

Let F : U → Rb be a continuously differentiable function, where U is an open subset of

Ra. A point x is a critical point of F if the Jacobian matrix of F at x has a rank smaller

than b, and y = F (x) is a critical value of F. If a point in Rb is not a critical value, then

it is called a regular value.
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Now, we will be more explicit about the expression ”almost every”. When we want to

measure an interval on a line, the first measure we think of is to take the difference of the

end points. What about the measure of more comlicated sets, such as union of intervals,

or union of intervals and points etc...

Lebesgue Measure: For each set A of real numbers consider the countable collection

{In} of open intervals that cover A, that is, A ⊂ ∪In, and for each such collection consider

the sum of the length of the intervals in the collection. Lebesgue measure of A, which is

denoted by mA, is defined as the infimum of all such sums.

mA = inf
a⊂∪In

∑

`(In)

where `(In) represents the length of interval In.

EXAMPLE: There may exist sets with Lebesgue measure zero: e.g. set of rational

numbers.

Sard’s Theorem: If all the partial derivatives of F to the cth order included, where

c > max(0, a − b), exist and are continuous, then the set of critical values of F has

Lebesgue measure zero in Rb.

Let L be the set of strictly positive real numbers, P be the set of strictly positive vectors

in R` where ` is the number of commodities, and S be the set of vectors in P for which

the sum of the components is unity. There are m agents in the economy and agent i’s

demand function, fi, is a function from S × L to P such that for every (p, wi) ∈ S × L,

one has p · fi(p, wi) = wi.

Assumption A: If the sequence (pq, wq
i ) in S × L converges to (p0, w0

i ) in (S \ S) × L,

then| fi(p
q, wq

i ) | converges to +∞ (Every commodity is desired by agent i).

An economy is defined by ω ∈ Pm. Given ω ∈ Pm, an element p of S is an equilibrium

price vector of the economy ω if

m∑

i=1

fi(p, p · ωi) =
m∑

i=1

ωi.

We denote by W (ω) the set of p satisfying this equality. Finally we say that a set A is

null if it has Lebesgue measure zero, also we say that a property holds almost everywhere

if it holds outside of a null set.

Theorem: Given m continuously differentiable demand functions (f1, . . . , fm), if some fi

satisfies assumption A, then the set of ω ∈ Pm for which W (ω) is infinite has a null closure.
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Proof (for details of this proof see Debreu(1970): W.l.o.g. assume that first con-

sumer satisfies assumption A. Let U = S ×L× Pm−1, an open set in R`m. We define the

function F from U to R`m by F (e) = (ω1, ω2, . . . , ωm) where e = (p, w1, ω2, . . . , ωm) and

ω1 = f1(p, w1) +
m∑

i=2

fi(p, p · ωi) −
m∑

i=2

ωi

Notice that ∀e ∈ U , p · ω1 = w1. Also, given ω ∈ Pm, the price vector p belongs to W (ω)

if and only if F (p, p · ω1, ω2, . . . , ωm) = ω and that the points of W (ω) are in one-to-one

correspondence with the points of F−1(ω). Since F is continuously differentiable by Sard’s

theorem, the set C of critical values of F is null.

We now want to prove that C ∩ Pm is closed relative to Pm. To this end we establish

that if K is a compact subset of Pm, then F−1(K) is compact. This implies that if E

contained in U is closed relative to U , then F (E)∩Pm is closed relative to Pm. Then, as

a corollary we have C ∩ Pm is closed relative to Pm. If ω ∈ Pm is a regular value of F ,

then F−1(ω) is finite. If ω ∈ Pm is such that W (ω) is infinite, then ω ∈ C. Then, C ∩Pm

is null and so is its closure.

1.6 Stability of Walrasian Equilibrium

Uniqueness property is obtained under strong assumptions. With less restrictive assump-

tions we can have economies with multiple equilibria. This may be still satisfactory pro-

vided that all the equilibria are locally unique which is equal to the finiteness of equilibria

when the set of equilibria is compact. Here, we want to show that almost every economy

has a finite set of equilibria.

DEFINITION 1.6.1 : Stability means that aggregate excess demand goes down as prices

go up.

EXAMPLE 1.6.1 : Suppose e1 = (1, 0), e2 = (0, 1) and p be the price of x, q

price of y and u1(x, y) = min{x, 2y}, u2(x, y) = min{2x, y}. We can derive demand

functions as follows. If α units of good y is demanded then 2α units of good x are

demanded. For agent 1, a budget line is 2αp + αq = p. Thus α = p/(2p + q) and

D1(p, q) = (2p/(2p+ q), p/(2p+ q)). Similarly, D2(p, q) = (q/(p+ 2q), 2q/(p+ 2q)). Then

aggregate demand for x is Ex = 2p/(2p+ q) + q/(p+ 2q)− 1 = q(p− q)/(2q2 + 5pq+ 2p2).

Since denominator is always positive, as p rises, Ex increases so that there is an instabil-

ity. Similarly, Ey = p(q−p)/(2p2+5pq+2q2) so that there is an instability (See figure (a)).
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EXAMPLE 1.6.2 : If we change endowment : e1 = (0, 1), e2 = (1, 0), then we get

stability. The location of endowment plays role in getting stability (See figure (b)).

THEOREM 1.6.1 (Slutsky Equation) :

∂xi

∂pj
=
∂xi

∂pj
|u=u0 −xj

∂xi

∂m
|p=p0

• The LHS is the total effect and is a slope of demand curve.

• The first term of RHS is the substitution effect and is always negative with respect

to the own price.

• ∂xi/∂m is the income effect, which is positive for normal goods and negative for

inferior goods.

• For normal good, we get a negative sloping demand curve.

• For Giffen good, the negative income effect dominates substitution effect, so that we

have positive sloping demand and thus the law of demand is violated.

• When the total effect is positive, they are called gross substitutes (chicken and beef).

When it is negative, they are gross complements (coffee and sugar).

• Slutsky matrix is symmetric and negative semidefinite and diagonal elements repre-

sent own-price effect. Gross substitutability is very important for stability.

DEFINITION 1.6.2 (Hicksian Stability) : The market for good j is perfectly stable

if all other prices being constant and the following conditions hold :

(1) Ejj = dEj/dpj < 0, where Ej(p) is the excess demand function.

(2) if pk is flexible for k 6= j, pk adjust in such a way to make Ek = 0.

(3) if pm is flexible for m 6= j, k, pm adjusts so that Em = 0 and so forth.

Note that dEj =
∑

k Ejkdpk If there are two goods j, k, dEk = 0 so that dpj = dEjEkk/| D2 |.
Since Ekk < 0 by the condition (1), the sufficient condition is | D2 |> 0.

THEOREM 1.6.3 : If (−1)n|Dn| > 0 where |Dn| is the n-th principal minor of Slutsky

matrix, then the economy is Hicksian stable.
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N. B. The assumption in the theorem is called gross substitutability. Under the assump-

tion of gross substitutability, the equilibrium is unique.

1.7 Optimality of Walrasian Equilibrium

1.7.1 Definitions

DEFINITION 1.7.1 : A (p, x) ∈ ∆ ×X is a Walrasian equilibrium if x is feasible

and x′i �i xi ⇒ p · x′i > p · ei ≥ p · xi,∀i ∈ I.

DEFINITION 1.7.2 : A (p, x) ∈ ∆ ×X is a quasi-equilibrium if x is feasible and

x′i �i xi ⇒ p · x′i ≥ p · ei,∀i ∈ I

DEFINITION 1.7.3 : A (p, x) is a proper quasi-equilibrium if it is a quasi-

equilibrium and p ·∑i xi 6= p ·∑i x
′
i for some feasible allocation x′.

DEFINITION 1.7.4 : A feasible allocation x ∈ X is said to be supported by

p ∈ R` \ {0} if x′i �i xi ⇒ p · x′i ≥ p · xi,∀i ∈ I

DEFINITION 1.7.5 : A feasible allocation x ∈ X is individually rational if

xi �i ei,∀i ∈ I.

DEFINITION 1.7.6 : A feasible allocation x ∈ X is weakly Pareto optimal if there

is no feasible allocation x′ ∈ X such that x′i �i xi,∀i ∈ I.

DEFINITION 1.7.7 : An feasible allocation x ∈ X is Pareto optimal if there is no

feasible allocation x′ ∈ X such that x′i �i xi,∀i ∈ I and x′i �i xi for some i ∈ I.

THEOREM 1.7.1 : If x is supported by p and � is monotonic, then p ≥ 0.

THEOREM 1.7.2 : Let (p, x) be a quasi-equilibrium. If �i is reflexive for every i,

then p · xi = p · ei for every i. Moreover, if �i is monotonic, then p ≥ 0.

EXAMPLE 1.7.1 : When �i is not strictly monotone and (p, x) is a quasi-equilibrium,

it need not be the case that p� 0.

THEOREM 1.7.3 : If �i is reflexive and continuous, and ei ∈ intXi for every i, then

Q(E) ⊂W (E).
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PROOF: Since x is a quasi-equilibrium, it is feasible, i.e.,
∑

i∈I xi =
∑

i∈I ei. The re-

flexivity implies that p · xi = p · ei for every i. Let x′i �i xi. Then p · x′i ≥ p · ei. Now

suppose p · x′i = p · ei. Since ei ∈ intXi, there is x̂i ∈ Xi such that p · x̂i < p · ei. Consider

xα
i = αx′i + (1 − α)x̂i. By continuity, xα

i �i xi for α close to 1. Therefore, p · xα
i ≥ p · ei.

But by construction, p · xα
i < p · ei. This is a contradiction. 2

THEOREM 1.7.4 : For all i, there is at most one satiation consumption and his

preference is locally nonsatiated at the nonsatiated consumptions. Then W (E) ⊂ Q(E).

THEOREM 1.7.5 : P (E) ⊂ WP (E).

PROOF: By definition. 2

THEOREM 1.7.6 : If �i is strictly monotonic and continuous for every i, P (E) =

WP (E).

PROOF: Pick x ∈ WP (E)\P (E). Then ∃x′ such that x′i �i xi,∀i ∈ I and x′k �k xk,∃k ∈
I. By the continuity of preferences, ∃ε ∈ R`

+ \ {0} such that Xk 3 x′k − ε �k xk. Let

xo
i := x′i + ε/(n− 1) ∈ Xi,∀i ∈ I \ {k} and xo

k := x′k − ε. Then xo is feasible. However, by

the strict monotonicity of preferences, xo
i �i xi,∀i ∈ I, which contradicts the weak Pareto

optimality of x. 2

1.7.2 Optimality of Equilibria

THEOREM 1.7.7 (First Welfare Theorem I) : Let �i be reflexive, continuous, and

monotonic for every i. If a feasible allocation x is supported by a price p ∈ R` \ {0} such

that p ·∑ ei 6= 0, then x is weakly Pareto optimal.

PROOF: Suppose otherwise. There exists a feasible x′ ∈ X such that x′i �i xi,∀i ∈ I.

Since p supports x, p ·x′i ≥ p ·xi,∀i ∈ I. Since p ·∑i∈I ei =
∑

i∈I p ·x′i =
∑

i∈I p ·xi, we con-

clude that p ·x′i = p ·xi,∀i ∈ I. However, by the continuity of preferences, ∃α ∈ (0, 1) such

that (1− α)x′i �i xi,∀i ∈ I and, by the p-supportability of x, (1− α)p · x′i ≥ p · xi,∀i ∈ I.

Thus (1 − α)p · x′i ≥ p · x′i. Since p · x′i ≥ 0, (1 − α)p · x′i = p · x′i,∀i ∈ I. This implies that

p · x′i = 0,∀i ∈ I so that p ·∑i∈I ei = 0, which is a contradiction. 2

THEOREM 1.7.8 (First Welfare Theorem II) : W (E) ⊂ WP (E).

PROOF: Take a Walrasian equilibrium x. Suppose it is not weakly Pareto optimal. Then
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there exists a feasible x′ ∈ X such that x′i �i xi,∀i ∈ I. Since x is a Walrasian equilibrium,

p ·x′i > p ·ei,∀i ∈ I. Thus p ·∑i∈I ei =
∑

i∈I p ·x′i >
∑

i∈I p ·ei, which is a contradiction. 2

EXAMPLE 1.7.2 : A Walrasian equilibrium allocation need not be Pareto optimal.

THEOREM 1.7.9 (First Welfare Theorem III) : If �i is reflexive and strictly convex

for every i, W (E) ⊂ P (E).

PROOF: Take a Walrasian equilibrium x with respect to p. Suppose it is not Pareto op-

timal. Then there exists a feasible x′ ∈ X such that x′i �i xi,∀i ∈ I and x′i �i xi,∃i ∈ I.

Since x is a Walrasian equilibrium, p · x′i > p · ei ≥ p · xi,∃i ∈ I. But p ·∑i∈I ei =
∑

i∈I p · x′i =
∑

i∈I p · xi Thus p · x′k < p · xk,∃k ∈ I. Moreover, x′k �k xk, xk �k xk and

x′k 6= xk. By the strict convexity of preferences, xα
k �k xk so that p ·xα

k > p · ek. By letting

α→ 1, we have p · x′k ≥ p · ek, a contradiction. 2

THEOREM 1.7.10 (First Welfare Theorem IV) : If �i is transitive and strictly

monotonic for every i, W (E) ⊂ P (E).

PROOF: Take a Walrasian equilibrium x with respect to p. Suppose it is not Pareto op-

timal. Then there exists a feasible x′ ∈ X such that x′i �i xi,∀i ∈ I and x′i �i xi,∃i ∈ I.

Since x is a Walrasian equilibrium, p · x′i > p · ei ≥ p · xi,∃i ∈ I. But p ·∑i∈I ei =
∑

i∈I p · x′i =
∑

i∈I p · xi Thus p · x′k < p · ek,∃k ∈ I. However, for every ε ∈ R`
+ \ {0},

x′k + ε �k x
′
k �k xk so that p · (x′k + ε) ≥ p · ek. By letting ε→ 0, we have p · x′k ≥ p · ek,

a contradiction. 2

THEOREM 1.7.11 (Second Welfare Theorem I) : If �i is complete, transitive and

semi-strictly convex for every i and �1 is nonsatiated, a Pareto optimal allocation can be

supported by some p ∈ R` \ {0}.

PROOF: Let Co
1(x1) := {x′1 ∈ X1 : x′1 �1 x1} and Ci(xi) := {x′i ∈ Xi : x′i �i xi},∀i ∈

I\{1}. Then C(x) := Co
1(x1)+

∑n
i=2Ci(xi) is nonempty and convex since �1 is nonsatiated

and �i is complete, transitive, and semi-strictly convex for every i. Note that e :=
∑

i ei 6∈
C(x) since x is Pareto optimal. By the separating hyperplane theorem, ∃p ∈ R` \{0} such

that ∀z ∈ C(x), p · z ≥ p · e = p ·∑i∈I xi. This implies that z1 �1 x1 ⇒ p · z1 ≥ p · x1 and

zi �i xi ⇒ p ·zi ≥ p ·xi,∀i ∈ I \{1}. Indeed, if x′1 �1 x1, then z = x′1+
∑

i∈I\{1} xi ∈ C(x),

from which it follows that p · x′1 ≥ p · x1. On the other hand, for each i ∈ I \ {1}, suppose
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that x′i �i xi. By the nonsatiation of �1, ∃x̂1 ∈ X1 such that x̂1 �1 x1. By the semi-strict

convexity of �1, x
α
1 := αx̂1 +(1−α)x1 �1 x1,∀α ∈ (0, 1). Let z = xα

1 +x′i +
∑

k∈I\{1,i} xk.

Then z ∈ C(x), which implies that p · xα
1 + p · x′i ≥ p · x1 + p · xi. By letting α→ 0 we get

p · x′i ≥ p · xi.

To complete the proof, we must show that xo
1 ∼1 x1 ⇒ p · xo

1 ≥ p · x1. Suppose that

xo
1 ∼1 x1. By the nonsatiation of �1, ∃x̄1 ∈ X1 such that x̄1 �1 x

o
1. By the convexity of

�1, x
λ
1 := λx̄1+(1−λ)xo

1 �1 x
o
1,∀λ ∈ (0, 1). Since xo

1 ∼1 x1, x
λ
1 �1 x1 so that p ·xλ

1 ≥ p ·x1

by the previous result. By letting λ→ 0, we get p · xo
1 ≥ p · x1. 2

THEOREM 1.7.12 (Second Welfare Theorem II) : Let �i be complete, transitive,

convex, and nonsatiated for every i. Then a weakly Pareto optimal allocation can be

supported by some p ∈ R` \ {0}.

PROOF: Let Ci(xi) := {x′i ∈ Xi : x′i �i xi},∀i ∈ I. Then C(x) :=
∑

i∈I Ci(xi) is

nonempty and convex since the preferences are complete, transitive, semi-strictly convex

and nonsatiated. Note that e :=
∑

i ei 6∈ C(x) since x is weakly Pareto optimal. By the

separating hyperplane theorem, ∃p ∈ R`\{0} such that ∀z ∈ C(x), p·z ≥ p·e = p·∑i∈I xi.

Now, for each i ∈ I, suppose that x′i �i xi. By the nonsatiation of �k, ∃x̂k ∈ Xk such

that x̂k �k xk,∀k ∈ I \ {i}. By the semi-strict convexity of �k, x
α
k := αx̂k + (1−α)xk �k

xk,∀k ∈ I \ {i},∀α ∈ (0, 1). Similarly, we get xα
i = αx̂i + (1 − α)x′i �i x

′
i �i xi with

x̂i �i x
′
i. Then

∑

i x
α
i ∈ C(x), which implies that p ·∑i x

α
i ≥ p ·∑i xi. By letting α → 0

we get p · x′i ≥ p · xi. 2

THEOREM 1.7.12 : W (E) ∩Q(E) ⊂ P (E).

COROLLARY 1.7.13 : For all i, there is at most one satiation consumption and his

preference is locally nonsatiated at the nonsatiated consumptions. Then W (E) ⊂ P (E).

1.7.3 Optimality of Quasi-Equilibria

LEMMA 1.7.14 : Suppose that Xi is convex and �i is continuous. Suppose that (xi, p)

is such that x′i � xi implies p · x′i ≥ p · xi and p · xi > inf p · Xi. Then x′i �i xi implies

p · x′i > p · xi.

THEOREM 1.7.15 : Let Xi be convex and �i be continuous. A quasi-equilibrium

allocation x with p · xi > inf p ·Xi for some i is a weakly Pareto optimal.
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EXAMPLE 1.7.3 : A quasi-equilibrium allocation need not be weakly optimal.

EXAMPLE 1.7.4 : When Xi is not convex, xi � xi but p · x′i = p · xi.

EXAMPLE 1.7.5 : When �i is not continuous, xi � xi but p · x′i = p · xi.

EXAMPLE 1.7.6 : When p · xi ≤ inf p ·Xi, xi � xi but p · x′i = p · xi.

THEOREM 1.7.16 : Let Xi be convex and �i be continuous. A quasi-equilibrium

(p, x) with p · xi > inf p ·Xi for all i is a Walrasian equilibrium.

THEOREM 1.7.17 : If (p, x) is a proper quasi-equilibrium, then for some i, p · xi >

inf p ·Xi.

THEOREM 1.7.18 : If
∑

iXi ∩ intY 6= ∅, then Q(E) ⊂ PQ(E).

THEOREM 1.7.19 : Let �i be strictly monotone and continuous for every i. Let
∑

iXi ∩ intY 6= ∅. Then Q(E) ⊂W (E).

1.7.4 Equilibrium Properties of Optima

EXAMPLE 1.7.7 : A Pareto optimal allocation need not be a Walrasian equilibrium

allocation.

THEOREM 1.7.20 : If there is a consumer whose preference is locally non-satiated,

every Pareto optimal allocation is a quasi-equilibrium allocation with respect to some p.

EXAMPLE 1.7.8 : A (weakly) Pareto optimal allocation can only be supported by

p = 0.

THEOREM 1.7.21 : If �i is locally nonsatiated for every i, a weakly Pareto optimal

allocation is a quasi-equilibrium allocation with respect to some p.

EXAMPLE 1.7.9 : Even if �i is locally nonsatiated for every i, a Pareto optimal

allocation need not be a proper quasi-equilibrium.

43



THEOREM 1.7.22 : Let �i be monotonic and proper on Xi = R`
+ for every i. Suppose

that there are allocations x and x′ such that
∑

i xi −
∑

i x
′
i ∈ Γ and Y = {e} − R`

+, then

a weakly Pareto optimal allocation is a proper quasi-equilibrium for some p.

1.7.5 Reviews

THEOREM W (E) ⊂WP (E).

THEOREM [W (E) ∩Q(E)] ⊂ P (E).

THEOREM W (E) ⊂ Q(E) if one of the following is satisfied :

(1) �i is strictly convex for every i.

(2) �i is transitive, semi-strictly convex, and nonsatiated for every i.

(3) �i is transitive and strictly monotonic for every i.

(4) �i is transitive and semi-strictly monotonic for every i.

(5) �i is transitive and locally nonsatiated for every i.

(6) �i is transitive and has a extremely desirable bundle for every i.

COROLLARY If one of the conditions satisfied, W (E) ⊂ P (E).

THEOREM If �i is reflexive and strictly convex for every i, W (E) ⊂ P (E).

THEOREM If �i is continuous for every i, then an allocation x with xi ∈ intXi is

supported by some p ∈ R` \ {0}.

THEOREM If �i is reflexive and continuous, and ei ∈ intXi for every i, then Q(E) ⊂
W (E).

COROLLARY If �i is reflexive and continuous, and ei ∈ intXi for every i, then

Q(E) ⊂ P (E).

THEOREM If �i is continuous and ei ∈ intXi for some i, then Q(E) ⊂ P (E) ⊂WP (E).
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THEOREM A Pareto optimal allocation can be supported by some p ∈ R` \ {0} if one

of the following is satisfied.

(1) �i is semi-strictly convex for every i and �1 is nonsatiated.

(2) �i is transitive and convex for every i and �1 is locally nonsatiated.

COROLLARY If �i is transitive, convex, and continuous for every i, and �1 is locally

nonsatiated, a Pareto optimal allocation x∗ with x∗i ∈ intXi for every i is a Walrasian

equilibrium allocation for some p∗ ∈ R` \ {0} in the economy E∗ = {(Xi,�i, e
∗
i ) : i ∈ I}

with e∗i = x∗i for every i.

THEOREM A weakly Pareto optimal allocation can be supported by some p ∈ R` \{0}
if one of the following is satisfied.

(1) �i is semi-strictly convex and nonsatiated for every i.

(2) �i is transitive, convex, and locally nonsatiated for every i.

COROLLARY If �i is transitive, convex, continuous, locally nonsatiated for every i, a

weakly Pareto optimal allocation x∗ with x∗i ∈ intXi for every i is a Walrasian equilibrium

allocation for some p∗ ∈ R` \ {0} in the economy E∗ = {(Xi,�i, e
∗
i ) : i ∈ I} with e∗i = x∗i

for every i.
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2 Core, Value, and Fair Allocations

2.1 Core Allocations

DEFINITION 2.1.1 : An allocation x ∈ X is a core allocation for E = {(Xi, ui, ei) :

i ∈ I} if

(1)
∑

i∈I xi =
∑

i∈I ei

(2) There does not exists a coalition S ⊂ I and (x′i)i∈S ∈ Πi∈SXi such that
∑

i∈S x
′
i =

∑

i∈S ei and x′i �i xi,∀i ∈ S.

and denote by C(E) be the set of all core allocations for E .7

N.B. We can replace the second conditon with (2′) There is no coalition S ⊂ I and

(x′i)i∈S ∈ Πi∈SXi such that
∑

i∈S x
′
i =

∑

i∈S ei and x′i �i xi,∀i ∈ S and x′i �i xi,∃i ∈ S.

But this condition is less reasonable.

N.B. If an allocation is individually rational and pareto optimal for two agents, then it is

the core. The core says that the coalition of a single agent or the grand coalition of two

cannot block, and individual rationality says that a singleton coalition cannot improve

upon, and grand coalition cannot either. Generally, the set of core allocations is a subset

of the set of individually rational and Pareto optimal allocations.

N.B. : Even if one agent has whole endowment of the economy and the others have zero,

it is still a Pareto optimum but not fair. The core depends on the initial endowments but

the Pareto optimum does not.

THEOREM 2.1.1 : C(E) ⊂ WP (E).

7

C(E) = V (I) \
⋃

S⊂I

intV (S),

where

V (S) = {w ∈ R|S| : ∃(xi)i∈S ∈ Πi∈SXi such that
∑

i∈S

xi =
∑

i∈S

ei and wi ≤ ui(xi),∀i ∈ S},

intV (S) = {w ∈ R|S| : ∃(xi)i∈S ∈ Πi∈SXi such that
∑

i∈S

xi =
∑

i∈S

ei and wi < ui(xi),∀i ∈ S}.
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PROOF: By definition. 2

THEOREM 2.1.2 : In a two-person exchange economy, C(E) = [WP (E) ∩ IR(E)].

PROOF: Let x ∈ C(E). From the previous theorem, we know that x ∈ WP (E). Now

suppose that x 6∈ IR(E). Then there is an agent i such that ei �i xi. Then {i} is a

coalition who can block the allocation x, which is a contradiction. To prove the reverse

direction, choose x ∈ WP (E) ∩ IR(E) and suppose x 6∈ C(E). Then there is a coalition

S ⊂ I and (x′i)i∈S ∈ Πi∈SXi such that
∑

i∈S x
′
i =

∑

i∈S ei and x′i �i xi,∀i ∈ S. If S = {i},
x is not individually rational, a contradiction. If S = I, x is not weakly Pareto optimal,

a contradiction. 2

THEOREM 2.1.3 : W (E) ⊂ C(E).

PROOF: Choose x ∈ W (E) and corresponding prices p. Suppose x 6∈ C(E). Then

there is a coalition S ⊂ I and (x′i)i∈S ∈ Πi∈SXi such that
∑

i∈S x
′
i =

∑

i∈S ei and

x′i �i xi,∀i ∈ S. Then since x is Walrasian equilibrium allocation, p · x′i > p · ei,∀i ∈ S.

Thus, p ·∑i∈S x
′
i > p ·∑i∈S ei, which is a contradiction. 2

N. B. First Welfare Theorem II is a corollary of these two theorems.

THEOREM 2.1.4 : C(E) is nonempty and compact.

THEOREM 2.1.5 : Let C(Er) be the core of r-th replica economy. Define Cr(E) =

{x ∈ X : xi = x∗ij ,∀i,where x∗ ∈ C(Er)}. Then Cr+1(E) ⊂ Cr(E),∀r ∈ N.

DEFINITION 2.1.2 : The set of Edgeworth equilibria is the set E(E) =
⋂∞

r=1C
r(E).

LEMMA 2.1.6 : If any finite intersection in a family of nonempty compact sets is

nonempty, then the intersection of the whole family is nonempty.

THEOREM 2.1.7 : E(E) 6= ∅.

THEOREM 2.1.8 (Edgeworth Conjecture) : E(E) = W ∗(E), where W ∗(E) is the

set of Walrasian equilibrium allocation in E .
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2.2 Core Equivalence in a Large Economy

I) FINITE ECONOMY.

An Elementary Core Equivalence Theorem, Anderson, Econometrica 1978

We begin with some notation:

For x ∈ Rk, ‖x‖∞ = maxi |xi|. u = (1, . . . , 1). Let P denote the set of preferences

satisfying:

i) weak monotonicity: x� y ⇒ x � y.

ii) free disposal: x� y, y � z ⇒ x � z.

An exchange economy is a map ε : A → P × Rk
+, where A is the set (finite) of agents.

An allocation is a map f : A → Rk
+ such that

∑

a∈A f(a) =
∑

a∈A e(a). A coalition is a

non-empty subset of A.

An allocation f is blocked by a coalition S if there exists g : S → Rk
+ with

∑

a∈S f(a) =
∑

a∈S e(a) such that g(a) � f(a),∀a ∈ S. The core of ε, C(ε), is the set of all alloca-

tions which are not blocked by any coalition. Let L be the set of all prices, defined by,

L = {p ∈ Rk
+ : ‖p‖1 = 1}.

Theorem 1: Let ε : A → P × Rk
+ be a finite exchange economy, with |A| = n. Let

M = sup{‖e(a1) + . . . + e(ak)‖∞, a1, . . . , ak ∈ A}. If f ∈ C(ε), there exists p ∈ L such

that:

i) 1
n

∑

a∈A |p(f(a) − e(a))| ≤ 2M
n

ii) 1
n

∑

a∈A | inf{p(x− e(a)) : x �a f(a)}| ≤ 2M
n

Proof: Let f ∈ C(ε). For a ∈ A, let φ(a) = {x − e(a) : x �a f(a)} ∪ {0} and define

Φ = 1
n

∑

a∈A φ(a).

First, we will show that Φ ∩Rk
−− = ∅.

Suppose not. Then, there exists G ∈ Φ such that G � 0. By the definition of Φ, there

exists g : A→ Rk with g(a) ∈ φ(a),∀a and G = 1
n

∑

a∈A g(a). Let B = {a ∈ A : g(a) 6= 0}
and h(a) = g(a) + e(a) − n

|B|G for all a ∈ B. Since G � 0, h(a) � g(a) + e(a) and since

g(a) ∈ φ(a), g(a)+e(a) �a f(a). We know that �a∈ P and therefore h(a) �a f(a),∀a ∈ B

(free disposal). Also, the allocation h is feasible among the agents in B, since,

∑

a∈B

h(a) =
∑

a∈B

(g(a) + e(a) − n

|B|G)

=
∑

a∈B

g(a) +
∑

a∈B

e(a) − nG = nG+
∑

a∈B

e(a) − nG =
∑

a∈B

e(a)
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Hence, B blocks f , which means that f /∈ C(ε) which is a contradiction. So, G � 0 ⇒
G /∈ Φ.

Let z = (M
n )u. We need to show that (conΦ) ∩ {w ∈ Rk : w � −z} = ∅.

Suppose not and x ∈ (conΦ)∩{w ∈ Rk : w � −z}. By the Shapley-Folkman Theorem, we

can write x in the form x = 1
n

∑

a∈A g(a), where g(a) ∈ conφ(a),∀a ∈ A and #{a : g(a) /∈
φ(a)} = m ≤ k. Let {a1, . . . , am} be those agents that g(a) /∈ φ(a). Define g′ : A → Rk

such that g′(a) = 0 if a ∈ {a1, . . . , am} and g′(a) = g(a) otherwise. Since x ∈ Rk
+,

φ(ai) ≥ −e(ai) and conφ(ai) ≥ −e(ai). Let y = 1
n

∑

a∈A g
′(a) ∈ Φ. Then,

y = x− 1

n

m∑

i=1

g(ai) ≤ x+
1

n

m∑

i=1

e(ai) ≤ x+ z � 0

Since y ∈ Φ, this is contradiction.

conΦ and {w ∈ Rk : w � −z} are convex sets and their intersection is empty. By the

Separating Hyperplane Theorem, there exists p ∈ L such that p separates the two sets. p

also separates Φ from {w ∈ Rk : w � −z}. So, inf p·Φ ≥ sup{p·w ∈ Rk : w � −z} =

−pz = −(M
n ). Since 0 ∈ φ(a),∀a, 0 ≥ inf p·Φ ≥ −(M

n ).

Notice that f(a) − e(a) + u/m ∈ φ(a) for any natural number m. This is because f(a) +

u/m �a f(a), for any m, due to the weak monotonicity assumption. Then, p(f(a) −
e(a) + u/m) ≥ inf p·φ(a). By letting m → ∞, we get p(f(a) − e(a)) ≥ inf p·φ(a). Let

S = {a ∈ A : p(f(a) − e(a)) < 0}.
Then we have,

1

n

∑

a∈S

p(f(a) − e(a)) ≥ 1

n

∑

a∈S

inf p·φ(a) ≥ 1

n

∑

a∈A

inf p·φ(a) ≥ −M
n

where the second inequality follows since inf p·φ(a) is non-positive.

And by feasibility of f we have,

1

n

∑

a∈A

p(f(a) − e(a)) =
1

n
p(
∑

a∈A

f(a) −
∑

a∈A

e(a)) = p· 0 = 0

Therefore,

1

n

∑

a∈A

|p(f(a) − e(a))| =
1

n
[−
∑

a∈S

p(f(a) − e(a)) +
∑

a/∈S

p(f(a) − e(a))]

= − 2

n

∑

a∈S

p(f(a) − e(a)) ≤ 2M

n

where the second equality follows from the feasibility condition.

This proves the first condition of the Theorem.
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Let Λ = {a ∈ A : inf p·φ(a) < 0}. If a ∈ Λ then | inf{p(x − e(a)) : x �a f(a)}| =

| inf p·φ(a)|. Therefore,

1

n

∑

a∈A

| inf{p(x−e(a)) : x �a f(a)}| =
1

n
[−
∑

a∈Λ

inf p·φ(a)+
∑

a/∈Λ

| inf{p(x−e(a)) : x �a f(a)}|]

since Λc ⊆ Sc and inf p·φ(a) ≤ 0,

≤ 1

n
[−
∑

a∈A

inf p·φ(a) +
∑

a/∈S

p(f(a) − e(a))]

≤ M

n
+
M

n
=

2M

n

2

By letting the number of agents n go to infinity, we obtain the Core Equivalence. That is

the purpose of the next Theorem the proof of which follows directly from Theorem 1.

Theorem 2: Let εn : An → P × Rk
+ be a sequence of exchange economies such that

Mn

|An|
→ 0. If fn ∈ C(εn), there exists prices pn ∈ L such that,

i) 1
|An|

∑

a∈An
|pn(fn(a) − en(a))| → 0

ii) 1
|An|

∑

a∈An
| inf{pn(x− en(a)) : x �a fn(a)}| → 0.

II) CONTINUUM ECONOMY. 8

DEFINITION 2.2.1 : E is the commodity space, which is an ordered Banach space.

An economy E is a quadruple {(A,A, ν), X, (�)a∈A, e} where

(1) (A,A, ν) is a measure space of agents,

(2) X : A→ 2E is the consumption correspondence,

(3) �a⊂ X(a) ×X(a) is the preference relation of agent a, and

(4) e : A→ E is the initial endowment, where e is Bochner integrable and e(a) ∈ X(a)

for all a ∈ A.

8A regular reader may skip this section. However, we can replace E by R` and the proof
remains the same. For details see Rustichini-Yannelis J.M.E., (1991).
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DEFINITION 2.2.2 : An allocation for the economy E is a Bochner integrable func-

tion x : A 7→ E+.

DEFINITION 2.2.3 : An allocation x is said to be feasible if
∫

A
x(a)dν(a) =

∫

A
e(a)dν(a)

DEFINTION 2.2.4 : A coalition S is an element of A such that ν(S) > 0

DEFINITION 2.2.5 : The coalition S can improve upon the allocation x if there

exists an allocation x′ such that

(1) x′(a) �a x(a), ν-a.e. in S

(2)
∫

S x
′(a)dν(a) =

∫

S e(a)dν(a).

DEFINITION 2.2.6 : The set of all feasible allocations for the economy E that no

coalition can improve upon is the core of the economy E and it is denoted by C(E).

DEFINITION 2.2.7 : An allocation x and a price p ∈ E∗
+ \ {0} is a competitive

equilibrium (Walrasian equilibrium) for the economy E , which is denoted by W (E) if

(1) x(a) is a maximal element for �a in the budget set {x′ ∈ X(a) : p · x′ ≤ p ·
e(a)}, ν-a.e.,

(2)
∫

A x(a)dν(a) =
∫

A e(a)dν(a).

ASSUMPTIONS :

A.1 E is an ordered Banach space whose positive cone E+ has a nonempty norm interior,

i.e., intE+ 6= ∅.

A.2 (A,A, ν) is a finite atomless measure space.

A.3 X(a) = E+,∀a ∈ A.

A.4
∫

A edν � 0.

A.5 For each x ∈ E+, the set {x′ �a x} is norm open in E+ for all a ∈ A.

A.6 �a is irreflexive and transitive for all a ∈ A.
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A.7 If x ∈ E+ and v ∈ E+ \ {0}, then x+ v �a x for all a ∈ A.

THEOREM 2.2.1 (Core Equivalence Theorem) : Under the assumptions A.1 -

A.7, C(E) = W (E).

PROOF: The fact that W (E) ⊂ C(E) is well known. Let x ∈ C(E). To show that for

some price p, the pair (p, x) is a competitive equilibrium for E , define the correspondence

ψ : A→ 2E+ by

ψ(a) := {x′ ∈ E+ : x′ �a x(a)} ∪ {e(a)}.

Then

(

∫

A
ψdν −

∫

A
edν) ∩ intE− = ∅

Clearly, intE− is nonempty and convex. By the definition of ψ, 0 ∈ (
∫

A ψdν −
∫

A edν).

Since (A,A, ν) is atomless, by Lemma [2.1 Rustichini and Yannelis (1991)], c`
∫

A ψdν is

convex so that (
∫

A ψdν −
∫

A edν) is convex. Thus, by the separation hyperplane theorem,

there exists a continuous linear functional p ∈ E∗ \ {0}, p ≥ 0 such that

p · x′ ≥ p ·
∫

A
edν, ∀x′ ∈

∫

A
ψdν

Now to show that p · x(a) = p · e(a), ν-a.e., let S ⊂ A, ν(S) > 0, ε > 0 and v ∈ E++.

Define xo : A 7→ E by

xo(a) :=

{

x(a) + εv if a ∈ S

e(a) if a 6∈ S

Then xo ∈ L1(ψ), ∀S ⊂ A. Hence,

p · (
∫

S
xdν + εvν(S) +

∫

A\S
edν) > p · e

Rearranging, we have that
∫

S p · x ≥
∫

S p · e for any S ⊂ A since ε > 0 is arbitrary.

Thus, it follows that p · x(a) ≥ p · e(a), ν-a.e. since S is arbitrary. Since x is feasible,

p · x(a) = p · e(a), ν-a.e.
Consider

x̂(a) :=

{

x′(a) if a ∈ S

e(a) if a 6∈ S

where x′(a) �a x(a) for all a ∈ S. We then have that
∫

A p · x′ +
∫

A\S p · e ≥
∫

A p · e so that
∫

S p · x′ ≥
∫

S p · e, ∀x′ ∈ L1(ψ). Hence we can conclude that ν-a.e., p · x′ ≥ p · e(a),∀x′ �a

x(a) since S is arbitrary.
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To complete the proof, we must show that x(a) is maximal in the budget set {x′ ∈ E+ :

p · x′ ≤ p · e(a)}. Since
∫

A edν >> 0, it follows that ν({a ∈ A : p · e(a) > 0}) > 0 since

p ∈ E∗
+ \ {0}.

Take an agent a with p · e(a) > 0. Then ∃xo such that p · xo < p · e(a). Suppose that

p ·x′ ≤ p · e(a) and let xα := αxo +(1−α)x′,∀α ∈ (0, 1). Then p ·xα < p · e(a),∀α ∈ (0, 1)

and xα 6�a x(a). It follows from the norm continuity of �a that x′ 6�a x(a). This proves

that that x(a) is maximal in the budget set of a. This, together with the monotonocity

of preferences, implies that p� 0. Indeed, if there exists v ∈ E+ \ {0} such that p · v = 0,

then p · (x(a) + v) = p · e(a) and by monotonocity x(a) + v �a x(a) contradicting the

maximality of x(a) in the budget set.

Thus p� 0 and x(a) is maximal in the buget set whenever p · e(a) > 0. Now consider the

agent a with p · e(a) = 0. Since p� 0 and p · x(a) = p · e(a) = 0, x(a) = 0 is the maximal

element in the budget set. Hence, (p, x) is a competitive equilibrium for E. 2

LEMMA 2.2.2 :

(

∫

A
ψdν −

∫

A
edν) ∩ intE− = ∅

Proof: See [Rustichini and Yannelis, (1991)]. 2

2.3 Value Allocations

Consider an economy in which all agents are allowed to cooperate or to bargain with each

other. Agent contributes to coalition and can be a member of any coalition. If one sums

up all the contributions of an agent to the coalitions that he/she participates, one can find

the agent’s Shapley value. Shapley value measures the marginal contribution of an agent

to the coalitions that he/she participates.

DEFINITION 2.3.1 : A transferable utility game G = (I, V ) consists of a

set of players I and a superadditive characteristic function V : 2I 7→ R such that

V (∅) = 0, V (S ∪ T ) ≥ V (S) + V (T ),∀S, T ⊂ I, S ∩ T = ∅.

DEFINITION 2.3.2 : The Shapley value of agent i in the game G is defined as

follows:

Shi(G) :=
∑

S⊂I,S3i

(|S| − 1)!(|I| − |S|)!
|I|! (V (S) − V (S \ {i}))

N. B. The Shapley value of agent i is an expected marginal contribution of agent i.

(V (S) − V (S \ {i})) is the marginal contribution of agent i to a coalition S.
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THEOREM 2.3.1 :
∑

i∈I Shi(G) = V (I).

THEOREM 2.3.2 : Shi(G) ≥ V ({i}),∀i ∈ I.

N. B. In general, it is not true that ∀S ⊂ I,
∑

i∈S Shi(G) = V (S) .

DEFINITION 2.3.3 : An allocation x ∈ X is a cardinal value allocation for E if

(1)
∑

i∈I xi =
∑

i∈I ei

(2) ∃ (λi)i∈I ∈ R
|I|
+ \ {0} such that λiui(xi) = Shi(G),∀i ∈ I,

where Shi(G) is the Shapley value of agent i derived from the transferable utility

game G = (I, Vλu) with

∀S ⊂ I, Vλu(S) := max{
∑

i∈S

λiui(xi) :
∑

i∈S

xi =
∑

i∈S

ei}.

N. B. Check if G = (I, Vλu) is a transferable utility game.

N. B. Note that Vλu({i}) = λiui(ei).

EXAMPLE 2.3.1 : Consider the three agents two goods economy where the utility

functions are given as follows.

u1(x1, y1) = min{x1, y1} e1 = (1, 0)

u2(x2, y2) = min{x2, y2} e2 = (0, 1)

u3(x3, y3) = (x3 + y3)/2 e3 = (0, 0)

Let λi = 1,∀i = 1, 2, 3. First calculate the characteristic function Vλu.

Vλu({i}) = 0, ∀ i = 1, 2, 3

Vλu({1, 2}) = 1, Vλu({1, 3}) = Vλu({2, 3}) = 1/2

Vλu({1, 2, 3}) = 1

Then the Shapley value are given by

Sh1(G) = 0 +
1

6
(1 − 0) +

1

6
(
1

2
− 0) +

2

6
(1 − 1

2
) =

5

12

Sh2(G) =
5

12
, Sh3(G) =

2

12
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Hence the value allocation is:

(x1, y1) = (x2, y2) = (
5

12
,

5

12
), (x3, y3) = (

2

12
,

2

12
)

N. B. Note that

W (E) = C(E) = {((α, α), (1 − α, 1 − α), (0, 0) : α ∈ [0, 1]}.

so that this example shows that there is a value allocation which is neither a Walrasian

allocation nor a core allocation.

EXERCISE :

1. Construct a core allocation in three agents exchange economy where the agents are

not equally treated.

2. In the example, show that

(1) the value allocation is (x1, y1) = (x2, y2) = (1/2, 1/2), (x3, y3) = (0, 0) if the

third agent’s utility function changes into min{x3, y3}.
(2) there is no value allocation if λi’s are different.

N. B. If the agent 3 manipulates his preference from that in (2) to the original one, he

becomes better off.

THEOREM 2.3.3 : V (E) ⊂ WP (E).

PROOF: Pick a value allocation x. Suppsoe that it is not weakly Pareto optimal. Then

there exists a feasible allocation x′ such that ui(x
′
i) > ui(xi),∀i ∈ I. Thus

∑

i∈I λiui(x
′
i) >

∑

i∈I λiui(xi) =
∑

i∈I Shi(G) = Vλu(I). This is a contradiction to the definition of Vλu.

2

THEOREM 2.3.4 : V (E) ⊂ [P (E) ∩ IR(E)], where λ ∈ Rn
++.

PROOF: In a similar way, we can show that V (E) ⊂ P (E). Pick a value allocation x. Sup-

pose that it is not individually rational. Then there exists i ∈ I such that ui(ei) > ui(xi) so

that λiui(ei) > λiui(xi). But this is a contradiction since λiui(xi) = Shi(G) ≥ Vλu({i}) =
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λiui(ei). 2

COROLLARY 2.3.5 : V (E) ⊂ [WP (E) ∩ IR(E)], where λ ∈ Rn
++.

THEOREM 2.3.6 : In two-agent exchange economy, V (E) ⊂ C(E), where λ ∈ Rn
++.

PROOF: Take a value allocation x. Suppose it is not a core allocation. Then there is a

coalition S and (x′i)i∈S such that
∑

i∈S x
′
i =

∑

i∈S ei and ui(x
′
i) > ui(xi),∀i ∈ S. First

consider the case S = {1}. Then x′1 = e1 and u1(x
′
1) > u1(x1). Thus λ1u1(e1) > λ1u1(x1),

a contradiction. We can do the same for the case where S = {2}. The only remaining

coalition is S = I. In this case, we have
∑

i∈I x
′
i =

∑

i∈I ei and ui(x
′
i) > ui(xi),∀i ∈ I.

Thus
∑

i∈I λiui(x
′
i) >

∑

i∈I λiui(xi) =
∑

i∈I Shi(G) = Vλu(I). This is a contradiction to

the definition of Vλu. 2

N. B. This theorem can be viewed as a corollary since we know that the core is equivalent

to the set of weakly Pareto optimal and individually rational allocations in a two-agent

economy.

THEOREM 2.3.7 : A value allocation is not necessarily a Walrasian equilibrium allo-

cation.

PROOF: In our example, ((5/12, 5/12), (5/12, 5/12), (2/12, 2/12)) /∈ W (E). 2

THEOREM 2.3.8 : A value allocation is not necessarily a core allocation.

PROOF: In our example, ((5/12, 5/12), (5/12, 5/12), (2/12, 2/12)) /∈ C(E). Concretely,

consider the coalition S = {1, 2} and (x′1, x
′
2) = ((1/2, 1/2), (1/2, 1/2)), which blocks this

value allocation. 2

2.4 Manipulability

Once we have fixed finite economy, an agent always can manipulate his preference and

initial endowment. This equilibrium is manipulated equilibrium. All agent have incentives

to misrepresent their characteristic. Therefore, the equilibrium that we found does not

represent the true equilibrium. This means that a psycological factor plays an important

role in an economy and this has not been addressed by economic theory. Most economic
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equilibrium concepts stipulate agent’s preference maximizing behavior given endowment.

Maybe that is not the way of looking at the equilibrium. Thus we will have another

concept of equilibrium.

uA(x, y) =

{

3x+ y if y ≥ 1/2, wA = (0, 1)

3x+ 6y − 5/2 if y < 1/2.

uB(x, y) =

{

x+ 3y if x > 1/2, wB = (1, 0)

6x+ 3y − 5/2 if x ≤ 1/2.

In this case the Pareto optimal and indiviaually rational allocation (hence, core alloca-

tion) is SOT in figure (a). But if agent 1 pretends to have w′
A = (0, 1/2), then the core

allocation is MN in figure (b). Since this makes him better off(he’ll be on M’N’ by adding

1/2 units of y he kept) , he has an incentive to lie about his endowment.
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N. B. In the Walrasian equilibrium, an agent can transfer his endowment to the other

agents to make the terms of trade favorable to him so that he should be better off. Here

we know that λ’s play the same role as prices.

N. B. As an economy gets large, agents have diminishing incentive to manipulate endow-

ments.

THEOREM 2.4.1 : Any mechanism is W-manipulable.

2.5 Fair Allocations

Which concept is the best among Walrasian equilibrium, core , value allocation? All they

are Pareto optimal. What does “better” mean? Which notion is more equitable? Which

way to divide a pie is fair? One criterion is a notion of envy-free.

DEFINITION 2.5.1 : An allocation x ∈ X is envy-free if ui(xi) ≥ ui(xk), ∀i 6=
k; i, k ∈ I.
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DEFINITION 2.5.2 : An allocation x ∈ X is fair if it is Pareto optimal and envy-free.

THEOREM 2.5.1 : A Walrasian equilibrium allocation has equal treatment property.

THEOREM 2.5.2 : A Walrasian equilibrium allocation from the equal division of

initial endowments is envy-free.

PROOF: Let (x, p) be a Walrasian equilibrium from the equal division of initial endow-

ments . Suppose x is not envy free. There exists i, k in I such that ui(xk) > ui(xi). Since

x is a Walrasian equilibrium allocation, p · xk > p · w where w =
∑

i∈I ei/n. This is a

contradiction since p · xk ≤ p · w. 2

THEOREM 2.5.3 : A core allocation, with two agents, has the equal treatment prop-

erty.

COROLLARY 2.5.4 : A core allocation is fair if preferences are strictly monotonic.

THEOREM 2.5.5 : A value allocation does not have the equal treatment property.

THEOREM 2.5.6 : A value allocation from the equal division of initial endowment is

not necessarily envy-free.

THEOREM 2.5.7 : A value allocation is not necessarily envy-free.

PROOF: In our example, u3(x1) > u3(x3). 2

N. B. A value allocation gives more consumption bundle to the agents who contribute

more to the economy even though the initial endowments are equally distributed. In the

value allocation, despite of the fact that two agents have same initial endowment, one

agent can be less risk averse than the other so that he can make higher contribution to

the society and end up with a higher Shapley value. Therefore, he will be envied by some

of the other agents in the economy.

DEFINITION 2.5.3 : An allocation x ∈ X is coalitionally fair if there does not

exist disjoint coalitions S1, S2 and allocation (x′i)i∈S1
∈ Πi∈S1

Xi such that

(1)
∑

i∈S1
(x′i − ei) =

∑

i∈S2
(xi − ei),
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(2) ui(x
′
i) > ui(xi), ∀i ∈ S1.

THEOREM 2.5.8 : W (E) ⊂ CF (E).

PROOF: Take a Walrasian equilibrium (x, p). Suppose that x is not coalitionally fair.

Then there exist disjoint coalitions S1, S2 and allocation (x′i)i∈S1
∈ Πi∈S1

Xi such that
∑

i∈S1
(x′i − ei) =

∑

i∈S2
(xi − ei) and ui(x

′
i) > ui(xi), ∀i ∈ S1. Since x is a Walrasian

equilibrium alloction, p ·x′i > p ·ei,∀i ∈ S1. Thus p ·∑i∈S2
(xi−ei) = p ·∑i∈S1

(x′i−ei) > 0,

which contradicts that p ·∑i∈S2
(xi − ei) ≤ 0. 2

THEOREM 2.5.9 : CF (E) ⊂ C(E).

PROOF: Set S2 = ∅ to have the same condition as in the core. 2

COROLLARY 2.5.10 : CF (E) ⊂ [WP (E) ∩ IR(E)]

THEOREM 2.5.11 : A core allocation is not necessarily coalitionally fair.

THEOREM 2.5.12: A coalitionally fair allocation is not necessarily a Walrasian equi-

librium allocation.

THEOREM 2.5.13: A value allocation is not necessarily coalitionally fair.

PROOF: In our example, ((5/12, 5/12), (5/12, 5/12), (2/12, 2/12)) /∈ CF (E). It is enough

to consider the coalitions S1 = {1, 2}, S2 = {3} and x′1 = x′2 = (7/12, 7/12). 2

2.6 Strong Nash Equilibrium

Definition 2.6.1: A x∗ ∈ X is a Nash equilibrium for G if Pi(x
∗) := {xi ∈ Xi :

ui(xi, x
∗
−i) > ui(x

∗)} = ∅ for every i ∈ I.

Definition 2.6.2: A x∗ ∈ X is a strong (coalitional) Nash equilibrium for G if

there does not exist a coalition S and (xi)i∈S ∈ Πi∈SXi such that ui((xi)i∈S , (x
∗
i )i∈I\S) >

ui(x
∗), ∀ i ∈ S.

Definition 2.6.3: A x∗ ∈ X is a α-core strategy if there does not exist a coalition S and

(xi)i∈S ∈ Πi∈SXi such that ui((xi)i∈S , (x
′
i)i∈I\S) > ui(x

∗), ∀ i ∈ S, ∀(x′i)i∈I\S ∈ Πi∈\SXi.
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Theorem 2.6.1: SNE(G) ⊂ NE(G).

PROOF: Set S = {i} to get the result. 2

Theorem 2.6.2: SNE(G) ⊂ α-C(G).

PROOF: Choose a strong Nash equilibrium x∗. Suppose it is not an α-core strategy.

Then there exist a coalition S and (xi)i∈S ∈ Πi∈SXi such that ui((xi)i∈S , (x
′
i)i∈I\S) >

ui(x
∗), ∀ i ∈ S, ∀(x′i)i∈I\S ∈ Πi∈\SXi. In particular, ui((xi)i∈S , (x

∗
i )i∈I\S) > ui(x

∗), ∀ i ∈
S, which contradicts that x∗ is a strong Nash equilibrium. 2

Theorem 2.6.3: A strong Nash equilibrium is efficient.

PROOF: Set S = I to get the result. 2

Theorem 2.6.4: An α-core strategy is efficient.

PROOF: Set S = I to get the result. 2

N.B. : The previous theorem is a corollary of this theorem.

Theorem 2.6.5: A Nash equilibrium is not necessarily efficient.

Definition 2.6.4: A x∗ ∈ X is a α-core allocation if

(1)
∑

i∈I x
∗
i =

∑

i∈I ei,

(2) there does not exist a coalition S and (xi)i∈S ∈ Πi∈SXi such that

ui((xi)i∈S , (x
′
i)i∈I\S) > ui(x

∗),∀ i ∈ S, ∀(x′i)i∈I\S ∈ Πi∈I\SXi

with
∑

i∈I\S x
′
i =

∑

i∈I\S ei.
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3 Core and Value in Differential Information Economies

3.1 Core with Differential Information

When we propose a cooperative solution concept like the core, you have to find an infor-

mation sharing rule within a coalition. There are three kinds of information sharing rule

in a coalition.

Pooling information : This has two problems - incentive to lie, no reward to the superior

information.

Private information : noncooperative element in information sharing.

Common knowledge information : difficult to form a blocking coalition.

Let (Ω,F , µ) be an uncertainty environment, P(Ω) be the family of finite measurable par-

titions of Ω, and M(Ω) be the set of probability measures on Ω.

Definition 1.1: An exchange economy with differential inforamtion E is given

by E = {(Xi, ui, ei,Fi, µ) : i ∈ I}, where

(1) Xi := R`
+ is the consumption set of agent i, ∀ i ∈ I.

(2) ui : Ω × R`
+ 7→ R is the random utility function of agent i, ∀ i ∈ I.

(3) ei : Ω 7→ R`
+ is Fi-measurable random endowment fucntion of agent i, ∀ i ∈ I.

(4) Fi ∈ P(Ω) is the private inforamtion of agent i, ∀ i ∈ I.

(5) µ ∈ M(Ω) is the common prior of all agents.

Definition 1.2: The expected utility of agent i for xi is given by

vi(xi) :=

∫

Ω
ui(ω, xi(ω))dµ(ω)

Definition 1.3: An allocation is a function x : Ω 7→ X such that each xi is F-

measurable.

Definition 1.4: An allocation x : Ω 7→ X is feasible if

∑

i∈I

xi(ω) =
∑

i∈I

ei(ω), µ-a.e.

Definition 1.5: An allocation x : Ω 7→ X is a coarse core allocation for the E if

(1) xi is Fi-measurable, ∀ i ∈ I,
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(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) there does not exist a coalition S with (x′i)i∈S : Ω 7→∏

i∈S Xi such that

(i) x′i − ei is ∧i∈SFi-measurable, ∀ i ∈ S,

(ii)
∑

i∈S x
′
i(ω) =

∑

i∈S ei(ω), µ-a.e.,

(iii) vi(x
′
i) > vi(xi), ∀ i ∈ S.

Definition 1.6: An allocation x : Ω 7→ X is a private core allocation for the E if

(1) xi is Fi-measurable, ∀ i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) there does not exist a coalition S with (x′i)i∈S : Ω 7→∏

i∈S Xi such that

(i) x′i − ei is Fi-measurable, ∀ i ∈ S,

(ii)
∑

i∈S x
′
i(ω) =

∑

i∈S ei(ω), µ-a.e.,

(iii) vi(x
′
i) > vi(xi), ∀ i ∈ S.

Definition 1.7: An allocation x : Ω 7→ X is a fine core allocation for the E if

(1) xi is Fi-measurable, ∀ i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) there does not exist a coalition S with (x′i)i∈S : Ω 7→∏

i∈S Xi such that

(i) x′i − ei is ∨i∈SFi-measurable, ∀ i ∈ S,

(ii)
∑

i∈S x
′
i(ω) =

∑

i∈S ei(ω), µ-a.e.,

(iii) vi(x
′
i) > vi(xi), ∀ i ∈ S.

Definition 1.8: An allocation x : Ω 7→ X is a strong coarse core allocation for the

E if

(1) xi is ∧i∈IFi-measurable, ∀ i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) there does not exist a coalition S with (x′i)i∈S : Ω 7→∏

i∈S Xi such that

(i) x′i − ei is ∧i∈SFi-measurable, ∀ i ∈ S,
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(ii)
∑

i∈S x
′
i(ω) =

∑

i∈S ei(ω), µ-a.e.,

(iii) vi(x
′
i) > vi(xi), ∀ i ∈ S.

Definition 1.9: An allocation x : Ω 7→ X is a weak fine core allocation for the E if

(1) xi is ∨i∈IFi-measurable, ∀ i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) there does not exist a coalition S with (x′i)i∈S : Ω 7→∏

i∈S Xi such that

(i) x′i − ei is ∨i∈SFi-measurable, ∀ i ∈ S,

(ii)
∑

i∈S x
′
i(ω) =

∑

i∈S ei(ω), µ-a.e.,

(iii) vi(x
′
i) > vi(xi), ∀ i ∈ S.

N.B. : In the coarse core, when they form the coalition they do not allow a trade which

they cannot verify. I will not allow you to use any information over and above what I

know. so the blocking is much harder and the core is much bigger than those in the fine

core. Although a pooling of information seems to be reasonable for the cooperative solu-

tion concept, it does not make much sense in a concrete example, since (i) an agent with

superior information never be rewarded (free rider problem) and (ii) it is possible for an

agent to lie about his information and to become better off at the expense of other people.

*Theorem 1.1: Let E = {(Xi, ui, ei,Fi, µ) : i ∈ I} be an exchange economy with

differential information, satisfying the following assumptions for each i ∈ I

A.1 Xi : Ω 7→ 2R
`
+ is nonempty closed convex valued.

A.2 ui : Ω × R`
+ 7→ R is integrably bounded, and continuous and concave in R`

+.

Then a private core allocation exists in E .

Theorem 1.2: FC(E) ⊂ PC(E)

Theorem 1.3: PC(E) ⊂ CC(E)

PROOF: Choose a private core allocation x. Suppose it is not a coarse core allocation.

There is a coalition S and (x′i)i∈S : Ω 7→ Πi∈SXi such that x′i is ∧i∈SFi-measurable,

∀ i ∈ S,
∑

i∈S x
′
i(ω) =

∑

i∈S ei(ω), µ-a.e. and vi(x
′
i) > vi(xi), ∀ i ∈ S. However, since

xi is ∧i∈SFi-measurable for every i ∈ S, it is also Fi-measurable for every i ∈ S. Hence,
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the coalition S and (x′i)i∈S must be a blocking coalition against x in the private core

mechanism, which is a contradiction. 2

Theorem 1.4: SCC(E) ⊂ CC(E)

Theorem 1.5: FC(E) ⊂ WFC(E)

Corollary 1.6: Under A.1 - A.2, a coarse core allocation exists in E .

Corollary 1.7: Under A.1 - A.2, a weak fine core allocation exists in E .

Theorem 1.8: FC(E) may be empty.

Theorem 1.9: SCC(E) may be empty.

Example 1.1 : Consider an economy with three agents and three states of nature. There

is only one good in each state. All agents have the same utility function ui(x) =
√
x

and each state occurs with the same probability. The random initial endowments and the

private informations of the agents are given as follows.

e1 = (10, 10, 0), F1 = {{ω1, ω2}, {ω3}}
e2 = (10, 0, 10), F2 = {{ω1, ω3}, {ω2}}
e3 = (0, 0, 0), F3 = {{ω1}, {ω2}, {ω3}}(or = {{ω1}, {ω2, ω3}})

First note that any allocation which satisfies the conditions (1), (2) of private core, coarse

core and fine core will take the following form with ε, δ ∈ [0, 10] and α, β ∈ [0, 1].

x1 = ( 10 − ε, 10 − ε, αδ ),

x2 = ( 10 − δ, βε, 10 − δ ),

x3 = ( ε+ δ, (1 − β)ε, (1 − α)δ )

1. Coarse Core

We have to eliminate the blockable allocations from the set of the allocations taking the

above form. To survive single-agent coalitions, the allocation must be individually rational.

If S = {1, 2}, there is no possible allocation (xi)i∈S since ∧i∈SFi = {Ω}. When S = {1, 3},
they cannot improve upon the initial endowment since the agent 3 has nothing to give to

the agent 1. The same argument is applied to the coalition S = {2, 3}. For the grand
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coalition, there is no possible allocation (xi)i∈I since ∧i∈IFi = {Ω}. Hence the coarse core

is

CC(E) =
⋃

α,β∈[0,1]

CC(E ;α, β)

where

CC(E ;α, β) = {((10 − ε, 10 − ε, αδ), (10 − δ, βε, 10 − δ), (ε+ δ, (1 − β)ε, (1 − α)δ)) :

ε, δ ∈ [0, 10], 2
√

10 − ε+
√
αδ ≥ 2

√
10, 2

√
10 − δ +

√
βε ≥ 2

√
10}

2. Private Core

Since we know that any private core allocation is a coarse core allocation, We have only to

eliminate the blockable allocations from the coarse core. First the individual rationality

of the coarse core implies that we don’t have to check the singleton coalitions. Consider

the coalition S = {1, 3}. It cannot improve upon (e1, e3) simply because the agent 3 has

nothing to give to the agent 1 in any state. A similar argument applies to the coalition

S = {2, 3}. Thus these coalitions cannot block any coarse core allocation. Now take the

coalition S = {1, 2} and consider the corresponding coalition allocations in the coarse core

to the solution (ε, δ) of the following maximization problem, for each λ ∈ [0, 1],

max
ε,δ∈[0,10]

λ

3
(2
√

10 − ε+
√
αδ) +

1 − λ

3
(2
√

10 − δ +
√

βε).

The resulting allocations for this coalition are efficient for this coalition in some sense and

they are satisfying (1 − ε)(1 − δ) = 16εδ. First consider the allocations satisfying (1 −
ε)(1−δ) > 16εδ. These allocations are blocked by the grand coalition simply because they

can increase their utilities by raising ε and δ appropriately until they reach the allocations

satistying (1− ε)(1− δ) = 16εδ. Now take the allocations satisfying (1− ε)(1− δ) = 16εδ,

each of which is an efficient allocation for the coalition S = {1, 2} in a sense that it survives

the coalition S = {1, 2} and the grand coalition. Finally, consider the allocations satisfying

(1 − ε)(1 − δ) < 16εδ. The coalition S = {1, 2} cannot form a blocking coalition by the

feasibility condition. For the grand coalition to be a blocking coalition, it is necessary

that the utilities of the agent 1 and 2 be improved. But this implies that ε and δ should

be smaller, whence the utility of the agent 3 cannot be improved. Therefore, the grand

coalition cannot be a blocking coalition. Clearly, these allocations are viable against the

other allocations. Hence, the private core is

PC(E) =
⋃

α,β∈[0,1]

{x ∈ CC(E ;α, β) : (1 − ε)(1 − δ) ≤ 16εδ}
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In particluar, x∗ = ((8, 8, 2), (8, 2, 8), (4, 0, 0)) is a private core allocation. Since it is

individually rational, no singleton coalition can block this allocation. Consider the coaliton

S = {1, 2}. The best allocation they can acheive is (e1, e2). Otherwise, by the Fi-

measurability, we have (10−ε)+(10−δ) < 20, which contradicts the feasibility condition.

Now take the coalition S = {1, 3}. It cannot improve upon (e1, e3) simply because the

agent 3 has nothing to give to the agent 1 in any state. A similar argument applies to the

coalition S = {2, 3}. Thus these coalitions cannot block this allocation. Finally consider

the grand coalition. If it is to be a blocking coalition, then there exists

x′ = ((10 − ε, 10 − ε, αδ), (10 − δ, βε, 10 − δ), (ε+ δ, (1 − β)ε, (1 − α)δ))

for some α, β ∈ [0, 1] and ε, δ ∈ [0, 10] such that

1

3
(
√

10 − ε+
√

10 − ε+
√
αδ) >

1

3
(2
√

8 +
√

2)

1

3
(
√

10 − δ +
√

βε+
√

10 − δ) >
1

3
(2
√

8 +
√

2)

1

3
(
√
ε+ δ +

√

(1 − β)ε+
√

(1 − α)δ) >
1

3

√
4

Thus, we get

1

6
(2
√

10 − ε+
√
δ) +

1

6
(2
√

10 − δ +
√
ε) >

1

3
(2
√

8 +
√

2)

But (x∗1, x
∗
2) is the solution of the maximization where λ = 1/2 and α = β = 1 and the

maximum is (2
√

8 +
√

2)/3. This contradiction establishes that x∗ is a private core allo-

cation.

3. Fine Core

We know that any fine core allocation is a private core allocation. Let us choose any

private core allocation x. Now consider a blocking coalition S = {1, 2} and its allocation

(x′i)i∈S such that

x′1 = (10, x1(ω2), x1(ω3)),

x′2 = (10, x2(ω2), x2(ω3))

Here we know that this coalition blocks x since vi(x
′
i) > vi(xi),∀i = 1, 2 since x3(ω1) > 0.

Hence, we conclude that the fine core is empty.

N.B. : Alternatively, we can start with any allocation x. Suppose x3(ω1) = 0. Then

the possible allocation is e by the Fi-measurability. But e is blocked by the coalition

S = {1, 2} and the allocation ((10, 5, 5), (10, 5, 5)). If x3(ω1) > 0, the above step will do.
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4. Strong Coarse Core

Since ∧i∈IFi = {Ω}, there is no feasible allocation x where xi,∀i ∈ I is ∧i∈IFi-measurable

in this initial endowment structure. Hence the strong coarse core is empty.

5. Weak Fine Core

If agent 1 and agent 2 pool their information to have complete information, there is no

incetive to give their endowments to get additional information. To survive singleton

coalitions, any weak fine allocation is individually rational. Thus

W = {(10, 10 − ε, δ), (10, ε, 10 − δ), (0, 0, 0) : ε, δ ∈ [0, 10],√
10 +

√
10 − ε+

√
δ ≥ 2

√
10,

√
10 +

√
ε+

√
10 − δ ≥ 2

√
10}

is a candidate set for the weak fine core. However, if we consider the coalition S = {1, 2},
we can easily check that any allocation in W which is not the allocation generated by the

following maximization problem, for each λ ∈ [0, 1],

max
ε,δ∈[0,10]

λ

3
(
√

10 +
√

10 − ε+
√
δ) +

1 − λ

3
(
√

10 +
√
ε+

√
10 − δ).

is can be blocked by this coalition for which the maximization generates the efficient

allocation. Hence the weak fine core is

WFC(E) = {(10, 10 − ε, δ), (10, ε, 10 − δ), (0, 0, 0) : ε, δ ∈ [0, 10], ε+ δ = 10,√
10 +

√
10 − ε+

√
δ ≥ 2

√
10,

√
10 +

√
10 − δ +

√
ε ≥ 2

√
10}

In particular, xo = ((10, 5, 5), (10, 5, 5), (0, 0, 0)) is a weak fine core allocation. Indeed,

since it is individually rational, it is viable against singleton coalitions. Consider the

coalition S = {1, 2}. It is an allocation generated by the maximization so that there is

no way to improve both utilities. Consider the coalition S = {1, 3}. It cannot improve

upon (e1, e3) simply because the agent 3 has nothing to give to the agent 1 in any state.

Thus this coalition cannot block this allocation. In a similar way, S = {2, 3} cannot block

this allocation. Finally, the grand coalition cannot block this allocation. Otherwise, there

exists a feasible allocation x′ such that vi(x
′
i) > vi(x

o
i ),∀i ∈ I. Then

1

2
v1(x

′
1 +

x′3
2

) +
1

2
v2(x

′
2 +

x′3
2

) >
1

2
v1(x

o
1) +

1

2
v2(x

o
2)

and (x′1+x′3/2, x
′
2+x′3/2) is feasible in the coalition S = {1, 2}. But (xo

1, x
o
2) is the solution

of the maximization where λ = 1/2. This contradiction establishes that xo is a weak fine

core allocation.
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Example 2. : Consider the same economy except that F3 = {{ω1, ω2, ω3}} First note

that the unique allocation which satisfies the conditions (1), (2) of private core, coarse

core and fine core is e = (e1, e2, e3).

1. Coarse Core

If |S| ≥ 2, since ∧i∈SFi = {Ω}, there is no possible blocking coalition that can derive

(xi)i∈S such that it is feasible in S and xi is ∧i∈SFi-measurable for every i ∈ S from

the given initial endowment structure. Any single-agent coalition cannot block e since its

possible allocation is his endowment itself. Hence, the unique coarse core allocation is e.

2. Private Core

Since we know that a private core allocation is a coarse core allocation. e is the unique

candidate for private core allocation. It can be easily checked that e is viable against all

the possible blocking coalitions. Hence e is the unique private core allocation.

3. Fine Core

Since we know that any fine core allocation is a private core allocation, e is the unique

candidate for fine core allocation. However, consider a blocking coalition S = {1, 2} and

its allocation (x′i)i∈S such that

x′1 = (10, 5, 5),

x′2 = (10, 5, 5).

Here we know that this coalition blocks e since vi(x
′
i) > vi(ei),∀i = 1, 2. Hence, we

conclude that the fine core is empty.

4. Strong Coarse Core

Since ∧i∈IFi = {Ω}, there is no feasible allocation x where xi,∀i ∈ I is ∧i∈IFi-measurable

in this initial endowment structure. Hence the strong coarse is empty.

5. Weak Fine Core: See the weak fine core in Example 1.

Example 3. :

ui(xi) = log xi,∀i ∈ I, µ(ωk) = 1/4, ∀ k = 1, 2, 3, 4.,

e1 = (20, 20, 2, 20), F1 = {{ω1, ω2, ω4}{ω3}},
e2 = (10, 4, 10, 10), F2 = {{ω1, ω3, ω4}{ω2}},
e3 = (0, 0, 0, 0), F3 = {{ω1, ω4}{ω2, ω3}}.

1. Coarse Core

The coarse core is the set of individually rational allocations with following form.

x1 = ( 20 − ε, 20 − ε, 2 + δ, 20 − ε )

x2 = ( 10 − δ, 4 + ε, 10 − δ, 10 − δ )

x3 = ( 0 + ε+ δ, 0, 0, 0 + ε+ δ )
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2. Private Core

We can find this private allocation by letting λ = 1/2 and solving the maximization

problem.

x = ((18, 18, 3, 18), (9, 6, 9, 9), (3, 0, 0, 3))

3. Fine Core

We can show that the fine core is empty by the same argument as in Example 1.

4. Strong Coarse Core

Since ∧i∈IFi = {Ω}, there is no feasible allocation x where each xi ∧i∈IFi = {Ω}-
measurable in this endowment struture. Hence the strong coarse core is empty.

5. Weak Fine Core

We can verify that ((20, 12, 6, 20), (10, 12, 6, 10), (0, 0, 0, 0)) is a weak fine core allocation.

3.2 Incentive Compatibility of the Cores.

Definition : A feasible allocation x : Ω 7→ X is incentive compatible for E if

there does not exist i ∈ I and states ω, ω′ with ω′ ∈ Ek(ω), ∀ k ∈ I \ {i} such that

ui(ei(ω) + xi(ω
′) − ei(ω

′)) > ui(xi(ω)).

Definition : A feasible allocation x : Ω 7→ X is coalitionally incentive compatible

for E if there does not exist a coalition S and states ω, ω′ with ω′ ∈ Ek(ω), ∀ k ∈ I \ S
such that ui(ei(ω) + xi(ω

′) − ei(ω
′)) > ui(xi(ω)), ∀ i ∈ S.

Definition : A feasible allocation x : Ω 7→ X is weak coalitionally incentive com-

patible for E if there does not exist a coalition S and states ω, ω′ such that

(1) ω′ ∈ Ek(ω), ∀ k ∈ I \ S.

(2) Ei(ω
′) ∈ ∧i∈SFi and µ(Ei(ω

′)) > 0, ∀ i ∈ S.

(3) ui(ei(ω) + xi(ω
′) − ei(ω

′)) > ui(xi(ω)), ∀ i ∈ S.

Theorem : CC(E) ⊂ CIC(E).

Theorem : FC(E) ⊂ CIC(E).

N.B. : This theorem is a corollary.

70



Theorem : Let x : Ω 7→∏

i∈I Xi be a feasible allocation where Xi = R+ such that

(1) xi is Fi-measurable for every i ∈ I,

(2) ui is monotonic, i.e., x′i > xi implies that ui(x
′
i) > ui(xi) for every i ∈ I.

Then x is coalitionally incentive compatible.

PROOF : Let x be a feasible allocation such that xi is Fi-measurable for every i ∈ I.

Suppose that x is not coalitionally incetive compatible. Then there exists a coalition S

and states ω, ω′ with ω′ ∈ Ek(ω), ∀ k ∈ I \ S such that ui(ei(ω) + xi(ω
′) − ei(ω

′)) >

ui(xi(ω)), ∀ i ∈ S. Now we have the following by the feasibility of x and Fi-measurability

of xi.

∑

i∈S

[xi(ω) − ei(ω)] = −
∑

i6∈S

[xi(ω) − ei(ω)], by the feasibility

= −
∑

i6∈S

[xi(ω
′) − ei(ω

′)], by the measurability

=
∑

i∈S

[xi(ω
′) − ei(ω

′)], by the feasibility.

Now suppose that xi(ω) − ei(ω) < xi(ω
′) − ei(ω

′) for some i ∈ S. Then it follows

from the previous argument that xj(ω) − ej(ω) > xj(ω
′) − ej(ω

′) for some j ∈ S,

which implies by the monotonocity of uj that uj(xj(ω)) > uj(ej(ω) + xj(ω
′) − ej(ω))

for some j ∈ S, a contradiction. If xi(ω) − ei(ω) ≥ xi(ω
′) − ei(ω

′) for some i ∈ S, then

ui(xi(ω)) ≥ ui(ei(ω) + xi(ω
′) − ei(ω)) for some i ∈ S by the monotonicity of ui, which is

a contradiction. Hence, x is coalitionally incentive compatible. 2

Theorem : A weak fine core allocation is not necessarily incentive compatible.

PROOF : In Example 1, consider a weak fine core allocation (10, 5, 5), (10, 5, 5) and sup-

pose that the true state is ω1. Then there is an incentive for the agent 1 to lie to the agent

3 that the ω3 occurs, where he can get the utility u1(10 + 5) in ω1 instead of u1(10). 2

N.B. : This theorem (or proof) is not consistent with the definition of incentive com-

patibility. Here, note that ω3 6∈ E3(ω1). An appropriate definition may be : A feasible

allocation x : Ω 7→ X is coalitionally incentive compatible for E if there does not

exist a coalition S and states ω, ω′ with ω′ ∈ Ek(ω), ∀ k ∈ {i ∈ I \ S : ui(xi(ω)) >

ui(ei(ω)) or ui(x(ω
′)) < ui(ei(ω

′))} such that ui(ei(ω)+xi(ω
′)− ei(ω′)) > ui(xi(ω)), ∀ i ∈

S.
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*Theorem : Let E = {(Xi, ui, ei,Fi, µ) : i ∈ I} be an exchange economy with differential

inforamtion satisfying A.1 and A.2 for each i ∈ I. Moreover, suppose that preferences

are monotone. Then any private core allocation for E is weak coalitionally incentive com-

patible.

*Theorem : Under same conditions, any private Pareto optimal allocation is weakly

coalitionally incentive compatible.

3.3 Nash Equilibrium and α-Core with Differential Information

Definition : x∗ ∈ LX := Πi∈ILXi
is a Bayesian Nash equlibrium for G if

vi(x
∗) ≥ vi(xi, x

∗
−i),∀xi ∈ LXi

where LXi
:= {xi : Ω 7→ R`

+ : xi(ω) ∈ Xi(ω),∀ω ∈ Ω and xi is Fi-measurable.}.
Definition : x∗ ∈ LX is a private strong Nash equilibrium for the G if there does

not exist a coalition S and (xi)i∈S ∈ Πi∈SLXi
such that

∀i ∈ I, vi((xi)i∈S , (x
∗
i )i∈I\S) > vi(x

∗).

Definition : x∗ ∈ LX is a private α-core strategy for the G if there does not exist a

coalition S and (xi)i∈S ∈ Πi∈SLXi
such that

∀i ∈ I, vi((xi)i∈S , (x
′
i)i∈I\S) > vi(x

∗), ∀ (x′i)i∈I\S ∈ Πi∈I\SLXi
.

Theorem : BNE(G) 6= ∅.
Theorem : PSNE(G) ⊂ BNE(G).

Theorem : A private strong Nash equilibrium is a private α-core strategy.

Theorem : PSNE(G) may be empty.

Definition : An allocation x∗ ∈ LX is a private α-core allocation for the E if

(1)
∑

i∈I x
∗
i (ω) =

∑

i∈I ei(ω), µ-a.e.,

(2) there does not exist a coalition S and (xi)i∈S ∈ Πi∈SLXi
such that

(i)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.,

(ii) ∀i ∈ S, vi((xi)i∈S , (x
′
i)i∈I\S) > vi(x

∗), ∀ (x′i)i∈S ∈ Πi∈I\SLXi
.

Conclusion
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• In an economy with differential information, it is reasonable to expect that an agent

with even a zero initial endowment but better private information than all other

agents that matters to the rest of the agents, should be able to exchange his superior

private information for actual goods.

• In a Walrasian equilibrium with differential information where an agent has no initial

endowment, he always ends up with zero consumption even if he has a superior

information which is essential to the other agents.

• The private core is appropriate in a differential information economy in that it re-

ward an agent with superior information that matters to the rest of the agents even

though this agent has no endowment of physical goods. Furthermore it is incentive

compatible.

• The coarse core does not have a problem of incentive compatibility but it is so big

that there are some coarse core allocations which does not account the supriority of

information.

3.4 Value Allocation with Differential Information

1. Private value allocation

For each economy with differential information E and each set of weights λ, we associate

a game with side-payments (I, V p
λ ) according the rule :

For every coalition S ⊂ I,

V p
λ (S) = max

xi

∑

i∈S

λi

∫

ui(ω, xi(ω))dµ(ω)

subject to

(1)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.

(2) xi is Fi-measurable for every i ∈ S.

Definition : An allocation x : Ω 7→ ∏

i∈I Xi is a private value allocation of the

economy with differential information E if

(1) xi is Fi-measurable for every i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,
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(3) ∃λ ∈ R|I| \ {0} such that λi

∫
ui(ω, xi(ω))dµ(ω) = Shi(V

p
λ ),∀i ∈ I where Shi(V

p
λ )

is the Shapley value of agent i derived from the game (I, V p
λ ) and Shi(V

p
λ ) ≥

λi

∫
ui(ω, ei(ω))dµ,∀i ∈ I.

2. Coarse value allocation

For each economy with differential information E and each set of weights λ, we associate

a game with side-payments (I, V c
λ ) according the rule :

For every coalition S ⊂ I,

V c
λ (S) = max

xi

∑

i∈S

λi

∫

ui(ω, xi(ω))dµ(ω)

subject to

(1)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.

(2) xi is ∧i∈SFi-measurable for every i ∈ S.

Definition : An allocation x : Ω 7→∏

i∈I Xi is a coarse value allocation of the economy

with differential information E if

(1) xi is ∧i∈IFi-measurable for every i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) ∃λ ∈ R|I| \ {0} such that λi

∫
ui(ω, xi(ω))dµ(ω) = Shi(V

c
λ ),∀i ∈ I where Shi(V

c
λ ) is

the Shapley value of agent i derived from the game (I, V c
λ ).

3. Fine value allocation

For each economy with differential information E and each set of weights λ, we associate

a game with side-payments (I, V f
λ ) according the rule :

For every coalition S ⊂ I,

V f
λ (S) = max

xi

∑

i∈S

λi

∫

ui(ω, xi(ω))dµ(ω)

subject to

(1)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.

(2) xi is ∨i∈SFi-measurable for every i ∈ S.
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Definition : An allocation x : Ω 7→ ∏

i∈I Xi is a fine value allocation of the economy

with differential information E if

(1) xi is ∨i∈IFi-measurable for every i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) ∃λ ∈ R|I| \ {0} such that λi

∫
ui(ω, xi(ω))dµ(ω) = Shi(V

f
λ ),∀i ∈ I where Shi(V

c
λ )

is the Shapley value of agent i derived from the game (I, V f
λ ) and Shi(V

f
λ ) ≥

λi

∫
ui(ω, ei(ω))dµ,∀i ∈ I .

4. Strong value allocation

Definition : A feasible allocation x : Ω 7→ ∏

i∈I Xi is strongly coalitional incentive

compatible if there does not exist a coalition S and states ω, ω′ with ω′ ∈ Ei(ω),∀i ∈ I\S
and a net-trade vector (zi)i∈S such that

(1)
∑

i∈S zi = 0,

(2) ei(ω) + (xi(ω
′) − ei(ω

′)) + zi ∈ Xi,∀i ∈ S,

(3) ui(ei(ω) + (xi(ω
′) − ei(ω

′)) + zi) > ui(xi(ω)),∀i ∈ S

For each economy with differential information E and each set of weights λ, we associate

a game with side-payments (I, V s
λ ) according to the rule :

For every coalition S ⊂ I,

V s
λ (S) = max

xi

∑

i∈S

λi

∫

ui(ω, xi(ω))dµ(ω)

subject to

(1)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.

(2) xi is strongly coalitional incentive compatible for every i ∈ S.

Definition : An allocation x : Ω 7→∏

i∈I Xi is a strong value allocation of the economy

with differential information E if

(1) xi is strongly coalitional incentive compatible for every i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,
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(3) ∃λ ∈ R|I| \ {0} such that λi

∫
ui(ω, xi(ω))dµ(ω) = Shi(V

s
λ ),∀i ∈ I where Shi(V

s
λ )

is the Shapley value of agent i derived from the game (I, V s
λ ) and Shi(V

s
λ ) ≥

λi

∫
ui(ω, ei(ω))dµ,∀i ∈ I.

5. Weak value allocation

Definition : A feasible allocation x : Ω 7→ ∏

i∈I Xi is weakly coalitional incentive

compatible if there does not exist a coalition S and states ω, ω′ with ω′ ∈ Ei(ω),∀i ∈ I\S
such that

(1) ei(ω) + xi(ω
′) − ei(ω

′) ∈ Xi,∀i ∈ S,

(2) ui(ei(ω) + xi(ω
′) − ei(ω

′)) > ui(xi(ω)),∀i ∈ S.

For each economy with differential information E and each set of weights λ, we associate

a game with side-payments (I, V w
λ ) according to the rule :

For every coalition S ⊂ I,

V w
λ (S) = max

xi

∑

i∈S

λi

∫

ui(ω, xi(ω))dµ(ω)

subject to

(1)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.

(2) xi is weakly coalitional incentive compatible for every i ∈ S.

Definition : An allocation x : Ω 7→∏

i∈I Xi is a weak value allocation of the economy

with differential information E if

(1) xi is weakly coalitional incentive compatible for every i ∈ I,

(2)
∑

i∈I xi(ω) =
∑

i∈I ei(ω), µ-a.e.,

(3) ∃λ ∈ R|I| \ {0} such that λi

∫
ui(ω, xi(ω)dµ(ω) = Shi(V

w
λ ),∀i ∈ I where Shi(V

w
λ )

is the Shapley value of agent i derived from the game (I, V w
λ ) and Shi(V

w
λ ) ≥

λi

∫
ui(ω, ei(ω))dµ,∀i ∈ I.

6. Theorems

Definition : The following are the sets of attainable utility allocations which the coalition

S can attain.
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(1) U c(S) := {w ∈ R|S| : ∃(xi)i∈S such that xi is ∧i∈SFi-measurable and wi ≤
∫
ui(ω, xi(ω))dµ(ω)

for every i ∈ S;
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.}.

(2) Uf (S) := {w ∈ R|S| : ∃(xi)i∈S such that xi is ∨i∈SFi-measurable and wi ≤
∫
ui(ω, xi(ω))dµ(ω) for every i ∈ S;

∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.}.

(3) U(S) := {w ∈ R|S| : ∃(xi)i∈S such that xi is Fi-measurable and

wi ≤
∫
ui(ω, xi(ω))dµ(ω) for every i ∈ S;

∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.}.

(4) U s(S) := {w ∈ R|S| : there exists strongly coalitional incentive compatible (xi)i∈S

such that wi ≤
∫
ui(ω, xi(ω))dµ(ω)∀i ∈ S and

∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.}.

(5) Uw(S) := {w ∈ R|S| : there exists weakly coalitional incentive compatible (xi)i∈S

such that wi ≤
∫
ui(ω, xi(ω))dµ(ω)∀i ∈ S and

∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ-a.e.}.

N.B. : A coarse value allocation may violate the superadditivity. Consider an economy

with three agents, where the agents 1 and 2 have full information and the agent 3 has only

trivial information. Then U c({3}) × U c({1, 2}) 6⊂ U c(I).

Theorem : There may not exist a coarse value allocation.

Theorem : Under the assumptions, there is a fine value allocation.

Theorem : Under the assumptions, there is a private value allocation.

Lemma : If there is one commodity per state, then Up(S) = U s(S) ⊂ Uw(S).

Lemma : A private value allocation is strongly coalitional incentive compatible.

7. Examples

Example 1. :

ui(x) =
√
x,∀i ∈ I, µ(ωk) = 1/4, ∀ k = 1, 2, 3, 4.,

e1 = (4, 4, 1, 1), F1 = {{ω1, ω2}, {ω3, ω4}},
e2 = (4, 1, 4, 1), F2 = {{ω1, ω3}, {ω2, ω4}},
e3 = (1, 1, 1, 1), F3 = {{ω1}, {ω2}, {ω3}, {ω4}}.

1. Private value allocation

2. Core value allocation

3. Fine value allocation

4. Strong value allocation

5. Weak value allocation
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Example 2. :

ui(xi) =
√
xi,∀i ∈ I, µ(ωk) = 1/4, ∀ k = 1, 2, 3, 4.,

e1 = (4, 4, 0, 0), F1 = {{ω1, ω2}, {ω3, ω4}},
e2 = (4, 0, 4, 0), F2 = {{ω1, ω3}, {ω2, ω4}},
e3 = (1, 1, 1, 1), F3 = {{ω1}, {ω2}, {ω3}, {ω4}}.

1. Private value allocation

2. Core value allocation

3. Fine value allocation

4. Strong value allocation

5. Weak value allocation

Example 3. :

ui(x) =
√
x,∀i ∈ I, µ(ωk) = 1/4, ∀ k = 1, 2, 3, 4.,

e1 = (4, 4, 1, 4), F1 = {{ω1, ω2, ω4}, {ω3}},
e2 = (4, 1, 4, 4), F2 = {{ω1, ω3, ω4}, {ω2}},
e3 = (0, 0, 0, 0), F3 = {{ω1}, {ω2}, {ω3}, {ω4}}.

1. Private value allocation

2. Core value allocation

3. Fine value allocation

4. Strong value allocation

5. Weak value allocation

Example 4. :

ui(x) =
√
x,∀i ∈ I, µ(ωk) = 1/4, ∀ k = 1, 2, 3, 4.,

e1 = (4, 4, 1, 1), F1 = {{ω1, ω2}, {ω3, ω4}},
e2 = (4, 1, 4, 1), F2 = {{ω1, ω3}, {ω2, ω4}},
e3 = (0, 0, 0, 0), F3 = {{ω1}, {ω2}, {ω3}, {ω4}}.

1. Private value allocation

2. Core value allocation

3. Fine value allocation

4. Strong value allocation

5. Weak value allocation
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Example 5. : Consider the following economy with three agents and two states that

occur with equal probability.

v1(x) = (1
2

√

x(ω1) + 1
2

√

x(ω2) )2, e1 = (4, 0), F1 = {{ω1}, {ω2}}
v2(x) = (1

2

√

x(ω1) + 1
2

√

x(ω2) )2, e2 = (0, 4), F2 = {{ω1}, {ω2}}
v3(x) = 1

2x(ω1) + 1
2x(ω2), e3 = (0, 0), F3 = {{ω1}, {ω2}}

There is a value allocation with λ = (1, 1, 1) such that

x1 = x2 = (11/6, 11/6), x3 = (2/6, 2/6)

Example 6. : Consider the following economy with three agents and two states that

occur with equal probability.

v1(x) = (1
2

√

x(ω1) + 1
2

√

x(ω2) )2, e1 = (4, 0), F1 = {{ω1}, {ω2}}
v2(x) = (1

2

√

x(ω1) + 1
2

√

x(ω2) )2, e2 = (0, 4), F2 = {{ω1}, {ω2}}
v3(x) = 1

2x(ω1) + 1
2x(ω2), e3 = (0, 0), F3 = {{ω1, ω2}}

1. Private value allocation

2. Core value allocation

3. Fine value allocation

4. Strong value allocation

5. Weak value allocation

Risk aversion and information

• In examples 3 and 4, the information superiority explains that the agent 3 gets

positive value allocation in spite of zero endowments and the same utility function

as those of the others.

• In example 5, the risk aversion explains that the agent 3 gets positive value allocation

in spite of zero endowment.

• In example 6, the agent 3 has less risk averse utility function than those of the others

but he gets nothing since he has bad information.
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4 On Extensive Form Implementation of Contracts in dif-

ferential Information Economies

4.1 Differential information economy

We define the notion of a finite-agent economy with differential information, confining

ourselves to the case where the set of states of nature, Ω, is finite and there is a finite

number of goods, l, per state. F is a σ-algebra on Ω, I is a set of n players and Rl
+ will

denote the positive orthant of Rl.

A differential information exchange economy E is a set {((Ω,F), Xi,Fi, ui, ei, qi) : i =

1, . . . , n} where

1. Xi : Ω → 2Rl
+ is the set-valued function giving the random consumption set of

Agent (Player) i, who is denoted also by Pi;

2. Fi is a partition of Ω, denoting the private information9 of Pi;

3. ui : Ω×Rl
+ → R is the random utility function of Pi;

4. ei : Ω → Rl
+ is the random initial endowment of Pi, assumed to be constant on

elements of Fi, with ei(ω) ∈ Xi(ω) for all ω ∈ Ω;

5. qi is an F-measurable probability function on Ω giving the prior of Pi. It is assumed

that on all elements of Fi the aggregate qi is positive. If a common prior is assumed

it will be denoted by µ.

We will refer to a function with domain Ω, constant on elements of Fi, as Fi-measurable,

although, strictly speaking, measurability is with respect to the σ-algebra generated by

the partition. We can think of such a function as delivering information to Pi which does

not permit discrimination between the states of nature belonging to any element of Fi.

In the first period agents make contracts in the ex ante stage. In the interim stage, i.e.,

after they have received a signal10 as to what is the event containing the realized state of

nature, one considers the incentive compatibility of the contract.

For any xi : Ω → Rl
+, the ex ante expected utility of Pi is given by

9Following Aumann (1987) we assume that the players’ information partitions are common knowledge.

Sometimes Fi will denote the σ-algebra generated by the partition, in which case Fi ⊆ F , as it will be

clear from the context.
10A signal to Pi is an Fi-measurable function from Ω to the set of the possible distinct observations

specific to the player; that is, it induces the partition Fi, and so gives the finest discrimination of states of

nature directly available Pi.
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vi(xi) =
∑

ω∈Ω

ui(ω, xi(ω))qi(ω). (4)

Denote by Ei(ω) the element in the partition Fi which contains the realized state of

nature, ω ∈ Ω. It is assumed that qi
(
Ei(ω)

)
> 0 for all ω ∈ Ω. The interim expected

utility function of Pi is given by

vi(ω, xi) =
∑

ω
′
∈Ω

ui(ω
′

, xi(ω
′

))qi
(
ω

′ |Ei(ω)
)
, (5)

where

qi
(
ω

′ |Ei(ω)
)

=







0 for ω
′

/∈ Ei(ω)

qi(ω
′
)

qi

(
Ei(ω)

) for ω
′ ∈ Ei(ω).

4.2 Private core, weak fine core, Radner equilibrium, REE and weak

fine value

We define here the various equilibrium concepts in this paper, distinguishing between the

free disposal and the non-free disposal case. A comparison is also made between these

concepts. All definitions are in the context of the exchange economy E in Section 2.

We begin with some notation. Denote by L1(qi, R
l) the space of all equivalence classes,

with respect to qi, of F-measurable functions fi : Ω → Rl.

LXi
is the set of all Fi-measurable selections from the random consumption set of Agent

i, i.e.,

LXi
= {xi ∈ L1(qi, R

l) : xi : Ω → Rl is Fi-measurable and xi(ω) ∈ Xi(ω) qi-a.e.}

and let LX =
n∏

i=1
LXi

.

Also let

L̄Xi
= {xi ∈ L1(qi, R

l) : xi(ω) ∈ Xi(ω) qi-a.e.}

and let L̄X =
n∏

i=1
L̄Xi

.

An element x = (x1, . . . , xn) ∈ L̄X will be called an allocation. For any subset of players

S, an element (yi)i∈S ∈ ∏

i∈S

L̄Xi
will also be called an allocation, although strictly speaking

it is an allocation to S.

We note that the above notation is employed also for purposes of comparisons with the

analysis in Glycopantis - Muir - Yannelis (2001). In case there is only one good, i.e. l = 1,
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we shall use the notation L1
Xi

, L̄1
Xi

etc. When a common prior is also assumed L1(qi, R
l)

will be replaced by L1(µ,R
l).

First we define the notion of the (ex ante) private core11 (Yannelis (1991)).

Definition 3.1. An allocation x ∈ LX is said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and

(ii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S

LXi
such that

∑

i∈S

yi =
∑

i∈S

ei

and vi(yi) > vi(xi) for all i ∈ S.

Notice that the definition above does not allow for free disposal. If the feasibility condition

(i) is replaced by (i)′
∑n

i=1 xi ≤
∑n

i=1 ei then free disposal is allowed.

Example 3.1 Consider the following three agents economy, I = {1, 2, 3} with one com-

modity, i.e. Xi = R+ for each i, and three states of nature Ω = {a, b, c}.
We assume that the initial endowments and information partitions of the agents are given

by

e1 = (5, 5, 0), F1 = {{a, b}, {c}};

e2 = (5, 0, 5), F2 = {{a, c}, {b}};

e3 = (0, 0, 0), F3 = {{a}, {b}, {c}}.

It is also assumed that ui(ω, xi(ω)) = x
1

2

i , which is a typical strictly concave and monotone

function in xi, and that every player expects that each state of nature occurs with the

same probability, i.e. µ({ω}) = 1
3 , for ω ∈ Ω. For convenience, in the discussion below

expected utilities are multiplied by 3.

It was shown in Appendix II of Glycopantis - Muir - Yannelis (2001) that, without free

disposal, a private core allocation of this economy is x1 = (4, 4, 1), x2 = (4, 1, 4) and

x3 = (2, 0, 0). It is important to observe that in spite of the fact that Agent 3 has zero

initial endowments, his superior information allows him to make a Pareto improvement

for the economy as a whole and he was rewarded for doing so. In other words, Agent

3 traded his superior information for actual consumption in state a. In return Agent 3

provided insurance to Agent 1 in state c and to Agent 2 in state b. Notice that if the

private information set of Agent 3 is the trivial partition, i.e., F ′

3 = {a, b, c}, then no-trade

takes place and clearly in this case he gets zero utility. Thus the private core is sensitive

to information asymmetries.

Next we define another core concept, the weak fine core (Yannelis (1991) and Koutsougeras

- Yannelis (1993)). This is a refinement of the fine core concept of Wilson (1978). Recall

11The private core can also be defined as an interim concept. See Yannelis (1991) and Glycopantis -

Muir - Yannelis (2001).
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that the fine core notion of Wilson as well as the fine core in Koutsougeras and Yannelis

may be empty in well behaved economies. It is exactly for this reason that we are working

with a different concept.

Definition 3.2. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a weak fine core

allocation if

(i) each xi(·) is
n∨

i=1
Fi-measurable 12

(ii)
∑n

i=1 xi =
∑n

i=1 ei and

(iii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S

L̄Xi
such that yi(·) − ei(·)

is
∨

i∈S

Fi-measurable for all i ∈ S,
∑

i∈S

yi =
∑

i∈S

ei and vi(yi) > vi(xi) for all i ∈ S.

Existence of private core and weak fine core allocations is discussed in Glycopantis - Muir

- Yannelis (2001). The weak fine core is also an ex ante concept. As with the private core

the feasibility condition can be relaxed to (ii)′
∑n

i=1 xi ≤
∑n

i=1 ei . Notice however that

now coalitions of agents are allowed to pool their own information and all alocations will

exhaust the resource. The example below illustrates this concept.

Example 3.2 Consider the Example 3.1 without Agent 3. Then if Agents 1 and 2 pool

their own information a possible allocation is x1 = x2 = (5, 2.5, 2.5). Notice that this

allocation is
2∨

i=1
Fi-measurable and cannot be dominated by any coalition of agents using

their pooled information. Hence it is a weak fine core allocation. 13

Next we shall define a Walrasian equilibrium notion in the sense of Radner. In order

to do so, we need the following. A price system is an F-measurable, non-zero function

p : Ω → Rl
+ and the budget set of Agent i is given by

Bi(p) = {xi : xi : Ω → Rl is Fi-measurable xi(ω) ∈ Xi(ω) and
∑

ω∈Ω

p(ω)xi(ω) ≤
∑

ω∈Ω

p(ω)ei(ω)}.

Notice that the budget constraint is across states of nature.

Definition 3.3. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈ LX is an

allocation, is a Radner equilibrium if

(i) for all i the consumption function maximizes vi on Bi

(ii)
∑n

i=1 xi ≤
∑n

i=1 ei ( free disposal), and

(iii)
∑

ω∈Ω

p(ω)
∑n

i=1 xi(ω) =
∑

ω∈Ω

p(ω)
∑n

i=1 ei(ω).

Radner equilibrium is an ex ante concept. We assume free disposal, for otherwise it is well

known that a Radner equilibrium with non-negative prices might not exist. This can be

12
n∨

i=1

Fi denotes the smallest σ-algebra containing each Fi.

13See Koutsougeras - Yannelis (1993).
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seen through straightforward calculations in Example 3.1.

Next we turn our attention to the notion of REE. We shall need the following. Let σ(p) be

the smallest sub-σ-algebra of F for which p : Ω → Rl
+ is measurable and let Gi = σ(p)∨Fi

denote the smallest σ-algebra containing both σ(p) and Fi. We shall also condition the

expected utility of the agents on G which produces a random variable.

Definition 3.4. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈ L̄X is an

allocation, is a rational expectations equilibrium (REE) if

(i) for all i the consumption function xi(ω) is Gi-measurable.

(ii) for all i and for all ω the consumption function maximizes

vi(xi|Gi)(ω) =
∑

ω
′
∈E

Gi
i (ω)

ui(ω
′

, xi(ω
′

))
qi(ω

′

)

qi
(
EGi

i (ω)
) , (6)

(where EGi

i (ω) is the event in Gi which contains ω and qi(E
Gi

i (ω)) > 0) subject to

p(ω)xi(ω) ≤ p(ω)ei(ω)

i.e. the budget set at state ω, and

(iii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) for all ω.

This is an interim concept because we condition expectations on information received

from prices as well. In the definition, free disposal can easily be introduced. The idea of

conditioning on the σ-algebra, vi(xi|Gi)(ω), is rather well known.

REE can be classified as (i) fully revealing if the price function reveals to each agent all

states of nature, (ii) partially revealing if the price function reveals some but not all states

of nature and (iii) non-revealing if it does not disclose any particular state of nature.

Finally we define the concept of weak fine value allocation (see Krasa - Yannelis (1994)). As

in the definition of the standard value allocation concept, we must first define a transferable

utility (TU) game in which each agent’s utility is weighted by a factor λi (i = 1, ..., n),

which allows interpersonal comparisons. In the value allocation itself no side payments

are necessary.14 A game with side payments is then defined as follows.

Definition 3.5. A game with side payments Γ = (I, V ) consist of a finite set of agents

I = {1, ..., n} and a superadditive, real valued function V defined on 2I such that V (∅) = 0.

Each S ⊂ I is called a coalition and V (S) is the ‘worth’ of the coalition S.

The Shapley value of the game Γ (Shapley (1953)) is a rule that assigns to each Agent i

a ‘payoff, Shi, given by the formula15

14See Emmons - Scafuri (1985, p. 60) for further discussion.
15The Shapley value measure is the sum of the expected marginal contributions an agent can make to

all the coalitions of which he/she is a member (see Shapley (1953)).
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Shi(V ) =
∑

S⊆I

S⊇{i}

(| S | −1)!(| I | − | S |)!
| I |! [V (S) − V (S\{i})]. (7)

The Shapley value has the property that
∑

i∈I Shi(V ) = V (I), i.e. it is Pareto efficient.

We now define for each economy with differential information, E , and a common prior, and

for each set of weights, λi : i = 1, . . . , n, the associated game with side payments (I, Vλ)

(we also refer to this as a ‘transferable utility’ (TU) game) as follows:

For every coalition S ⊂ I let

Vλ(S) = max
x

∑

i∈S

λi

∑

ω∈Ω

ui(ω, xi(ω))µ(ω) (8)

subject to

(i)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ−a.e.,

(ii) xi − ei is
∨

i∈S

Fi−measurable.

We are now ready to define the weak fine value allocation.

Definition 3.6. An allocation x = (x1, . . . , xn) ∈ L̄X is said to be a weak fine value

allocation of the differential information economy, E , if the following conditions hold

(i) Each net trade xi − ei is
n∨

i=1
Fi-measurable,

(ii)
∑n

i=1 xi =
∑n

i=1 ei and

(iii) There exist λi ≥ 0, for every i = 1, ..., n, which are not all equal to zero, with
∑

ω∈Ω

λiui(ω, xi(ω))µ(ω) = Shi(Vλ) for all i, where Shi(Vλ) is the Shapley value of Agent i

derived from the game (I, Vλ), defined in (8) above.

Condition (i) requires the pooled information measurability of net trades, i. e. net trades

are measurable with respect to the “join”. Condition (ii) is the market clearing condition

and (iii) says that the expected utility of each agent multiplied by his/her weight, λi must

be equal to his/her Shapley value derived from the TU game (I, Vλ).

An immediate consequence of Definition 3.6 is that Shi(Vλ) ≥ λi
∑

ω∈Ω

ui(ω, ei(ω))µ(ω) for

every i, i.e. the value allocation is individually rational. This follows immediately from

the fact that the game (Vλ, I) is superadditive for all weights λ. Similarly, efficiency of the

Shapley value for games with side payments immediately implies that the value allocation

is weak-fine Pareto efficient.

On the basis of the definitions and the analysis of Example 3.1 of an exhange economy

with 3 agents and of Example 3.2 with 2 agents we make comparisons between the various
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equilibrium notions. The calculations of all, cooperative and noncooperative, equilibrium

allocations are straightforward.

Contrary to the private core any rational expectation Walrasian equilibium notion, such

as Radner equilibrium or REE, will always give zero to an agent who has no initial en-

dowments. For example, in the 3-agent economy of Example 3.1, Agent 3 receives no

consumption since his budget set is zero in each state. This is so irrespective of whether

his private information is the full information partition F3 = {{a}, {b}, {c}} or the trivial

partition F ′

3 = {a, b, c}. Hence the Walrasian, competitive equilibrium ideas do not take

into account the informational superiority of an agent.

The set of Radner equilibrium allocations, with and without free disposal, are a subset

of the corresponding private core allocations. Of course it is possible that a Radner equi-

librium allocation might not exist. In the two-agent economy of Example 3.2, assuming

non-free disposal the unique private core is the initial endowments allocation while no

Radner equilibrium exists. On the other hand, assuming free disposal, for the same ex-

ample, the REE coincides with the initial endowments allocation which does not belong

to the private core. It follows that the REE allocations need not be in the private core.

We also have that a REE need not be a Radner equilibrium. In Example 3.2, without free

disposal no Radner equilibrium with non-negative prices exists but REE does. It is unique

and it implies no-trade.

As for the comparison between private and weak fine core allocations the two sets could

intersect but there is no definite relation. Indeed the measurability requirement of the

private core allocations separates the two concepts. In Example 3.2 the allocation (5, 2.5,

2.5) to Agent 1 and (5, 2.5, 2.5) to Agent 2, as well as (6, 3, 3) and (4, 2, 2) belong to

the weak fine core but not to the private core. There are many weak fine core allocations

which do not satisfy the measurability condition.

For n = 2 one can easily verify that the weak fine value belongs to the weak fine core.

However it is known (see for example Scafuri - Yannelis (1984)) that for n ≥ 3 a value

allocation may not be a core allocation, and therefore may not be a Radner equilibrium.

Also, in Example 3.1 a private core allocation is not necessarily in the weak fine core.

Indeed the division (4, 4, 1), (4, 1, 4) and (2, 0, 0), to Agents 1, 2 and 3 respectively, is

a private core but not a weak fine core allocation. The first two agents can get together,

pool their information and do better. They can realize the weak fine core allocation, (5,

2.5, 2.5), (5, 2.5, 2.5) and (0, 0, 0) which does not belong to the private core.

Finally notice that even with free disposal no allocation which does not distribute the

total resource could be in the weak fine core. The three agents can get together, distribute

the surplus and increase their utility.
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In the next section we shall discuss whether core and Walrasian type allocations have

certain desirable properties from the point of view of incentive compatibility. Following

this, we shall turn our attention in later sections to the implementation of such allocations.

4.3 Incentive compatibility

The basic idea is that an allocation is incentive compatible if no coalition can misreport

the realized state of nature to the complementary set of agents and become better off.

Let us suppose we have a coalition S, with members denoted by i, and the complementary

set I \ S with members j. Let the realized state of nature be ω∗. A member i ∈ S sees

Ei(ω
∗). Obviously not all Ei(ω

∗) need be the same, however all Agents i know that the

actual state of nature could be ω∗.

Consider now a state of nature ω
′

with the following property. For all j ∈ I \ S we have

ω
′ ∈ Ej(ω

∗) and for at least one i ∈ S we have ω
′

/∈ Ei(ω
∗) (otherwise ω

′

would be

indistinguishable from ω∗ for all players and, by redefining utilities appropriately, could

be considered as the same element of Ω). Now the coalition S decides that each member i

will announce that she has seen her own set Ei(ω
′

) which, of course, definitely contains a

lie. On the other hand we have that ω
′ ∈ ⋂

j /∈S

Ej(ω
∗) ( we also denote j ∈ I \ S by j /∈ S).

Now the idea is that if all members of I \ S believe the statements of the members of S

then each i ∈ S expects to gain. For coalitional Bayesian incentive compatibility (CBIC)

of an allocation we require that this is not possible. This is the incentive compatibility

condition used in Glycopantis - Muir - Yannelis (2001) where we gave a formal definition.

We showed there that in the three-agent economy without free disposal the private core

allocation x1 = (4, 4, 1), x2 = (4, 1, 4) and x3 = (2, 0, 0) is incentive compatible. This

follows from the fact that Agent 3 who would potentially cheat in state a has no incentive

to do so. It has been shown in Koutsougeras - Yannelis (1993) that if the utility functions

are monotone and continuous then private core allocations are always CBIC.

On the other hand the weak fine core allocations are not always incentive compatible,

as the proposed redistribution x1 = x2 = (5, 2.5, 2.5) in the two-agent economy shows.

Indeed, if Agent 1 observes {a, b}, he has an incentive to report c and Agent 2 has an

incentive to report b when he observes {a, c}.
CBIC coincides in the case of a two-agent economy with Individually Bayesian Incentive

Compatibility (IBIC) which corresponds to the case in which S is a singleton.

The concept of Transfer Coalitionally Bayesian Incentive Compatible (TCBIC) allocations,

used in this paper16, allows for transfers between the members of a coalition, and is

16see Krasa - Yannelis (1994) and Hahn - Yannelis (1997) for related concepts.
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therefore a strengthening of the concept of Coalitionally Bayesian Incentive Compatibility

(CBIC).

Definition 4.1. An allocation x = (x1, . . . , xn) ∈ L̄X , with or without free disposal,

is said to be Transfer Coalitionally Bayesian Incentive Compatible (TCBIC) if it is not

true that there exists a coalition S, states ω∗ and ω
′

, with ω∗ different from ω
′

and

ω
′ ∈ ⋂

i/∈S

Ei(ω
∗) and a random net-trade vector, z, among the members of S,

(zi)i∈S ,
∑

S

zi = 0

such that for all i ∈ S there exists Ēi(ω
∗) ⊆ Zi(ω

∗) = Ei(ω
∗) ∩ (

⋂

j /∈S

Ej(ω
∗)), for which

∑

ω∈Ēi(ω∗)

ui(ω, ei(ω)+xi(ω
′

)− ei(ω
′

)+ zi)qi
(
ω|Ēi(ω

∗)
)
>

∑

ω∈Ēi(ω∗)

ui(ω, xi(ω))qi
(
ω|Ēi(ω

∗)
)
.

(9)

Notice that the zi’ s above are not necessarily measurable. The definition is cast in terms

of all possible zi’ s. It follows that ei(ω)+xi(ω
′

)−ei(ω′

)+zi(ω) ∈ Xi(ω) is not necessarily

measurable. The definition means that no coalition can form with the possibility that by

misreporting a state, every member will become better off if the announcement is believed

by the members of the complementary set.

Returning to Definition 4.1, one then can define CBIC to correspond to zi = 0 and then

IBIC to the case when S is a singleton. Thus we have (not IBCI) ⇒ (not CBIC) ⇒ (not

TCBIC). It follows that TCBIC ⇒ CBIC ⇒ IBIC.

We now provide a characterization of TCBIC:

Proposition 4.1. Let E be a one-good differential information economy as described

above, and suppose each agent’s utility function, ui = ui(ω, xi(ω)) is monotone in the

elements of the vector of goods xi, that ui(., xi) is Fi-measurable in the first argument,

and that an element x = (x1, . . . , xn) ∈ L̄1
X is a feasible allocation in the sense that

∑n
i=1 xi(ω) =

∑n
i=1 ei(ω) ∀ω. Consider the following conditions:

(i) x ∈ L1
X =

n∏

i=1
L1

Xi
and

(ii) x is TCBIC.

Then (i) is equivalent to (ii).

Proof . First we show that (i) implies (ii) by showing that (i) and the negation of (ii) lead

to a contradiction.

Let x ∈ LX and suppose that it is not TCBIC. Then, varying the notation for states to

emphasize that Definition 4.1 does not hold, there exists a coalition S, states a and b, with
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a 6= b and b ∈ ⋂

i/∈S

Ei(a) and a net-trade vector, z, among the members of S,

(zi)i∈S ,
∑

S

zi = 0

such that for all i ∈ S there exists Ēi(a) ⊆ Zi(a) = Ei(a) ∩ (
⋂

j /∈S

Ej(a)), for which

∑

c∈Ēi(α)

ui(c, ei(c) + xi(b) − ei(b) + zi)qi
(
c|Ēi(a)

)
>

∑

c∈Ēi(a)

ui(c, xi(c))qi
(
c|Ēi(a)

)
. (10)

For c ∈ Ēi(a), ei(c) = ei(a) since ei is Fi-measurable, so

ei(c) + xi(b) − ei(b) + zi = ei(a) + xi(b) − ei(b) + zi

and hence also

ui

(
c, ei(c) + xi(b) − ei(b) + zi

)
= ui

(
a, ei(a) + xi(b) − ei(b) + zi

)
,

by the assumed Fi-measurability of ui.

Since, by (i), xi(c) = xi(a) for c ∈ Ēi(a), we similarly have ui

(
c, xi(c)

)
= ui

(
a, xi(a)

)
.

Thus in equation (10) the common utility terms can be lifted outside the summations

giving

ui

(
a, ei(a) + xi(b) − ei(b) + zi

)
> ui

(
a, xi(a)

)

and hence ei(a) + xi(b) − ei(b) + zi > xi(a), by monotonicity of ui.

Consequently,

∑

i∈S

(
xi(b) − ei(b)

)
>
∑

i∈S

(
xi(a) − ei(a)

)
. (11)

On the other hand for i /∈ S we have xi(b) − ei(b) = xi(a) − ei(a) from which we obtain

∑

i/∈S

(
xi(b) − ei(b)

)
=
∑

i/∈S

(
xi(a) − ei(a)

)
. (12)

Taking equations (11),(12) together we have
∑

i∈I

(
xi(b) − ei(b)

)
>
∑

i∈I

(
xi(a) − ei(a)

)
, (13)

which is a contradiction since both sides are equal to zero, by feasibility.17

17Koutsougeras - Yannelis (1993) and Krasa - Yannelis (1994) show that (i) implies (ii) for any number

of goods, but for ex post utility functions. This means that the contract is made ex ante and after the

state of nature is realized we see that we have incentive compatibility. Hahn - Yannelis (1997) show that

(i) implies (ii) for any number of goods and for interim utility functions. Notice that since the non-free

disposal Radner equilibrium is a subset of the non-free disposal ex ante private core, it follows from Hahn

- Yannelis that the non-free disposal Radner equilibrium is TCBIC.
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We now show that (ii) implies (i). For suppose not. Then there exists some Agent j and

states a, b with b ∈ Ej(a) such that xj(a) 6= xj(b). Without loss of generality, we may

assume that xj(a) > xj(b). Since ej(.) is Fj-measurable ej(b) = ej(a) and therefore

xj(a) − ej(a) > xj(b) − ej(b). (14)

Let S = I\{j}. From the feasibility of x and (14) it follows that

∑

i∈S

(
xi(a) − ei(a)

)
= −

(
xj(a) − ej(a)

)
< −

(
xj(b) − ej(b)

)
=
∑

i∈S

(
xi(b) − ei(b)

)
. (15)

From (15) we have that

δ =
∑

i∈S

(
ei(a) + xi(b) − ei(b) − xi(a)

)
> 0. (16)

For each i ∈ S let

zi = xi(a) − ei(a) − xi(b) + ei(b) +
δ

n− 1
.

so that
∑

i∈S zi = 0 and

ei(a) + xi(b) − ei(b) + zi > xi(a).

By monotonicity of ui, we can conclude that

ui(a, ei(a) + xi(b) − ei(b) + zi) > ui(a, xi(a)), (17)

for all i ∈ S, a contradiction to the fact that x is TCBIC as the role of Ēi in the definition

can be played by {a}.
Finally note that a particular case of Fi-measurability of ui is when it is independent of

ω. This completes the proof of Proposition 4.1.

In the lemma that follows we refer to CBIC, as TCBIC does not make much sense since

zi is not available. CBIC is obtained when all zi’s are set equal to zero.

Lemma 4.1. Under the conditions of the Proposition, if there are only two agents then

(ii) x is CBIC, which is the same as IBIC, implies (i).

Proof : For suppose not. Then lack of Fi-measurability of the allocations implies that

there exist Agent j and states a, b, where b ∈ Ej(a), such that xj(b) < xj(a) and therefore

xj(b) − ej(b) < xj(a) − ej(a). (18)

Feasibility implies

xi(b) − ei(b) + xj(b) − ej(b) = xi(a) − ei(a) + xj(a) − ej(a) (19)
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from which we obtain

xi(b) − ei(b) > xi(a) − ei(a). (20)

By monotonicity and the one-good per state assumption it follows that,

ui(a, ei(a) + xi(b) − ei(b)) > ui(a, xi(a)). (21)

This implies that we have

ui(a, ei(c) + xi(b) − ei(b)) > ui(a, xi(c)) (22)

which contradicts the assumption that x is CBIC. This completes the proof of the lemma.

The above results characterize TCBIC and CBIC in terms of private individual measurabil-

ity, i.e. Fi-measurability, of allocations. These results will enable us to conclude whether

or not, in case of non-free disposal, any of the solution concepts, i.e. Radner equilibrium,

REE, private core, weak fine core and weak fine value will be TCBIC whenever feasible

allocations are Fi-measurable.

It follows from the lemma that the redistribution shown in the matrix below, which is

a weak fine core allocation of Example 3.2, where the ith line refers to Player i and the

columns from left to right to states a, b and c,

(

5 2.5 2.5

5 2.5 2.5

)

is not CBIC as it is not Fi-measurable. Thus, a weak fine core allocation may not be

CBIC.

On the other hand the proposition implies that, in Example 3.2, the no-trade allocation

(

5 5 0

5 0 5

)

is incentive compatible. This is a non-free disposal REE, and a private core allocation.

We note that the Proposition 4.1 refers to non-free disposal. As a matter of fact Propo-

sition 4.1 is not true if we assume free disposal. Indeed if free disposal is allowed Fi-

measurability PBE does not imply incentive compatibility.

In the case with free disposal, private core and Radner equilibrium need not be incen-

tive compatible. In order to see this we notice that in Example 3.2 the (free disposal)

Radner equilibrium is x1 = (4, 4, 1) and x2 = (4, 1, 4). The above allocation is clearly

Fi-measurable and it can easily be checked that it belongs to the (free disposal) private
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core. However it is not TBIC since if state a occurs Agent 1 has an incentive to report

state c and gain.

Now in employing game trees in the analysis, as it is done below, we will adopt the

definition of IBIC. The equilibrium concept employed will be that of PBE. The definition

of a play of the game is a directed path from the initial to a terminal node.

In terms of the game trees, a core allocation will be IBIC if there is a profile of optimal

behavioral strategies and equilibrium paths along which no player misreports the state of

nature he has observed. This allows for the possibility, as we shall see later, that such

strategies could imply that players have an incentive to lie from information sets which

are not visited by an optimal play.

In view of the analysis in terms of game trees we comment again on the general idea of

CBIC. First we look at it once more, in a similar manner to the one in the beginning of

Section 4.

Suppose the true state of nature is ω̄. Any coalition can only see that the state lies in
⋂

i∈S

Ei(ω̄) when they pool their observations. If they decide to lie they must first guess at

what is the true state and they will do so at some ω∗ ∈ ⋂

i∈S

Ei(ω̄). Then of course we have
⋂

i∈S

Ei(ω̄) =
⋂

i∈S

Ei(ω
∗). Having decided on ω∗ as a possible true state, they now pick some

ω
′ ∈ ⋂

j /∈S

Ej(ω
∗) and (assuming the system is not CBIC) they hope, by announcing (each

of them) that they have seen Ei(ω
′

) to secure better payoffs.

This is all contingent on their being believed by I \ S. This, in turn, depends on their

having been correct in their guessing that ω∗ = ω̄, in which case they might be believed.

If ω∗ 6= ω̄, i.e they guess wrongly, then since
⋂

j /∈S

Ej(ω
∗) 6= ⋂

j /∈S

Ej(ω̄) they may be detected

in their lie, since possibly ω
′

/∈ ⋂

j /∈S

Ej(ω̄).

This is why the definition of CBIC can only be about possible existence of situations where

a lie might be beneficial. It is not concerned with what happens if the lie is detected.

On the other hand the extensive form forces us to consider that alternative. It requires

statements concerning earlier decisions by other players to lie or tell the truth and what

payoffs will occur whenever a lie is detected, through observations or incompatibility of

declarations. Only in this fuller description can players really make a decision whether

to risk a lie, since only then can they balance the gains from not being caught against a

definitely declared payoff if they are.

The issue is whether cooperative and noncooperative static solutions can be obtained as

perfect Bayesian or sequential equilibria. That is whether such allocations can also be

supported through an appropriate noncooperative solution concept. The analysis below
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shows that CBIC allocations can be supported by a PBE while lack of incentive compat-

ibility implies non-support, in the sense that the two agents, left on their own, do not

sign the contract. It is also shown how implementation of allocations becomes possible

through the introduction in the analysis of an exogenous third party or an endogenous

intermediary.

4.4 Non-implementation of free disposal private core and Radner equi-

libria, and of weak fine core allocations

The main point here is that lack of IBIC implies that the two agents based on their

information cannot sign a proposed contract because both of them have an incentive to

cheat the other one and benefit. Indeed PBE leads to no-trade. This so irrespective of

whether in state a the contract specifies that they both get 5 or 4.

Note that to impose free disposal in state a causes certain problems, because the question

arises as to who will check that the agents have actually thrown away 1 unit. In gen-

eral, free disposal is not always a very satisfactory assumption in differential information

economies with monotone preferences.

We shall investigate the possible implementation of the allocation

(

4 4 1

4 1 4

)

in Example 3.2, contained in a contract between P1 and P2 when no third party is present.

For the case with free disposal, this is both a private core and a Radner equilibrium

allocation.

This allocation is not IBIC because, as we explained in the previous section, if Agent 1

observes {a, b}, he has an incentive to report c and Agent 2 has an incentive to report b

when he observes {a, c}.
We construct a game tree and employ reasonable rules for describing the outcomes of

combinations of states of nature and actions of the players. In fact we look at the contract

(

5 4 1

5 1 4

)

in which the agents get as much per state as under the private core allocation above. The

latter can be obtained by invoking free disposal in state a.

The investigation is through the analysis of a specific sequence of decisions and information

sets shown in the game tree in Figure 1. Notice that vectors at the terminal nodes of a

game tree will refer to payoffs of the players in terms of quantities. The first element will

be the payoff to P1, etc.
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The players are given strategies to tell the truth or to lie, i.e., we model the idea that

agents truly inform each other about what states of nature they observe, or deliberately

aim to mislead their opponent. The issue is what type of behavior is optimal and therefore

whether a proposed contract will be signed or not. We find that the optimal strategies of

the players imply no-trade.

Figures 1 and 2 show that the allocation (5, 4, 1) and (5, 1, 4) will be rejected by the players.

They prefer to stay with their initial endowments and will not sign the proposed contract

as it offers to them no advantage.

In Figure 1, nature chooses states a, b or c with equal probabilities. This choice is flashed

on a screen which both players can see. P1 cannot distinguish between a and b, and P2

between a and c . This accounts for the information sets I1, I2 and I
′

2 which have more

than one node. A player to which such an information set belongs cannot distinguish

between these nodes and therefore his decisions are common to all of them. A behavioral

strategy of a player is to declare which choices he would make, with what probability,

from each of his information sets. Indistinguishable nodes imply the Fi-measurability of

decisions.

P1 moves first and he can either play A1 = {a, b} or c1 = {c}, i.e., he can say “I have seen

{a, b} or “I have seen c”. Of course only one of these declarations will be true. Then P2

is to respond saying that the signal he has seen on the screen is A2 = {a, c} or that it is

b2 = {b}. Obviously only one of these statements is true.

Strictly speaking the notation for choices should vary with the information set but there

is no danger of confusion here. Finally notice that the structure of the game tree is such

that when P2 is to act he knows exactly what P1 has chosen.

Next we specify the rules for calculating the payoffs, i.e. the terms of the contract:

(i) If the declarations by the two players are incompatible, that is (c1, b2) then no-trade

takes place and the players retain their initial endowments. That is the case when either

state c, or state b occurs and Agent 1 reports state c and Agent 2 state b. In state a both

agents can lie and the lie cannot be detected by either of them. They are in the events

{a, b} and {a, c} respectively, they get 5 units of the initial endowments and again they

are not willing to cooperate. Therefore whenever the declarations are incompatible, no

trade takes place and the players retain their initial endowments.

(ii) If the declarations are (A1, A2) then even if one of the players is lying, this cannot

be detected by his opponent who believes that state a has occured and both players have

received endowment 5. Hence no-trade takes place.

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected. P1 is

trapped and must hand over one unit of his endowment to P2. Obviously if his initial
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endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected. P2

is now trapped and must hand over one unit of his endowment to P1. Obviously if his

initial endowment is zero then he has nothing to give.

The calculations of payoffs do not require the revelation of the actual state of nature.

Optimal decisions will be denoted by a heavy line. We could assume that a player does

not lie if he cannot get a higher payoff by doing so.

Assuming that each player chooses optimally from his information sets, the game in Figure

1 folds back to the one in Figure 2. Inspection of Figure 1 reveals that from the information

set I2 agent P2 can play b2 with probability 1. (A heavy line A2 indicates that this choice

also would not affect the analysis). This accounts for the payoff (4, 6) and the first payoff

(0, 5) from left to right in Figure 2. Similarly by considering the optimal decisions from

all other information sets of P2 we arrive at Figure 2. Analyzing this figure we obtain the

optimal strategies of P1.

In conclusion, the optimal behavioral strategy for P1 is to play c1 with probability 1 from

I1, i.e to lie, and from the singleton to play any probability mixture of options, and we

have chosen (A1,
1
2 ; c1,

1
2). The optimal strategy of P2 is to play b2 from both I2 and I

′

2,

i.e. to lie, and from the singletons he can either tell the truth or lie, or spin a wheel,

divided in proportions corresponding to A1 and c1, to decide what to choose.

In Figures 1 and 2, the fractions next to the nodes in the information sets correspond to

beliefs of the agents obtained, wherever possible, through Bayesian updating. I.e., they

are consistent with the choice of a state by nature and the optimal behavioral strategies

of the players. This means that strategies and beliefs satisfy the conditions of a PBE.

These probabilities are calculated as follows. From left to right, we denote the nodes in

I1 by j1 and j2, in I2 by n1 and n2 and in I
′

2 by n3 and n4. Given the choices by nature,

the strategies of the players described above and using the Bayesian formula for updating

beliefs we can calculate, for example, the conditional probabilities

Pr(n1/A1) =
Pr(A1/n1) × Pr(n1)

Pr(A1/n1) × Pr(n1) + Pr(A1/n2) × Pr(n2)
=

1 × 0

1 × 0 + 1 × 1
3 × 1

2

= 0

(23)

and

Pr(n3/c1) =
Pr(c1/n3) × Pr(n3)

Pr(c1/n3) × Pr(n3) + Pr(c1/n4) × Pr(n4)
=

1 × 1
3

1 × 1
3 + 1 × 1

2 × 1
3

=
2

3
.

(24)
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In Figure 3 we indicate, through heavy lines, plays of the game which are the outcome of

the choices by nature and the optimal behavioral strategies by the players. The interrupted

heavy lines signify that nature does not take an optimal decision but simply chooses among

three alternatives, with equal probabilities. The directed path (a, c1, b2) with payoffs (5,

5) occurs with probability 1
3 . The paths (b, c1, A2) and (b, c1, b2) lead to payoffs (5, 0) and

occur with probability 1
3(1− q) and 1

3q, respectively. The values (1− q) and q denote the

probabilities with which P2 chooses between A2 and b2 from the singleton node at the

end of (b, c1). The paths (c, A1, b2) (c, c1, b2) lead to payoffs (0, 5) and occur, each, with

probability 1
3×1

2 .

For all choices by nature, at least one of the players tells a lie on the optimal play. The

players by lying avoid the possibility of having to make a payment to their opponent
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and stay with their initial endowments. The PBE obtained above confirms the initial

endowments. The decisions to lie imply that the players will not sign the contract (5, 4, 1)

and (5, 1, 4).

We have constructed an extensive form game and employed reasonable rules for calculating

payoffs and shown that the proposed allocation (5, 4, 1) and (5, 1, 4) will not be realized.

A similar conclusion would have been reached if we investigated the allocation (4, 4, 1)

and (4, 1, 4) which would have been brought about by considering free disposal.

23456 2345625456 2543625436

789:;<

=> =>

=? =? =?

@A @A

BC BC

@A
AC

BC

2DEAF6

AC

25456

2BEAF6 2@EAF6

>

=? =?
=?

3

BC

AF

AC ACGA

GC GC
GHC

GHC

IA IA IA

IC IC BC IC IC IC BC

CF

25436 23456

IC
2J4K6
2K4J6 2J4>6 2>4J6

Finally suppose we were to modify (iii) and (iv) of the rules and adopt those in Section 5

of Glycopantis - Muir - Yannelis (2001):

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected, and P1 is

trapped and must hand over half of his endowment to P2. Obviously if his endowment is

zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and undetected. P2 is

now trapped and must hand over half of his endowment to P1. Obviously if his endowment

is zero then he has nothing to give.

The new rules would imply, starting from left to right, the following changes in the payoffs

in Figure 1. The second vector would now be (2.5, 7.5), the third vector (7.5, 2.5), the

sixth vector (2.5, 2.5) and the eleventh vector (2.5, 2.5). The analysis in Glycopantis

- Muir - Yannelis (2001) shows that the weak fine core allocation in which both agents

receive (5, 2.5, 2.5) cannot be implemented as a PBE. Again this allocation is not IBIC.

Since we have two agents, the weak fine value belongs to the weak fine core. We can

also check through routine calculations that the non-implementable allocation x1 = x2 =
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(5, 2.5, 2.5) belongs to the weak fine value, with the two agents receiving equal weights.

Finally we note that, in the context of Figure 1, the perfect Bayesian equilibrium imple-

ments the initial endowments allocation
(

5 5 0

5 0 5

)

·

In the case of non-free disposal, no-trade coincides with the REE and it is implementable.

However as it is shown in Glycopantis - Muir - Yannelis (2002) a REE is not in general

implementable.

4.5 Implementation of private core and Radner equilibria through the

courts; implementation of weak fine core

We shall show here how the free disposal private core and also Radner equilibrium alloca-

tion

(

4 4 1

4 1 4

)

of Example 3.2 can be implemented as a PBE by invoking an exogenous third party, which

can be interpreted as a court which imposes penalties when the agents lie.

We shall assume that the agents do not hear the choice announced by the other player or

that they do not pay much attention to each other because the court will verify the true

state of nature.

It should be noted that now if the two players see the events (A1, A2) the exogenous agent

will not allow them to misreport the state of nature by imposing a penalty for lying.

Therefore the contract will be enforced exogenously.

The analysis is through the figures below. Figure 4 contains the information sets of the

two agents, P1 and P2, their sequential decisions and the payoffs in terms of quantities.

Each agent can choose either to tell the truth about the information set he is in, or to lie.

98



LMNMO

PQRSTU

VW

VX

LXYMNXYMO LXYMNXYMO

VX
VX W

Z[

L\]ẐOL_]ẐO L̀]ẐO
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Nature chooses states a, b and c with equal probabilities. P1 acts first and cannot distin-

guish between a and b. When P2 is to act he has two kinds of ignorance. Not only he

cannot distinguish between a and c but also he does not know what P1 has chosen before

him. This is an assumption about the relation between decisions. The one unit that the

courts take from a lying agent can be considered to cover the costs of the court.

Next given the sequence of decisions of the two players, shown on the tree, we specify the

rules for calculating payoffs in terms of quantities, i.e we specify the terms of the contract.

They will, of course include the penalties that the court would impose to the agents for

lying.

The rules are:

(i) If a player lies about his observation, then he is penalized by 1 unit of the good. If

both players lie then they are both penalized. For example if the declarations are (c1, b2)

and state a occurs both are penalized. If they choose (c1, A2) and state a occurs then the

first player is penalized. If a player lies and the other agent has a positive endowment

then the court keeps the quantity substracted for itself. However, if the other agent has

no endowment, then the court transfers to him the one unit subtracted from the one who

lied.

(ii) If the declarations of the two agents are consistent, that is (A1, A2) and state a occurs,

(A1, b2) and state b occurs, (c1, A2) and state c occurs, then they divide equally the total

endowments in the economy.

One explanation of the size of the payoffs is that if the agents decide to share, they do so
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voluntarily. On the other hand the court feel that they can punish them for lying but not

to the extent of forcing them to share their endowments.

Assuming that each player chooses optimally, given his stated beliefs, from the information

sets which belong to him, P2 chooses to play b2 with probability 1 from both I2 and I ′2
and the game in Figure 4 folds back to the one in Figure 5. The choice of b2 is justified as

follows. We ignore for the moment the specific conditional probabilities attached to the

nodes of I2. On the other hand, starting from left to right, the sum of the probabilities

of the first two nodes must be equal to
1

2
, and this implies that strategy b2 overtakes, in

utility terms, strategy A2, as
1

2
5

1

2 +
1

2
2.5

1

2 < 4
1

2 . It follows that P2 chooses to play the

behavioral strategy b2 with probability 1.

Now inspection of Figure 5 implies that P1 will choose c1 from I1. The conditional

probabilities on the nodes of I1 follow from the fact that nature chooses with equal prob-

abilities and the optimal choice of c1 with probability 1 follows again from the fact that
1

2
5

1

2 +
1

2
2.5

1

2 < 4
1

2 .

Figure 6 indicates, through heavy lines, plays of the game which are the outcome of choices

by nature and the optimal strategies of the players. The fractions next to the nodes of the

information sets are obtained through Bayesian updating. I.e. they are consistent with

the choice of a state by nature and the optimal behavioral strategies of the players. We

have thus obtained a PBE and the above argument implies that it is unique.

The free disposal private core allocation that we are concerned with is implemented,

always, by at least one of the agents lying. The reason is that they make the same

move from all the nodes of an information set and the rules of the game imply that they

are not eager to share their endowments. They prefer to suffer the penalty of the court.

Finally notice the following. Suppose that the penalties are changed as follows. The court

is extremely severe when an agent lies while the other agent has no endowment. It takes all

the endowment from the one who is lying and transfers it to the other player. Everything

else stays the same. Then the game is summarized in a modified Figure 4. Numbering

the end points from left to right, the 2nd vector will be replaced by (5, 0), the 3rd by (0,

5), the 4th by (0, 0), the 6th by (0, 5) and the 8th one by (5, 0).

The analysis of the game implies now that P2 will play A2 from I2 and P1 will play A1

from I1. Therefore invoking an exogenous agent implies that the PBE will now implement

the weak fine core allocation

(

5 2.5 2.5

5 2.5 2.5

)

·
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4.6 Implementation of non-free disposal private core through an endoge-

nous intermediary

Here we draw upon the discussion in Glycopantis - Muir - Yannelis (2001) but we add the

analysis that the optimal paths obtained are also part of a sequential equilibrium. Hence

we obtain a stronger conclusion, in the sense that we implement the private core allocation

as a sequential equilibrium, which requires more conditions than PBE.

In the case we consider now there is no court and the agents in order to decide must listen

to the choices of the other players before them. The third agent, P3, is endogenous and

we investigate his role in the implementation, or realization, of private core allocations.

Private core without free disposal seems to be the most satisfactory concept. The third

agent who plays the role of the intermediary implements the contract and gets rewarded

in state a. We shall consider the private core allocation, of Example 3.1,






4 4 1

4 1 4

2 0 0






·

We know that such core allocations are CBIC and we shall show now how they can be

supported as perfect Bayesian equilibrium of a noncooperative game.

P1 cannot distinguish between states a and b and P2 between a and c. P3 sees on the

screen the correct state and moves first. He can either announce exactly what he saw

or he can lie. Obviously he can lie in two ways. When P1 comes to decide he has his

information from the screen and also he knows what P3 has played. When P2 comes to

decide he has his information from the screen and he also knows what P3 and P1 played

before him. Both P1 and P2 can either tell the truth about the information they received

from the screen or they can lie.

We must distinguish between the announcements of the players and the true state of

nature. The former, with the players’ temptations to lie, cannot be used to determine the

true state which is needed for the purpose of making payoffs. P3 has a special status but

he must also take into account that eventually the lie will be detected and this can affect

his payoff.

The rules of calculating payoffs, i.e. the terms of the contract, are as follows:

If P3 tells the truth we implement the redistribution in the matrix above which is proposed

for this particular choice of nature.

If P3 lies then we look into the strategies of P1 and P2 and decide as follows:

(i) If the declaration of P1 and P2 are incompatible we go to the initial endowments and

each player keeps his.
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(ii) If the declarations are compatible we expect the players to honour their commitments

for the state in the overlap, using the endowments of the true state, provided these are

positive. If a player’s endowment is zero then no transfer from that agent takes place as

he has nothing to give.

The extensive form game is shown in Figure 7, in which the heavy lines can be ignored

in the first instance. We are looking for a PBE, i.e. a set of optimal behavioral strategies

consistent with a set of beliefs. The beliefs are indicated by the probabilities attached to

the nodes of the information sets, with arbitrary r, s, q, p and t between 0 and 1. The

folding up of the game tree through optimal decisions by P2, then by P1 and subsequently

by P3 is explained in Glycopantis - Muir - Yannelis (2001).

In Figure 7 we indicate through heavy lines the equilibrium paths. The interrupted heavy

lines at the beginning of the tree signify that nature does not take an optimal decision

but simply chooses among three alternatives, with equal probabilities. The directed paths

(a, a,A1, A2) with payoffs (4, 4, 2), (b, b, A1, b2) with payoffs (4, 1, 0) and (c, c, c1, A2)

with payoffs (1, 4, 0) occur, each, with probability 1
3 . It is clear that nobody lies on the

optimal paths and that the proposed reallocation is incentive compatible and hence it will

be realized.

Along the optimal paths nobody has an incentive to misrepresent the realized state of

nature and hence the private core allocation is incentive compatible. However even optimal

strategies can imply that players might have an incentive to lie from information sets which

are not visited by the optimal play of the game. For example, P1, although he knows that

nature has chosen a or b, has an incentive to declare c1 from I3
1 , trying to take advantage

of a possible lie by P3. Similarly P2, although he knows that nature has chosen a or c,

has an incentive to declare b2 from I2
2 , I3

2 , I4
2 and I5

2 , trying to take advantage of possible

lies by the other players. Incentive compatibility has now been defined to allow that the

optimal strategies can contain lies, while there must be an optimal play which does not.

We also note that the same payoffs, i.e. (4, 4, 2), (4, 1, 0) and (1, 4, 0), can be confirmed

as a PBE for all possible orders of the players.

Next we turn our attention to obtaining a sequential equilibrium. This adds further

conditions to those of a PBE. Now, it is also required that the optimal behavioral strategies

and the beliefs consistent with these are the limit of a sequence consisting of completely

mixed behavioral strategies, that is all choices are played with positive probability, and

the implied beliefs. Throughout the sequence it is only required that beliefs are consistent

with the strategies. The latter are not expected to be optimal.

We discuss how the PBE shown in Figure 7 can also be obtained as a sequential equilibrium

in the sense of Kreps - Wilson (1982). Therefore, we are looking for a sequence of positive
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probabilities attached to all the choices from each information set and beliefs consistent

with these such that their limits are the results given in Figure 7.
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First we specify the positive probabilities, i.e. the completely mixed strategies, with which
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the players choose the available actions. The sequence is obtained through {n = 1, 2, ...}.
In the first instance we consider the singletons from left to right belonging to P3. At the

first one the positive probabilities attached to the various actions are given by (a, 1 −
2
n ; b, 1

n ; c, 1
n), at the second one by (a, 1

n ; b, 1 − 2
n ; c, 1

n) and at the third one by

(a, 1
n ; b, 1

n ; c, 1 − 2
n).

Then we come to the probabilities with which P1 chooses his actions from the various

information sets belonging to him. From I1
1 and I2

1 the choices and the probabilities

attached to these are (A1, 1 − 1
n ; c1,

1
n), and from I3

1 , as well as from all the singletons,

they are (A1,
1
n ; c1, 1 − 1

n).

With respect to P2 choices and probabilities are given as follows. From I1
2 and I6

2 they

are (A2, 1− 1
n ; b2,

1
n) and from I2

2 , I3
2 , I4

2 and I5
2 they are (A2,

1
n ; b2, 1− 1

n). With respect

to the singletons belonging to P2 we have for all of them (A2,
1
n ; b2, 1 − 1

n).

Beliefs are indicated by the probabilities attached to the nodes of the information sets.

Below by the left (right) probability we mean the consistent with the above behavioral

strategies belief that the player attaches to being at the left (right) corner node of an

information set. We also give the limit of these beliefs as n tends to ∞.

In I1
1 the left probability is

1 − 2
n

1 − 1
n

and the right probability is
1
n

1 − 1
n

. The limit is (1, 0).

In I2
1 the left probability is

1
n

1 − 1
n

and the right probability is
1 − 2

n

1 − 1
n

. The limit is (0, 1).

In I3
1 the left probability is

1

2
and the right probability is

1

2
. The limit is

(1

2
,
1

2

)
.

In I1
2 the left probability is

(1 − 1
n)(1 − 2

n)

(1 − 2
n)(1 − 1

n) + ( 1
n)2

and the right probability is
( 1

n)2

(1 − 1
n)(1 − 2

n) + ( 1
n)2

.

The limit is (1, 0).

In I2
2 the left probability is

(1 − 2
n) 1

n

(1 − 2
n) 1

n + (1 − 1
n) 1

n

and the right probability is
(1 − 1

n) 1
n

(1 − 2
n) 1

n + (1 − 1
n)( 1

n)
.

The limit is
(1

2
,
1

2

)
.

In I3
2 the left probability is

(1 − 1
n) 1

n

(1 − 1
n) 1

n + ( 1
n)2

and the right probability is
( 1

n)2

(1 − 1
n) 1

n + ( 1
n)2

The limit is (1, 0).

In I4
2 the left probability is

( 1
n)2

(1 − 1
n) 1

n + ( 1
n)2

and the right probability is
(1 − 1

n) 1
n

(1 − 1
n) 1

n + ( 1
n)2

The limit is (0, 1).

In I5
2 he left probability is

( 1
n)2

(1 − 2
n) 1

n + ( 1
n)2

and the right probability is
(1 − 2

n) 1
n

(1 − 2
n) 1

n + ( 1
n)2

.

The limit is (0, 1).

In I6
2 the left probability is

(1 − 1
n) 1

n

(1 − 1
n) 1

n + (1 − 1
n)(1 − 2

n)
and the right probability is
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(1 − 1
n)(1 − 2

n)

(1 − 1
n) 1

n + (1 − 1
n)(1 − 2

n)
. The limit is (0, 1).

The belief attached to each singleton is that it has been reached with probability 1.

The limits of the sequence of strategies and beliefs confirm a particular Bayesian equi-

librium as a sequential one. In an analogous manner, sequential equilibria can also be

obtained for the models analyzed in the previous sections.

4.7 Concluding remarks

As we have already emphasized in Glycopantis - Muir - Yannelis (2001), we consider

the area of incomplete and differential information and its modelling important for the

development of economic theory. We believe that the introduction of game trees, which

gives a dynamic dimension to the analysis, helps in the development of ideas.

The discussion in that paper is in the context of one-good examples without free disposal.

The conclusion was that core notions which may not be CBIC, such as the weak fine core,

cannot easily be supported as a PBE. On the other hand, in the presence of an agent

with superior information, the private core which is CBIC can be supported as a PBE.

The discussion provided a noncooperative interpretation or foundation of the private core

while making, through the game tree, the individual decisions transparent. In this way a

better understanding of how incentive compatible contracts are formed is obtained.

In the present paper we investigate, in a one-good, two-agent economy, with and without

free disposal, the implementation of private core, of Radner equilibrium, of weak fine core

and weak fine values allocations. We obtain, through the construction of a tree with

reasonable rules, that free disposal private core allocations, to which also the Radner

equilibrium belongs, are not implementable. A brief comparison of the idea of CBIC in

the static presentation with the case when the analysis is in terms of game trees is made.

It is surprising that free disposal destroys incentive compatibility and creates problems for

implementation. Implementation in this case can be achieved by invoking an exogenous

third party which can be thought of as a court that penalizes lying agents. It is of course

possible that rational agents, once they realize that they can be cheated, might decide not

to trade rather than rely on a third party which has to prove that he has perfect knowledge

and can execute the correct trades. Notice that the third, exogenous party, in this case the

court, plays the role of the mechanism designer in the relevant implementation literature

(see Hahn - Yannelis (2001) and the references there).

Similarly, implementation of a private core allocation becomes possible through the intro-

duction of an endogenous third party with zero endowments but with superior information.

In this case the third party is part of the model, i.e. an agent whose superior information
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allows him to play the role of an intermediary. The analysis overlaps with the one in

Glycopantis - Muir - Yannelis (2001). On the other hand we show here that implementa-

tion can also be achieved through a sequential equilibrium. It should be noted that the

endogenous third agent is rewarded for his superior information by receiving consumption

in a particular state, in spite of the fact that he has zero initial endowments in each state.

However, both Radner equilibria and REE would not recognize a special role to such an

agent. These Walrasian type notions would award to him zero consumption in all states

of nature.

In summary, the analysis here considers the relation between, cooperative and noncooper-

ative, static equilibrium concepts and noncooperative, game theoretic dynamic processes

in the form of game trees. We have examined the possible support and implementation as

perfect Bayesian equilibria of the cooperative concepts of the private core and the weak

fine core, and the noncooperative generalized, Walrasian type equilibrium notions of Rad-

ner equilibrium and REE. In effect what we are doing is to look directly into the Bayesian

incentive compatibility of the corresponding allocations, as if they were contracts, and

then consider their implementability.

4.8 Appendix: A note on PBE.

In this note we look briefly at equilibrium notions when sequential decisions are taken by

the players, i.e. in the context of game trees. For strategies we shall employ the following

idea. A behavioral strategy for a player being an assignment to each of his information sets

of a probability distribution over the options available from that set. For a game of perfect

recall, Kuhn (1953) shows that analysis of the game in terms of behavioral strategies is

equivalent to that in terms of, the more familiar, mixed strategies. In any case, behavioral

strategies are more natural to employ with an extensive form game. Sometimes we shall

refer to them simply as strategies.

Consider an extensive form game and a given profile of behavioral strategies

s = {si : i ∈ I}

where I is the set of players.

When s is used each node of the tree is reached with probability obtained by producting

the option probabilities given by s along the path leading to that node. In particular,

there is a probability distribution over the set of terminal nodes so the expected payoff Ei

to each player Pi may be expressed in terms of option probabilities from each information

set.

Consider any single information set J owned by Pi, with corresponding option probabilities
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(1−πJ , πJ), where for simplicity of notation we assume binary choice. The dependence of

Ei on πJ is determined only by the paths which pass through J . Taking any one of these

paths, on the assumption that the game is of perfect recall, the term it contributes to Ei

will only involve πJ once in the corresponding product of probabilities. Thus, on summing

over all such paths, the dependence of Ei on πJ is seen to be linear, with coefficients

depending on the remaining components of s.

This allows the formation of a reaction function expressing πJ in terms of the remaining

option probabilities, by optimizing πJ while holding the other probabilities constant; hence

the Nash equilibria are obtained, as usual, as simultaneous solutions of all these functional

relations. We are here adopting an agent form for a player, where optimization with respect

to each of his decisions is done independently from all the others. A solution is guaranteed

by the usual proof of existence for Nash equilibria.

For example, consider the tree in Figure 4, denoting the option probabilities from I1, I2 by

(1 − α, α), (1 − β, β) respectively. The payoff functions are then (apart from the factor 1
3

expressing the probability of Nature’s choice, and leaving out terms not involving α which

come from paths not passing through I1, I2

E1 = 5(1−α)(1−β)+5(1−α)β+4α(1−β)+4αβ+2.5(1−α)+4α+ . . . = 7.5+0.5α+ . . . ;

E2 = 5(1−α)(1−β)+4(1−α)β+5α(1−β)+4αβ+2.5(1−β)+4β+ . . . = 7.5+0.5β+ . . . .

Since the coefficient of α in E1 is positive, the optimal choice of α, i.e. the reaction

function of Agent 1 is 1. Similarly for β in E2 we obtain the value 1, and this is the

reaction function of Agent 2.

Note that in any such calculation, only the coefficient of each πJ is important for the opti-

mization — the rest of Ei is irrelevant. We may similarly treat the 21 option probabilities

in Figure 7, obtaining 21 conditions which they must satisfy. These are quite complex and

there are, probably, many solutions but it may be checked that the one given satisfies all

conditions.

When an equilibrium profile is used, it is possible that some nodes are visited with zero

probability. This means that the restriction of the strategy profile to subsequent nodes

has no effect on the expected payoffs, so may be chosen arbitrarily. To eliminate this

redundancy in the set of Nash equilibria, a refinement of the equilibrium concept to that

of perfect equilibrium, was introduced for games of perfect information — that is, games

in which each information set is a singleton. This requires an equilibrium strategy also to

be a Nash equilibrium for all sub-games of the given game. In other words, the strategy

profile should be a Nash equilibrium for the game which might be started from any node

of the given tree, not just the nodes actually visited in the full game.
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Any attempt to extend this notion to general games encounters the problem that sub-trees

might start from nodes which are not in singleton information sets. In such a case, the

player who must move first cannot know for certain at which node he is located within

that set. He can only proceed if he adopts beliefs about where he might be, in the form of

a probability distribution over the nodes of the information set. Moreover, these beliefs

must be common knowledge, for the other players to be able to respond appropriately, so

the desired extension of the equilibrium concept must take into account both strategies

and beliefs of the players. The game will be played from any information set as if the

belief probabilities had been realised by an act of nature.

We need, therefore, to consider pairs (s, µ), consisting of a behavioral strategy profile s

and a belief profile

µ = {µJ : J ∈ J }.

Here, J denotes the set of information sets and µJ is a probability distribution over the

nodes of information set J , expressing the beliefs of the player who might be required to

play from that set. Given the belief profile, we then require that the strategy profile give

a perfect equilibrium, in the sense of being optimal for each player starting from every

information set. But we need also to consider the source of the beliefs.

Given any behavioral strategy profile s denote the probability of reaching any node a,

using s, by ν(a). Consider first an information set, J , not all of whose nodes are visited

with zero probability when using s. We may calculate the conditional probability of being

at a node a ∈ J given that it is in J by

ν(a|J) =
ν({a} ∩ J)

ν(J)
=
ν(a)

ν(J)

since a ∈ J ⇒ {a} ∩ J = {a}. Thus the belief probabilities µJ(a) = ν(a|J) for J are just

the relative probabilities of reaching the nodes of J .

For example, returning to Figure 4 and employing the only Nash solution α = β = 1 noted

above, the probabilities of reaching the nodes of I2 are 0, 1
3 ,

1
3 which relativises, given the

condition that we reach I, to 0, 1
2 ,

1
2 as stated.

Thus for a PBE, the behavioral strategy-belief profile pair (s, µ) should satisfy two condi-

tions:

(i) For the given belief profile µ, the strategy profile s should be a perfect equilibrium,

as defined above;

(ii) For the given strategy profile s, the belief profile µ should be calculated at each

information set for which ν(I) 6= 0 by the formula above.
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Justifications of the concept of perfect equilibrium in games of perfect information will

argue that the players need to have good strategies to employ, even were something to

go wrong with the intended play so that the game accidentally enters sub-trees which

ought not to be accessed. One way to argue this is through the notion of a trembling

hand which makes errors, so possibly choosing the wrong move. Employing this same

idea in the context of perfect Bayesian equilibria, we can allow small perturbations in the

strategies, such that all information sets are visited with non-zero probability. Then the

relation determining beliefs from strategies is well posed and we may consider only beliefs

which arise as limiting cases of such perturbations. This more restrictive definition of

equilibrium is called a sequential equilibrium.
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Von Neumann, J. (1937): “Über ein Ökonomisches Gleichungssystem und eine Verallge-

meinerung des Brouwerschen Fixpunktsatzes”, Ergebnisse eines mathematischen Kolloqui-

ums, 8, 73-83; (1945) Translated as “A Model of General Economic Equilibrium,” Review

of Economic Studies, 13, 1-9.

Shafer, W. J. and H. F. Sonnenschein (1975): “Equilibrium in Abstract Economies without

Ordered Preferences,” Journal of Mathematical Economics, 2, 345-348.
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6 HOMEWORKS AND SOLUTIONS

HOMEWORK 1

1. Let Xi = R`
+ be the consumption set. Let Bi : R`

+ → 2Xi be defined by

Bi(p) = {xi ∈ Xi : p · xi ≤ p · ei},

where the endowment ei ∈ Xi and p ∈ R`
+. Show the following.

(1) Bi is homogeneous of degree zero in p ∈ R`
+.

By (1), we restrict the domain of Bi to the simplex ∆ := {p ∈ R`
+ :
∑`

k=1 pk = 1} instead

of R`
+.

(2) Bi is nonempty-valued.

(3) Bi is convex-valued.

(4) Bi(p) is compact if p� 0.

(5) Bi is upper hemicontinuous.

(6) If there is some x̂ ∈ Xi such that p · x̂ < p · ei for every p ∈ ∆, then Bi is lower

hemi-continuous.

2. Let Xi be a nonempty compact convex subset of R` for every i ∈ I (I is a finite set).

Consider the utility maximization problem as follows: For every i ∈ I,

max{ui(x) : x ∈ Bi(p)}.

where Bi : ∆ → 2Xi is the correspondence defined above. Assume that ui is continuous

and quasi-concave, and ei ∈ Xi ∩R`
++. The solution of the program is represented by the

correspondence ϕi : ∆ → 2Xi .

(1) Let C =
∑

i∈I Xi. Is C is nonempty, compact, and convex?

(2) What are the properties of the correspondence ϕi?

(3) Let K = C − {∑i∈I ei}. Is K nonempty, compact, and convex? Define the corre-

spondence Ψ : ∆ → 2K by

Ψ(p) =
∑

i∈I

[ϕi(p) − {ei}].

What are the properties of the correspondence Ψ?
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(4) Show that for each p ∈ ∆, p · z ≤ 0 for every z ∈ Ψ(p).

(5) Define the correspondence µ : K → 2∆ by

µ(z) = {p ∈ ∆ : p · z = max
p′∈∆

p′ · z}.

Show that µ is nonempty-valued, compact-valued, convex-valued, and upper hemi-

continuous.

(6) Define the correspondence µ× Ψ : ∆ ×K → 2∆×K by (µ× Ψ)(p, z) = µ(z) × Ψ(p).

Applying the Kakutani fixed point theorem, show that there exists p∗ ∈ ∆ such that

Ψ(p∗) ∩R`
− 6= ∅.

3. Let X = R`
+. Assume that u : X → R is a continuous function. Define the correspon-

dence P : X → 2X by P (x) = {x′ ∈ X : u(x′) > u(x)}.

(1) Show that P−1(y) = {x ∈ X : y ∈ P (x)} is open.

(2) Using the result of (1), prove that P is lower hemi-continuous.

4. Let X be a nonempty compact convex subset of R`, Y be a nonempty compact convex

subset of Rm, and V be an open subset of X. Let ϕ : X → 2Y be an upper hemi-

correspondence and f : V → Y be a continuous selection from ϕ|V . Then the correspon-

dence ψ : X → 2Y defined by

ψ(x) =

{

{f(x)} if x ∈ V

ϕ(x) if x 6∈ V

is upper hemi-continuous.

5. Let X ⊂ R` and Y ⊂ Rm.

(1) Let a correspondence P : X → 2Y have open graph and Y be convex. Prove that

coP : X → 2Y has open graph.

(2) Let coP : X → 2Y have open graph and A : X → 2Y be lower hemi-continuous.

Define µ : X → 2Y by µ(x) := coP (x)∩A(x). Prove that µ is lower hemi-continuous.
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SOLUTION 1

1.

(1) Since p · x ≤ p · ei iff λp · x ≤ λp · ei for every λ > 0, Bi(p) = Bi(λp) for every λ > 0,

i.e., Bi is homogeneous of degree zero.

(2) Since ei ∈ Bi(p) for every p ∈ ∆, Bi is nonempty-valued. 2

(3) Let x ∈ Bi(p) and x′ ∈ Bi(p). Since R`
+ is convex, xα = αx + (1 − α)x′ ∈ Xi. And

p ·xα ≤ αp ·x+(1−α)p ·x′ ≤ p · ei. That is, xα ∈ Bi(p) so that Bi is convex-valued.

2

(4) Since f(x) = p · x is a continuous function from R`
+ to R+, Bi(p) = f−1([0, p · ei]) is

closed in R`
+. Let pk > 0 be the minimum of p1, p2, . . . , p`. Then, for every x ∈ Bi(p),

we get

xj ≤
pj

pk
xj ≤

p · x
pk

≤ p · ei
pk

, ∀j = 1, 2, . . . , `.

Thus 0 ≤ x ≤ (p · ei/pk, . . . p · ei/pk), i.e., Bi(p) is bounded. Hence, Bi(p) is compact

in R`
+. 2

(5) Fix p∗. Choose any open neighborhood W in R`
+ such that contains Bi(p

∗). Then

we can find an open neighborhood V = {x ∈ R`
+ : p∗ · x < p∗ · ei + ε} with ε > 0,

which is contained in W . Now define A = {k ∈ I : p∗k > 0}. Then for every k ∈ A,

we have
p∗ · ei
p∗k

<
p∗ · ei + ε

p∗k
,

so that there is a δ > 0 such that for every p ∈ Bδ(p∗) ∩ ∆,

p · ei
pk

<
p∗ · ei + ε

p∗k
.

Let

εk = (0, . . . , 0,

k-th
︷︸︸︷

1 , 0, . . . , 0),

for each k = 1, . . . , ` and ε0 = 0, and for each k ∈ A′ = A ∪ {0}, let

x̂k =
p · ei
pk

εk.

Then we can easily verify that if x ∈ Bi(p), x can be expressed as follows:

x =
∑

k∈A′

λkx̂
k +

∑

k 6∈A′

xkε
k, where

∑

k∈A′

λk = 1, λk ≥ 0, ∀k ∈ A′.
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Then it follows that for every p ∈ Bδ(p
∗) ∩ ∆ and for every x ∈ Bi(p),

p∗ · x =
∑

k∈A′

λkp
∗ · xk +

∑

k 6∈A′

xkp
∗ · εk

=
∑

k∈A

λk

(

p∗k
p · ei
pk

)

<
∑

k∈A

λk(p
∗ · ei + ε)

= p∗ · ei + ε.

Hence, x ∈ V , i.e., Bi(p) ⊂ V ⊂ W and we conclude that Bi is upper hemi-

continuous. 2

(6) Let V be an open subset of R`
+ such that Bi(p)∩ V 6= ∅. That is, there exists x ∈ V

such that p · x ≤ p · ei. Consider xα = αx̂ + (1 − α)x ∈ X with α ∈ (0, 1). For

sufficiently small α > 0, we have p · xα < p · ei and xα ∈ V . Then there exists

δ > 0 such that for every p′ ∈ Bδ(p) ∩ ∆, p′ · xα < p′ · ei, i.e., xα ∈ Bi(p
′). Hence

Bi(p
′) ∩ V 6= 0 and we conclude that Bi is lower hemi-continuous. 2

N.B Let Bi(p) ⊂ Y for all p ∈ ∆ with Y is a compact convex subset of X. Then Bi is

compact-valued. Here we can prove the upper hemi-continuity of Bi by just showing that

it has closed graph. For it is upper hemi-continuous iff it has closed graph. For the lower

hemi-continuity of Bi, we may use the sequential characterization.

2.

(1) Clearly it is nonempty. By Theorem 1.10 (4) of the handout, it is compact. By

Theorem 2.4 (2), it is convex. 2

(2) By Maximum Theorem, ϕi is nonempty-valued, compact-valued, and upper hemi-

continuous. Futhermore it is convex-valued since ui is quasi-concave. To see this, let

x, x′ ∈ ϕi(p). Then, by quasi-concavity of ui, ui(αx+(1−α)x′) ≥ min{ui(x), ui(x
′)}

for α ∈ [0, 1]. Since αx+ (1 − α)x′ ∈ Bi(p) by convexity of Bi(p) and ui(x) = ui(x
′)

is a maximum of ui on Bi(p), ui(αx + (1 − α)x′) is also maximum on Bi(p), i.e.,

αx+ (1 − α)x′ ∈ ϕi(p). Hence it is convex-valued. 2

(3) Note that K = C + {−∑i ei}. Since C and {−∑i ei} are nonempty, compact,

and convex, K is nonempty, compact, and convex. For every i, ϕi and {−ei}
are nonempty-valued, compact-valued, convex-valued, and upper hemi-continuous,

ϕi(·) + {−ei} is nonempty-valued, compact-valued, convex-valued, and upper hemi-

continuous [Theorem 2.4 (2) and Theorem 3.11 (1)]. By Theorem 2.4 (2) and Theo-
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rem 3.11 (1) again, we conclude that Ψ is nonempty-valued, compact-valued, convex-

valued, and upper hemi-continuous. 2

(4) Fix p ∈ ∆. Let z ∈ Ψ(p). Then there is xi ∈ ϕi(p) such that z =
∑

i∈I(xi − ei).

Since xi ∈ ϕi(p), xi ∈ Bi(p), i.e., p ·xi ≤ p · ei. Thus, p · (xi − ei) ≤ 0 for every i ∈ I.

Summing up over i, we obtain p · z =
∑

i∈I p · (xi − ei) ≤ 0. 2

(5) Let Γ : K → 2R`
+ be a constant correspondence such that Γ(z) = ∆. Then the cor-

respondence Γ is nonempty-valued, compact-valued, convex-valued, and continuous.

Note that (·) · z is a continuous function and that

µ(z) = {p ∈ ∆ : p · z = max
p′∈Γ(z)

p′ · z}.

By Maximum Theorem, µ is nonempty-valued, compact-valued, and upper hemi-

continuous. Moreover, since (·) · z is quasi-concave, µ is convex-valued. 2

(6) Define the correspondence µ× Ψ : ∆ ×K → 2∆×K by (µ× Ψ)(p, z) = µ(z) × Ψ(p).

Then by Theorem 2.4 (2) and Theorem 3.10 (2), µ×Ψ is nonempty-valued, compact-

valued, convex-valued, and upper hemi-continuous on the nonempty compact convex

set ∆ ×K. By the Kakutani fixed point theorem, there is a fixed point (p∗, z∗) ∈
µ(z∗) × Ψ(p∗). This implies that p∗ · z∗ ≥ p · z∗ for all p ∈ ∆ and p∗ · z∗ ≤ 0 by (4).

Therefore, p · z∗ ≤ 0 for all p ∈ ∆ so that z∗ ≤ 0. Hence z∗ ∈ Ψ(p∗) ∩R`
−. 2

3.

(1) P−1(y) = {x ∈ R`
+ : y ∈ P (x)} = {x ∈ R`

+ : u(y) > u(x)}. Since u is continuous,

P−1(y) = u−1((−∞, u(y))) is open in R`
+. 2

(2) For every open18 set V in R`
+, the following holds

⋃

y∈V

P−1(y) = P−(V ) := {x ∈ R`
+ : P (x) ∩ V 6= ∅}.

Since the left hand side is the union of open sets in X, it is also open in X. This

implies that P−(V ) is open and P is lower hemi-continuous. 2

4. Choose any open subset W of Y . Let S = {x ∈ X : ψ(x) ⊂ W}. Then S = A ∪ B
where A = {x ∈ V : f(x) ∈ W} = f−1(W ) and B = {x ∈ X : ϕ(x) ⊂ W} = ϕ+(W ),

because f is a continuous selection of ϕ on V . Since f is continuous, A is open in X.

Since ϕ is upper hemi-continuous, ϕ+(W ) is open in X. Because the union of two open

sets is open, we conclude that ψ is upper hemi-continuous. 2

5.
18The openess of V is not necessary for the fact.
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(1) Choose (x∗, y∗) ∈ Gr(coP ). Then, y∗ ∈ coP (x∗), so that y∗ =
∑

i αiyi with α ∈ ∆

and yi ∈ P (x∗). Because P has an open graph, there are open sets Ui’s and Vi’s such

that (x∗, yi) ∈ Ui × Vi ⊂ Gr(P ). Let U =
⋂

i Ui and V =
∑

i αiVi. Then U and V

are open and x∗ ∈ U and y∗ ∈ V . To show U × V ⊂ Gr(coP ), take (x, y) ∈ U × V .

Then y =
∑

i αiy
′
i with (x, y′i) ∈ Ui × Vi ⊂ Gr(P ). That is, y′i ∈ P (x) for each i. It

follows that y ∈ coP (x), so that (x, y) ∈ Gr(coP ), i.e., U × V ⊂ Gr(coP ). Hence,

coP has an open graph. 2

(2) Consider any open subset V of Y . Let S = {x ∈ X : µ(x)∩V 6= ∅}. To show that S

is open, consider x∗ ∈ S. By definition, there is y∗ ∈ coP (x∗) ∩A(x∗) ∩ V . Because

coP has an open graph, there are open sets U and W such that (x∗, y∗) ∈ U ×W ⊂
Gr(coP ). Let B = V ∩W , which is open. Let C = {x ∈ X : A(x) ∩ B 6= ∅}, which

is open because A is lower hemi-continuous. Note that x∗ ∈ C ∩ U , which is open

and y∗ ∈ µ(x∗) ∩B. To show that C ∩ U ⊂ S, choose any x ∈ C ∩ U . Since x ∈ C,

there is y ∈ A(x) ∩ B. Therefore, (x, y) ∈ U × V ⊂ Gr(coP ), i.e., y ∈ coP (x). It

follows that y ∈ µ(x) ∩ V . Hence x ∈ S. 2
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HOMEWORK 2

1. A relation R is a correspondence from X to 2X . We have definitions on R as follows.

• R is reflexive if, for every x ∈ X, x ∈ R(x).

• R is irreflexive if, for every x ∈ X, x 6∈ R(x).

• R is complete if, for every x, x′ ∈ X, x′ ∈ R(x) or x ∈ R(x′).

• R is transitive if x′′ ∈ R(x′) and x′ ∈ R(x) implies x′′ ∈ R(x).

• R is negatively transitive if x′′ 6∈ R(x′) and x′ 6∈ R(x) implies x′′ 6∈ R(x).

• R is symmetric if x′ ∈ R(x) implies x ∈ R(x′).

• R is asymmetric if x′ ∈ R(x) implies x 6∈ R(x′).

• R is antisymmetric if x′ ∈ R(x) and x ∈ R(x′) implies x′ = x.

(1) Let R : X → 2X be a relation on X. If R is complete, then is it reflexive too?

(2) Let P : X → 2X be a relation on X. Show the following.

(a) If P is asymmetric, then it is irreflexive.

(b) If P is asymmetric and negatively transitive, then it is transitive.

(3) Define R(x) := {x′ ∈ X : x 6∈ P (x′)} and I(x) = {x′ ∈ X : x′ ∈ R(x) and x ∈ R(x′)}.
Show that

(a) P is asymmetric iff R is complete.

(b) P is negatively transitive iff R is transitive.

(c) P is asymmetric and negatively transitive implies that I is reflexive, symmetric,

and transitive.

N. B. Note that R(x) = X \ P−1(x) and I(x) = R(x) ∩ R−1(x). A binary relation � on

X defines the correspondence P : X → 2X by P (x) = {x′ ∈ X : x′ � x} for every x ∈ X.

Define � such that x′ � x iff x 6� x′ and define ∼ such that x′ ∼ x iff x′ � x and x � x′.

Then R(x) = {x′ ∈ X : x′ � x} and I(x) = {x′ ∈ X : x′ ∼ x}.
2. Let � be a preference on X = R`

+ and define � such that x′ � x iff x 6� x′. Define

correspondences R : X → 2X and P : X → 2X by R(x) = {x′ ∈ X : x′ � x} and

P (x) = {x′ ∈ X : x′ � x}, respectively.
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• � is reflexive (complete, transitive) if R is reflexive (complete, transitive).

• � is continuous if R has closed sections, i.e., R(x) and R−1(x) are closed in X for

every x ∈ X.

• � is weakly monotone if x′ ≥ x with x, x′ ∈ X implies x′ ∈ R(x).

• � is monotone if x′ � x with x, x′ ∈ X implies x′ ∈ P (x).

• � is strongly monotone if x′ > x with x, x′ ∈ X implies x′ ∈ P (x).

• � is nonsatiated if P is nonempty-valued.

• � is locally nonsatiated if, for every x ∈ X and for every ε > 0, Bε(x)∩P (x) 6= ∅.

• � is convex if R is convex-valued.

• � is strictly convex if for every x ∈ X, x′, x′′ ∈ R(x) and x′ 6= x′′ imply αx′ +(1−
α)x′′ ∈ P (x) for every α ∈ (0, 1).

(1) Show that if � is complete and transitive on X, then two different indifference sets

cannot intersect. Recall that an indifference set at x is defined by I(x) = {x′ ∈ X :

x′ ∼ x}.

(2) Show that if � is complete and transitive on X, then x′′ ∈ P (x′) and x′ ∈ R(x)

imply x′′ ∈ P (x).

(3) Show the following.

(a) If � is strongly monotone, then it is monotone.

(b) If � is monotone, then it is locally nonsatiated.

(c) If � is transitive, locally nonsatiated, and weakly monotone, then it is mono-

tone.

(d) If � is locally nonsatiated, then it is nonsatiated.

(e) Let � be complete and transitive. Then � is convex iff � is convex, i.e., the

correspondence P is convex-valued.

(4) Give an example illustrating a convex preference that is locally nonsatiated but is

not monotone.

(5) Show that � is continuous iff the correspondence P has open sections, i.e., P (x) and

P−1(x) are open in X for every x ∈ X.

125



(6) Show that � is continuous iff the correspondence R has closed graph, i.e., xn → x,

yn → y, and yn ∈ R(xn) for every n imply y ∈ R(x).

3. Let � be complete and transitive. We can define the convexities of preference � in the

following forms.

(a) x′ � x implies αx′ + (1 − α)x � x for every α ∈ [0, 1].

(b) x′ � x implies αx′ + (1 − α)x � x for every α ∈ (0, 1].

(c) x′ ∼ x with x′ 6= x implies αx′ + (1 − α)x � x for every α ∈ (0, 1).

(1) Let � be continuous. Show that (c) implies (b), which, in turn, implies (a).

(2) Show that (a) holds iff � is convex for every x ∈ X.

(3) Show that if � is convex, continuous, strongly monotone, then (b) holds.

(4) When is it true that (c) holds iff � is strictly convex?

(5) Show that if � is nonsatiated and (b) holds, then � is locally nonsatiated.
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SOLUTION 2

1.

(1) Yes. Since R is complete, x ∈ R(x) for every x ∈ X.

(2) (a) Suppose not. Then there is x ∈ P (x). By asymmetry, x 6∈ P (x), a contradic-

tion. 2

(b) Suppose not. Then there is x, x′, and x′′ such that x′′ ∈ P (x′) and x′ ∈ P (x)

but x′′ 6∈ P (x). By asymmetry, we have x 6∈ P (x′). It follows from negative

transitivity that x′′ 6∈ P (x′), a contradiction. 2

(3) (a) (⇒) If R is not complete, there are x and x′ such that x 6∈ R(x′) and x′ 6∈ R(x).

By definition of R, we have x′ ∈ P (x) and x ∈ P (x′), which is a contradiction

to the asymmetry of P . (⇐) If P is not asymmetric, there are x and x′ such

that x ∈ P (x′) and x′ ∈ P (x). Then x′ 6∈ R(x) and x 6∈ R(x′), a contraction to

the completeness of R. 2

(b) (⇒) If R is not transitive, there are x, x′, and x′′ such that x′′ ∈ R(x′) and

x′ ∈ R(x) but x′′ 6∈ R(x). Therefore, x′ 6∈ P (x′′), x 6∈ P (x′), and x ∈ P (x′′).

This is a contradiction to the negative transitivity of P .

(⇐) If P is not negatively transitive, there are x, x′, and x′′ such that x′′ 6∈ P (x′)

and x′ 6∈ P (x) but x′′ ∈ P (x). Then, by definition, x′ ∈ R(x′′) and x ∈ R(x′)

but x 6∈ R(x′′), a contradiction to transitivity of R. 2

(c) If I is not reflexive, there is x such that x 6∈ I(x). Then, by definition, x 6∈ R(x),

a contradition. On the other hand, if I is not symmetric, there are x and x′ such

that x ∈ I(x′) but x′ 6∈ I(x). Then, by definition, x ∈ R(x′) and x′ ∈ R(x), but

x′ 6∈ R(x) or x 6∈ R(x′). This is a contradiction. Finally, if I is not transitive,

there are x, x′, and x′′ such that x′′ ∈ I(x′) and x′ ∈ I(x) but x′′ 6∈ I(x). Then

x′′ ∈ R(x′), x′ ∈ R(x′′), x′ ∈ R(x), and x ∈ R(x′), but x′′ 6∈ R(x) or x 6∈ R(x′′).

This is a contradiction to transitivity of R. 2

2.

(1) A indifference set I(x) is defined by

I(x) = {x′ ∈ X : x′ ∼ x} = R(x) ∩R−1(x).

Note that reflexivity guarantees that I(x) 6= ∅. Suppose that two different in-

difference sets intersect on a set A which contains x ∈ X. Then we can write
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x ∈ A = I1(x) ∩ I2(x). Since I1(x) and I2(x) are different, there exist x1 and x2

such that xi ∈ Ii(x) \ A, i = 1, 2 and x1 6∼ x2. By completeness of preference, we

can assume that x1 � x2. It follows that x1 � x2 ∼ x. By transitivity of preference,

x1 � x. This contradicts that x1 ∈ I1(x). Hence, these two indifference set cannot

intersect. 2

(2) Suppose not. Then x′′ /∈ P (x). Then x ∈ R(x′′). By transitivity of �, we have

x′ ∈ R(x′′). Therefore, x′′ /∈ R(x′), a contradiction. 2

(3) (a) Assume that � is strongly monotone. Let x, x′ ∈ X satisfy x′ � x. Then

x′ > x. Since � is strongly monotone, x′ ∈ P (x). Hence � is monotone. 2

(b) Assume that � is monotone. For every x ∈ X and every ε > 0, choose x′ = x+

(
√

ε/`)(1, 1, . . . , 1). Then ¿x′ � x and x′ ∈ Bε(x). Moreover, by monotonicity

of �, x′ ∈ P (x). Hence � is locally nonsatiated. 2

(c) Suppose not. Then there are x, x′ in X such that x′ � x and x′ /∈ P (x). This

means x � x′. Since � is locally nonsatiated, there is ε > 0 and x′′ such that

x′ � x′′ and x′′ ∈ Bε(x) ∩ P (x). By weak monotonicity of �, we have x′ � x′′.

Moreover x′′ � x. By transitivity of �, x′ � x, a contradiction. 2

(d) Assume that � is locally nonsatiated. Then since for every x ∈ X and every

ε > 0, ∅ 6= Bε(x) ∩ P (x) ⊂ P (x). Hence, � is nonsatiated. 2

(e) (⇒) Let x′ � x, x′′ � x, and xα = αx′ + (1 − α)x′′. By completeness of �,

we can assume x′ � x′′. The convexity of R(x) implies that xα � x′′. By

transitivity of �, we have xα � x. (⇐) Suppose not. Then there are x′, x′′,

and xα = αx′ + (1 − α)x′′ such that x′ � x, x′′ � x, but x � xα. From the

transitivity of �, x′ � xα and x′′ � xα. The convexity of P (x) implies xα � xα,

a contradiction. 2

(4) Let X = R2
+. Consider a preference � which is represented by the utility function

u(x, y) = y − x2. It is clear that � is convex and locally nonsatiated. Choose

(x∗, y∗) = (1, 1) and (x′, y′) = (2, 2). Then (x′, y′) � (x∗, y∗) but u(x∗, y∗) >

u(x′, y′). Hence � is not monotone.

(5) Note that R(x) = X \ P−1(x) and R−1(x) = X \ P (x). Hence, � is continuous ⇔
R(x) and R−1(x) are closed in X for every x ∈ X ⇔ P (x) and P−1(x) are open in

X for every x ∈ X. 2

(6) We should assume that � is complete and transitive. (⇐) SinceR has closed graph, it

has closed sections. : Choose any x ∈ X. Take any sequence {yn} in R(x) converging
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to y. Since x → x, yn → y, and yn ∈ R(x), y ∈ R(x). This measns that R(x) is

closed. In the same way, R−1(x) is closed. Hence � is continuous. (⇒) Let xn → x,

yn → y, and yn ∈ R(xn) for every n. Suppose that y /∈ R(x). Since R(x) and R−1(y)

are closed due to the continuity of � and R(x)∩R−1(y) = ∅, there is x∗ ∈ X such that

x∗ /∈ R(x) and x∗ /∈ R−1(y), i.e., x � x∗ � y. Since � is continuous (P (x∗) is open)

and xn → x, for sufficiently large n, xn ∈ P (x∗). Since � is continuous (P−1(x∗)

is open) and yn → y, for sufficiently large n, yn ∈ P−1(x∗). By transitivity of �,

xn ∈ P (yn) for sufficiently large n. This implies that yn /∈ R(xn), a contradiction 2

3.

(1) [(c) ⇒ (b)] Suppose not. Then there is a α ∈ (0, 1] and x, x′ such that x′ � x but

x � xα = αx′ + (1− α)x. If x � xα, by continuity, we can find xβ = βx+ (1− β)xα

(β ∈ (0, 1) is close to 1) such that x′ � xβ � xα. If x ∼ xα, by (c) and continuity,

we can find xβ such that x′ � xβ � xα. Therefore, we have x′ � xβ � xα. By

continuity, we can find 19 xλ = λx′ + (1 − λ)xα with λ ∈ (0, 1) such that xλ ∼ xβ.

Then (c) implies that xα = δxλ + (1 − δ)xβ � xβ where δ = αβ/[αβ + (1 − α)λ], a

contradiction. 2 [(b) ⇒ (a)] Suppose not. Then there are x, x′ and α ∈ (0, 1] such

that x′ � x but x � xα = αx′ + (1 − α)x. Note that x′ � xα by transitivity. The

continuity implies that there is β ∈ [0, 1] close to α such that x � xβ = βx′+(1−β)x

and xβ lies on the open line segment (x, xα) with β > α. Then xβ = λx′ +(1−λ)xα

with λ = (β − α)/(1 − α) and xα = δx + (1 − δ)xβ with δ = (β − α)/β. By (b),

x′ � xα implies xβ � xα, and x � xβ implies xα � xβ , a contradiction. 2

(2) (⇒) Let x′ � x, x′′ � x, and xα = αx′ + (1 − α)x′′. By completeness of �, we can

assume that x′ � x′′. It follows from (a) that xα � x′′. By transitivity of �, it

follows that xα � x, i.e., xα ∈ R(x). Hence we conclude that � is convex.

(⇐) Let x′ � x and xα = αx′ + (1 − α)x. Because of completeness of �, x � x.

Because R(x) is convex, xα � x. 2

(3) Suppose not. Then there are x, x′ and xα = αx′ + (1 − α)x with α ∈ (0, 1] such

that x′ � x � xα ∈. Note that since � is strongly monotone, x′ ∈ R`
+ \ {0}.

Without loss of generality, we can assume x′1 > 0. By continuity of �, we can find

19Define λ = sup{t ∈ [0, 1] : xβ � tx′ + (1− t)xα}. Now suppose xλ � xβ � xα. By continuity, for some

θ ∈ (0, 1) close to 1, xθ = θxλ + (1 − θ)xα � xβ . But since xθ = λθx′ + (1 − λθ)xα with λθ ∈ [0, λ), the

definition of λ implies xβ � xθ, a contradiction. Suppose x′ � xβ � xλ. By continuity, for some θ ∈ (0, 1)

close to 1, xβ � xθ = θxλ + (1− θ)x′. But since xθ = (1− θ(1− λ))x′ + θ(1− λ)xα with 1− θ(1− λ) > λ,

the definition of λ implies that xθ � xβ , a contradiction. Hence xλ ∼ xβ .
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ε = (ε, 0, 0, . . . , 0) with ε > 0 such that x′− ε � x. By completeness of �, x � x. By

convexity of �, we have xα − αε � x, a contradiction to strong monotonicity. 2

(4) If � is continuous, then both are equivalent.

(⇒) Suppose not. Then there are x, x′, x′′, and xα with x′ 6= x′′ such that x′ � x

and x′′ � x, but x � xα = αx′ + (1 − α)x′′. There are three case to consider.

(i) Consider the case where x � xα. Because x′ � x � xα, by continuity, we

can find xβ = βx′ + (1 − β)xα ∼ x with β ∈ (0, 1]. Similarly, we can find

xλ = λx′′ + (1 − λ)xα ∼ x with λ ∈ (0, 1]. By transitivity, xλ ∼ xβ . Note that

xλ 6= xβ . However, xα = δxλ + (1 − δ)xβ with δ ∈ (0, 1) so that (c) implies

xα � xβ ∼ x, a contradiction.

(ii) Consider the case of x′ � x ∼ xα. By completeness of �, we can assume x′′ � x′

without loss of generality. Note that (c) imlies (b). By (b) and continuity, we

can find xβ = βx′ + (1− β)xα with β ∈ (0, 1) such that x′ � xβ � xα. Because

x′′ � xβ � xα, by continuity we can find xλ = λx′′ + (1 − λ)xα with λ ∈ (0, 1)

such that xλ ∼ xβ. This with xλ 6= xβ implies xα = δxλ + (1− δ)xβ � xβ with

δ ∈ (0, 1), a contradiction.

(iii) Finally, consider the case x′ ∼ x ∼ xα. By completeness of �, we may assume

x′′ � x′. If x′′ ∼ x′, (c) implies xα � x′, a contradiction. If x′′ � x′, recall that

(c) with continuity implies (b) to conclude that xα � x′, a contradiction.

(⇐) Let x′ ∼ x with x′ 6= x. Then x′ ∈ R(x) and x ∈ R(x). By the definition of

strict convexity of �, we obtain that αx′ + (1 − α)x ∈ P (x) for α ∈ (0, 1). 2

(5) Assume that � is nonsatiated and (b) holds. Take any x ∈ X and any ε > 0. Since

� is nonsatiated, there is x′ ∈ P (x). By (b), xα = αx′ + (1 − α)x ∈ P (x) for

every α ∈ (0, 1]. However, for sufficiently small α > 0, xα ∈ Bε(x). It follows that

xα ∈ Bε(x) ∩ P (x), i.e., � is locally nonsatiated. 2
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HOMEWORK 3

1. Let X = R`
+ be the consumption set of a consumer, e ∈ X be his endowment, and

� be his preference relation. Assume that � is irreflexive, continuous, and convex.20

Show that, for all p � 0, there is always a best element in the budget set B(p) of

our consumer, i.e., there always exists a x ∈ B(p) such that there is no x′ ∈ B(p)

with x′ � x. (Hint : Use the Michael Selection Theorem.)

2. Suppose that preference � is complete, transitive, and locally nonsatiated. Let

B(p) = {x ∈ R`
+ : p · x ≤ p · e}. Let ϕ : ∆ → 2R`

+ the demand correspondence of the

consumer with endowment e ∈ X = R`
+, i.e. x∗ ∈ ϕ(p) implies that x∗ ∈ B(p) and

x∗ � x for every x ∈ B(p).

(1) Show that p · x = p · e for every x ∈ ϕ(p).

(2) Let x∗ ∈ ϕ(p). If x � x∗, then p · x ≥ p · x∗.
(3) If the preference � is convex, then ϕ is convex-valued, i.e., ϕ(p) is convex.

(4) If the preference � is strictly convex, then ϕ is singleton-valued, i.e., ϕ becomes

demand function.

3. Consider one individual with consumption set X = R`
+ and preference �.

(1) State conditions on the preference to ensure that there exists p ∈ R` \ {0} such

that x′ � x implies p · x′ ≥ p · x.
(2) Verify (1).

(3) What kind of assumption on the preference guarantees that p ∈ R`
+?

20Define a correspondence P : X → 2X by P (x) = {x′ ∈ X : x′ � x}.

(1) � is irreflexive if x 6∈ P (x).

(2) � is transitive if x ∈ P (y) and y ∈ P (z) implies x ∈ P (z).

(3) � is continuous if P (x) and P−1(x) are open in X for every x ∈ X.

(4) � is weakly monotone if x′ ≥ x implies x /∈ P (x′).

(5) � is monotone if x′ � x implies x′ ∈ P (x).

(6) � is strongly monotone if x′ > x implies x′ ∈ P (x).

(7) � is convex if P is convex-valued.

(8) � is strictly convex if x /∈ P (x′)∩P (x′′) and x′ 6= x′′ imply that αx′ + (1−α)x′′ ∈ P (x) for every

α ∈ (0, 1).
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4. Consider one individual with consumption set X = R`
+, endowment e ∈ intX

and preference �. Assume that � is irreflexive, transitive, continuous, strongly

monotone, and strictly convex. Define a correspondence ϕ : X → 2X by

ϕ(p) := {x ∈ X : p · x ≤ p · e andx′ � x implies p · x′ > p · x}.

(1) Show that ϕ is singleton-valued.

(2) Show that P (e) := {x ∈ X : x � e} has nonempty interior and e 6∈ P (e).

(3) Show that, for some p∗ ∈ ∆, x � e implies that p∗ · x ≥ p∗ · e.
(4) Show that there exists x̂ ∈ X such that x̂ � e and that, for the p∗ ∈ ∆ in

(3), x � e implies that p∗ · x > p∗ · e. Conclude that there is p∗ ∈ ∆ such that

ϕ(p∗) = {e}.

5. Consider a two-goods two-agents economy where each agent has the following

utility function and endowment. Let X = R2
+. Find equilibrium prices and alloca-

tions.

(1) u1(x, y) = x+ y + xy e1 = (1, 0) (2) u1(x, y) = min{2x, y} e1 = (2, 8)

u2(x, y) = xy e2 = (0, 1) u2(x, y) = min{x, 3y} e2 = (6, 0)

(3) u1(x, y) = 2x+ y, e1 = (0, 1) (4) u1(x, y) = log x+ y e1 = (1, 0)

u2(x, y) = xy, e2 = (1, 0) u2(x, y) = log x+ 2y e2 = (0, 1).
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SOLUTION 3

1. It follows from 3 that p � 0 impiles that B(p) is nonempty compact convex

subset of R`
+. Let us define a correspondence P : B(p) → 2B(p) by P (x) = {x′ ∈

B(p) : x′ � x}. By continuity of preference, P has open lower sections so that

it is lower hemi-continuous. By convexity of preference, P is convex-valued. Now

suppose that there is no best element in B(p). Then for every x ∈ B(p), P (x) 6= ∅,
i.e., P is nonempty-valued. By Michael Selection Theorem,21 there is a continuous

selection f : B(p) → B(p) of P . Brower Fixed Point Theorem implies that there

exists x∗ ∈ B(p) such that x∗ = f(x∗) ∈ P (x∗). This contradicts the irreflexivity of

preference. Hence, there is a best element in B(p). 2

2.

(1) Suppose not. Then there is x∗ ∈ S = {x ∈ R`
+ : p ·x < p · e}. Since f(x) = p ·x

is a continuous function from R`
+ to R, S = f−1((−∞, p · e)) is open in R`

+.

Thus there exists an ε > 0 such that Bε(x
∗) ∩ R`

+ ⊂ S. However, by the local

nonsatiation of preferences, there exists z ∈ Bε(x
∗) ∩ R`

+ such that z � x∗. It

follows that p · z ≤ p · e and x � x∗. This contradicts that x∗ is a maximizer.

Hence, p · x∗ = p · e. 2

(2) Suppose that x � x∗ but p · x < p · x∗. Then p · x < p · e and x � x∗. This

contradicts that x∗ ∈ ϕ(p). Hence, if x � x∗, then p · x ≥ p · x∗. 2

(3) Let x′, x′′ ∈ ϕ(p) and xα = αx′ + (1 − α)x′′. Since B(p) is convex, xα ∈ B(p).

By convexity of �, xα � x′. Since x′ � x for every x ∈ B(p), xα � x for every

x ∈ B(p). This means that xα ∈ ϕ(p), i.e., ϕ(p) is convex. 2

(4) Suppose that ϕ(p) is not singleton. Then we have two elements x′ and x∗ in

ϕ(p). Then x′ � x∗. And x∗ � x∗ by completeness of preference. By strict

convexity of preference, x∗/2 + x′/2 � x∗. Furthermore, since p · x∗ ≤ p · e
and p · x′ ≤ p · e, it holds that p · (x∗/2 + x′/2) ≤ p · e. This contradicts that

x∗ ∈ ϕ(p). Hence ϕ(p) has the unique element. 2

3.

(1) � is complete, transitive, convex, and locally nonsatiated.

(2) Let P (x) = {x′ ∈ X : x′ � x}. Since � is complete, transitive, and convex,

P (x) is convex.22 It is nonempty due to local nonsatiation. Moreover, the

21We can directly apply Browder Fixed Point Theorem, which is a corollary of Michael Selection Theorem

and Brouwer Fixed Point Theorem, to get a fixed point.
22See Homework 2: 2-(3)-(e).
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completeness of � imples that x 6∈ P (x).23 By Separating Hyperplane Theorem,

there is p ∈ R` \ {0} such that for every x′ ∈ P (x), p · x′ ≥ p · x. Let x′ ∼ x.

By local nonsatiation, we can find xn ∈ B1/n(x′) ∩R`
+ such that xn � x′. The

completeness and transitivity implies xn � x.24 Thus, p · xn ≥ p · x. Because

xn → x′, we obtain p · x′ ≥ p · x. 2

(3) If preference is weakly monotone, then p ∈ R`
+ \ {0}. When � is weakly

monotone, x + εm � x for every x ∈ X where εm is a vector whose m-th

element is 1 and 0 otherwise. (2) implies p · (x + εm) ≥ p · x. Then, pm ≥ 0.

This holds for every m = 1, . . . , `. Hence, p ∈ R`
+ \ {0}. 2

4.

(1) Suppose not. There are two different elements x and x′ in ϕ(p) for some p.

Then p ·x ≤ p ·e and p ·x′ ≤ p ·e. Let x′′ = (1/2)x+(1/2)x′. Then p ·x′′ ≤ p ·e.
By strict convexity of �, we have x′′ � x or x′′ � x′. The property of ϕ implies

that p · x′′ > p · e, which is a contradiction. 2

(2) By strong monotonicity of �, e+ (1, 0, . . . , 0) � e, i.e., e+ (1, 0, . . . , 0) ∈ P (e).

However, by continuity of �, P (e) is open so that e+ (1, 0, . . . , 0) ∈ int[P (e)].

It follows from irreflexivity that e 6∈ P (e). 2

(3) By strict convexity of �, P (e) is convex. From (2), int[P (e)] 6= ∅ and e 6∈ P (e).

By Separating Hyperplane Theorem, there exists p∗ ∈ R` \ {0} such that, for

every x ∈ P (e), p∗ · x ≥ p∗ · e. However, the strong monotonicity of � implies

e + εm � e where εm is a vector whose m-th element is 1 and others are 0.

Then, p∗ · (e + εm) ≥ p∗ · e. Then, p∗m ≥ 0. This holds for every m = 1, . . . , `.

Therefore, p∗ ∈ R`
+ \ {0}. Finally, it follows from the zero homogeneity of the

inequality, p∗ · x ≥ p∗ · e, that we can take p∗/‖p∗‖ ∈ ∆ instead of p∗. Hence,

without loss of generality, p∗ ∈ ∆. 2

(4) Note that p∗ · x̂ < p∗ · e. Let x � e. Then by (3), p∗ ·x ≥ p∗ · e for some p∗ ∈ ∆.

Now suppose that p∗ · x = p∗ · e. Then, for sufficiently small α ∈ (0, 1), xα =

(1−α)x+αx̂ � e by continuity of �. But p∗ ·xα = (1−α)p∗ ·x+αp∗ · x̂ < p∗ ·e.
This is a contradiction. Hence, x � e implies p∗ · x > p∗ · e. That is, e ∈ ϕ(p∗).

It follows from (1) that ϕ(p∗) = {e}. 2

5. By the homogeneity of demand correspondence, we can set (px, py) = (p, 1).

23See Homework 2: 1-(2)-(a) and 1-(3)-(a).
24See Homework 2: 1-(2), (3).
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(1) Consider consumer 1. L = x1 + y1 + x1y1 + λ(p− px1 − y1).

(FOC) 1 + y1 − λp ≤ 0, x1 ≥ 0, x1(1 + y1 − λp) = 0

1 + x1 − λ ≤ 0, y1 ≥ 0, y1(1 + x1 − λ) = 0.

Note that 1 + y1 − λp ≤ 0 and y1 ≥ 0 imply that p 6= 0.

(i) x1 = y1 = 0 : 0 = px1 + y1 = p 6= 0, a contradiction .

(ii) x1 > 0, y1 = 0 : px1 + y1 = p implies x1 = 1. λ = 1/p ≥ 2. Thus,

p ∈ (0, 1/2].

(iii) x1 = 0, y1 > 0 : λ = 1 and y1 = p. Thus, 1+p−p ≤ 0 = 1, a contradiction.

(iv) x1 > 0, y1 > 0 : 1 + y1 = p(1 + x1) and px1 + y1 = p imply that x1 = 1/2p

and y1 = p− (1/2) with p > 1/2.

In sum,

x1 =

{

1 if p ∈ (0, 1/2]

1/2p if p > 1/2

Next, consider consumer 2. Clearly, y2/x2 = p. Then px2 + y2 = 1 imples

x2 = 1/2p and y2 = 1/2. It follows from the market clearing condition that the

Walrasian equilibrium is given by

((px, py), (x1, y1), (x2, y2)) = ((1, 1), (1/2, 1/2), (1/2, 1/2)).

(2) At optimum, it must be the case that

2x1 = y1, x2 = 3y2.

Using budget constraints, we get demand functions

(x1, y1) =

(
2p+ 8

p+ 2
,
4p+ 16

p+ 2

)

, (x1, y1) =

(
18p

3p+ 1
,

6p

3p+ 1

)

.

Market clearing conditions implies that the equilibrium is given by

((px, py), (x1, y1), (x2, y2)) =

((
4

3
, 1

)

,

(
16

5
,
32

5

)

,

(
24

5
,
8

5

))

.

(3) Consider consumer 1. L = 2x1 + y1 + λ(1 − px1 − y1).

(FOC) 2 − λp ≤ 0, x1 ≥ 0, x1(2 − λp) = 0

1 − λ ≤ 0, y1 ≥ 0, y1(1 − λ) = 0.

(i) x1 = y1 = 0 : px1 + y1 = 1 implies 0 = 1, contradiction .
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(ii) x1 > 0, y1 = 0 : λ = 2/p and λ ≥ 1. Thus, p ∈ (0, 2]. px1 + y1 = 1 implies

x1 = 1/p.

(iii) x1 = 0, y1 > 0 : 2 − λp ≤ 0 and 1 − λ = 0. Thus, p ≥ 2. px1 + y1 = 1

implies y1 = 1.

(iv) x1 > 0, y1 > 0 : 2 − λp = 1 − λ = 0. Thus, p = 2. 2x1 + y1 = 1 implies

that x1 = α and y1 = 1 − 2α with α ∈ (0, 1/2).

In sum,

x1 =







1/p if p ∈ (0, 2]

(0, 1/2) if p = 2

0 if p ≥ 2

Next, consider consumer 2. Clearly, y2/x2 = p. Then px2 + y2 = p imples

x2 = 1/2 and y2 = 1/2p. It follows from the market clearing condition that the

Walrasian equilibrium is given by

((px, py), (x1, y1), (x2, y2)) = ((2, 1), (1/2, 0), (1/2, 1)).

(4) Consider consumer 1. L = log x1 + y1 + λ1(p− px1 − y1)

(FOC) 1/x1 − λ1p = 0

1 − λ1 ≤ 0, y1 ≥ 0, y1(1 − λ1) = 0.

(i) y1 = 0 : λ1 ≥ 1. px1 + y1 = p implies x1 = 1 and p ∈ (0, 1].

(ii) y1 > 0 : λ1 = 1. px1 + y1 = p implies x1 = 1/p, y1 = p− 1, and p > 1.

Therefore,

x1 =

{

1 if p ∈ (0, 1]

1/p if p > 1

Similarly, for consumer 2, we have

(FOC) 1/x2 − λ2p = 0

2 − λ2 ≤ 0, y2 ≥ 0, y2(2 − λ2) = 0.

(i) y2 = 0 : λ2 ≥ 2. px2 + y2 = 1 implies that x2 = 1/p and λ2 = 1. This is a

contradiction.

(ii) y2 > 0 : λ2 = 2. px2 + y2 = 1 implies that x2 = 1/(2p), y2 = 1/2, and

p > 0.

Therefore,

x2 =
1

2p
, ∀p > 0.

Using market clearing condition, we have the Walrasian equilibrium

((px, py), (x1, y1), (x2, y2)) = ((3/2, 1)(2/3, 1/2), (1/3, 1/2)).
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HOMEWORK 4

1. Consider an economy E = {(Xi, ui, ei) : i = 1, . . . ,m}, where ei ∈ Xi = R`
+ and

ui : Xi → R is continuous for every i.

(1) Show that x∗ ∈ ∏m
i=1Xi is a Pareto optimal allocation iff for every i, x∗i ∈ Xi

is a solution to the following problem :

max
xi

{

ui(xi) : uj(xj) ≥ uj(x
∗
j ), ∀j 6= i, and

n∑

i=1

xi ≤
n∑

i=1

ei

}

(2) Assume that ui is differentiable for every i. Use the Kuhn-Tucker theorem to

provide a Lagrange characterization of a Pareto optimal allocation x∗. Assume

that x∗ � 0. Interpret the Lagrange multipliers.

2. Consider an economy E = {(Xi, ui, ei) : i = 1, . . . ,m}, where ei ∈ Xi = R`
+ and

ui : Xi → R+ is continuous and increasing for every i. Let A = {x ∈∏iXi :
∑

i xi ≤
∑

i ei}. Define the utility set U = {u ∈ Rm
+ : ui(xi) = ui, x ∈ A}. A social welfare

function W :
∏

iXi → R+ is defined by

W (x1, . . . , xm) =

n∑

i=1

λiui(xi),

where λ ∈ Rm
+ \ {0}.

(1) Show that if ui is concave for every i, then W is concave.

(2) Show that if ui is concave for every i and is strictly concave for some i, then

W is strictly concave.

(3) If ui is quasi-concave for every i, then is W is quasi-concave ?

(4) Show that if x∗ maximizes social welfare function on A for some λ ∈ Rm
+ \ {0},

then x∗ is weakly Pareto optimal.

(5) Show that if x∗ maximizes social welfare function on A for some λ ∈ Rm
++, then

x∗ is Pareto optimal.

(6) Show that if ui is concave for every i and x∗ is a weakly Pareto optimal allo-

cation, then there exists λ∗ = (λ∗1, . . . , λ
∗
m) ∈ ∆ such that x∗ maximizes social

welfare function on A.

(7) Let ui is concave for every i. Using the utility set U , illustrate the case where x∗

is a Pareto optimal allocation but there is no λ∗ ∈ Rm
++ such that x∗ maximizes

social utility function on A.
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3. Consider an economy E = {(Xi,�i, ei) : i = 1, . . . ,m}, where ei ∈ Xi = R`
+ for

every i. Let �i be complete, transitive, continuous, and monotone. Show that the

set of Pareto optimal allocations is a compact subset of Rm`.

4. Consider the following economies. In homework 3, we found the competitive

equilibria for each economy.

(a) Check the stability of each equilibrium.

(b) Find the set of Pareto optimal allocations.

(c) Find the set of individually rational allocations.

(1) u1(x, y) = x+ y + xy e1 = (1, 0) (2) u1(x, y) = min{2x, y} e1 = (2, 8)

u2(x, y) = xy e2 = (0, 1) u2(x, y) = min{x, 3y} e2 = (6, 0)

(3) u1(x, y) = 2x+ y, e1 = (0, 1) (4) u1(x, y) = log x+ y, e1 = (1, 0)

u2(x, y) = xy, e2 = (1, 0). u2(x, y) = log x+ 2y, e2 = (0, 1).
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SOLUTION 4

1.

(1) (⇒) Let x∗ ∈ X be a Pareto optimal allocation. Suppose that x∗i is not a solu-

tion to the problem for some i. Then there is xi ∈ Xi such that ui(xi) > ui(x
∗
i )

with uj(xj) ≥ uj(x
∗
j ) for all j 6= i and

∑

i xi ≤ ∑

i ei. This is a contradic-

tion to the Pareto optimality. (⇐) Let x∗ ∈ X be a solution to the problem.

Suppose that x∗i is not Pareto optimal. Then there is an allocation such that

ui(xi) > ui(x
∗
i ) for some i and uj(xj) ≥ uj(x

∗
j ) for all j where

∑

i xi ≤
∑

i ei.

This contradicts that x∗ is a solution to the problem. 2

(2) The Lagrangian is given by

L = ui(xi) +
∑

j 6=i

λj [uj(xj) − uj(x
∗
j )] +

∑̀

k=1

µk

[
m∑

i=1

(eik − xik)

]

.

The first order condition is as follows.

∂ui(x
∗
i )

∂xik
− µk = 0, k = 1, . . . , `, (25)

λj

∂uj(x
∗
j )

∂xjk
− µk = 0, k = 1, . . . , `, ;∀j 6= i (26)

If we consider a Pareto optimal allocation x∗ as a Walrasian equilibrium allo-

cation, we obtain the following through the utility optimization for every i,

∂ui(x
∗
i )

∂xik
− αipk = 0, k = 1, . . . , `.

Thus, if we take the shadow price µk of k-th good to be equal to Walrasian

price pk of k-th good for every k, then multiplier λj of the j-th utility constraint

is equal to 1/αj which is the reciprocal of j-th consumer’s marginal utility of

income, i.e., λi = 1/αi.

2.

(1) Let x ∈ A and x′ ∈ A. Since ui is concave, ui(αxi +(1−α)x′i) ≥ αui(xi)+ (1−
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α)ui(x
′
i), for every α ∈ [0, 1] and for every i. Thus, for every α ∈ [0, 1],

W (αx+ (1 − α)x′) =
m∑

i=1

λiui(αxi + (1 − α)x′i) (27)

≥
m∑

i=1

λi[αui(xi) + (1 − α)u(x′i)] (28)

= α
m∑

i=1

λiui(xi) + (1 − α)
m∑

i=1

u(x′i) (29)

= αW (x) + (1 − α)W (x′). 2 (30)

(2) Let x ∈ A and x′ ∈ A. For ever i, for every α ∈ [0, 1], ui(αxi + (1 − α)x′i) ≥
αui(xi)+(1−α)ui(x

′
i), and for some i, for every α ∈ (0, 1) ui(αxi +(1−α)x′i) >

αui(xi) + (1 − α)ui(x
′
i). Thus, for every α ∈ (0, 1),

W (αx+ (1 − α)x′) =

m∑

i=1

λiui(αxi + (1 − α)x′i) (31)

>
m∑

i=1

λi[αui(xi) + (1 − α)u(x′i)] (32)

= αW (x) + (1 − α)W (x′). 2 (33)

(3) No. Consider one good economy with ui(xi) = x2
i for i = 1, 2 and

∑

i ei = 3.

Let x = (1, 2), x′ = (2, 1) and λi = 1 for i = 1, 2. Then

W (x/2 + x′/2) = W (3/2, 3/2) =
9

2
< 5 = W (1, 2) = min{W (x),W (x′)}.

(4) Let x∗ maximizes W (x) =
∑

i λiui(xi) on A for some λ ∈ Rm
+ \ {0}. Suppose

that x∗ is not weakly Pareto optimal. Then, there is a allocation x′ ∈ A

such that ui(x
′
i) > ui(x

∗
i ) for every i. Thus

∑

i λiui(xi) >
∑

i λiui(x
∗
i ), a

contradiction. 2

(5) Let x∗ maximizes W (x) =
∑

i λiui(xi) on A for some λ ∈ Rm
++. Suppose

that x∗ is not Pareto optimal. Then There is a allocation x′ ∈ A such that

ui(x
′
i) ≥ ui(x

∗
i ) for every i and ui(xi) > ui(x

∗
i ) for some i. Thus

∑

i λiui(xi) >
∑

i λiui(x
∗
i ), a contradiction. 2

(6) Since ui is concave for every i, the utility set U is convex. To verify this, choose

u ∈ U and u′ ∈ U . Then there are x ∈ A and x′ ∈ A such that ui = ui(xi) and

u′i = ui(x
′
i) for all i. Define u(x) = (u1(x1), . . . , um(xm)). For every α ∈ [0, 1],

αu+ (1 − α)u′ = αu(x) + (1 − α)u(x′) (34)

≤ u(αx+ (1 − α)x′), (35)
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since ui is concave for every i. Because αx+(1−α)x′ ∈ A, αu+(1−α)u′ ∈ U .

Let x∗ be weakly Pareto optimal. Now define P = {u ∈ Rm
+ : u � u(x∗)}.

Then P is clearly convex. Because U ∩ P = ∅, by Separating Hyperplane

Theorem, there is λ∗ ∈ R` \ {0} such that λ∗ · u′ ≥ λ∗ · u for every u′ ∈ P

and u ∈ U . Note that λ∗ ≥ 0. Otherwise, the inequality cannot hold when we

take a sufficiently large ui corresponding to λ∗i < 0. Because this inequality is

homogeneous degree of zero with respect to λ∗, we can take λ∗ ∈ ∆. Consider

un = u(x∗) + (1/n, 1/n, . . . , 1/n) ∈ P for every n. Then λ∗ · un ≥ λ∗ · u(x) for

all x ∈ A. Since un → u(x∗), λ∗ · u(x∗) ≥ λ∗ · u(x) for all x ∈ A. That is, x∗

maximizes
∑
λ∗iui(xi) on A. 2

(7) Consider two-consumer one-good economy where ui(xi) =
√
xi and ei = i − 1

for i = 1, 2. Then U = {u ∈ R2
+ : (u1)

2 + (u2)
2 ≤ 1}. Let x∗ = (0, 1). Then x∗

is Pareto optimal. Now suppose that there is λ∗ ∈ Rm
++ such that x∗ maximizes

∑

i λ
∗
iui(xi) on A. Without loss of generality, assume that λ∗1 ≥ λ∗2 > 0. Then

we have

W (1/2, 1/2) = λ∗1u1(1/2)+λ∗2u2(1/2) ≥ λ∗1
√

2 > λ∗2 = λ∗1u1(0)+λ∗2u2(1) = W (x∗)

This is a contradiction. 2

3. Let P (E) be the set of Pareto optimal allocations of E . Let x ∈ P (E). Since

x is feasible, 0 ≤ x ≤ (
∑

i ei,
∑

i ei, . . . ,
∑

i ei). Thus, P (E) is bounded. Now

suppose that P (E) is not closed. Then, there is a sequence {xn} in P (E) such that

xn → x 6∈ P (E). Therefore, there is an allocation x′ ∈ A = {x ∈ X :
∑

i xi =
∑

i ei}
such that x′i �i xi for some i and x′j �j xj for all j 6= i. By continuity, for sufficiently

small ε > 0, x′i−ε �i xi with ε = (ε, ε, . . . , ε). By monotonicity, x′j +ε/(m−1) �j xj

for all j 6= i. By continuity again, for sufficiently large n, x′i − ε �i x
n
i for some i and

x′j + ε/(m− 1) �j x
n
j for all j 6= i. The fact that

(x′i − ε) +
∑

j 6=i

(

x′j +
1

m− 1
ε

)

=
m∑

i=1

x′i =
m∑

i=1

ei

contradicts that xn ∈ P (E). 2

4. When we check the stability of the equilibria, we have only to examine whether

the excess demand is increasing or decreasing around the equilibrium prices.

(1) (a) Around the equilibrium, the excess demands are given by

Ex =
py − px

px
, (36)

Ey =
px − py

py
. (37)
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Hence the equilibrium is stable for px and is stable for py.

(b) The Lagrangian is given by

L = x1 + y1 + x1y1 + λ1(x2y2 − ū) + λ2(1 − x1 − x2) + λ3(1 − y1 − y2).

Then we have the set of Pareto optimal allocation as follows.

{((x1, y1), (x2, y2)) ∈ R4
+ : y1 = x1, 0 ≤ x1 ≤ 1, x1 + x2 = y1 + y2 = 1}.

(c) The set of individually rational allocations is given by

{((x1, y1), (x2, y2)) ∈ R4
+ : x1+y1+x1y1 ≥ 1, x2y2 ≥ 0, x1+x2 = y1+y2 = 1}.

(2) (a) Around the equilibrium, the excess demands are given by

Ex =
2py(3px − 4py)

3p2
x + 7pxpy + 2p2

y

, (38)

Ey =
2px(4py − 3px)

3p2
x + 7pxpy + 2p2

y

. (39)

Hence the equilibrium is unstable for px and is unstable for py.

(b) By the graph, we have the set of Pareto optimal allocation as follows.

{((x1, y1), (x2, y2)) ∈ R4
+ : x1 + x2 = y1 + y2 = 8,

2x1 ≤ y1 ≤ (1/3)x1 + (16/3) if x1 ∈ [0, 16/5),

(1/3)x1 + (16/3) ≤ y1 ≤ 2x1 if x1 ∈ [16/5, 4),

(1/3)x1 + (16/3) ≤ y1 ≤ 8 if x1 ∈ [4, 8]}.
(c) The set of individually rational allocations is given by

{((x1, y1), (x2, y2) ∈ R4
+ : 2 ≤ x1 ≤ 8, 4 ≤ y1 ≤ 8, x1 + x2 = y1 + y2 = 8}.

(3) (a) Around the equilibrium, the excess demands are given by

Ex =

{
2py−px

2px
if px ≤ 2py,

−1
2 if px > 2py,

(40)

Ey =

{
py−2px

2px
if px ≤ 2py,

py

2px
if px > 2py.

(41)

(42)

Hence the equilibrium is stable for px and is unstable for py.
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(b) The Lagrangian is given by

L = 2x1 + y1 + λ1(x2y2 − ū) + λ2(1 − x1 − x2) + λ3(1 − y1 − y2).

Then we have the set of Pareto optimal allocation as follows.

{((x1, y1), (x2, y2)) ∈ R4
+ : y1 = 0 if x ∈ [0, 1/2);

y1 = 2x1 − 1 if x1 ∈ [0, 1], x1 + x2 = y1 + y2 = 1}.

(c) The set of individually rational allocations is given by

{((x1, y1), (x2, y2) ∈ R4
+ : 2x1+y1 ≥ 1, x1 ≤ 1, 0 ≤ y1 ≤ 1, x1+x2 = y1+y2 = 1}

(4) (a) Around the equilibrium, the excess demands are given by

Ex =
3py − 2px

2px
(43)

Ey =
2px − 3py

2py
. (44)

Hence the equilibrium is stable for px and is stable for py.

(b) The Lagrangian is given by

L = log x1 + y1 + λ1(log x2 + 2y2 − ū) + λ2(1 − x1 − x2) + λ3(1 − y1 − y2).

Then we have the set of Pareto optimal allocation as follows.

{((x1, y1), (x2, y2)) ∈ R4
+ : y1 = 0 if x ∈ [0, 2/3);

y1 ∈ [0, 1) if x1 = 2/3;

y1 = 1 if x1 ∈ [2/3, 1], x1 + x2 = y1 + y2 = 1}.

(c) The set of individually rational alloctions is given by

{((x1, y1), (x2, y2) ∈ R4
+ : log x1+y1 ≥ 0, log x2+2y2 ≥ 0, x1+x2 = y1+y2 = 1}.
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HOMEWORK 5

♠ We consider an exchange economy E = {(Xi,�i, ei) : i = 1, 2, . . . ,m} where

0 6= ei ∈ Xi = R`
+ for every i and �i is complete and transitive, when appropriate.

1. Consider a one agent exchange economy E = {(X,�, e)} where e ∈ X = R`
+.

(1) State the minimal conditions to ensure that any Pareto optimal allocation x∗

is supported by a price p∗ ∈ R` \ {0}.
(2) Prove the statement.

(3) Show that (p∗, x∗) is a quasi-equilibrium.

(4) Is it a Walrasian equilibrium ?

2. Prove that if �i is locally nonsatiated for every i, then a Walrasian equilibrium

allocation is Pareto optimal. What if the local nonsatiation assumption is violated

?

3. Show that if �i is strongly monotone for every i, then a Walrasian equilibrium is

a quasi-equilibrium. Can the strong monotonicity be relaxed to the monotonicity ?

4. Show that a Walrasian equilibrium allocation which is a quasi-equilibrium allo-

cation is Pareto optimal.

5. By the first welfare theorem, we know that if �i is strictly convex for every i, then

a Walrasian equilibrium allocation is Pareto optimal. Under the same assumptions,

can we say that a Walrasian equilibrium is a quasi-equilibrium ?

6. Consider an agent i and suppose that �i is continuous and monotone. Suppose

that xi ∈ Xi and p ∈ R`
+ \ {0} are such that p · xi > 0, and x′i �i xi implies

p · x′i ≥ p · xi. Prove that x′i �i xi implies p · x′i > p · xi. What if Xi is not convex ?

What if �i is not continuous ? What if p · xi = 0 ?

7. Let �i be continuous for every i. Show that a quasi-equilibrium with p � 0 is a

Walrasian equilibrium.

8. Suppose that �i is continuous and strongly monotone for every i. Show that if

(p, x) is a quasi-equilibrium with xi ∈ intR`
+ for some i, then p� 0.
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SOLUTION 5

1.

(1) � is nonsatiated and convex (x′ � x ⇒ αx′ + (1 − α)x � x for α ∈ (0, 1) and

x′ ∼ x⇒ αx′ + (1 − α)x � x).

(2) Let an allocation x∗ be Pareto optimal. Let P (x∗) = {x ∈ X : x � x∗}. Since

x∗ is Pareto optimal, there is no x ∈ X such that x = e and x � x∗. Thus,

e 6∈ P (x∗). Moreover, P (x∗) is nonempty by nonsatiation and is convex since

� is complete, transitive, and convex. By Separating Hyperplane Theorem,

there is p∗ ∈ R` \ {0} such that for every x ∈ P (x∗), p∗ · x ≥ p · e. Because

x∗ is feasible, i.e.. x∗ = e, we conclude that for every x � x∗, p∗ · x ≥ p∗ · x∗.
Let x ∼ x∗. Then by nonsatiation, we have x̂ ∈ X such that x̂ � x. By

convexity, xα = αx̂ + (1 − α)x � x for α ∈ (0, 1]. By transitivity, xα � x∗ so

that p∗ · xα ≥ p · x∗. By letting α→ 0, we have p∗ · x ≥ p∗ · x∗. 2

(3) Because x∗ = e, it is a quasi-equilibrium.

(4) Not necessarily. Consider X = R2
+ and � is such that x′ � x iff x′1 > x1 and

x′ ∼ x iff x′1 = x1. Let x∗ = e = (1, 0) and p∗ = (0, 1). Then the statement is

satisfied but this is not maximizing his preference.

2.

(1) Let (p∗, x∗) be a Walrasian equilibrium. Suppose x∗ is not Pareto optimal.

Then there is a feasible allocation x ∈ X such that xj �j x
∗
j for some j and

xi �i x
∗
i for all i 6= j. Therefore, p∗ · xj > p∗ · ej for some j. However, the local

nonsatiation implies that there is xn
i ∈ B1/n(xi) such that xn

i �i xi for every

i 6= j. Therefore, by transitivity, xn
i �i x

∗
i so that p∗ · xn

i > p∗ · x∗. As n→ ∞,

we have p∗ ·xi ≥ p∗ ·ei for every i 6= j. Consequently,
∑m

i=1 p
∗ ·xi >

∑m
i=1 p

∗ ·ei,
which violates the feasibility and leads to a contradiction. 2

(2) When the local nonsatiation is not satisfied, we have an example where a Wal-

rasian equilibrium allocation may not be Pareto optimal. It can be easily il-

lustrated by a two-agent economy where one consumer has a thick indifference

set.

3.

(1) Let (p∗, x∗) is a Walrasian equilibrium. Consider xi �i x
∗
i for every i. Then

by strong monotonicity, xi + εn � x∗i with εn = (1/n, 0, . . . , 0) for every n and

145



for every i. Since x∗ is a Walrasian equilibrium allocation, p∗ · xi > p∗ · ei. As

n→ ∞, p∗ · xi ≥ p∗ · ei. 2

(2) Yes. The proof is the same as above except εn = (1/n, 1/n, . . . , 1/n). 2

4. Let (p∗, x∗) be a Walrasian equilibrium. Suppose x∗ is not Pareto optimal. Then

there is a feasible allocation x ∈ X such that xj � x∗j for some j and xi �i x
∗
i for

all i 6= j. Since x∗ is a Walrasian equilibrium allocation, p∗ · xj > p∗ · ej for some j.

However for every i 6= j, p∗ · xi ≥ p∗ · x∗ since x∗ is a quasi-equilibrium allocation.

Consequently,
∑m

i=1 p
∗ · xi >

∑m
i=1 p

∗ · ei, which violates the feasibility and leads to

a contradiction. 2

5. Yes. Let (p∗, x∗) be a Walrasian equilibrium. Now suppose that xi �i x
∗
i for

every i. If xi �i x
∗
i , we have p∗ · xi > p∗ · x∗i . If xi ∼i x

∗
i , then by strict convexity,

we have xα
i = αxi + (1 − α)x∗ �i x

∗
i for α ∈ (0, 1). Since (p∗, x∗) is a Walrasian

equilibrium, p∗ · xα
i > p∗ · x∗i . As α→ 1, p∗ · xi ≥ p∗ · x∗i . Consequently, we conclude

that (p∗, x∗) is a quasi-equilibrium. 2

6.

(1) Suppose that p·x′i = p·xi. Since p ∈ R`
+\{0} and p·xi > 0, there is x̂i ∈ Xi such

that p · x̂i < p ·xi. In particular, there is a k such that pk > 0 and xik > 0. Then

take x̂i as xi except replacing k-th consumption with xik − ε > 0. However, by

the continuity of �i and the convexity of Xi, we have xα
i = (1−α)x′i+αx̂i �i xi

for sufficiently small α > 0 and xα
i ∈ Xi. So that p · xα

i ≥ p · xi. But by our

assumption, we have p · xα
i = αp · x′i + (1− α)p · x̂i < p · xi for α > 0. This is a

contradiction. 2

(2) Let Xi = [R+ × {0}] ∪ [R+ × {1}] and �i be such that x′ �i x if x′1 > x1

with x′2 = x2, and (0, 1) �i (x1, 0) for every x1 ∈ R+. Consider xi = (1, 0),

x′i = (0, 1), and p = (1, 1), Then x′i �i xi but p · x′i = p · xi.

(3) Consider a lexicographic preference in R2
+. Let xi = (1, 1), x′i = (1, 2), and

p = (1, 0). Then x′i �i xi but p · x′i = p · xi.

(4) Consider the case of Problem 1 (4). Let x′i = (2, 0) �i (1, 0) = xi. Then

p · x′i = p · xi.

7. Let (p, x) be a quasi-equilibrium. Since �i is reflexive for every i, it follows that

p · xi = p · ei for every i. For every i, let x′i �i xi. Then p · x′i ≥ p · ei = p · xi for

every i. Because p · xi > 0, Problem 6 implies that p · x′i > p · xi = p · ei for every i.

Hence (p, x) is a Walrasian equilibrium. 2
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8. For some i, we have xi ∈ intXi so that p · xi > 0. Since �i is reflexive, it follows

that p · xi = p · ei. Let x′i = xi + εk where εk = (0, . . . , 0, 1, 0, . . . , 0) with k-th

element 1. By strong monotonicity, x′i �i xi. Since (p, x) is a quasi-equilibrium,

p · (xi + εk) ≥ p · ei = p · xi > 0. By Problem 6 implies that pk = p · εk > 0. This

holds for every k = 1, . . . , `, so that p� 0. 2
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HOMEWORK 6

♠ Consider an economy E = {(Xi,�i, ei) : i = 1, . . . ,m} where ei ∈ Xi = R`
+ for

every i and �i is complete and transitive for every i. Define

• W (E) : the set of Walrasian equilibria of E .

• W ∗(E) : the set of Walrasian equilibrium allocations of E .

• P (E) : the set of Pareto optimal allocations of E .

• WP (E) : the set of weakly Pareto optimal allocations of E .

• IR(E) : the set of individually rational allocations of E .

• C(E) : the set of core allocations of E .

• V (E) : the set of value allocations of E .

1. Show that if �i is continuous for every i, C(E) is compact.

2. Show that if m = 2, C(E) = WP (E)
⋂
IR(E).

3. Show that W ∗(E) ⊂ C(E).

4. Let us replicate the economy E by n-times and call it as n-fold replica economy

En. Then, there are n · m consumers and n identical consumers. Denote the i-th

type consumer generated by j-th replication by “ij”. Let �i be continuous, strictly

monotonic, and strictly convex for every i.

(1) Show that if x∗ ∈ C(En), then x∗ij = x∗ij′ for every i, j and j′.

(2) Define Cn(E) = {x ∈ ∏m
i=1Xi : xi = x∗ij , ∀i, where x∗ ∈ C(En)}. Show that

Cn+1(E) ⊂ Cn(E) for every n.

(3) Let E(E) =
⋂∞

n=1C
n(E). Assume that C(En) 6= ∅ for every n. Show that

E(E) 6= ∅.
(4) Show that W ∗(E) ⊂ E(E).

(5) (Optional) Show that E(E) ⊂W ∗(E) if ei ∈ intXi for every i ∈ I

♠ Consider an economy E = {(Xi, ui, ei) : i = 1, . . . ,m} where ei ∈ Xi = R`
+ for

every i and ui : Xi → R is a utility function for every i.

5. Show that if x∗ is a value allocation with respect to λ∗ ∈ Rm
+ \ {0}, then it is a

value allocation with respect to αλ∗ for all α > 0.

6. Show that V (E) ⊂WP (E).

7. Show that V (E) ⊂ P (E) where λ ∈ Rm
++.
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8. Show that V (E) ⊂ IR(E) where λ ∈ Rm
++. N. B. It follows from Problems 6 and

8 that if m = 2, V (E) ⊂ C(E) where λ ∈ R2
++.

9. Consider two economies, each of which is composed of two goods and two con-

sumers as follows.

(a) u1(x, y) = x+ y, e1 = (2, 1), (b) u1(x, y) = min{2x, y}, e1 = (2, 1),

u2(x, y) = min{x, y}, e2 = (1, 2). u2(x, y) = min{x, 2y}, e2 = (1, 2).

(1) Find P (E) for each economy.

(2) Find C(E) for each economy.

(3) Find W (E) for each economy.

(4) Find the value allocation for each economy where λ1 = 1/2, λ2 = 1.

10. Consider an economy E = {(Xi, ui, ei) : i = 1, 2, 3} where Xi = R2
+ and

u1(x, y) = min{x, 2y}, e1 = (4, 0)

u2(x, y) = min{2x, 4y}, e2 = (0, 2)

u3(x, y) = (x+ 2y)/2, e3 = (0, 0)

(1) Find C(E).

(2) Find W (E).

(3) Find the value allocation for λ1 = λ3 = 1 and λ2 = 1/2.

(5) For the value allocation in (4), is there a coalition who can lie about their

preferences or initial endowments and become better off ? Give an example

and calculate the resulting manipulated value allocation.
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SOLUTION 6

1. Since any core allocation is feasible, C(E) is bounded in the same way as W (E).

Suppose that C(E) is not closed. Then there is a sequence xn of core allocations

which converges to x∗ 6∈ C(E). Then there is a coalition S and (xi)i∈S ∈ ∏i∈S Xi

such that
∑

i∈S xi =
∑

i∈S ei and xi �i x
∗
i for every i ∈ S. By continuity of �i,

for every i ∈ S, we have xi �i x
n
i for sufficiently large n. This contradicts that

xn ∈ C(E). 2

2. In the definition of core, take S = {1, 2} to get C(E) ⊂ WP (E). On the other

hand, take S = {1} or {2} and get C(E) ⊂ IR(E). This proves that C(E) ⊂
WP (E)

⋂
IR(E). To prove the reverse inclusion, suppose x ∈ WP (E)

⋂
IR(E) but

x 6∈ C(E). Then there is a coalition S ⊂ {1, 2} and (x′i)i∈S ∈ ∏i∈S Xi such that
∑

i∈S x
′
i =

∑

i∈S ei and x′i �i xi for every i ∈ S. If S = {i}, then ei �i xi, i.e., x

is not individually rational, a contradiction. If S = {1, 2}, x is not weakly Pareto

optimal, a contradiction. 2

3. Suppose not. Then there is (p∗, x∗) ∈ W (E) but x∗ 6∈ C(E). Thus there is a

coalition S and (xi)i∈S ∈ ∏i∈S Xi such that
∑

i∈S xi =
∑

i∈S ei and xi �i x
∗
i for

every i ∈ S. Since (p∗, x∗) is a Walrasian equilibrium, p∗ ·xi > p∗ · ei for every i ∈ S.

Therefore, p∗ ·∑i∈S xi > p∗ ·∑i∈S ei, a contradiction. 2

4.

(1) Suppose not. Then there is x∗ ∈ C(En) such that x∗kj 6= x∗kj′ for some k, j, and

j′. Now let the index ji ∈ {1, . . . , n} is chosen for every i such that x∗ij �i x
∗
iji

for all j. Consider a coalition S = {1j1, 2j2, . . . ,mjm}. Let x̄i = (1/n)
∑n

j=1 x
∗
ij

for every i. Then x̄i �i x
∗
iji

for every i and by strict convexity of �k, x̄k �k x
∗
kjk

. By continuity of �k, there is ε ∈ R`
+ \ {0} such that x̄′k = x̄k − ε �k x

∗
kjk

.

Then by strictly monotonicty of �i, x̄
′
i = x̄i +[ε/(n−1)] �i x

∗
iji

for every i 6= k.

Finally, (x̄′i)i∈S is feasible in S :

m∑

i=1

x̄′i =
m∑

i=1




1

n

n∑

j=1

x∗ij



 =
1

n

m∑

i=1

n∑

j=1

x∗ij =
1

n

m∑

i=1

(n · ei) =
m∑

i=1

ei

Hence the coalition S and (x̄′i)i∈S blocks the allocation x∗, a contradiction. 2

(2) It is immediate since a coalition of n-replica economy is a coalition of (n+ 1)-

replica economy. 2

(3) We know that Cn(E) is nonemtpy and compact for every n. Moreover, {Cn(E)}
has a finite intersection property since it is a decreasing sequence. Hence E(E) =
⋂∞

n=1C
n(E) is nonempty. 2
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(4) Let x ∈W ∗(E). Now choose any replica economy En. Then define x∗ij = xi for

every i and j so that x∗ ∈ W ∗(En) ⊂ C(En). By definition, x ∈ Cn(E). This

hold for every n. Hence W ∗(E) ⊂ E(E). 2

(5) Let x∗ ∈ E(E). Define Pi(x
∗
i ) = {zi ∈ R` : zi + ei �i x

∗
i }. Then P (x∗) =

co (
⋃m

i=1 Pi(x
∗
i )) is nonempty, open, and convex. We claim that 0 6∈ P (x∗).

Suppose by way of contradiction that 0 ∈ P (x∗). Then there is zi ∈ Pi(x
∗
i ) for

every i and α ∈ ∆ such that
∑m

i=1 αizi = 0. For every n, let λn
i be the smallest

integer greater than or equal to nαi. For every i such that αi > 0, define

zn
i = (nαi/λ

n
i )zi. Now zn

i +ei ∈ Xi since zn
i +ei = tn(zi +ei)+(1− tn)ei where

tn = (nαi/λ
n
i ). Since �i is continuous for every i and tn → 1, for sufficiently

large n, we have zn
i + ei �i x

∗
i . Then a coalition of λn

i traders of type i blocks

the allocation x∗ since

m∑

i=1

λn
i z

n
i = n

m∑

i=1

αizi = 0.

This contraditiction implies that 0 6∈ P (x∗). By the Separating Hyperplane

Theorem, there is a p∗ ∈ R` \ {0} such that p∗ · z ≥ 0 for every z ∈ P (x∗).

Now let x′i �i x
∗
i . Then x′i − ei ∈ Pi(x

∗
i ) so that p∗ · x′i ≥ p∗ · ei. Since �i is

continuous and ei ∈ intXi, p
∗ ·x′i > p∗ ·ei. Furthermore, by strict monotonicity,

we have p∗ · x∗i = p∗ · ei. This shows that x∗ ∈W (E). 2

5. For every S ⊂ I, Vλ∗(S) = max{∑i∈S λ
∗
iui(xi) :

∑

i∈S xi =
∑

i∈S ei}. Therefore,

Vαλ∗(S) = αVλ∗(S) for every S. Now note that the Shapley value Ψi(Vλ∗) is linear in

Vλ∗ . Thus we have Ψi(Vαλ∗) = Ψi(αVαλ∗) = αΨi(Vλ∗). This implies that Ψi(Vαλ∗) =

(αλ∗i )ui(xi) iff Ψi(Vλ∗) = λ∗iui(xi). Hence, we have the same value allocation. 2

6. Suppose that x∗ ∈ V (E) but x∗ 6∈ WP (E). There is an allocation x ∈ X such

that ui(xi) > ui(x
∗
i ) for every i and

∑

i∈I xi =
∑

i∈I ei. Therefore,
∑

i∈I λ
∗
iui(xi) >

∑

i∈I λ
∗
iui(x

∗
i ) =

∑

i∈I Ψi(Vλ) = Vλ(I), a contradiction to the definition of Vλ(I). 2

N.B. Note that

∑

i∈I

Ψi(V ) =
∑

i∈I

∑

S⊂I,3i

(|S| − 1)!(|I| − |S|)!
|I|! [Vλ(S) − Vλ(S \ {i})].

For every proper coalition S(6= I), its coefficient in the sum is given by

|S|(|S| − 1)!(|I| − |S|)!
|I|! −

[

(|I| − |S|) |S|!(|I| − |S| − 1)!

|I|!

]

= 0.

Hence
∑

i∈I Ψi(Vλ) = Vλ(I).
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7. Suppose that x∗ ∈ V (E) but x∗ 6∈ P (E). There is an allocation x ∈ X such

that ui(xi) ≥ ui(x
∗
i ) for every i, ui(xi) > ui(x

∗
i ) for some i, and

∑

i∈I xi =
∑

i∈I ei.

Therefore,
∑m

i=1 λ
∗
iui(xi) >

∑m
i=1 λ

∗
iui(x

∗
i ) =

∑

i∈I Ψi(Vλ) = Vλ(I), a contradiction

to the definition of Vλ(I). 2

8. Let x ∈ V (E). Suppose x 6∈ IR(E). Then there is an agent i such that ui(ei) >

ui(xi). Then λiui(ei) > λiui(xi) = Ψi(Vλ) ≥ Vλ({i}) = λiui(ei), a contradiction. 2

N.B. By superadditivity of Vλ, we have Vλ(S) − Vλ(S \ {i}) ≥ Vλ({i}). Hence

Ψi(Vλ) ≥
∑

S⊂I,3i

(|S| − 1)!(|I| − |S|)!
|I|! Vλ({i}) = Vλ({i}).

9.

(1) (a) P (E) = {((x1, y1), (x2, y2)) ∈ R4
+ : y1 = x1, x1 + x2 = y1 + y2 = 3}.

(b) P (E) = {((x1, y1), (x2, y2)) ∈ R4
+ : 2x1 ≤ y1 ≤ (1/2)x1 + 3/2 with x1 ∈

[0, 1]; (1/2)x1 + 3/2 ≤ y1 ≤ 2x1 with x1 ∈ [1, 3/2]; (1/2)x1 + 3/2 ≤ y1 ≤
3 with x1 ∈ [3/2, 3], x1 + x2 = y1 + y2 = 3}.

(2) (a) C(E) = {((x1, y1), (x2, y2)) ∈ R4
+ : y1 = x1 with} x1 ∈ [3/2, 2], x1 + x2 =

y1 + y2 = 3}. (b) C(E) = {((x1, y1), (x2, y2)) ∈ R4
+ : 2x1 ≤ y1 ≤ (1/2)x1 +

3/2 with x1 ∈ [1/2, 1]; (1/2)x1 + 3/2 ≤ y1 ≤ 2x1 with x1 ∈ [1, 5/4]; (1/2)x1 +

3/2 ≤ y1 ≤ 5/2 with x1 ∈ [5/4, 2], x1 + x2 = y1 + y2 = 3}.
(3) (a) W (E) = {((px, py), (x1, y1), (x2, y2)) = ((1/2, 1/2), (3/2, 3/2), (3/2, 3/2)}.

(b) W (E) = {((px, py), (x1, y1), (x2, y2)) = ((1/2, 1/2), (1, 2), (2, 1))}.
(4) (a) V ({1}) = 3/2, V ({2}) = 1, V ({1, 2}) = 3. Then Ψ1(V ) = 7/4, Ψ2(V ) =

5/4. By th definition of value allocation, it must hold (1/2)(x1 +x2) = 7/4 and

min{x2, y2} = 5/4. Hence, ((7/4, 7/4), (5/4, 5/4)) is the unique value allocation.

(b) V ({1}) = 1/2, V ({2}) = 1, V ({1, 2}) = 3. Then Ψ1(V ) = 5/4,Ψ2(V ) =

7/4. It must hold that (1/2)min{2x1, y1} = 5/4 and min{x2, 2y2} = 7/4.

Hence, there is no value allocation.

10.

(1) C(E) = {((x1, y1), (x2, y2), (0, 0)) ∈ R6
+ : y1 = (1/2)x1+1, x1+x2 = 4, y1+y2 =

2}.
(2) Equilibrium allocations will be on the diagonal. Any p is an equilibrium one.

(3) V ({i}) = 0 for every i and

V ({1, 2}) = V ({1, 2, 3}) = 4, V ({1, 3}) = V ({2, 3}) = 2.
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Therefore, we have

Ψ1(V ) = Ψ2(V ) = 5/3, Ψ3(V ) = 2/3.

By the defintion of value allocation, it must hold that

min{x1, 2y1} = 5/3

(1/2)min{2x2, 4y2} = 5/3

(x3 + 2y3)/2 = 2/3,

which implies that ((5/3, 5/6), (5/3, 5/6), (2/3, 1/3)) is the unique value alloca-

tion.

(4) (Preferences) Agent 1 and 2 can form a coalition and lie their preferences to

give nothing to agent 3 : u′1(x, y) = (x+ 2y)/2, u′2(x, y) = x+ 2y. Then

V ′({1}) = V ′({2}) = V ′({1, 3}) = V ′({2, 3}) = 2,

V ′({3}) = 0, V ′({1, 2}) = V ′({1, 2, 3}) = 4,

Therefore, we have

Ψ′
1(V

′) = Ψ′
2(V

′) = 2, Ψ′
3(V

′) = 0.

By the defintion of value allocation, it must hold that

(x1 + 2y1)/2 = 2

(x2 + 2y2)/2 = 2

(x3 + 2y3)/2 = 0

which implies that ((2, 1), (2, 1), (0, 0)) is a value allocation. Note that u1((2, 1)) >

u1((5/3, 5/6) and u2((2, 1)) > u2((5/3, 5/6)). (Endowments) Agent 1 and

2 can form a coalition and lie their preference to give nothing to agent 3 :

e′1 = (2, 1) e′2 = (2, 1). Then

V ′({1}) = V ′({2}) = V ′({1, 3}) = V ′({2, 3}) = 2,

V ′({3}) = 0, V ′({1, 2}) = V ′({1, 2, 3}) = 4,

Therefore, we have

Ψ′
1(V ) = Ψ2(V ) = 2, Ψ3(V ) = 0.

By the defintion of value allocation, it must hold that

min{x1, 2y1} = 2

(1/2)min{2x2, 4y2} = 2

(x3 + 2y3)/2 = 0

which implies that ((2, 1), (2, 1), (0, 0)) is the unique value allocation. Note that

u1((2, 1)) > u1((5/3, 5/6)) and u2((2, 1)) > u2((5/3, 5/6)).
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HOMEWORK 7

♠ We consider the same economy as in Homework 6 and keep the notations. In

addition, we define

• F (E) : the set of fair allocations.

• CF (E) : the set of coalitionally fair allocations.

1. Let (p∗, x∗) ∈ W (E). Show that if p∗ · x∗i = p∗ · x∗j for ever i and j, then x∗ is

envy-free.

2. Show that W (E) ⊂ CF (E).

3. Show that CF (E) ⊂ C(E).

4. Consider an economy E = {(Xi, ui, ei) : i = 1, 2, 3} where Xi = R2
+ for everyi and

u1(x, y) = min{x, y}, e1 = (1, 0)

u2(x, y) = min{x, y}, e2 = (0, 1)

u3(x, y) = (x+ y)/2, e3 = (0, 0)

u4(x, y) = (x+ y)/2, e4 = (0, 0)

(1) Find C(E).

(2) Find W (E).

(3) Find the value allocation where λi = 1 for i = 1, 2, 3 and λ4 = 0.

(4) Show that the value allocation in (3) does not have the equal treatment prop-

erty.

(5) Show that the value allocation in (3) is not coalitionally fair.

5. Show that for a game in normal form, a strong Nash equilibrium is an α-core

strategy.
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SOLUTION 7

1. Suppose not. Then there are consumers i and j such that x∗j �i x
∗
i . Since (p∗, x∗)

is a Walrasian equilibrium, p∗ ·x∗j > p∗ ·ei ≥ p∗ ·x∗i , a contradiction to the assumption.

2

2. Let x∗ ∈W ∗(E) but x∗ 6∈ CF (E). Then there exist disjoint coalitions S1, S2, and

(xi)i∈S1
∈∏i∈S1

Xi such that

(1)
∑

i∈S1
(xi − ei) =

∑

i∈S2
(x∗i − ei),

(2) xi �i x
∗
i for every i ∈ S1.

Let (p∗, x∗) ∈ W (E). Then p∗ · xi > p∗ · ei ≥ p∗ · x∗i for every i ∈ S1. Therefore,

0 <
∑

i∈S1
p∗ · (xi − ei) =

∑

i∈S2
p∗ · (x∗i − ei), a contradiction because p∗ ·x∗i ≤ p∗ · ei

for every i ∈ S2 implies
∑

i∈S2
p∗ · (x∗i − ei) ≤ 0. 2

3. Let S2 = ∅. Then
∑

i∈S2
(xi−ei) = 0 so that the definition of coalitionally fairness

is equilivalent to the core.

4.

(1) C(E) = {((x1, y1), (x2, y2), (0, 0), (0, 0)) ∈ R8
+ : y1 = x1, x1 ∈ [0, 1], x1 + x2 =

y1 + y2 = 1}.
(2) W (E) = {((px, py), ((x1, y1), (x2, y2), (0, 0), (0, 0))) ∈ ∆ × R8

+ : x1 = y1 = px ∈
[0, 1], x2 = y2 = 1 − px}.

(3) It can be shown that

V ({i}) = 0 ∀ i,
V ({1, 2}) = 1 V ({1, 3}) = 1/2 V ({1, 4}) = 0,

V ({2, 3}) = 1/2 V ({2, 4}) = 0 V ({3, 4}) = 0,

V ({1, 2, 3}) = 1 V ({1, 2, 4}) = 1 V ({1, 3, 4}) = 1/2 V ({2, 3, 4}) = 1/2,

V (I) = 1.

It follows that

Sh1 = 5
12 , Sh2 = 5

12 , Sh3 = 1
6 , Sh4 = 0.

At the value allocation, it must hold that

min{x1, y1} = 5/12, min{x2, y2} = 5/12, (x3 + y3)/2 = 1/6.

Therefore, the value allocation is given by

((x∗1, y
∗
1), (x

∗
2, y

∗
2), (x

∗
3, y

∗
3), (x

∗
4, y

∗
4)) = ((5/12, 5/12), (5/12, 5/12), (1/6, 1/6), (0, 0)).
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(4) The third consumer and the fourth consumer have the same utility functions

and initial endowments but their value allocations are different.

(5) Let S1 = {4}, S2 = {3}, and x4 = (1/6, 1/6). Then x4 − e4 = (1/6, 1/6) =

x∗3 − e3 and u4(1/6, 1/6) = 1/6 > 0 = u4(x
∗
4, y

∗
4).

5. Let x∗ be a strong Nash equilibrium but not an α-core strategy. Then there exist a

coalition S and (xi)i∈S ∈∏i∈S Xi such that for every i ∈ S, ui((xi)i∈S , (x
′
i)i∈I\S) >

ui(x
∗) for all (x′i)i∈I\S ∈∏i∈I\S Xi. The choice of (x′i)i∈I\S = (x∗i )i∈I\S implies that

x∗ is not a strong Nash equilibrium, a contradiction. 2
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HOMEWORK 8

♠ Consider an exchange economy with differential information : E = {(Xi, ui, ei,Fi, µ) :

i ∈ I}, where Xi = R`
+ and Fi is a finite partition of Ω for every i. Define

• SCC(E) : the set of strong coarse core allocations.

• CC(E) : the set of coarse core allocations.

• PC(E) : the set of private core allocations.

• FC(E) : the set of fine core allocations.

• WFC(E) : the set of weak fine core allocations.

1. Show that FC(E) ⊂ PC(E).

2. Show that PC(E) ⊂ CC(E).

3. Show that SCC(E) ⊂ CC(E).

4. Show that FC(E) ⊂WFC(E).

5. Consider a one-good economy with differential information where there are three

agents and three different states of nature that occur with equal probability.

u1(x) = log x, e1 = (2, 20, 20), F1 = {{ω1}, {ω2, ω3}}
u2(x) = log x, e2 = (22, 22, 1), F2 = {{ω1, ω2}, {ω3}}
u3(x) = log(x+ 1), e3 = (0, 0, 0), F3 = {{ω1, ω3}, {ω2}}

(1) Find CC(E).

(2) Find a private core allocation.

(3) Show that in every private core allocation agent 3 gets posititve expected utility.

(4) Find a weak fine core allocation.

(5) Show that in every weak fine core allocation agent 3 does not get anything.

6. Consider a one-good economy with differential information where there are three

agents and four states of nature that occur with equal probability.

u1(x) = log x, e1 = (20, 20, 2, 20), F1 = {{ω1, ω2, ω4}, {ω3}}
u2(x) = log x, e2 = (10, 4, 10, 10), F2 = {{ω1, ω3, ω4}, {ω2}}
u3(x) = log(x+ 1), e3 = (0, 0, 0, 0), F3 = {{ω1, ω4}, {ω2, ω3}}

(1) Find CC(E).

(2) Find a private core allocation of E .
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(3) Show that in every private core allocation the agent 3 receives positive expected

utility.

Now suppose that agent 3 has only trivial information F3 = {Ω}.

(4) Find CC(E).

(5) Is the allocation of (2) still in PC(E) ?

7. Consider a one-good economy economy with differential information where there

are three agents and three different states of nature that occur with equal probability.

u1(x) =

{ √
x if ω = ω1, ω2,

x if ω = ω3,
e1 = (4, 4, 4), F1 = {{ω1, ω2}, {ω3}},

u2(x) =

{ √
x if ω = ω1, ω3,

x if ω = ω2,
e2 = (4, 4, 4), F2 = {{ω1, ω3}, {ω2}}

u3(x) = x for every ω, e3 = (0, 0, 0), F3 = {{ω1}, {ω3}, {ω2}}

(1) Find CC(E).

(2) Find a private core allocation.

(3) Show that FC(E) = ∅.
(4) Find SCC(E).
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SOLUTION 8

1. Suppose not. Then there is x∗ ∈ FC(E) with x∗ 6∈ PC(E). Thus there exists a

coalition S with (xi)i∈S : Ω →∏

i∈S Xi such that

(1) xi − ei is Fi-measurable for every i ∈ S,

(2)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ− a.e.,

(3) vi(xi) > vi(x
∗
i ) for every i ∈ S, where vi(xi) =

∫

Ω ui(ω, xi(ω))dµ(ω).

Since xi−ei is Fi-measurable for every i ∈ S, xi−ei is
∨

i∈S Fi-measurable for every

i ∈ S. Hence, S with (xi)i∈S is a blocking coalition to x∗ in the definition of fine

core, a contradiction. 2

2. Suppose not. Then there is x∗ ∈ PC(E) with x∗ 6∈ CC(E). Thus there exists a

coalition S with (xi)i∈S : Ω →∏

i∈S Xi such that

(1) xi − ei is
∧

i∈S Fi-measurable for every i ∈ S,

(2)
∑

i∈S xi(ω) =
∑

i∈S ei(ω), µ− a.e.,

(3) vi(xi) > vi(x
∗
i ) for every i ∈ S.

Since xi−ei is
∧

i∈S Fi-measurable for every i ∈ S, xi−ei is Fi-measurable for every

i ∈ S. Hence, S with (xi)i∈S is a blocking coalition to x∗ in the definition of private

core, a contradiction. 2

3. Let x∗ ∈ SCC(E). Since x∗i is
∧

i∈I Fi-measurable for every i ∈ I, x∗i is Fi-

measurable for every i ∈ I. Moreover, x∗ satisfies the feasibility condition and the

no-blocking condition which is the same as that of CC(E). Hence x∗ ∈ CC(E). 2

4. Let x∗ ∈ FC(E). Since x∗i is Fi-measurable for every i ∈ I, x∗i is
∨

i∈I Fi-

measurable for every i ∈ I. Moreover, x∗ satisfies the feasibility condition and the

no-coalition condition which are the same as that ofWFC(E). Hence x∗ ∈WFC(E).

2

5.

(1) A coarse core allocation x∗ is a feasible allocation and x∗i is Fi-measurable for

every i. Furthermore, since each singleton coalition S = {i} cannot block x∗,

x∗ is individually rational. Now consider the coalition {1, 2} and (x1, x2). Since

F1 ∧ F2 = {Ω}, x1 − e1 = (c, c, c) and x2 − e2 = (−c,−c,−c) with c ∈ R. For

this coalition to block x∗, it must be the case that v1(x1) > v1(x
∗
1) ≥ v1(e1).

This implies c > 0, which, in turn, implies v2(x2) < v2(e2). Hence {1, 2}
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cannot block x∗. Similarly, {1, 2}, {1, 3}, {1, 2, 3} cannot block x∗. (Note that

F1 ∧ F2 = F1 ∧ F3 =
∧3

i=1 Fi = {Ω}). Therefore we have

CC(E) = {x ∈ L : x is feasible and individually rational }

where L =
∏3

i=1 Li with Li = {xi : Ω → R3
+ : xi is Fi-measurable } for every

i.

(2) An allocation of the following form satisfies the measurability and feasibility

condition of PC(E) :

x1 = (2 + δ, 20 − ε, 20 − ε),

x2 = (22 − δ, 22 − δ, 1 + ε),

x3 = ( 0, ε+ δ, 0),

where ε, δ ≥ 0. Note that ε, δ ≥ 0 is necessary to make everybody better off

his endowment due to concave utility functions. To make the allocation survive

the grand coalition {1, 2, 3}, consider a Pareto problem given by

max
ε∈[0,20]
δ∈[0,22]

λ

3
[log(2 + δ) + 2 log(20 − ε)] +

1 − λ

3
[2 log(22 − δ) + log(1 + ε)]

where the third agent’s weight is kept zero. When λ = 1/2, we get ε = δ = 6

so that

x∗1 = (8, 14, 14), x∗2 = (16, 16, 7), x∗3 = (0, 12, 0).

We claim that x∗ is a private core allocation. Since vi(x
∗
i ) ≥ vi(ei) for i = 1, 2, 3,

no singleton coalition can block x. Consider {1, 2} with (x′1, x
′
2) as a blocking

coalition . Since x′i − ei is Fi-measurable for i = 1, 2 and x′1 − e1 = −(x′2 − e2)

by feasibility, x′i − ei is F1 ∧F2-measurable. By the same argument in (1), this

coalition cannot block x∗. Similarly, {1, 3} and {1, 2, 3} cannot block x. Hence

x∗ is a private core allocation.

(3) Suppose not. Let x be a private core allocation with x3 = (0, 0, 0). Since

x3−e3 = 0, x1−e1 = −(x2−e2). Since, however, x1−e1 is F1-measurable and

x2− e2 is F2-measurable, x1− e1 and x2− e2 is F1∧F2-measurable. Therefore,

x1 − e1 = (c, c, c) and x2 − e2 = (−c,−c,−c) for some c ∈ R. If c 6= 0, agent 1

or agent 2 blocks x. Thus x = e. However, the grand coalition with x∗ blocks

x = e, a contradiction. 2

(4) Since
∨3

i=1 Fi = {{ω1}, {ω2}, {ω3}}, we have no information restriction on the

weak fine core. Note that since agent 1 and agent 2 pool their information to
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have the complete information, there is no incentive to give their endowments to

get an additional information. With this intutition, consider a Pareto problem

of {1, 2} :

max
x1,x2∈R3

+

λ

3
(log x1(ω1) + log x1(ω2) + log x1(ω3)) +

1 − λ

3
(log x2(ω1) + log x2(ω2) + log x2(ω3))

s.t.

x1(ω1) + x2(ω1) = 24

x1(ω2) + x2(ω2) = 42

x1(ω3) + x2(ω3) = 21

Let λ = 1/2. Then we have x∗1 = x∗2 = (12, 21, 21/2). We claim that the

allocation x∗ = (x∗1, x
∗
2, x

∗
3) with x∗3 = e3 is a weak fine core allocation. Since

vi(x
∗
i ) ≥ vi(ei) for i = 1, 2, 3, x∗ survives singleton coalitions. Since (x∗1, x

∗
2)

solves the Pareto problem of {1, 2}, x∗ survives the coalition {1, 2}. Consider

coalitions {1, 3} or {2, 3}. To make agent 3 better off, the other agent should

give positive amount of good in some state but agent 3 has nothing to give

him in return, which implies that he is worse off. Therefore, these coalitions

cannot block x∗. Finally, consider the grand coalition. To make agent 3 better

off, the other agents should give positive amount of good in some state but

agent 3 has nothing to give him in return, so that they end up with smaller

total endowment than before. This implies that agent 1 or agent 2 is worse off

since (x∗1, x
∗
2) solves the Pareto problem given above. Thus the grand coalition

cannot block x∗. Hence x∗ is a weak fine core allocation.

(5) Suppose not. Let x be a weak fine coalition with x3(ω) > 0 for some ω. Consider

the coalition {1, 2} with (x′1, x
′
2) such that

x′1 = x1 + (1/2)x3, x′2 = x2 + (1/2)x3.

Note that x′i is
∨3

i=1 Fi-measurable for i = 1, 2 since xi is
∨3

i=1 Fi-measurable

for i = 1, 2, 3. Since x′1 +x′2 =
∑3

i=1 xi = e1 +e2 and vi(x
′
i) > vi(xi) for i = 1, 2,

the coalition blocks x, a contradiction. 2

6.

(1) Since F1 ∧F2 = F1 ∧F3 = F2 ∧F3 =
∧3

i=1 Fi = {Ω}, the same argument as in

Problem 5 (1) applies, so that the coarse core is given by

CC(E) = {x ∈ L : x is feasible and individually rational }
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where L =
∏3

i=1 Li with Li = {xi : Ω → R4
+ : xi is Fi-measurable } for every

i.

(2) By the similar argument as in Problem 5 (2), we can verify that x∗ with

x∗1 = (18, 18, 3, 18), x∗2 = (9, 6, 9, 9), x∗3 = (3, 0, 0, 3)

is a private core allocation.

(3) Suppose not. Let x be a private core allocation with x3 = (0, 0, 0). Since

x3−e3 = 0, x1−e1 = −(x2−e2). Since, however, x1−e1 is F1-measurable and

x2− e2 is F2-measurable, x1− e1 and x2− e2 is F1∧F2-measurable. Therefore,

x1 − e1 = (c, c, c) and x2 − e2 = ((−c,−c,−c) for some c ∈ R. If c 6= 0, agent 1

or agent 2 blocks x. Thus x = e. However, the grand coalition with x∗ blocks

x = e, a contradiction. 2

(4) By the measurabliltiy and feasibility condition,

CC(E) = {e}.

(5) Since PC(E) ⊂ CC(E), the private core allocation x∗ in (2) is no longer a

private core allocation. In fact, PC(E) = {e}.

7.

(1) A coarse core allocation x∗ is a feasible allocation and x∗i is Fi-measurable for

every i. Furthermore, since each singleton coalition S = {i} cannot block x∗,

x∗ is individually rational. Now consider the coalition {1, 2} and (x1, x2). Since

F1 ∧ F2 = {Ω}, x1 − e1 = (c, c, c) and x2 − e2 = (−c,−c,−c) with c ∈ R. For

this coalition to block x∗, it must be the case that v1(x1) > v1(x
∗
1) ≥ v1(e1).

This implies c > 0, which, in turn, implies v2(x2) < v2(e2). Hence {1, 2} cannot

block x∗. Similarly, the grand coalition cannot block x∗ since
∧3

i=1 Fi = {Ω}.
Consider coalitions {1, 3} or {2, 3}. To make agent 3 better off, the other agent

should give positive amount of good in some state but agent 3 has nothing to

give him in return, which implies that he is worse off. Therefore, these coalitions

cannot block x∗. Therefore we have

CC(E) = {x ∈ L : x is feasible and individually rational }

where L =
∏3

i=1 Li with Li = {xi : Ω → R3
+ : xi is Fi-measurable } for every

i.
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(2) An allocation of the following form satisfies the measurability and feasibility

condition of PC(E) :

x1 = (4 − ε, 4 − ε, 4 + δ),

x2 = (4 − δ, 4 + ε, 4 − δ),

x3 = (ε+ δ, 0, 0),

where ε, δ ≥ 0. Note that ε, δ ≥ 0 is necessary to make everybody better off his

endowment due to the form of utility functions. To make the allocation survive

the grand coalition {1, 2, 3}, consider a Pareto problem given by

max
ε∈[0,4]
δ∈[0,4]

λ

3
[2
√

4 − ε+ (4 + δ)] +
1 − λ

3
[2
√

4 − δ + (4 + ε)]

where the third agent’s weight is kept zero. When λ = 1/2, we get ε = δ = 3

so that

x∗1 = (1, 1, 7), x∗2 = (1, 7, 1), x∗3 = (6, 0, 0).

We claim that x∗ is a private core allocation. Since vi(x
∗
i ) ≥ vi(ei) for i = 1, 2, 3,

no singleton coalition can block x. Consider {1, 2} with (x′1, x
′
2) as a blocking

coalition . Since x′i − ei is Fi-measurable for i = 1, 2 and x′1 − e1 = −(x′2 − e2)

by feasibility, x′i − ei is F1 ∧F2-measurable. By the same argument in (1), this

coalition cannot block x∗. Consider coalitions {1, 3} or {2, 3}. To make agent

3 better off, the other agent should give positive amount of good in some state

but agent 3 has nothing to give him in return, which implies that he is worse

off. Therefore, these coalitions cannot block x∗. Hence x∗ is a private core

allocation.

(3) Suppose not. Let x be a fine core allocation. Suppose x3 = (0, 0, 0). By the

measurability and feasibility condition, we have x = e. But the coalition {1, 2}
with x′1 = (4, 0, 8) and x′2 = (4, 8, 0) blocks 25 x = e, a contradiction (Note that

x′i is F1 ∨ F2-measurable for i = 1, 2). Now suppose x3 > 0. Then consider a

coalition {1, 2} with x′i = xi + (1/2)x3 for i = 1, 2. Since vi(x
′
i) > vi(xi) for

i = 1, 2, this coalition blocks x, a contradiction. 2

(4) Note that
∧3

i=1 Fi = {Ω} and ei is
∧3

i=1 Fi-measurable for every i ∈ I. Then

xi − ei = (ci, ci, ci) for some ci ∈ R. Note that
∑

i∈I ci = 0. Therefore, if ci 6= 0

for some i, cj < 0 for some j. This implies that xj is not individually rational

(i.e. he will block). Therefore, ci = 0 for every i ∈ I. Hence SCC(E) = {e}.

25We may consider x′
1 = (4, 1/4, 31/4) and x′

2 = (4, 31/4, 1/4), which is obtained by the Pareto problem

of {1, 2} without informational constraints.
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