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Abstract

This paper studies optimal taxation in a version of the neoclassical growth
model in which investment becomes productive within the period, thereby mak-
ing the supply of capital elastic in the short run. Because taxing capital is
distortionary in the short run, the government’s ability /desire to raise revenues
through capital income taxation in the initial period or when the economy is
hit with a bad shock is greatly curtailed. Our timing assumption also leads to
a tractable Ramsey problem without state-contingent debt, which can give rise
to debt-financed budget deficits during recessions.
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1 Introduction

This paper studies optimal fiscal policy in a version of the neoclassical growth model
in which capital is elastically supplied even in the short run. This is accomplished by

letting investment in capital become productive within the period.

It is well understood that the conventional timing in the neoclassical growth model,
in which the size of the capital stock today is the result of past investment decisions,
implies that capital is inelastically supplied in the short run. It should be equally clear
that a by-product of this conventional timing assumption—that capital is inelastically
supplied in the short run—is at the heart of many well-established results within the
optimal taxation literature. A prominent example is the well-known prescription to
tax initial asset holdings at confiscatory rates, a result that Chamley (1986) and
much of the subsequent literature tries to circumvent by imposing bounds on tax
rates: without these exogenous bounds, a first-best allocation obtains, an obviously
uninteresting solution. Tax rates over the business cycle are similarly dictated by the
conventional timing of the neoclassical growth model. Every period, the government
promises not to distort the return to investment while at the same time announcing
that recessions will be financed through unusually high taxes on capital income, and
vice versa during booms. This strategy is clearly optimal as the government can
avoid distorting investment decisions ex ante while at the same time exploiting its
ability to absorb shocks in a non-distortionary way by taxing/subsidizing the return

to capital ex post.

This paper shows that changing the timing of events in the neoclassical growth
model in such a way as to make the supply of capital elastic in the short run drastically
alters the prescriptions that emanate from standard Ramsey problems. Our assump-
tion that investment in capital becomes productive within the period, which can be
interpreted as a stand-in for several factors that make capital elastic in the short run,
gives individuals an alternative to supplying capital which is not present under con-

ventional timing.! Knowing that this alternative exists limits the ability and desire

'Prominent factors that make capital elastic in the short run include: endogenous capital utiliza-
tion; the issue of distinguishing labor and capital income; or hiding capital income altogether. While
the source of capital elasticity is not explicit in our environment, our timing assumption makes the
environment sufficiently tractable to study the fiscal policy implications of an elastic capital sup-
ply in deterministic/stochastic settings, with complete and incomplete markets, with and without



of the government to use capital income taxes to finance government expenditures,

either in the initial period or over the business cycle.

One of our main results, already alluded to above, is that the solution to our
Ramsey problem generally features a unique non-trivial level of distortions. While
the level of distortions depends on individuals’ initial asset holdings, it does not rely
on the presence of bounds exogenously imposed on the Ramsey problem. As such, the
trivial result that the solution to the Ramsey problem without imposing exogenous

bounds is time-consistent does not hold in our environment, as will be clear below.?

Next we offer a complete characterization of the behavior of tax rates in a stochas-
tic environment in which the government has access to state-contingent debt. Under
a class of utility functions in which utility from consumption and disutility from la-
bor are separable, we show that neither the labor nor the capital income tax varies
over time, and that the tax on capital is zero in all but the initial period. Under
Cobb-Douglas utility, both tax rates become pro-cyclical, that is, they are low dur-
ing recessions. In either case, the government uses state-contingent debt as a shock
absorber, much like the ez post capital income tax is used for that purpose in Chari
et al. (1994).% As a result, debt and the primary deficit move in opposite directions, a
counterfactual result which Marcet and Scott (2009) showed to be pervasive in models
in which the government has access to state-contingent debt. This leads us to study

a Ramsey problem under incomplete markets.

The Ramsey problem without state-contingent debt is a notoriously difficult prob-
lem to study (see Chari and Kehoe (1999)). However, this problem is quite tractable
in our framework. Technically, this tractability emanates from the fact that our first
order conditions can be expressed in terms of prices as functions of quantities. This
allows us to write a version of the Ramsey problem, known as the primal, in which the

government chooses quantities subject to a sequence of implementability constraints.

commitment.

2The conventional solution entails taxing the initial return on capital at confiscatory rates, and
to finance all future government expenditures through the return on that capital. This solution
turns out to be highly distortionary in our environment. The contrast in results across the two
environments is reminiscent of the Lucas (1980) vs Svensson (1985) timing issue in cash-in-advance
models, as shown in Nicolini (1998).

3More precisely, either state-contingent debt or the capital income tax or combinations of these
two instruments can be used to absorb shocks in Chari et al. (1994). Because of our timing assump-
tion, there is no such indeterminacy in our environment.



Without state-contingent debt, the government resorts to taxing capital income
at the outset of a recession. Indeed, even with a tax break on labor income, the
government’s primary deficit improves in the first period of a recession. However,
the deficit increases during the latter part of a recession, and this deficit is financed
by debt. Subsequently, the amount of government debt tends to revert back to its
pre-recession level during good times.* As such, our environment can give rise to
debt-financed deficits during recessions, in line with the empirical findings of Marcet
and Scott (2009). In the latter paper, as well as in Scott (2007), capital income taxes
are ruled out altogether in order to focus on the implications of their model with and
without state-contingent debt. They argue that ruling out contingent debt is key
to bring the model’s prescription closer to the data. In addition, Scott (2007) shows
that under incomplete markets, government debt and the labor tax rate inherit a unit
root component which, as emphasized by Aiyagari et al. (2002) in a model without
capital, lends some support to Barro (1990)’s conjecture. Our results confirm that
these properties hold even when the government sets capital tax rates optimally. More
recently, Farhi (2010) also studies optimal fiscal policy with risk-free government debt.
He uses the conventional timing but imposes that the government set capital income
tax rates one period ahead in order to mitigate the free lunch associated with volatile
ex post capital income tax rates. While our Ramsey policies have qualitatively similar
business cycle properties—the capital income tax rises while the labor income tax
declines at the outset of a recession—the capital income tax rate is much less volatile
in our environment. While Farhi (2010) emphasizes how optimal policy is affected
when the government is allowed to trade capital, our focus is squarely on the fiscal
policy implications of an elastic supply of capital, and the potential for these policies

to lead to debt-financed deficits during recessions.

Before moving to the description of our economic environment, our central as-
sumption that investment becomes productive within the period deserves some com-
ments.” First, we show in the Appendix that this assumption can be viewed as the

opposite from the equally extreme conventional assumption that today’s investment

4Note, however, that government debt is extremely persistent in the long run. We return to this
point below.

SInterestingly, a similar timing is commonly used in the housing literature, in which individuals
move into their house in the same period in which the house is built: e.g. see Kiyotaki et al. (2011)
or Fisher and Gervais (2011).



only becomes productive in the next period. Second, we view this assumption more
as a way to introduce some elasticity to the supply of capital rather than a way of im-
proving the realism of the neoclassical growth model.® There are countless issues for
which the conventional timing assumption is either desirable or, at least, innocuous.”

Optimal taxation is just not one of them.

The rest of the paper is organized as follows. The next section presents our gen-
eral economic environment, which consists of the neoclassical growth model with an
alternative timing assumption. In Sections 3 and 4 we set up and analyze a deter-
ministic and a stochastic Ramsey problem, respectively, while Section 5 is devoted to
the analysis of a Ramsey problem without state-contingent debt. A brief conclusion

is offered in Section 6.

2 General Economic Environment

The economic environment we consider is similar to that of Chari et al. (1994): a
stochastic version of the one-sector neoclassical growth model. As emphasized in
the introduction, the main distinguishing feature of our environment is that current
investment in capital becomes productive immediately. In this section, we introduce
the general economic environment. We later study special cases of this environment,
starting with a deterministic version, followed by stochastic versions with and without

state-contingent government debt.

Time is discrete and lasts forever. Each period the economy experiences one of
finitely many events s, € S. We denote histories of events by s* = (sq, s1,...,8;). As

of date 0, the probability that a particular history s’ will be realized is denoted 7(s").

Households The economy is populated by a large number of identical individuals
who live for an infinite number of periods and are endowed with one unit of time

every period. Individuals’ preferences are ordered according to the following utility

6As already noted, an alternative would be to introduce endogenous capital utilization as in
Martin (2010) or Zhu (1995). As emphasized above, the advantage of our timing assumption is
that it leads to a tractable (primal) problem with non-contingent government debt, even when the
government lacks commitment.

"In fact, the first-best allocations under both timing assumptions are essentially indistinguishable.



function .
YD B m(sHU (e(sh), U(sY). (1)
t=0 st
where ¢(s") and I(s") represent consumption and hours worked at history s'. We
assume that the felicity function is increasing in consumption and leisure (1 — I(s")),
strictly concave, twice continuously differentiable, and satisfies the Inada conditions

for both consumption and leisure.

Each period individuals face the budget constraint

c(st)+k(st)+z q(5041]8")b(5041]8") = w(s)(s")+r(s) k(s +k(s' 1) +b(s|s"™ 1) (2)
Se41

where w(s?) = [1 — 7%(s")]w(s!) and r(s') = [1 — 7%(s")]7(s") denote after-tax wage
and interest rates, respectively. The fiscal policy instruments 7% and 7%, as well as
government debt b(s;y1]s"), will be discussed in detail below. Notice that capital and
government debt are treated rather symmetrically in budget constraint (2), except
of course for the fact that the size of the capital stock and its return cannot depend
on tomorrow’s state of the economy. In other words, today’s price of one unit of
capital tomorrow is 1 — r(s"), much like today’s price of a bond which pays one unit
of consumption good tomorrow in state s;iq is q(s11]s"). As we will see later, the
symmetry is even clearer without uncertainty or in the absence of state-contingent
government debt. This feature is a direct consequence of our timing assumption,
according to which newly installed capital is used in production within the period.
In the Appendix we show that if a period is composed of many sub-periods, then this

budget constraint is one way to resolve the time-aggregation problem.

Letting p(s') denote the Lagrange multiplier on the budget constraint at history s,
the first order necessary (and sufficient) conditions for a solution to the consumer’s

problem are given by (2) and
Br(sYU(s") = p(s"), (3)
Bir(s)Ui(s") = —w(s)p(s"), (4)

at all dates ¢ and histories s* for consumption and labor,

—p(s") (L=r(s)) + Y () =0, (5)

St+1



at all dates ¢ and histories s* for capital,

—p(s")a(sils’) +p(s™) =0, (6)

at all dates ¢, histories s!, and all states s;.; tomorrow for bond holdings, as well as

the transversality conditions

limy o p(s')k(s") = 0, (7)
limy oo o, p(s™)b(s441]s") = 0. (8)

St+1

Under complete markets, it is well known that these first order conditions and the
budget constraint can be conveniently combined into a single present value constraint,

as stated next:

Proposition 1 Under complete markets, an allocation solves the consumer’s problem

if and only if it satisfies equations (2)—(8), or, equivalently, if and only if it satisfies®

> B7(s") [Uels')e(s') + Un(s)(s")] = Ao, (9)

t,st

where Ay = U.(so)[k_1 + b_1], and k_1 and b_y are initial amounts of capital and

government debt held by individuals.

Proof. The proof is standard. [See for example Chari et al. (1994).] n

Below we refer to equation (9) as an implementability constraint.

Production The production technology is represented by a neoclassical production

function with constant returns to scale in capital (k) and labor (1):

y(s') = f(k(s"), U(s"), 80) = A(s)k(s")"U(s") 7, (10)

where A(s;) represents the state of technology in period ¢, y(s') denotes the aggregate
(or per capita) level of output, and k(s') and I(s") denote capital and labor used in
production. What distinguishes this paper from others in the literature is that capital

used in production in period t is chosen in period ¢, which reflects the fact that the

8To obtain this equation, multiply the budget constraint (2) by p(s'), add them up, and use the
first order conditions (3)—(6) to replace prices.



current accumulation of capital is used within the period. Accordingly, our law of

motion for capital is defined via
i(s") = k(s') + dk(s") — k(s'™1). (11)

The important feature of this law of motion is that investment in capital becomes
productive immediately, i.e. it is used in production and depreciates within the

period. In this way, the supply of capital is elastic even in the short run.

Output can be used either for private consumption (c(s')), public consumption
(g(s')), or as investment (i(s')). Using the law of motion (11), feasibility requires
that

c(s") 4 g(s") + k(s") = f(k(s"),1(s"), s) — Ok(s") + k(s"). (12)

The usual properties of the neoclassical growth model hold in our environment: the
capital to labor ratio is independent of scale, firms make zero profits in equilibrium,

and factors are paid their marginal products:

w(s') = fi(k(s),U(s"), ) = fils"); (13)
P(s") = fu(k(s"). U(s"), ) — 0 = fiu(s") — o, (14)
where w(s") and 7(s') denote before-tax wage and interest rates, respectively.

As with the budget constraint, we show in the Appendix that if a period is com-
posed of many sub-periods, then feasibility constraint (12) is but one of two approx-
imations that can be used to resolve a time-aggregation problem: while one approx-
imation implies that capital remains unused for the length of the period, the other

implies that capital is used to produce itself at the beginning of the period.

The Government The government’s role in this economy is to finance an exoge-
nous stream of government expenditures, g(s’). The fiscal policy instruments available
to the government consist of a proportional labor income tax 7%(s'); a proportional
capital income tax 7%(s'); and issuance of new government debt b(s;,1|s').” At date t,
the government’s budget constraint is as follows:

g(s") F0(sels"™) = D alseaals')bsirals’) + 7 (s )i (s)U(s") + 7" (") (" k(s"). (15)

St+1

9Evidently, we do not allow the government to tax wealth directly: doing so would render the
problem trivial, as initial wealth could simply be taxed away.



The government thus has to finance government expenditures as well as debt issued
yesterday that promised to pay in the event that s, would occur today. In addition
to taxing capital and labor income, the government can raise revenues by issuing new

(state-contingent) debt.

3 Deterministic Ramsey Problem

Before analyzing the general stochastic model introduced in the previous section, it
will prove instructive to study a deterministic version of the model first. The intuition

from this simpler model will carry over to the stochastic environment.

Accordingly, we set up a standard Ramsey problem for a deterministic version of
the model. As is well known, there is an equivalence between choosing fiscal policy
instruments directly and choosing allocations among an appropriately restricted set

0

of allocations.!” The government’s problem consists of maximizing the utility of

the representative individual (1) subject to the implementability constraint (9) and
feasibility (12).'' If we let A denote the Lagrange multiplier associated with the

implementability constraint, we can define a pseudo-welfare function W as
W(Ct, lt, )\) = U(Ct, lt) + A (UCtCt + Ultlt) .
The Lagrangian associated with the Ramsey problem, given k£_; and b_, is then given
by:
L(k_y,b1) =min  max_ > BW (e, 1, A) = Mg (kg +b_)
t=0

A A{etleske} 2o

subject to the feasibility constraint
e+ G+ ke = [k, ) — 0k + ki

It should be clear that one can replace the feasibility constraint into the objective

function, and that the labor supply can be assumed to satisfy an optimality condition.

10See Chari and Kehoe (1999) or Erosa and Gervais (2001).

1Tt is well known that if an allocation satisfies the implementability constraint and the feasibility
constraint, it must also satisfy the government budget constraint (15)—e.g. see Chari and Kehoe
(1999) or Erosa and Gervais (2001). Accordingly, we omit the proof.



Accordingly, slightly abusing notation, the Ramsey problem can be rewritten as

{ki}?io

L(k_1,b_1) = m/\in max {W(k’_l, ko, /\) — AU (k_1,b_1) + ZBtW(kt_l, ks, /\)}
t=1

Notice that the last term inside the maximand can be represented by a standard

recursive problem: if we define V' (k, \) via
— / /
V (k, \) = max {W(k, K A) + BV (k ,/\)},
then the Ramsey problem becomes
L(k_1,b_1) = m/\in II}C%X {W(k;_l, ko, )\) — AU a1 + BV(!{:O, )\)}

= min Vik_1,b_1,\),

where V is the value of the maximand evaluated at the optimum for any given value
of \.

Figure 1 shows, under a particular parameterization of the economy described
under the figure, the shape of the value function V as a function of A, for a given
value of initial assets. What this figure shows is that without any restrictions on the
fiscal policy instruments or otherwise, the optimal level of distortions, as represented
by A, is non-zero. Indeed, labor income is taxed at a rate of 19% in the long run.
Capital income is not taxed in the long run: this can be shown formally as we will

see in the next section.

The fact that it is optimal to distort this economy is in sharp contrast to results
obtained under the more conventional timing whereby investment made during the
period only becomes productive the next period. The reason is well known: under
conventional timing, taxing initial assets represents a lump-sum way to raise revenues
for the government, as these assets were accumulated in the past. Accordingly, the
optimal fiscal policy entails taxing these initial assets at ‘confiscatory’ rates, or just
enough for the government to finance the present value of its spending. In terms
of Figure 1, the value function V would be a strictly increasing function, with its

minimum at exactly zero, meaning that a first-best outcome would be attained.

The intuition for our result comes directly from our timing assumption. Since

investment becomes productive immediately, and its return realized during the period,

10



Figure 1: Value function ‘7()\)
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Notes: The parameterization underlying this figure is as follows: Cobb-Douglas pro-
duction function with a capital share of 1/3; capital depreciates at a rate of 7% per
period; utility function additively separable and logarithmic in consumption and leisure;
discount factor equal to 0.958; government spending such that it represents around 17%
of steady state output; initial capital is set to 1.5 (below its steady state value of 1.8)
and initial debt is set to 0.

taxing capital at date zero becomes distortionary: individuals do not have to supply
capital accumulated from the past. They can, and will, consume large amounts should
the government choose to tax their capital away. Realizing that fact, the government
does not rely exclusively on confiscating initial assets. Nevertheless, in the numerical
example underlying Figure 1, the initial tax rate on capital income is very high,
close to 700%."? As a result, consumption at date 0 is around 50% higher than in
period 1, which is itself slightly below its steady state level. The tax rate on labor
at date 0, however, is negative 20%: this makes leisure relatively expensive in that

period, thereby increasing the labor supply.

12While the capital income tax is very high in the initial period, it is far from being sufficiently
high to eliminate all future distortions, as discussed above.

11



The general message of this analysis is that the government’s ability to use cap-
ital income taxes in a lump-sum fashion disappears once the supply of capital is
elastic. This simple yet powerful message will also be at the heart of our findings in

a stochastic economy, to which we now turn our attention.

4 Stochastic Ramsey Problem

To study optimal policy in this environment, we proceed as in the previous section
and set up a standard Ramsey problem. With A still denoting the Lagrange multiplier

on the implementability constraint, the pseudo-welfare function W now reads
W (e(s'),1(s"),N) = U(c(s),1(s")) + X [Uc(s")e(s') + Ui(sHI(sY)] . (16)

The Ramsey problem is thus as follows:

L(k_1,b_1) = min max te(sHW (c(sh). 1(s). A
(bonbm) =i 32 AROW () (). )

- )\Uc<80)[k’_1 + b_l]

subject to the feasibility constraint (12), keeping in mind that by Walras’ Law the
government budget constraint must hold and so does not constrain the solution to

this problem.

The government typically has more instruments than it needs in the stochastic
neoclassical growth model, in the sense that many tax codes can decentralize any given
allocation (e.g. see Zhu (1992) or Chari et al. (1994)). Such is not the case in our
environment: our tax code is unique, in the sense that any given allocation can only
be decentralized by a single tax system. Technically, this comes from the fact that
the tax rate on capital income can be uniquely recovered using the marginal product
of capital (14) as well as the optimality conditions (3) and (5): for any implementable
allocation, there exists a single value of the capital tax which makes these equations
hold. Intuitively, the indeterminacy under conventional timing comes from the fact
that an allocation can, for example, be implemented with a tax rate on capital income
that varies with the state tomorrow and risk-free debt, or with a flat tax on capital

income tomorrow and state-contingent debt. Here, the capital income tax applies to

12



the return to investment made during the period, so it is uniquely determined even
with state-contingent debt. It follows that ruling out state-contingent debt is not

innocuous in our environment, as will be clear in the next section.

The optimality conditions for this Ramsey problem are quite simple, and can be
analyzed analytically. Let 8'¢(s") represent the Lagrange multiplier on the feasibility
constraint (12) at history s*. The first order conditions with respect to consumption,

labor, and capital are, respectively,

T(sOHWe(s) = o(s"), (17)
T(sH(s") = —fi(s)e(s), (18)
O(sH 1= (ful(s) =0)] = B o(s™), (19)

where W, and W, represent the derivative of the pseudo-welfare function W (16) with

respect to consumption and the labor supply, respectively.

4.1 Optimal Fiscal Policy

The rest of this section is devoted to characterizing optimal fiscal policy. Our charac-
terization, which requires making assumptions about the form of the utility function,
involves in turn the labor income tax and the capital income tax. An important note

concerning state-contingent debt concludes the section.

We start by establishing that if the per-period utility function is separable between
consumption and labor, then the labor income tax does not depend on the state of
the economy, nor does the capital income tax, which is zero in all but the first period
in this case. We later argue that under a more general utility function in which

individuals care about leisure, both tax rates tend to be pro-cyclical.

Proposition 2 Assume that the felicity function is separable, U(c,l) = u(c) + v(1),
with u(c) and v(l) both exhibiting constant elasticity of substitution. Then the tax rate
on labor income is invariant to the productivity shock.

Proof. See Appendix. [

The intuition for this result is that because the elasticity of the labor supply

does not vary with the shock, there is no reason for the government to tax labor at

13



rates that vary with the shock.'® Note that the previous result does not apply when

individuals care about leisure, as opposed to disliking labor—see Proposition 4 below.

Our next results pertain to the tax on capital income. We show that capital income
should not be taxed if the utility function is separable and exhibits constant elasticity
of substitution in consumption. We will argue later that under non-separable utility,

the tax rate on interest income is likely to be pro-cyclical.

Proposition 3 Assume that the felicity function is separable, U(c,l) = u(c) + v(1),
and that u(c) exhibits constant elasticity of substitution. Then the capital income tax

rate is zero at all dates and histories (other than the first period).

Proof. See Appendix. [

This Proposition is in sharp contrast to the results in Chari et al. (1994), where
the ex post tax rate on capital income is extremely volatile.'* The intuition is that
in their environment, the return on investment made today is taxed tomorrow. Since
the investment decision has already been made when the tax authority sets the tax
rate on capital income, this instrument is extremely useful to absorb shocks to the
budget of the government. For example, if the economy experiences a bad shock
today, then the government will tax capital income at a high rate to absorb the loss
in revenue. The more persistent the shock is, the higher the tax rate. In fact, under
reasonable parameter values, the increase in capital income taxes is so large that
the government runs a primary surplus in the period of a negative shock, thereby
absorbing the future path of low government revenues with very little change to the
tax rate on labor income. Of course, the tax authority always promises individuals
that on average capital income will not be taxed. This is what Chari et al. (1994)
refer to as the ex ante tax rate on capital income, which, under the assumptions of

our proposition 3, is zero.

In our environment, the return on capital is known at the time individuals make
their investment decision, thereby eliminating the distinction between ex ante and ex

post taxes on capital. In particular, the tax authority no longer has the ability to

13Evidently, the same argument can be made using s'~! and s as the two histories, which means
that the tax rate on labor is not only state-independent, but also constant over time.

14 As pointed out at the beginning of this section, however, one should keep in mind that this
statement implicitly picks one of many potential tax codes.

14



absorb shocks in a non-distortionary fashion through highly volatile capital income

tax rates.

Under more general preferences, the tax rate on capital income will not be equal
to zero in general. We now argue that both the labor and capital income tax rates

are likely to be pro-cyclical.

Proposition 4 Assume that A > 0 and that the felicity function is given by U(c,l) =
u(c)v(l), with u(c) = (1 — o)1= and v(l) = (1 — )"0~ = (1 — )", with o > 1
and v >0, and In(c) + nln(1 — 1) for o = 1. Assume that there exist two histories s’
and §* such that 1(s') > 1(§"). Then 7(s") > 7*(8") if and only if

-1

A< (1-—0)1+v) (20)

Proof. From equations (3), (4) and (32), the tax rate on labor income can be

expressed as

)\(Hl(st) — Hc(st))
L+ XA+ AH(st)

Under the stated utility function, H. and H; are such that

(s") = (21)

H(s) = H{s') = 1=
Hy(s") = —0 + %/éj))

Using these expression in equation (21) we have

A
T MNo—2)—U(sH(1+ A1 =) (1 +v))

7 (s")

It follows that the tax rate is higher under state s’ than §' if the term multiplying

labor in the denominator is positive, that is, if condition (20) holds. |

Note that we need to assume that the economy is distorted (A > 0), otherwise
all taxes are zero. This Proposition establishes that whenever condition (20) is sat-
isfied, if labor is pro-cyclical, so will the tax rate on labor income. Note that under
logarithmic utility, i.e. when ¢ = 1, the condition is always satisfied. It becomes less

likely to be satisfied as individuals become more risk averse, i.e. as ¢ increases. As

15



such, this Proposition is useful to interpret the finding in Chari et al. (1994) that the
correlation between the shock and labor taxes changes sign as they change the risk
aversion parameter. Finally, note that what is key for the cyclicality of the labor tax,
or lack thereof, is whether the utility function exhibits constant elasticity of substitu-
tion (CES) in labor or in leisure. When it is CES in leisure, the labor supply elasticity
varies with the level of the labor supply, becoming more inelastic as the labor supply
increases. This is in contrast to Proposition 2, where the labor supply elasticity was

invariant to the level of the labor supply.

Under the utility function stated in Proposition 4, the tax rate on capital income
will also tend to be pro-cyclical: subsidized in bad times and taxed in good times.

To see this, note that the function H,.(s') under this utility function is given by

HA =0 =)

which, since 1 < 0, is increasing in [. Now from equations (33) and (34), we have

L—r(sh) D T (L A+ AH(s"))Uel(s™) (22)
L—=7(st) >, m(sttst) (1+ X+ AH (s"))U,(st1)

When this ratio is smaller than 1, capital income is subsidized, and capital income is
taxed if the ratio is greater than 1. In particular, capital income is subsidized when
H.(s") is relatively low, i.e. when the labor supply is relatively low. Much like the
labor income tax, the capital income tax is thus likely to be pro-cyclical as long as

labor is pro-cyclical.

The results of this section tell us that depending on the form of the utility function,
labor and capital income taxes can either be acyclical or pro-cyclical. However, these
results are silent as to the behavior of government debt over the business cycle, even if
taxes are pro-cyclical. This is because with state-contingent government debt, it may
be optimal for the government to commit to a policy that involves repaying a lower
amount of debt during recessions—a partial default of debt in the words of Chari
and Kehoe (1999). This can easily be established by deriving a present value budget
constraint for the government. By substituting forward b(s"™|s?) into the government
budget constraint (15), letting ps(st) = 7¢(s)w(s)i(s') + 7F(s))P(sh)k(s!) — g(s!)
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denote the primary surplus, one obtains the following representation for debt:

b(st]st +ZZ T+1|S T+1’8t).

T=t S;41
This equation states that a shock which reduces the present value of primary surpluses
is associated with a low debt payment. In other words, the amount of debt that comes
due following a shock that reduces the present value of primary surpluses must be
lower than the amount of debt that comes due in the event of a shock that increases
the present value of primary surpluses: state-contingent debt is used as a shock
absorber. Whether this translates into an increase or a decrease in the value of debt
outstanding is not clear (see equation (15)): while the government faces a primary
deficit in bad times, it also wakes up with fewer bonds to repay. However, numerical
results suggest that the change in the primary deficit is small relative to the relative
size of debt repayed in good vs. bad times. As a result, the government issues less

debt in bad times than in good times."

To conclude, our model implies that while the primary deficit can be counter-
cyclical (i.e. tax revenues are low in bad times and high in good times), the presence
of state-contingent government debt can make government debt pro-cyclical and thus
negatively correlated with the primary deficit, a phenomenon which we typically do
not observe (see Marcet and Scott (2009)). Accordingly, we now turn our attention

to a situation in which the government only has access to risk-free debt.

5 Ramsey Problem without State-Contingent Debt

Ruling out state-contingent debt and moving to incomplete markets in the standard
neoclassical growth model has proven difficult (e.g. see Chari and Kehoe (1999)).
In our framework, however, this task is quite tractable. To see this, consider the

consumer’s budget constraint without state-contingent debt:
o(s') + k(s") + q(s")b(s") = w(s")U(s") +r(s)k(s") + k(s") +b(s"") + T(s"), (23)

where T; is a non-negative lump-sum transfer. As in Aiyagari et al. (2002) and

Farhi (2010), these lump-sum transfers are required for the government to avoid

15Similar results are discussed in Chari and Kehoe (1999) and Marcet and Scott (2009).
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rebating resources to individuals in a distortionary way. In other words, should the
government find itself in a situation where it has accumulated a sufficient amount
of assets (negative debt) that it can finance its spending with the return on these
assets even in the worst state of the economy, then transfers will be used to rebate
extra resources to individuals in better states of the world. Evidently, this situation
can only occur when the government faces natural asset and debt limits: with more
stringent debt limits, as will be the case in our numerical examples, these transfers will
always be zero. As such, we omit these transfers in the Ramsey problem below, with
the understanding that transfers would be used rather than negative distortionary

taxes should that situation arise.

It should be clear that the first order conditions for consumption, labor, and
capital, equations (3)—(5), remain valid under budget constraint (23). These equations
imply that

Ul<8t)
ty :

1—r(s ﬂz (s sh) (STJ;))?

which can be replaced in the budget constraint to obtain

St+1

) () )3 3 o) T ) = P k(s 006, (20

St+1
Of course, without state-contingent debt these budget constraints can no longer be
expressed as a single present-value budget constraint. Ruling out state-contingent
debt amounts to imposing a sequence of budget or implementability constraints of the

form above. Finally, as discussed above, we also impose debt limits: M < b(s*) < M.

Given the form of the implementability constraint (24), we rearrange terms to

obtain the following Ramsey problem in Lagrangian form:

L(k_1,b_1) = min max b { H1(st
( 1 1) {)\(St)zo}t’st {C(st),l(st) (s }ts ZSZ/Q ( ) ( ))

Ui(s )
Ue(s?)

+ A(s") (c(st) + I(s") — k(s™) — b(st_1)> U.(s")
FA Y (R + b)) UL - (25)

18



subject to feasibility (12) and debt limits at all dates and histories, given k_; and
b_q, with A_; = 0.

5.1 Analysis

We first establish that the evolution of the multiplier A, which reflects the distor-
tionary nature of taxation over time, contains a permanent component—a result first
discussed in Aiyagari et al. (2002) in a model without capital, and more recently by
Scott (2007) in a model with capital in which capital income taxation is ruled out.
To establish this result, notice that the first-order condition for government debt,

assuming an interior solution, states that

Z 5t+1ﬂ_(st+1) (}\(St)Uc(St+l) o )\(St+1)Uc(st+1>) —0. (26)
st+llst
Since A(s') is known at history s, it can be taken out of the expectation, establishing

that
Dy TSTHHSHUL(sTA(sTH)

zsm (st st)U,(st) ;

so that the multiplier A\ follows a risk-adjusted Martingale. An interesting special

As") = (27)

case, to which we will return below, is one where the felicity function is quasi-linear,
ie. U(e,l) = ¢+ v(l). In this case, the marginal utility of consumption is constant
at unity, and so the stochastic process for the multiplier A becomes a non-negative
martingale. Indeed, Farhi (2010) shows that if the government faces natural debt
limits and the stochastic process governing the state s; converges to a unique (non-
degenerate) stationary distribution, then \; converges to zero, which implies that the
Ramsey allocation converges to a first-best allocation (i.e. all taxes are zero in the

long run). This result holds in our economy as well.

In general not much can be said analytically about the behavior of optimal taxes
in this environment. In particular, nothing can be said about the labor income tax,
at least as far as we can tell. For the capital income tax, we establish one special case

in which it is always zero. If we let 5'7(s")¢(s") be the multiplier on the feasibility
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constraint at history sf, the first order condition with respect to capital reads

Z ﬁt+177'(8t+1) ()\(St+1> o /\(St)) Uc(stJrl)

stt1|st

+B(se(s) (1 — (fils) — ) = 3 BHia(s (s ) = 0,

sttt

which, given (26), implies that

Zst+1 |st 5W(3t+1>¢(3t+1)
7(st)p(s") '

As usual, recalling equation (33)—which holds here as well-—capital income should

L= (fi(s") —0) =1 —7(s") = (28)

not be taxed (7(s') = r(s')) if the shadow value of resources is proportional to the
marginal utility of consumption at all dates and states, i.e. if ¢(s') o< U.(s").'® This
will in general not be the case, even under a per-period utility function separable
between consumption and leisure. In this case, the value of the multiplier ¢, from the

first order condition for consumption, is given by

U ))

6(s") = Ud(s") {1 + A(s") ( D

%(k(st_l) +b(st_1))} . (29)

Clearly, the term inside the square brackets will not be constant in general. There

— (A = AG")

is, however, one special case under which we can establish that capital income should

not be taxed, as we state in the following proposition.

Proposition 5 If the per-period utility function is quasi-linear in consumption, i.e.

U(c,l) = c+v(l), then the tax rate on capital income is zero.

Proof. First note that under this utility function, because the marginal utility of
consumption is fixed at unity, (33) implies that 1 —r(s") = 5. From (29), the value of
the multiplier on the feasibility constraint is given by ¢(s') = 1+ A(s'). Furthermore,
(27) implies that A(s") = >0, 7(s"*[s)A(s"*!). Using these facts in equation (28)
imply that 1 — 7 = (. ]

I6Note that this is merely a sufficient condition, so there can be cases in which this condition does
not hold yet the tax rate on capital income is nevertheless equal to zero. Indeed, this is the case in
Proposition 5 below.
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5.2 Numerical Examples

To gain more insight into the kind of prescription that emanate from the model
without state-contingent debt, we resort to numerical results. To do so, we compute
solutions using a recursive formulation of the Ramsey problem (see Appendix for
details). In that formulation, we use the current state of productivity (s), capital (k),
debt (b), and consumption (c), to represent the state of the economy.'” From period

1 on, the recursive Ramsey problem is as follows:
Vikbes)= max {U(c, D)+ BE[V(E .V, c(s'), s')]s] } (30)
subject to
Uec + Ul + (K + )8 w(s|s)Ue(s) = Ua(k +b) = 0

f(K' 1,s) =0k +k—c—g—kK =0

M<V <M.
In turn, the problem at date zero is:
Lk boso) = max, {U(e.d) + BBV Y. cls). o) (31)

subject to

Ucc+ Ul + (K + V) /32 §'|50)Un(s") — Up(k_y +b_1) = 0

f(k:',l,so)—5k‘/+k‘_1—c—g—k’:0
M <V <M.

We parameterize the model along the lines of Farhi (2010), who in turn follows
Chari et al. (1994), with a few exceptions to be noted below. A period is taken to
represent a year. The discount factor § is set to 0.958, so the pre-tax interest rate
fluctuates around 4%. The utility function is given by u(c,[) = log(c) + vlog(1 —1).
We set v = 1.5, so that individuals supply around 35% of their time endowment to the
market. The production function is Cobb-Douglas with capital share «a set to 0.34.

17Tt is worth noting that consumption as a state variable is only valid if the utility function is
separable. Otherwise marginal utility would have to be used instead.
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Capital depreciates at a rate of 7 percent per period. Government spending ¢ is equal
to 0.1067, which implies an average spending to output ratio in the range of 17%.
Our main departure from Chari et al. (1994) and Farhi (2010) concerns the process
governing productivity. Like Farhi (2010), we use a two state Markov chain. However,
we set the persistence such that the expected length of recessions is two years, and
the expected length of booms is 5 years. We use the same standard deviation of the
innovations, equal to 0.026.'® Finally, the debt limits are set to £50% of GDP in the

undistorted deterministic steady state.

Perhaps the two most interesting aspects that simulations can clarify are the
responses of fiscal policy instruments (tax rates and debt) to shocks and the long run

properties of the economy, which we discuss in turn below.

Figures 2 displays a typical business cycle. The simulation underlying this figure
consists of letting the economy repeatedly experience a cycle set to its expected length:
5 years of boom followed by a 2-year recession. The nature of this experiment is such
that all variables in this figure are stationary, which need not be the case for random
sequences of shocks. The first thing to note is that despite the fact that capital is
elastically supplied in the short run, it is nevertheless optimal to finance part of the
recession by taxing capital income at a relatively high rate (slightly less than 40%) at
the outset of the recession. Indeed, even with a tax break on labor income (of about 1
percentage point), the government’s primary deficit improves in the first period of the
recession. However, the deficit increases substantially during the second period of the
recession, and this deficit is financed by debt. Thereafter, the amount of government
debt reverts back to its mean during the boom. Finally, it is worth noting that
as one might expect, consumption in the first period of the recession remains fairly
high: individuals choose to consume more than they otherwise would because of the

relatively high tax on capital income.

Moving to the behavior of the economy in the long run, Figure 3 displays the
main variables of the economy for the last 1,000 periods of an 11,000 period simu-
lation. First note that while the capital income tax is highly volatile, it essentially

varies between £40%.'” The mean of the capital income tax is around zero, with a

18This corresponds to the 0.04 used by Chari et al. (1994) and Farhi (2010), as they model the
shock as labor augmenting.
19The capital income tax rate is outside of that range about 1% of the time: see Figure 4 below.

22



Figure 2: Deterministic Cycles
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self-explanatory.

standard around 15%. A second interesting aspect of this long run simulation is that

government debt is much more persistent that other variables. This reflects the fact

that the amount of debt in the economy directly affects how distorted the economy

needs to be, which is closely related to the multiplier A discussed above (recall that

A contains a permanent component). The non-stationarity of government debt is

perhaps most evident around period 650, during which an unusually large number of

good shocks are realized. The trend of the labor income tax also reflects the fact that

the level of distortions is highly persistent (recall that the capital income tax varies
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Figure 3: Long Run Simulation
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are self-explanatory.

around zero). Finally, we note that the primary deficit is much less persistent than

government debt, an empirical fact discussed at length in Marcet and Scott (2009).

The general pattern of tax movements over the business cycle is quite robust to the
parametrization—in particular the increase (decrease) in the capital (labor) income
tax at the outset of a recession. Table 1 shows some statistics for our benchmark
economy in column 1 as well as an economy with tighter debt constraints (+ 20% of

undistorted GDP) in column 2, an economy with longer recessions (5 years on average)
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in column 3, or both in column 4.?° While these statistics are fairly robust across
simulations, we note that the capital income tax tends to be more volatile either with
longer recessions or under tighter debt limits. Intuitively, longer expected recessions
tend to induce the government to finance more of it at the outset of a recession,
especially when the government faces tight debt limits. Indeed, the histogram of
the capital income tax for the same parameter configurations, displayed in Figure 4,
confirms that either longer recessions or tighter debt limits tend to produce fatter tails
than our benchmark economy. Finally, going back to Table 1, we also note that while
the labor (capital) tax is always positively (negatively) correlated with productivity,
debt is essentially acyclical, and extremely persistent. Nevertheless, the correlation
between debt and the labor tax is fairly high (0.9), consistent with the results from
Figure 2.

20The last column is meant to be comparable to results in Farhi (2010), who imposes a 20% debt
limit and considers long recessions.
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Table 1: Fiscal Policy Statistics

Benchmark Tight Debt 5 Year Tight Debt

Economy Limits Recessions + 5Y Rec.

Mean

Labor Tax (%) 23.93 26.15 25.20 26.15

Capital Tax (%) 0.60 1.38 0.67 0.81

Debt —0.16 0.02 —0.10 —0.02
Standard Deviation

Labor Tax (%) 1.39 1.16 2.62 1.12

Capital Tax (%) 15.30 17.22 16.34 18.49

Debt 0.10 0.07 0.19 0.06
Autocorrelation

Labor Tax 0.83 0.66 0.95 0.69

Capital Tax —0.22 —0.26 —0.19 —0.22

Debt 0.99 1.00 1.00 0.98

Correlation with Productivity

Labor Tax 0.31 0.47 0.09 0.38
Capital Tax —0.58 —0.65 —0.53 —0.55
Debt —0.02 0.05 —0.06 0.00

Notes: All statistics are from simulations of the model for 11,000 periods after which the first
1000 periods are dropped.
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Figure 4: Histograms of Capital Income Tax Rates
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6 Conclusion

This paper studies optimal fiscal policy in a neoclassical growth model in which
investment becomes productive within the period. We argue that in the context of
optimal taxation problems, this alternative timing is a useful assumption to avoid a
perfectly inelastic supply of capital in the short run, which is at the heart of many

results in the optimal taxation literature.

Our first result is that with an elastic supply of capital it is no longer optimal
to confiscate initial asset holdings: the solution to the Ramsey problem features a
unique non-trivial level of distortions without imposing exogenous bounds on tax in-
struments. A related result is that capital income taxes are no longer used as a shock
absorber. However, state-contingent debt can be used for that purpose, leading to
counterfactual movements between government debt and the primary deficit. This
leads us to study a Ramsey problem without state-contingent debt, a typically hard
problem which is considerably more tractable under our alternative timing assump-
tion. The upshot of this problem is that the government runs debt-financed primary

deficits during recessions.
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A Timing Assumption

Imagine that any period ¢ is divided into n sub-periods. During the first sub-period,
the budget constraint is given by

C(Stv 1) + k(stv 1) + Z Q<St7 8t+1>b(8t7 st+1)

St+1

=w(s", 1)I(s", 1) + (1 + (s, 1))k(st_l) + b(s"),

where c(s', 1) denotes consumption during the first sub-period, and similarly for other
variables. Note that bonds are treated in an identical fashion as in the main text,
that is, they are one period instruments. For sub-periods ¢ = 2,...,n, the budget

constraint is then given by
(s, i) + k(s' i) = w(s', )l(s",4) + (1 +r(s',4))k(s',i — 1).

If we sum the sub-period budget constraints, we have

n

Z (s, i) + k(s n) + Z q(s', s141)b(s", 8¢41)

= Z [w(st, (st i) +r(st i)k(s' i — 1) + k(s"1) +b(s").

This means that the conventional timing assumption boils down to assuming that

n

3 [(r(st,i))k(st,i - 1)} = r(st)k(s'Y).

i=1
Accordingly, our timing corresponds to the opposite extreme assumption that

n

3 [(r(st,z’))k(st,i - 1)] — r(s')k(s").

=1

Similarly, using the same logic with the feasibility constraint, one gets

n

o(s') + k(s'n) + g(s') =D [ (k(s' i — 1),1(s",4)) + k(s i — 1)(1 = 6)] + k(s').

i=1

where k(s?,0) = k(s'71).
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To abstract from the sub-periods one needs to make an assumption for the sum
on the right-hand-side of the previous equation. The convention is to approximate it
with f (k(s'™1),1(s")) + k(s'™1)(1 — §). We take the opposite extreme that

n

S Of (k(shi = 1),1(s' ) + k(s i = 1)(1 = 6)] = f (k(s"),U(s")) + k(s") (1 = ).
i=1
These approximations are reminiscent of discret time approximation of continuous
time equations: while one approximation implies that capital remains unused for the
length of the period, the other implies that capital is used to produce itself at the
beginning of the period.
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B Omitted Proofs

Proposition 2
Combining the first order conditions with respect to consumption (17) and labor (18)
from the Ramsey problem and using (13), we get
Wi(s")
W.(st)

= w(s"). (32)
The derivatives W, and W, are given by

Wo(s") = (14+NU(s") + \U.(s")He(s"),
Wi(s) = (1+ NU(s") + AU (s") Hy(s"),

where
HC(St) Uc,c(S )C(SU),c?;t?C’l(s )l(s )7
Hy(s") = Uz,c(St)C(Sglz;t[;z,z(s )l(st)‘

Now pick two histories as of date t, s* and §'. From (32), it must be that

Wils) W)
We(st)w(st) — W.(s)w(5)

or, equivalently,

[14+ A+ AH(sH]Uy(s") [14+ X+ M, (3)]U(3Y)

[1+ X+ XH(s)]U(st)i(st)  [1+ A+ AH(5)|Uu(5H)w ()

Since the felicity function is separable, the functions H. and H; become

s = Dl
- i

And since the sub-utilities for consumption and labor are both from the constant
elasticity of substitution class of utility functions, H.(s') and H;(s") are constants.
Accordingly, the last expression reduces to

U(sU:(5") (s

Ue(s)Ui(s") — w(s)
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But the first order conditions for consumption and labor from the household’s problem

(equations (3) and (4)) at histories s* and §* imply

Ul(sYUe(5") _ w(s)) (1 —=7"(s"))(s")

Ue(sHUi(3") — w(sh) (1 —7u(5))b(s")

For the last two equations to hold it must be the case that 7(s') = 7%(§").

Proposition 3

Recall that the first order conditions (3) and (5) from the households’ problem imply
that
Br(sHUL(s1)

=ETAE) (33)

(L=r(s)) =)

St+1

Similarly, combining first order conditions (17) and (19) from the Ramsey problem

we have

1= (s = 8)) = (1= () = 3 PP e, (34)

St+1
But under a separable utility function and constant elasticity of substitution in con-

sumption,
We(s) = (1 + X+ XH(sN))U(s") = (1 + X — \o)U.(s),

where o is the inverse of the intertemporal elasticity of substitution. Hence we can
replace W, with U, in equation (34). But then equations (33) and (34) can only hold
if 7F(st) =0.
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C Recursive Formulation of the Ramsey Problem
with Incomplete Markets

To derive a recursive formulation it is convenient to write the problem as follows

Ul(clso),Uso))+D > Ba(s)U (c(s"), 1(s")) (35)

t=1 gt

L(k'_l,b_l) = max
{e(st),U(s?),k(s"),b(s") }y st

subject to

Ue.(s0)c(s0) + Ui(s0)l(s0) + (k(s0) + b(so)) Zﬂ(sl\SO)Uc(sl) —Ued(so)(k_1+bq) =

S1

f(k(50),1(50), 50) — 0k(s0) + k1) = c(s0) — g(s0) — k(s0) =
M < b(sg) < M

Ud(s)e(s') + Ui(s)I(s") + (k(s™) + (™)) Y (s [ UL(s")

St+1

—Uc(s")(k(s") +0(s")) =
F(R(s"),Us"), 50) = Ok(s") + k(s"™1) — e(s') — g(s") — k(") =
M <b(s") <M

where constraints (39)—(41) are imposed at t = 1,2,... and all s*. This problem can

be split into two parts as follows:
L(k_1,01) = ma Ulc(so),l(s 36) — (38
Bt b1) = i oo e S0y ot {[ (<50, 1z0)) | (36) = )}
max S aH|Uesh ush) 139 - (0]} @)

(el LR Y2, 4

Now the second part of the problem can be written recursively given state variables
¢, k,b and s, as in equation (30), and the problem from date 0 can then be expressed

as equation (31) in the main text.
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