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ABSTRACT 

The past two decades have witnessed the emergence of information as a scientific discipline and the growth of 

information schools around the world. We analyzed the current state of the iSchool community in the U.S. with a 

special focus on the evolution of the community. We conducted our study from the perspectives of acquiring talents 

and producing research, including the analysis on iSchool faculty members’ educational backgrounds, research 

topics, and the hiring network among iSchools. Applying text mining techniques and social network analysis to 

data from various sources, our research revealed how the iSchool community gradually built its own identity over 

time, including the growing number of faculty members who received their doctorates from the study of infor-

mation, the deviation from computer science and library science, the rising emphasis on the intersection of infor-

mation, technology and people, and the increasing educational and research homogeneity as a community. These 

findings suggest that iSchools in the U.S. are evolving into a mature and independent discipline with a more estab-

lished identity.  
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INTRODUCTION 

The term “iSchools,” or “information schools,” refers to a group of university academic units that are dedicated to 

the study of information. Many of the iSchools started as library sciences programs, but expanded their focus to 

information studies. While there were many milestone events in the history of the iSchool movement, which can 
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trace back to the 1960s, the iSchool organization stated in its website (ischools.org) that the start of iSchools dates 

back to the formation of “Gang of Three” in 1988, which is comprised of University of Pittsburgh’s School of 

Library and Information Science (now the School of Information Science), Syracuse University’s School of Infor-

mation Studies, and Drexel University’s College of Information Science and Technology. The “iSchool movement” 

accelerated as the world moved into the information age — the iSchool community saw fast growth in the 21st 

century, with new members from outside the library sciences discipline (e.g., the iSchools of Penn State University 

and Georgia Institute of Technology). As of 2015, the iSchool community has 65 members all over the world, along 

with a conference — the “iConference” — held annually since 2005. 

Despite the fast growth in membership, the iSchool community is still small and young compared to other 

well-established academic communities such as sociology and computer science (Dillon, 2012). Also, although 

iSchools share common research interests in “the relationship between information, technology, and people” (ex-

cerpt from http://ischools.org/about/history/motivation/), the identity of iSchools as a discipline is still unclear to 

many people outside, and even inside, iSchools (Cronin, 2005).  

Thus our research addressed the question of whether the community is getting more mature and established 

as a discipline.  Our focus was therefore not only on the current state of iSchools, but also on how the community 

evolved over time. Using iSchools in the U.S. as a sample for the whole iSchool community, this research applied 

text mining and network analysis techniques to analyze several key perspectives of iSchools—from acquiring tal-

ents from various disciplines, to producing research. We hope our findings can help various stakeholders better 

understand and guide the iSchool movement, including iSchool administrators and scholars, funding agencies, and 

potential employers of iSchool students.  

RELATED WORK 

In the literature, several papers have introduced or described the history and characteristics of iSchools as an emerg-

ing discipline. Olson and Grudin (2009) expressed their anticipation of the promising future of information with the 

rapid growth of computing and digital technologies. Dillon (2012) talked about the key attributes of iSchools, in-
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cluding intellectual coverage, interdisciplinarity and research commitment. Cronin (2005) stated his concern re-

garding the identity crisis of these newly formed or transformed academic units due to the fuzzy definition of in-

formation compared to mature disciplines such as law and business.  

As educational institutions within universities, the education components of iSchools have been analyzed. 

For example, Subramaniam and Jaeger (2010) studied the syllabi of courses in the American Library Association 

(ALA) accredited Master of Library and Information Science (MLIS) programs at iSchools in North America. Sea-

dle and Greifeneder (2007) proposed a unique iSchool curriculum using an anthropological approach. Wu, D., et 

al. (2012) focused on five facets of iSchools’ graduate education: mission and vision, education program design, 

core course design, research interests of doctoral students and careers of graduate students. The results showed that 

the core of iSchools is indeed the exploration of relationships between people, information and technology.  

In addition to teaching, iSchools faculty members are also active in research. Thus, several studies also 

analyzed the educational backgrounds and research of iSchool faculty members. Wiggins and Sawyer (2012) meas-

ured the intellectual diversity of iSchools by analyzing the PhD programs where iSchool faculty members received 

their doctorates. Based on the educational backgrounds of faculty members in each iSchool, they also divided iS-

chools into four groups: Computational, Library & Information, Sociotechnical, and Niche. Specifically, the Com-

putational cluster contains iSchools in which 60% to 80% of the faculty graduated from Computer Science and 

related disciplines; the Library & Information cluster represents iSchools with over 50% of the faculty from Library, 

Information and Humanities; iSchools in the Sociotechnical group have faculty members from Computing, Social 

Sciences, and some Library and Information; Niche is a cluster of iSchools that have diverse faculty educational 

backgrounds and thus cannot be well represented by one or two discipline categories.  Luo (2013) studied the 

interdisciplinarity of iSchools by analyzing iSchool faculty members’ online profiles and survey data collected from 

135 iSchool faculty members. Chen (2008) studied the identity of iSchools by visualizing keywords of iSchool 

faculty’s publications. Wu, D., et al. (2012) gauged the interdisciplinarity of iSchools via the Web of Science journal 

classification of where iSchool faculty members publish to extract research areas of iSchools. Zhang, et al. (2013) 

identified the dominant areas among iSchools as Information, Computing, Management & Policy, and Library in 

both faculty educational backgrounds and in the manual classification of journals where faculty members published. 
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Holmberg, Tsou, and Sugimoto (2013) collected iSchool faculty members’ research interests and conducted co-

word analysis. They found that while the majority of iSchool faculty members are still concerned about traditional 

information topics (e.g., bibliometrics, information retrieval, and information seeking behavior, etc.), there are in-

creasing numbers of interdisciplinary areas (e.g., data mining, artificial intelligence, social media, etc.). Most of the 

research has concluded that iSchools are multi- and inter-disciplinary.  

Network analysis has also been used in studies of different disciplines, including iSchools. For example, 

Clauset, et al. (2015) found evidence of social inequality and hierarchical structures in faculty hiring networks in 

computer science, business, and history. From a different perspective, Yu (2013) analyzed the collaboration network 

of iSchools using iConference publication data and the Twitter network among official Twitter accounts of various 

iSchools. Similar to Zhang et al. (2013), the author discovered that there was very little collaboration between 

iSchools as well as between iSchools and other disciplines. However, the publication data was only from iConfer-

ence between 2008 and 2013, which only partially represents scholar activities in iSchools. Wiggins, et al. (2006, 

2008) compared the hiring network of iSchools’ to that of 29 Computer Science (CS) departments. They found that 

PageRank, especially weighted PageRank, is highly correlated with the current ranking of CS programs by U.S. 

News and World Report (USNWR). It was revealed that, compared to CS, iSchools are more diverse in terms of 

hiring faculty from different areas.  

While all these studies provided valuable insights for the iSchool community, there are some missing pieces 

that our research would like to address. First, no study has explored the evolution of the community, which is 

important for an emerging discipline to understand how it develops over time. Most studies analyzed a snapshot of 

the community based on aggregated data up to the time of the study. Although Wiggins and Sawyer (2012) and 

Zhang et al. (2013) have studied the temporal changes of the iSchool community, they only examined the number 

of faculty and the number of publications. Second, classifications of educational background and journal are too 

coarse-grained as measures for research, as they fail to reflect precisely what a faculty member works on. For 

example, a researcher with a PhD from an iSchool may study metadata, information policies, or data mining. Sim-

ilarly, a paper published in a journal such as JASIST or PLOS ONE may be about data mining, user interface design, 
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or scientometrics. Manual classifications of journal papers could be more accurate than the Web of Science classi-

fication, but do not scale to volumes of papers. To precisely capture the research topics of iSchool faculty members, 

we need more fine-grained and automated analysis of text from their publications. Research interest keywords pro-

vided by faculty members (Holmberg et al. 2013) may be too coarse-grained. They did not accurately reflect the 

level of interests or engagement a faculty member has for each of the listed areas. Although the titles and abstracts 

of iSchool scholars’ publications would offer better representations of their research interests, the study of Chen 

(2008) was limited to the lexcial level without exploring the latent structures between keywords and phrases. Topic 

modeling techniques have been widely used to detect “latent” topics from documents, because they provide an 

abstract representation of what a document is about. They are also better at handling synonyms (phrases that are 

semantically close, such as “text” and “document”), and polysemous words that may correspond to more than one 

research area (e.g., “computer” and “network”), etc. While Sugimoto et al. (2011) revealed trending topics in dis-

sertations from Library and Information Science programs using topic modeling techniques, the topic modeling was 

done for dissertations in each decade. As a result, topics generated for one decade are different from those generated 

for another decade. This makes it difficult to keep track of each topic’s popularity over time, unless domain experts 

examine the keywords for each topic in each decade, and manually identify the correspondence or equivalence 

between two topics in different decades. Third, academic units that were analyzed are the entirety of iSchools listed 

on the iSchool.org member directory. However, while the iSchool membership is often for schools or colleges, 

some member schools contain departments that do not focus on information studies. For example, the iSchool at 

UCLA (namely the Graduate School of Education and Information Studies) consists of the Department of Infor-

mation Studies and the Department of Education, whereas the latter focuses more on education than information. 

Similarly, the iSchool at UC Irvine is the School of Information and Computer Science and has Informatics, Com-

puter science, and Statistics departments. For these iSchools, the iSchool membership is in fact for one of the de-

partments only. Thus for iSchools that have departments, it becomes necessary to focus our analysis on their infor-

mation-related departments in order to avoid noise from other departments within the same administrative unit. 

Back to the example of UCLA and UC Irvine, we only collected data for faculty members from UCLA’s Department 

of Information Studies and UC Irvine’s Informatics department. 
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DATASET 

In this study, we used 27 U.S. members of the iSchool community (http://ischools.org/members/directory/) as a 

sample. The iSchool movement originated in the U.S. and most of the early iSchool members are U.S. institutions. 

Although the iSchool community has been growing during the past a few years with more non-U.S. members, the 

U.S. still has the most members in the community. Among the current 25 invited iCaucus members, who “represent 

institutional leadership in the field” (http://ischools.org/members/icaucus-members/), 19 are from the U.S. 

Thus, we believe our analysis, even though restricted by geographical boundaries, can still provide insights to the 

understanding of the whole community. As mentioned earlier, we further limited the academic units of interest to 

departments that focus on information-related subjects and excluded non-information-related units housed in iS-

chools. Table 1 lists the 27 U.S. iSchools in our study.  

For all full-time tenured or tenure-track faculty members from the 27 iSchools, we collected their educa-

tional backgrounds (including PhD programs and institutions) and titles from their personal or schools’ websites. 

University Academic unit University Academic unit 

 Univ. of California, Berkeley  School of Information  Rutgers Univ. Library and Information Science Dept. 

 Carnegie Mellon Univ. 

(CMU) 
Heinz College  Simmons College 

School of Library and Information Sci-

ence 

 Drexel Univ. 
College of Computing & Informatics 
(only the former College of Information 

Science & Technology) 

 Syracuse Univ. School of Information Studies 

 Florida State Univ. School of Information  Univ. of Tennessee, Knoxville  School of Information Sciences 

 Georgia Inst. of Tech. 

(Gatech) 
School of Interactive Computing  Univ. of Texas at Austin School of Information 

 Univ. of Illinois at Urbana-
Champaign  

Graduate School of Library and Infor-
mation Science 

 Univ. of California, Irvine (UCI) Department of Informatics 

 Indiana Univ. School of Informatics and Computing 
 Univ. of California, Los Angeles 
(UCLA) 

Dept. of Information Studies 

 Univ. of Kentucky Library and information science 
 Univ. of Maryland, Baltimore 

County (UMBC) 
Dept. of Information Systems 

 Univ. of Maryland, College 

Park (UMD) 
College of Information Studies 

 Univ. of North Carolina at 

Chapel Hill (UNC) 

School of Information and Library Sci-

ence 

 Michigan State Univ.  Dept. of Media and Information  Univ. of North Texas (UNT) Dept. of Library & Information Sciences 

 Univ. of Michigan School of Information 
 Univ. of Wisconsin-Milwaukee 
(UWM) 

School of Information Studies 

 Univ. of Missouri 
School of Information Science & Learn-

ing Technologies 
 Univ. of Washington Information School 

 Penn State Univ. 
College of Information Sciences & Tech-

nology 

 Univ. of Wisconsin-Madison 

(WISC) 
School of Library & Information Studies 

 Univ. of Pittsburgh (Pitt) School of Information Sciences   

Table 1. The list of 27 U.S. iSchools. 



 7 

Associate and full professors were considered as senior faculty while assistant professors as junior faculty. Those 

with titles such as emeritus, adjunct, or visiting professors were not included.  

Our final dataset consists of 708 faculty members, including 201 assistant, 238 associate, and 269 full pro-

fessors. Based on the taxonomy by Zhang et al. (2013), PhD programs where iSchool faculty members received 

their doctorates were classified into nine categories: Communication, Computing, Education, Humanities, Infor-

mation, Library, Management & Policy, Science & Engineering, and Social & Behavioral. The detailed classifica-

tion of PhD programs is in Table 2. 

Discipline category PhD programs 

Communication Media and Mass Communication, Journalism 

Computing Computer Science, Electrical Engineering, Mathematics, Computer Engineering 

Education Education, Learning Technology 

Humanities History, English, Philosophy, Literature, Music, Geography, Art, Anthropology 

Information Information Science, Information Studies, Information Transfer, Informatics 

Library Library Science, Information and Library Science 

Mgmt&Policy Business Administration, Management, Policy, Economics, City & Regional Planning, 
Public Administration 

Sci.&Eng. Life Sciences, Physics, Statistics, Engineering (not Electrical or Computer), Biology 

Social&Behavioral Psychology, Sociology, Law, Social Sciences, Linguistics, Political Science, Government 

Table 2. The classification of PhD programs. 

We used Elsevier’s Scopus database as the source for publications of iSchool faculty members. According 

to its website (http://www.elsevier.com/solutions/scopus/content), Scopus covers broad subject areas, including sci-

ence, mathematics, engineering, technology, health and medicine, social sciences, and arts and humanities. It in-

dexes not only journal publications, but also conference papers and book chapters. Although an Elsevier commercial 

product, Scopus includes publication data from other major publishers, such as Springer, Nature Publishing Group, 

AAAS, BMJ, etc. As of February 2014, Scopus possesses over 54 million records, from over 20,000 journals, 

18,000 conferences, 367 trade journals, more than 400 book series, etc. We believe Scopus’ coverage of subject 

areas and publication types are suitable for the iSchool community, since iSchool faculty members work on many 

different areas and many commonly publish in conference proceedings in addition to journals.  

Titles, abstracts, authors (along with their affiliations), publication dates and types of each iSchool faculty 

member’s papers were retrieved from Scopus APIs, based on each author’s name and affiliation. To improve the 
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quality of data, we also manually inspected the dataset to exclude some obvious non-iSchool scholars whose names 

and affiliations are close to those of any iSchool faculty member.  

Using Scopus APIs, we retrieved 26,491 papers authored by iSchool faculty members. Figure 1 depicts the 

distribution of publication types, with the majority being conference and journal papers. The high percentage of 

conference papers also highlights the importance of including conference proceedings besides journals when ana-

lyzing research in the iSchool community. 

 

Figure 1. The distribution of publication types 

 

ANALYSIS OF EDUCATIONAL BACKGROUNDS 

Among the 708 iSchool faculty members in our dataset, the educational backgrounds of 5 are unavailable online. 

Based on the 703 faculty members, we analyzed iSchool faculty educational background distributions at the levels 

of both the community and individual iSchools. 

Community-level Distribution 

As shown in Table 3, computing, information and library dominate the faculty makeup at the community level. 

Overall, computing is the top area that produced the most iSchool faculty members, followed by information. Fur-

ther, we compared the education distributions between senior and junior faculty members. A higher proportion of 

junior faculty members comes from computing, information and management & policy. Information saw a great 

Conference 
Proceeding, 0.4

Journal, 0.51

Book Series, 
0.06

Book, 0.02 Trade Journal, 
0.01
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increase from 15.48% to 26.87%. In other words, even though the iSchools are still hiring from other disciplines, 

they have started to hire more faculty from programs that focus on the study of information. Hiring from peer 

programs is common in most well defined disciplines. Such patterns in iSchools’ hiring suggest that iSchools are 

gradually straying away from a mix of various disciplines and becoming a more independent discipline that can 

produce qualified faculty members for peer programs in the same discipline. 

Table 3. Faculty educational background distributions and entropies for the iSchool community. 

 
We further utilized information entropy (Shannon 1948) to measure the diversity of faculty educational 

background. Information entropy for an iSchool’s education distribution is calculated as ∑ −𝑝𝑖𝑙𝑜𝑔𝑝𝑖𝑖  where 𝑝𝑖, in 

this context, is the proportion of the 𝑖th discipline. Higher entropy is a sign of more even distribution, indicating 

higher diversity, and vice versa. As the right-most column in Table 3 shows, the educational background of junior 

faculty members is less diverse than that of senior faculty members. With more junior faculty members hired from 

programs that focus on the study of information, the whole community also gets less diverse. In other words, iS-

chools are now more likely to hire graduates from academic programs that focus on the study of information. 

Distributions for Individual iSchools 

We also analyzed faculty educational backgrounds for each individual iSchool and found patterns that are similar 

to the whole community—iSchools have been hiring more faculty members from programs that focus on the study 

of information. For example, by comparing faculty educational background distributions between senior and junior 

faculty members in each iSchool, we found that only 6 out of the 27 iSchools hired more junior faculty members 

from library sciences. On the other hand, 17 iSchools saw increases in faculty hiring from information.  

Table 4 lists the highest 3 and lowest 3 iSchools by entropy values of faculty educational background dis-

tributions. The highest 3 iSchools are all early members of the iSchool community and have established a well-

 

Com-
muni-
cation 

Computing 
Educa-
tion 

Humanities 
Infor-
mation 

Library 
Mgmt 
&Policy 

Science 
&Eng. 

Social& 
Behavioral 

Entropy 

All 3.55% 30.07% 3.83% 6.38% 18.72% 13.62% 9.79% 5.96% 8.09% 2.83 

Senior 3.77% 29.56% 3.97% 7.34% 15.48% 14.29% 9.52% 6.75% 9.33% 2.88 

Junior 2.99% 31.34% 3.48% 3.98% 26.87% 11.94% 10.45% 3.98% 4.98% 2.65 
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balanced multi-disciplinary faculty body. The lowest 3 iSchools are more focused on a specific area: Missouri on 

education; UNT on library and information; and Georgia Tech on computing. 

 
Communi-
cation 

Computing Education Humanities Information Library 
Mgmt 
&Policy 

Science 
&Eng. 

Social& 
Behavioral 

Entropy 

Washington 3.45% 13.79% 6.90% 3.45% 24.14% 27.59% 10.34% 6.90% 3.45% 2.775 

Michigan 3.77% 28.30% 3.77% 7.55% 11.32% 7.55% 20.75% 0.00% 16.98% 2.696 

Texas 5.26% 15.79% 0.00% 15.79% 10.53% 26.32% 0.00% 10.53% 15.79% 2.676 

Missouri 0.00% 0.00% 50.00% 0.00% 21.43% 28.57% 0.00% 0.00% 0.00% 1.493 

UNT 0.00% 0.00% 4.76% 4.76% 57.14% 33.33% 0.00% 0.00% 0.00% 1.408 

Georgia 
Tech 2.33% 83.72% 0.00% 9.30% 0.00% 0.00% 0.00% 4.65% 0.00% 

0.865 

Table 4. Faculty educational background distributions for the highest 3 (in shade) and lowest 3 iSchools by entropy. 

 

Clustering Analysis 

Clustering based on faculty educational background has been used to discover different types of iSchools by putting 

iSchools with similar faculty educational background distributions into the same group (Wiggins and Sawyer, 

2012). However, the goal of our clustering is different. We focused on the temporal dynamics of clusters, namely 

how the number of clusters and the overall fragmentation of the iSchool community changed over time. Here, we 

represented each iSchool with its faculty educational background distribution vector and applied an affinity propa-

gation algorithm (Frey and Dueck, 2007), which can automatically choose an optimal number of clusters for the 

data. The Silhouette Coefficient (Rousseeuw, 1987) was used to measure the quality of grouping (a.k.a., clustering) 

instances based on similarity. For an instance 𝑖, which corresponds to an individual iSchool in our study, its silhou-

ette is defined as 𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑏(𝑖),𝑎(𝑖)}
 where 𝑎(𝑖) measures how dissimilar 𝑖 is to other iSchools in the same cluster 

by calculating the average distance from 𝑖 to other instances in the same cluster, and 𝑏(𝑖) indicates how dissimilar 

𝑖 is to iSchools in the closest neighboring cluster. The closest neighboring cluster of 𝑖 is the cluster, whose instances 

have the lowest average dissimilarity with 𝑖. The Silhouette Coefficient is the average silhouette of all iSchools and 

bounded within [-1, 1]. Values closer to -1 indicate incorrect assignments, as 𝑏(𝑖) ≪ 𝑎(𝑖) means that iSchools are 

more similar to those in other clusters. Values near 1 indicate proper clustering (average intra-cluster distance a(i) 
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is close to zero). In other words, better separations among clusters that are more compact will lead to a higher 

Silhouette Coefficient. 

Table 5 shows the clustering results when we considered all faculty and only senior faculty members’ edu-

cational background distributions. With the addition of junior faculty members to the iSchool community, the num-

ber of clusters drops from 5 to 4 and the Silhouette Coefficient decreases by 15%. The lower number of clusters 

and the decrease of Silhouette Coefficient suggest that iSchools become more similar to each other and it gets more 

difficult to group them into well-separated yet compact clusters. In other words, the iSchool community is getting 

less fragmented and more close-knit in terms of faculty training. 

 Number of Clusters Silhouette Coefficient 

Senior only 5 0.451 

All faculty 4 0.383 

 Table 5. iSchool clustering results for both all and senior faculty members based on educational backgrounds. 

 

ANALYSIS OF RESEARCH TOPICS  

As we mentioned earlier in this paper, using faculty educational backgrounds cannot accurately capture one’s re-

search interests. This was also echoed by Zhang et al. (2013), who manually coded the themes of research in iSchool 

faculty members’ journal papers. Instead of manual coding, we adopted an automated topic modeling technique – 

Latent Dirichlet Allocation (LDA), a generative model used extensively for topic discovery (Blei, Ng, and Jordan, 

2003). The input for LDA is the text corpus of titles and abstracts of iSchool faculty members’ papers. The output 

is a group of topics, each represented by a probabilistic distribution over words. Those words with high probabilities 

on a topic are considered representative keywords for this topic. Similarly, each document is assigned a probabilistic 

distribution over all the topics. 

In our analysis, we set the number of topics to be 20. Our interpretations of topics with top 5 keywords for 

each topic are shown in Table 6. The topics discovered by LDA cover the majority of the diverse research by iSchool 

faculty members. Most of the topics are related to the study of information, and many of them are indeed areas 
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involving the relationship between information, technology, and people. The topic in the last row of the table (la-

beled as “Others”) makes little sense for iSchools and may have been caused by author name ambiguity in the 

Scopus database. 

 

Topic Evolution 

 Next, we examined how topics evolved over time. Our longitudinal analysis on topic evolution was conducted on 

annual basis from 1988, when the “Gang of Three” was formed, to 2014. We calculated the proportion of publica-

tions for each topic in each year over the 27 years. Specifically, we calculated each year’s topic distribution by 

averaging topic distributions of all papers that were published in that year. Each topic’s proportions across the 27 

Topic Interpretation Representative Keywords 

IT for collaboration & communication information, technology, communication, practice, collaborate 

Software and system engineering design, system, develop, software, process 

Information privacy and policy privacy, policy, government, market, internet 

Social networks and media social, community, online, media, network 

Machine learning and data mining measure, perform, test, predict, data 

Information retrieval and recommendation information, user, search, web, query 

Computing infrastructure application, system, service, compute, distributive 

Cyber-security and computer networks network, security, scheme, attack, node 

Digital library and library science library, digital, public, author, collection 

User interface and experience user, design, interface, interact, mobile 

Text mining document, retrieve, text, term, topic 

Algorithms algorithm, optimal, time, space, efficiency 

Data storage and visualization data, visual, analysis, information, collect 

Education and learning technology learn, student, education, compute, school 

Robotics and cognitive Systems robot, human, agent, game, behavior 

Health informatics health, patient, care, medical, information 

Programming languages program, language, type, function, structure 

Spatial and multimedia data analytics image, location, spatial, video, object 

Bioinformatics sequence, protein, gene, genome, structure 

Others simulation, energy, measure, process, structure 

Table 6. Topics and corresponding keywords discovered from iSchool publications. Topics are in the order of 
descending prevalence. 
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years were then used to show its evolution during this time span. For each trajectory of topic, we fit a linear regres-

sion and calculated the slope of the trajectory. As the original slope for each topic trend is small, we applied a linear 

transformation to standardize the values into a standard normal distribution. For the 20 slopes for 20 topic trajecto-

ries, we calculated the average slope y̅ and sample standard deviation s. Each slope was then standardized using 

𝑦′𝑖 =
𝑦𝑖−�̅�

𝑠
 where 𝑦′𝑖 is the standardized value of the i-th topic trajectory’s slope  𝑦i. The 7 rising topics all have 

standardized slopes above 0.5 and the 3 declining topics have slopes below -1. By contrast, slopes for other topics 

lie in the range of [-0.4, 0.2]. With much lower magnitudes in slopes, they were recognized as stable topics. We 

found that research topics in iSchools are indeed evolving over time. To simplify our visualization, we show curves 

only for selected topics that feature obvious rising (Figure 2) and declining trends (Figure 3). 
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   Figure 2. Rising iSchool research topics over 27 years. 

Figure 3. Declining iSchool research topics over 27 years. 
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Again, we see that research areas that explore the relationships between information, technology and people 

are on the rise. For example, information technology for communication and collaboration, social network analysis 

and media, user interface and experience, are all about how people use and interact with information and technolo-

gies. Meanwhile, among the three declining topics, two are typical computer science areas (algorithms and pro-

gramming languages) and the third (software and system engineering) is also closely related to computer science. 

Although some of the topics also draw more attention from computer scientists in recent years, such as social net-

work and media, and data storage and visualization, their focus is more on algorithms, which are on the decline 

among iSchool researchers. Therefore, the iSchool community has started to part ways with traditional computer 

science research. This is additional evidence that iSchools are establishing their own identity as a discipline that 

studies the Information-Technology-People triangle. We also found that such trend was consistent when we chose 

different numbers of topics for topic modeling (e.g., 30, 50, and 100). 

The Similarity among iSchool Research over Time 

In our above analysis, we showed that iSchools are getting less diverse in terms of faculty members’ educational 

backgrounds. Does the trend of becoming more homogeneous exist in research topics as well? To address this 

question, we measured inter-iSchool similarity in terms of research topics. For each iSchool, we pooled all papers 

by its faculty members. Then for each year, we extracted the topic distributions for an iSchool based on all papers 

published by its faculty in that year. In the end, each iSchool has a topic distribution vector for each year from 1988 

to 2014. On an annual basis, we calculated pair-wise cosine similarities between topic distribution vectors of all 

possible pairs of iSchools. The cosine similarity between iSchool 𝑖 and 𝑗 is defined as 𝑠𝑖𝑚(𝑖, 𝑗) =
𝑡𝑖⃗⃗⃗  ∙𝑡𝑗⃗⃗  ⃗

‖𝑡𝑖⃗⃗⃗  ‖‖𝑡𝑗⃗⃗  ⃗‖
 where 𝑡𝑖⃗⃗  

is the topic distribution vector of iSchool 𝑖. For 27 iSchools, that means 27*26/2=351 pairs of iSchools. 

Figure 4 shows the temporal trend of average pair-wise similarities between iSchools’ research topic dis-

tributions across years. The error bars show the upper and lower bounds of the 95% confidence intervals. The trend 

is very clear: iSchools are becoming more similar to each other in terms of what types of research they do. This is 

yet further evidence that the iSchool community is emerging as a more mature discipline with more common re-

search interests. 
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Figure 4. Avg. pair-wise similarity in iSchool research topics (vertical bars indicate 95% confidence intervals). 

 

THE ISCHOOL HIRING NETWORK 

The analysis on faculty educational backgrounds and research topics treated each iSchool as individuals, while they 

are in fact connected.  Because iSchools are hiring more faculty members from peer programs, we built a hiring 

network with only iSchool-to-iSchool connections to better understand the relationships and interactions between 

iSchools. We chose hiring because iSchool scholars do not often collaborate with peers from other iSchools (Zhang 

et al., 2013; Yu, 2013). Consequently, a collaboration network among iSchools will be very sparse. We investigated 

the network by examining its topology together with each individual iSchool’s faculty educational backgrounds and 

research topics. 

Our hiring network has 27 nodes, each representing an iSchool in our study. An edge between a source and 

a target node means that the source iSchool hired doctorate student(s) from the target iSchool (as shown in Figure 

5; sizes of nodes are proportional to their degrees and node colors indicate the network cluster they belong to). Note 

that this hiring network only considers faculty members who graduated from U.S. iSchools. An iSchool faculty 

member who received his/her PhD from non-iSchool programs will not be reflected in this iSchool-to-iSchool hiring 

network, even though the university from which he/she graduated does have an iSchool (e.g., an iSchool faculty 

member who graduated from Carnegie Mellon University’s Computer Science program). This is different from 
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university-to-university hiring networks in Clauset et al. (2015) and Wiggins et al. (2006, 2008), and offers a cleaner 

picture of relationships among iSchools. The weight of an edge is the number of PhDs produced by the target and 

hired by the source. We also built a similar hiring network that only reflects the hiring of senior faculty members 

for the purpose of comparison (Figure 6). 

 

Figure 5. The iSchool hiring network. 
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Figure 6. The iSchool hiring network with only senior faculty members. 

Properties of the iSchool Hiring Network 

Table 7 lists basic properties (calculated as undirected networks) of the two hiring networks in Figure 5 and 

6. Overall, this is a very close-knit community. The network with all faculty members is able to connect all the 27 

U.S. iSchools and no one is isolated from others.  The average shortest path (the average length of the shortest paths 

between all possible pairs of nodes) is below 2 and the diameter (the maximal shortest path length between all 

possible pairs of nodes) is 4.  These mean that each iSchool is on average fewer than 2 hops away from each other, 

and the maximum number of hops between any two iSchool is only 4. In addition to characteristics of the hiring 

network with both senior and junior faculty members, we are more interested in how the senior-only hiring network 

changed after the addition of junior faculty members. With the hiring of junior faculty members, the network gets 

more edges. As a result, the all-faculty network has a shorter average shortest path and a smaller diameter. This is 
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natural as the two metrics are monotonically non-increasing when the number of edges increases and the number 

of nodes is fixed. 

Network Num. of Edges Diameter Avg. shortest path length Modularity 

Senior and junior faculty 155 3 1.70 0.48 

Senior faculty only 99 4 1.93 0.64 

Table 7. Basic properties of iSchool hiring networks. 

To accurately capture whether the iSchool community is indeed getting closer, we also calculated the max-

imal modularity values for both networks. As a measure for the strength of community structures in networks, 

modularity is defined as the fraction of within-community edges minus such fraction if nodes were randomly con-

nected (Newman and Girvan, 2004). It has been widely used to measure the quality of network clustering or com-

munity discovery. Community structures for the two hiring networks were also generated by maximizing the mod-

ularity of each network. It also serves as an indicator of whether a network features obvious communities that have 

many more intra-community edges than inter-community edges. The higher the maximal modularity is, the more 

fragmented a network is into sub-communities with more internal connections than external connections. Different 

from the average shortest path length and diameter, modularity is not directly correlated with the number of edges 

in a network and hence can better capture the overall connectedness of a network. It turns out with the addition of 

junior faculty members, the modularity of the hiring network decreases by 25%, from 0.64 to 0.48. This echoes our 

deduction that iSchools are getting closer to and more connected with each other as a community. 

Assortativity of the iSchool Hiring Network 

Whether it is the decreasing number of clusters based on faculty’s educational backgrounds, or the increasing re-

search topic similarity, our analysis above has shown that at the community level, iSchools are getting more homo-

geneous. We believe the hiring network can also help to explain the tendency toward higher homogeneity. Specif-

ically, in addition to topological analysis in previous subsections, we also incorporated iSchools’ educational back-

ground and research topic distributions into the hiring network as node attributes to examine its mixing pattern. We 

examined whether iSchools tend to hire faculty members from peer schools that are similar to or different from 

themselves. This tendency can be measured by assortativity. A network is assortative if nodes in this network tend 
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to connect to others with similar characteristics, and dis-assortative otherwise (Newman, 2002; Zhao et al, 2010). 

It is sometimes referred to as “homophily” or “birds of a feather” in social science literatures (Mcpherson, Smith-

Lovin, and Cook, 2001). In our case, the similarity between iSchools is based on their faculty’s educational back-

grounds and research topics.  

As node attributes, both educational backgrounds and research topics are in the form of vectors. Therefore, 

classic ways to calculate the assortativity coefficient of a network cannot be directly applied. Adopting the method 

proposed by Zhang and Pelechrinis (2014), we calculated the average cosine similarity between connected nodes 

based on the two vectors respectively, and compared it with the expected similarity when edges are placed at ran-

dom. To obtain the latter, we conducted Monte Carlo simulations to sample 10,000 random graphs with the same 

number of nodes and edges as in the iSchool hiring network. A 95% confidence interval (CI) is calculated for the 

average similarity in sampled random graphs. The similarity will have values between zero and one, with zero 

meaning dis-assortativity and one indicating perfect assortativity. If the real-world hiring network has higher simi-

larity score than the average similarity of random graphs, we conclude that the real-world network exhibits assort-

ative mixing patterns. 

We calculated assortativities of the senior-only and the junior-only hiring networks, and compared them 

with their counterparts in random graphs. Note that the calculation of assortativity for both hiring networks was 

based on senior faculty members’ distributions of educational backgrounds and research topics. It is also worth 

noting that the addition of a new faculty member in an iSchool could potentially have some effects on the research 

interests of current senior faculty members in the same school, because of potential collaboration after such addition. 

The collaboration between the new junior and senior faculty members usually lead to the publication of co-authored 

research papers. Including these co-authored papers in topic models inevitably makes the research topics of senior 

members and the junior faculty member closer to each other, which will lead to a junior-only network that is more 

assortative than it should be when junior faculty members were first hired. Thus, we extracted the topic distribution 

for an iSchool from its faculty members’ publications up to the year 2009 so that we can better approximate what 

kind of research senior faculty members were doing before junior faculty members joined their current iSchool. We 
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chose the year 2009 with the assumption that it takes 6 years for a junior faculty member to get tenured and become 

a senior faculty member. 

As shown in Table 8, assortativities of real-world hiring networks are significantly higher than those of the 

corresponding random graphs – the assortativity scores from actual networks are higher than the upper bounds of 

95% confidence intervals from simulated networks. In other words, iSchools indeed prefer PhD graduates from 

peer iSchools whose faculty members share similar educational backgrounds and research topics. Meanwhile, lower 

assortativities in the junior-only hiring network compared to the senior-only network suggest that iSchools have 

been trying to be less assortative in hiring faculty members in recent years. Such endeavors in bringing in talents to 

complement or expand, instead of just reinforcing, their existing faculty’s expertise may have contributed to the 

increasing educational and research homogeneity of the community as a whole. 

Network 
Education Education (random) Research Topic Research Topic (random) 

Senior only 
0.6650 [0.4718, 0.4726] 0.7947 [0.7071, 0.7076] 

Junior only 
(based on senior’s profiles) 

0.6027 [0.4720, 0.4730] 0.7655 [0.7074, 0.7080] 

Table 8. Assortativity of the real-world hiring network compared to the 95% CIs of assortativity in random networks. 

 

CONCLUSIONS AND FUTURE WORK 

In this paper, we analyzed the current state, as well as the evolution of U.S. iSchools by examining the talents 

acquired and the research produced by iSchools. Our analysis covered three perspectives: faculty educational 

backgrounds, research topics, and hiring networks, by leveraging data from faculty profiles and publications, 

including conference papers. The findings suggest that iSchools are gradually finding their identity as a cohesive 

discipline and progressively straying away from other closely related disciplines such as computer science and 

library sciences. For instance, more and more new faculty members at iSchools are trained by peer iSchools. Re-

search at iSchools is also gaining independence from other related disciplines and getting more homogenous as a 

group, with a focus on the intersection of information, technology and people. The community, as a network, is 

getting less fragmented and less assortative.  
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The major contributions of this research are in the following three areas: (1) To the best of our knowledge, 

this study represents the first to conduct longitudinal analysis on the evolution of iSchools. Different from analysis 

based on a snapshot of the community, a longitudinal approach can better capture directions to which iSchools are 

heading. Similar approaches could also be used to study other emerging and fast-changing disciplines. (2) From the 

standpoint of collecting and analyzing bibliographical data, we retrieved publication data from various types of 

venues (e.g., journals, conferences, and book chapters), and applied automated topic modeling techniques to reveal 

research topics for the whole community and each individual iSchool by examining text from these publications. 

Compared with relying only on journal papers and arbitrary classifications of journals into disciplines (Wu, He, 

Jiang, Dong, & Vo, 2012; Zhang, Yan & Hassman, 2013), our approach is more suitable for a multi- and inter-

disciplinary community like the iSchools, whose researchers have diverse preferences regarding publication venues. 

Our computational analysis also enables us to analyze a large number of publications in an automated way. (3) 

Although there have been studies on academic disciplines using network analysis techniques (Clauset, Arbesman, 

& Larremore, 2015; Wiggins, Adamic & McQuaid, 2006; Wiggins, McQuaid & Adamic, 2008; Yu, 2013), we are 

the first to incorporate educational backgrounds and research topic distributions into the analysis of a discipline’s 

hiring network. The inclusion of these nodal attributes into topological analysis of a hiring network helps to better 

capture characteristics and the evolution of a discipline. 

The implications of our study are not limited to helping the iSchool community, funding agencies and 

employers better understand and guide the development of the new discipline. The approaches above to retrieve 

data, and to analyze the state and evolution of a discipline can also be easily adopted in the study of other disciplines, 

especially those facing rapid changes. 

Admittedly, this study is not without limitations. First, we only examined U.S. iSchools. The inclusion of 

iSchools outside the U.S. could potentially give us better ideas of the evolution of the internationally emerging 

community. Second, in our longitudinal analysis of iSchools, we did not consider the mid-career movement of 

faculty members who moved to another iSchool or joined an iSchool from another discipline, or the exact year of 

one’s transition from junior to senior members. The reason is that the exact time in which one was hired by an 
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iSchool or got tenured can be difficult to obtain for many faculty members, whose full CVs are not available online. 

Instead, we assumed a typical career path of “assistant professor - associate professor - full professor” within the 

same institution. The promotion from assistant professors to associate professors is presumed to take six years. 

Although such assumptions are true for many faculty members, accurate data of each faculty member’s employment 

history would certainly help us calibrate the longitudinal analysis.  

There are also interesting future research directions. To see if such topic evolution is specific to iSchools, 

it is intriguing to apply the methods above to similar departments such as computer science and library sciences. 

While information is usually considered a multi- and inter-disciplinary area, the evidence for interdisciplinarity is 

rare. To examine the existence of interdisciplinary nature, we can further explore topics from iSchool faculty pub-

lications to examine research that spans traditional disciplines. It is also interesting to explore whether having a 

diverse faculty body facilitates interdisciplinarity and whether interdisciplinary research leads to high scholar im-

pact. The iSchool community, in this case, can serve as an ideal case study to address these two questions. 
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