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System Informatics: 
From Methodology 
to Applications

attempt to improve and optimize the design, per-
formance, and control of these systems, system in-
formatics research leverages methods from various 
research areas—including statistics, data mining, 
machine learning, automation and control, and 
simulation—and offers great opportunities for 
 interdisciplinary collaboration.  

With the rapid development of information tech-
nologies, the big data collected by ubiquitous sen-
sors has posed new challenges for system infor-
matics research. This installment of Trends & 
Controversies introduces novel methods and inter-
esting applications of system informatics research in 
the big data era. We hope the work highlighted here 
encourages a further dissemination of ideas and col-
laborative opportunities in this important domain.

On the methodology side, “Projection-Based 
Process Monitoring and Empirical Divergence” 
proposes a framework of projection-based meth-
ods for real-time online process monitoring by 
contrasting newly observed data with a reference 
dataset. “One-Class Classifi cation Methods for 
Process Monitoring and Diagnosis” discusses how 
a data analytics algorithm can be used as a control 
chart for improving process capability through re-
liable online monitoring and diagnosis.

On the application side, “IoT-Enabled System 
Informatics for Service Decision Making” reviews 
current trends and future opportunities for IoT, 
with a special focus on issues related to the big 
data collected by multiple sensors. “Quantifying 
the Risk Level of Functional Chips in DRAM Wa-
fers” not only identifi es research challenges and 

opportunities for decision making with massive 
data in the process of semiconductor manufactur-
ing, but also quantifi es the risk level of functional 
chips in DRAM wafers. Finally, “Flight Opera-
tions Monitoring through Cluster Analysis: A 
Case Study,” describes a new method called clus-
ter-based anomaly detection to help airline safety 
experts monitor daily fl ights and detect anomalies.

We thank all the authors for their contribu-
tions to this special issue. We also thank IEEE 
Intelligent Systems and its editor in chief, Daniel 
Zeng, for the opportunity to highlight the state of 
the art in this emerging area.
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System informatics analyzes data collected 

from complex science and engineering sys-

tems in different domains, such as manufactur-

ing, energy, logistics, and healthcare.1–4 In an
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Projection-Based Process 
Monitoring and Empirical 
Divergence

Qingming Wei, Wenpo Huang,  
Wei Jiang, and Yanting Li,  
Shanghai Jiao Tong University

Process quality is critical to modern 
complex systems in manufacturing 
and service operations. Statistical pro-
cess control (SPC) is a typical statis-
tical method for maintaining process 
quality at a satisfactory level. It has 
been successfully applied in manufac-
turing system monitoring, healthcare 
surveillance, and hotspot detection.

Conventional SPC methods are of-
ten model-based, and process distri-
butions are assumed known or can be 
estimated before monitoring. How-
ever, these assumptions are very re-
strictive in many applications. For 
example, data collected via RFID in 
fresh-food delivery systems usually 
contains both continuous data (such 
as temperature) and attribute data 
(such as truck ID, driver ID, and so 
on). Data dimensionality can be quite 
high—often, much larger than the 
number of samples. Consequently, it 
is hard to make reasonable assump-
tions of process distribution or to es-
timate parametric models.

Another challenge is that conven-
tional SPC methods often require prac-
titioners to have knowledge of po-
tential process shifts. The monitoring 
procedure is then designed to be sen-
sitive to certain shifts. Because is is 
increasingly common to collect data 
in real time with the help of distrib-
uted sensing and high-speed wireless 

communication technologies, deter-
mination of process shift magnitudes 
or directions becomes a challenging 
task in real-time monitoring. How to 
quickly detect a process change, espe-
cially when we have little knowledge 
about the process, is especially difficult.

Here, we propose a general frame-
work of projection-based methods for 
monitoring process conditions in real 
time that contrasts newly observed data 
with reference data. Projection meth-
ods can help reduce the dimensionality 
of multivariate process data; accord-
ingly, our method searches the optimal 
projection direction to maximize the 
divergence between the projected ref-
erence data and new observations. Be-
cause the degree of process deviation 
from in-control state can be measured 
with the divergence between in-control 
distribution and that of newly observed 
data, we propose using this measure as 
the charting statistic when monitoring 
a complex process in real time.

Monitoring a Complex 
System Based on Divergence
The data from complex system x ∈ 
Rp is assumed to follow a change-
point model as follows:
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where f0 and f1 are the in-control 
(IC) and out-of-control (OOC) dis-
tributions of x, respectively, that are 
usually unknown in real-time moni-
toring; t is the change-point time. In 
complex systems, multivariate obser-
vations xi often contain both contin-
uous and categorical variables, such 
as image pixels, environment condi-
tions, and locations, and the dimen-
sion p can be very high.

Real-Time Contrast 
Procedure
In traditional SPC, a large collection of 
historical data S0 = {x–n+1, …, x–1, x0}  

is usually required to determine the IC 
condition. IC and OOC data could be 
mixed or well separated in the histori-
cal dataset—if data are mixed, phase 1  
methods must be applied to differen-
tiate them. Without loss of generality, 
we assume that the historical dataset 
only contains n identically and inde-
pendently distributed (i.i.d.) IC obser-
vations with probability density func-
tion f0(x).

The control limits—that is, the de-
cision boundaries—of conventional 
control charts such as the support 
vector data description (SVDD)1 are 
determined based on the IC reference 
dataset, without using information 
from real-time observations. How-
ever, the decision boundary is trained 
on the most resent observations and 
should be more sensitive to process 
shifts: recent observations contain 
more information about current pro-
cess conditions. The idea of real-time 
contrast (RTC) compares the most 
resent observations with the reference 
dataset once a piece of new observa-
tion arrives. The advantage of this 
method is that it doesn’t require any 
prespecified knowledge about multi-
variate process shifts.

In this study, we use only the most 
recent m observations as representa-
tives of the real-time process condi-
tion. Whenever a piece of newly ob-
served data arrives, the oldest one is 
excluded—that is, a sliding window 
is imposed on the data stream. Here, 
observations in the sliding window 
at time t are denoted as St = {xt–m+1, 
…, xt}. In the following, we describe 
charting statistics based on the RTC 
between the reference data S0 and the 
data in sliding window St.

RTC Monitoring Based 
on the Kullback-Leibler 
Divergence
SPC aims to detect process changes 
as soon as possible. When the process 
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has the parametric form f(x, q), the 
IC parameter q0 and OOC parame-
ters q1 are often estimated from pro-
cess data. Then charting statistics 
such as cumulative sum (CUSUM) 
can be built based on the log-likeli-
hood ratio (LLR) – log[f(x, q0) = f(x, 
q1)]. The LLR is usually small when 
the process is IC and large otherwise.

Use of the LLR method has sev-
eral prerequisites. First, the under-
lying process must follow a certain 
parametric form. Second, the distri-
bution parameters must be known 
in advance or accurately estimated. 
Unfortunately, these requirements 
aren’t always met in complex sys-
tems. Therefore, monitoring the dif-
ference between two contrasting sets 
S0 and St is a better alternative. The 
Kullback-Leibler (KL) divergence is 
commonly used to measure the dif-
ference between distributions of two 
random variables.2 Given two density 
functions f0(x) and f1(x), the KL di-
vergence is defined by
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The divergence is zero when two 
densities come from the same dis-
tribution and larger than zero when 
they’re from different distributions. 
Therefore, monitoring the process 
change can be converted to monitor-
ing the divergence between the ref-
erence data and the sliding window 
data.

The KL divergence calculation re-
quires estimation of the densities 
f0 and f1. The number of observa-
tions required to accurately estimate 
the process distribution increases 
exponentially with the process di-
mension. When the process dimen-
sion is high, the number of obser-
vations in datasets S0 and St should 
be large. However, the wide sliding 
window could deteriorate the moni-
toring procedure’s sensitivity. As an 

alternative, we can project the refer-
ence and sliding window data onto 
a lower-dimensional space. Assum-
ing the projection direction is w, the 
KL divergence between two pro-
jected datasets S T
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where ˆ( , )f S⋅ 0
ω  and ˆ( , )f St⋅ ω  are the den-

sity estimators of S0
ω  and St

ω . The op-
timal projection direction is the one 
that best separates the two projected 
datasets—that is, ω ωωt td

* argmax ˆ ( )= .  
The maximal divergence ˆ ( )*dt tω  is then 
used as the monitoring statistic at 
time t.

Estimating the Density 
Function and Calculating  
the Optimal Projection
Conventionally, histograms estimate 
the density of univariate projected 
data. The density function in Equa-
tion 1 can be replaced by the propor-
tion of observations falling in each 
bin. A similar idea can be found in 
the kth nearest neighbor (kNN)-
based approach in the multivariate 
situation. The difficulties lie in select-
ing the number and width of bins, 
which are often subjective. Chances 
are good that no observations fall in 
certain bins, which can be problem-
atic when calculating the empirical 
KL divergence in Equation 1.

The kernel approach is a non
parametric approach widely used to 
estimate distribution density.3 For 
example, the kernel density estimator 
(KDE) based on dataset St

ω  is given by
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where K K y H HH t tt
= ( / ) /  is the 

scaled kernel function, and Ht is the 

bandwidth whose selection is based 
on projected data St

ω  through a rule-
of-thumb approach.4 We should point 
out that the kernel-based density es-
timation has at least two advantages 
when compared with the histogram 
or kNN approach: it avoids empty 
bins in the histogram method, and 
the KDE in Equation 2 is continuous 
in the projection direction. Thus, we 
can efficiently search for the optimal 
direction via gradient methods. We 
use the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method based on gra-
dient information in this work.

Performance Evaluation
We tested our method by compar-
ing its detection ability on a real da-
taset from a white wine production 
process. The dataset contains 4,898 
observations that are publicly avail-
able in the University of Califor-
nia’s (UCI’s) “Wine Quality” dataset 
(http://archive.ics.uci.edu/ml/datasets/
Wine+Quality). The data were col-
lected from May 2004 to February 
2007, using protected designation of 
origin samples that were tested at the 
official certification entity, an interpro-
fessional organization with the goal of 
improving the quality and marketing 
of Portuguese Vinho Verde wine.

Each observation had 11 measure-
ments (based on physicochemical 
tests) including fixed acidity, vola-
tile acidity, citric acid, residual sugar, 
chlorides, free sulfur dioxide, to-
tal sulfur dioxide, density, PH, sul-
phates, and alcohol. A categorical 
variable that indicates wine quality 
between 0 (very bad) and 10 (very 
good) was also provided for sensory 
analysis, the goal of which was to 
monitor wine quality based on phys-
icochemical tests. A more detailed 
discussion about this example and 
dataset appears elsewhere.5

Because the distribution of obser-
vations is unknown, we compared 
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our KL divergence method with the 
SVDD method, which is also distri-
bution-free. Following settings from 
previous work,5,6 we chose the index 
“seven” (LV7) as the standard quality 
level. To approximate the control lim-
its of both methods, we bootstrapped 
5,000 observations from the reference 
dataset and calculated the kernel dis-
tances or KL divergence between the 
bootstrapped and the reference data 
for both approaches. The control limit 
was approximated by the 99.5th per-
centile, or the 25th largest distance, of 
all 5,000 distances. Based on our re-
sults, the SVDD and KL divergence 
methods’ approximated control limits 
were 0.9 and 40.07, respectively.

In real-time monitoring, we arti-
ficially assumed that 100 observa-
tions from LV7 were sequentially 
followed by the observations catego-
rized as LV6. Figure 1a plots the ker-
nel distances of the SVDD method 
along with the approximated control 
limit; Figure 1b shows our proposed 
method’s KL divergences. We can see 
the KL divergences of LV6 data are 

substantially larger than LV7 data. 
The KL divergence method not only 
produces a much earlier signal but 
also produces more signals than the 
SVDD method when the data change 
from LV7 to LV6.

The proposed approach for more 
efficient detection of process changes 
in a complex system involves two 
steps: find the optimal projection 
direction that maximizes the pro-
jected dataset’s KL divergence and 
then monitor the process through 
the RTC procedure. Our proposed 
projection-based approach can eas-
ily be extended to detect variance or 
other process changes via the kernel 
method, which maps the data to a 
higher dimensional feature space.
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One-Class Classification 
Methods for Process 
Monitoring and Diagnosis

Sugon Cho and Seoung Bum Kim, 
Korea University

Process monitoring and diagnosis are 
widely recognized as important tech-
niques for improving quality and de-
tecting abnormal behavior.1 In manu-
facturing systems, statistical process 
control (SPC) methods have improved 
process capability through reliable 
online monitoring and diagnosis. An 
important method in SPC is a con-
trol chart, which monitors a process’s 
performance over time. Although tra-
ditional control charts are effective 

in situations that involve generating 
a small volume of independent data, 
these charts are incapable of handling 
the large streams of complex data fre-
quently found in modern systems.

Data analytics algorithms can ef-
fectively analyze large amounts of 
data. They use one-class classification 
(OCC) methods that share a common 
goal with control charts: both meth-
ods assume that the majority class 
is the only population, and they can 
both be used to measure the degree 
of abnormality in new observations. 
For control chart problems, the num-
ber of in-control observations greatly 
exceeds the number of out-of-control 
observations—thus, in-control obser-
vations are typically used to construct 
these control charts. OCC methods 
generate a closed control boundary 
around a single class of observations 
of interest and use the boundary to 
determine whether a future obser-
vation belongs to the majority class. 
Most OCC methods don’t require 
distributional assumptions and effec-
tively accommodate any data format.

As the limitations of traditional 
control chart techniques become in-
creasingly obvious in the face of more 
complex systems, OCC methods have 
the potential to resolve many chal-
lenging problems in modern manu-
facturing and service systems. How-
ever, despite this potential, few 
studies have been conducted to bridge 
the gap between OCC methods and 
traditional control charts.

OCC and Control Charts
In general, control charts are con-
structed in two phases. Phase 1 analysis  

extracts the in-control data from un-
known historical data and uses them 
to establish the control limits for fu-
ture monitoring; these limits are then 
used in Phase 2 analysis to monitor 
the process. These two phases are 
analogous to the two phases (train-
ing and testing) of classification mod-
eling in data analytics: the training 
phase uses a training dataset to con-
struct the models that generate a deci-
sion boundary, and the testing phase 
assigns the existing class (category) to 
an unknown future observation based 
on the decision boundary determined 
from the training phase. Based on the 
availability of class labels in the train-
ing dataset, classification models can 
be divided into either supervised or 
semisupervised learning. Supervised 
classification constructs a model by 
using class labels; semisupervised 
classification creates a model by us-
ing partial information from class 
labels. OCC, which corresponds to 
an example of semisupervised learn-
ing, uses observations from only one 
class (primarily the majority class) to 
construct the decision boundary and 
uses the decision boundary to deter-
mine whether a future observation be-
longs to the majority class. Generally, 
for control chart problems, the num-
ber of in-control observations greatly 
exceeds the number of out-of-control 
observations; thus the majority class 
is in control.

Table 1 shows the relationship be-
tween OCC methods and control charts 
in terms of their key components. OCC 
methods calculate a score that quanti-
fies how much an observation deviates 
from the center of the majority class 
(the “novelty score”). These scores can 
be considered the equivalent of moni-
toring (charting) statistics in control 
charts. OCC creates a closed decision 
boundary that encompasses the data-
set—this decision boundary resembles 
the control limit in control charts.

Table 1. Relationship between one-class classification (OCC) and control charts.

Key component OCC Control charts

Degree of abnormality Novelty score Monitoring statistic

Threshold that determines the 
abnormality’s significance

Decision boundary Control limit
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Recent Developments
A support vector data description 
(SVDD)2 is one of the most popular 
OCC methods. SVDD’s goal is to 
identify a hypersphere that can de-
scribe the p-variate training data 
well, { , , ,..., }x i ni

p∈ℜ = 1 2 . To achieve 
this goal, the SVDD algorithm solves 
the following optimization problem:

min
, ,R a

i
i

N

R C
ξ

ξ2

1

+
=
∑  subject to

Φ( ) , , ,..., ,x a R i ni i− ≤ + =2 2 1 2ξ for �(1)

where xi ≥ 0, i = 1, 2, …, n is a set 
of slack variables that allows x to 
be outside the hypersphere. Here, C  
(> 0) is a regularization parameter 
that compromises between hyper-
sphere volume and error tolerance. 
By allowing errors, we can avoid the 
overfitted hypersphere, and F(•) is a 
kernel function that maps the origi-
nal data into a higher dimensional 
space. The solutions of Equation 1 
are the center a and the radius R that 
characterize the hypersphere; then we 
can declare observations to be abnor-
mal if ||F(x) – a||2 > R. Note that this 
primal formulation of SVDD seems 
to have nothing in common with 

the original support vector machine 
(SVM), but its dual form closely re-
sembles the SVM dual problem.3 This 
is why we call it SVDD.

The SVDD algorithm can be con-
verted into a control chart quite 
easily. SVDD-based control charts’ 
monitoring statistics and the control 
limit are, respectively, ||F(xi) – a||2,  
i = 1, 2, …, n, and R. Figure 2a shows 
the scatter plot of observations in 
the 2D space with the boundary ob-
tained from the SVDD algorithm; the 
boundary adapts well to the shape of 
the data. Figure 2b shows the result-
ing control chart representation.

The monitoring statistics that de-
scribe the distance from F(xi) to the 
center a is straightforward. However, 
the control limit, R, isn’t obvious be-
cause R doesn’t involve a false alarm 
rate (that is, type I error rate = a) in 
its calculation. This is a clear limita-
tion in process monitoring because we 
can’t use the control limit to control 
the false alarm rate. One study4 pro-
posed using support vectors to con-
struct the control limits based on the 
boundary kernel distance. However, 
any limits constructed this way still 
couldn’t control the false alarm rate. 

One idea to address this limitation 
is to use the percentile values of the 
monitoring statistics estimated by 
bootstrapping.5 Another idea is to es-
timate the distribution of the moni-
toring statistics using nonparametric 
estimation methods such as the kernel 
density estimation (KDE) technique. 
Although both bootstrapping and 
KDE deliver control limits that can 
control false alarm rates, determin-
ing the necessary parameters for both 
methods is complicated and requires 
a high computational load. Thus, de-
veloping an efficient way to determine 
the control limits in SVDD-based 
control charts is an open research 
question.

In addition to SVDD-based control 
charts, several OCC-based control 
charts have been developed that use 
novelty scores as monitoring statistics. 
One work6 proposed a hybrid novelty 
score-based control chart whose mon-
itoring statistics are computed based 
on the distance to local observations 
as well as the distance to the convex 
hull constructed by its neighbors; that 
study’s authors7 also recently com-
pared eight novelty scores in terms of 
their control chart performance (such 

Figure 2. Decision boundary: (a) support vector data description (SVDD) algorithm and (b) the corresponding SVDD-based 
control chart. The boundary adapts well to the shape of the data.
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as average run length). Walid Gani 
and Mohamed Limam8 compared the 
SVDD-based control chart’s perfor-
mance and k-nearest neighbor-based 
control charts proposed elsewhere.6 
Observations in the low-density re-
gions are more likely to be out of 
control because they’re remote from 
their neighbors. However, the original 
SVDD doesn’t consider data density in 
constructing its boundary. To address 
this issue, a density-focused SVDD 
method that considers both the data’s 
shape and their dense regions has 
been proposed,9 as has an improved 
design of SVDD-based charts.10

We hope this article boosts aware-
ness within both the data mining and 
SPC communities of the relevance of 
their discipline to an aspect of qual-
ity control. We also hope this article 
stimulates further investigation into 
the development of better procedures 
for OCC modeling in system moni-
toring and diagnosis.

References
	 1.	D.C. Montgomery, Introduction to Sta-

tistical Quality Control, 6th ed., Wiley, 

2009.

	 2.	D.M.J. Tax, “One-Class Classification: 

Concept-Learning in the Absence of 

Counter-Examples,” PhD dissertation, 

Delf University of Technology, 2001.

	 3.	D.M.J. Tax and R.P.W. Duin, “Support 

Vector Data Description,” Machine 

Learning, vol. 54, 2004, pp. 45–66.

	 4.	R. Sun and F. Tsung, “A Kernel-

Distanced-Based Multivariate Control 

Chart Using Support Vector Methods,” 

Int’l J. Production Research, vol. 41, 

2003, pp. 2975–2989.

	 5.	T. Sukchotrat, S.B. Kim, and F. Tsung, 

“One-Class Classification-Based 

Control Charts for Multivariate Process 

Monitoring,” IIE Trans., vol. 42, 2010, 

pp. 107–120.

	 6.	G. Tuerhong et al., “Hybrid Novelty 

Score-Based Multivariate Control 

Charts,” Comm. Statistics–Simulations 

and Computation, vol. 43, 2014,  

pp. 115–131.

	 7.	G. Tuerhong and S.B. Kim, “Compari-

son of Novelty Score-Based Multivari-

ate Control Charts,” Comm. Statistics–

Simulations and Computation, vol. 44, 

2015, pp. 1126–1143.

	 8.	W. Gani and M. Limam, “Performance 

Evaluation of One-Class Classification-

Based Control Charts through an 

Industrial Application,” Quality and 

Reliability Engineering Int’l, vol. 29, 

2013, pp. 841–854.

	 9.	P. Phaladiganon, S.B. Kim, and V.C.P. 

Chen, “A Density-Focused Support Vec-

tor Data Description Method,” Quality 

and Reliability Engineering Int’l, vol. 

30, 2014, pp. 879–890.

	10.	X. Ning and F. Tsung, “Improved De-

sign of Kernel Distance-Based Charts 

Using Support Vector Methods,” IIE 

Trans., vol. 45, 2013, pp. 464–476.

Sugon Cho is a PhD candidate in the 

School of Industrial Management Engineer-

ing at Korea University. Contact him at sug-

oncho@gmail.com.

Seoung Bum Kim is a professor in the 

School of Industrial Management Engineer-

ing at Korea University. Contact him at sb-

kim1@korea.ac.kr.

IoT-Enabled System 
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The Internet of Things (IoT) refers 
to the interconnection of embedded 
computing devices within the Inter-
net infrastructure.1 IoT has created 

a data-rich environment in which 
multiple sensors continuously moni-
tor a unit’s health status, and mul-
tiple units simultaneously transfer 
these data through the communica-
tion network to the processing cen-
ter for analysis. This has provided 
an unprecedented opportunity for 
improving service decision making, 
which could lead to closer monitor-
ing of a unit’s health status, quicker 
fault diagnosis, more accurate fore-
casts of a unit’s remaining lifetime, 
and proactive maintenance and con-
trol decisions that are better aligned 
to a unit’s future conditions and 
performance.

However, the existing literature is 
limited to satisfying the unique needs 
and challenges of IoT-enabled after-
sales service and support. Advanced 
system informatics methodologies 
that leverage diverse “gene” pool in-
formation could move us from being 
data-rich to service decision-smart. 
As an initial effort, we present con-
cepts, current trends and achieve-
ments, and research challenges and 
future opportunities regarding this 
topic.

Trends and Achievements
A unit’s service life cycle refers to the 
time period during which the unit is 
in service (from the beginning to the 
end of its operational life). We can 
classify the research that analyzes the 
service life cycle for decision making 
into two broad categories. Reliabil-
ity-based analysis often treats fail-
ure as a random process and employs 
time-based parametric distributions 
to model uncertainty in failure times 
for a population. A condition-based 
monitoring and maintenance strat-
egy considers the degradation evolu-
tion across the life cycle for each indi-
vidual unit.

While the existing literature is rich, 
one common limitation is that these 
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methods focus on analyzing single 
degradation signals. Thus, they are 
effective only under the assumption 
that single sensor data can capture 
the underlying degradation mecha-
nism. Before IoT, this assumption 
was likely to be satisfied: practitio-
ners could manually choose the most 
appropriate sensor data or key per-
formance indicator (KPI) to monitor 
based on empirical or domain knowl-
edge (such as using vibration signals 
to monitor a rotation bearing). How-
ever, as engineering systems become 
more complex and multiple sensors 
simultaneously monitor the same 
unit, existing methods fail to address 
these new challenges. 

Because different sensor data often 
contain partial and correlated infor-
mation about the same unit, data fu-
sion methods attempt to both address 
multiple sensors and improve analyt-
ics results. Specifically, data fusion 
methods fit into two broad catego-
ries based on the fusion technique’s 
implementation level at the data or 
decision level. For service decision 
making, the existing literature heav-
ily relies on the decision-level fusion 
approach, which integrates the results 
(such as voting) created by separately 
analyzing each individual sensor 
data. However, such an approach ig-
nores the dependency in multiple sen-
sor data and treats each sensor signal 
as equally important, thus it often 
leads to biased results. Moreover, de-
cision-level fusion requires repeated 
computations based on each individ-
ual sensor’s data, which is not scal-
able to IoT applications.

Currently, a more effective and rec-
ognized trend is to consider data-level 
fusion that directly combines multiple 
sensor data or extracted features to 
construct a health index (HI) for ac-
curately characterizing a unit’s health 
condition. Such a 1D HI is essential 
in the after-sales service and support 

industry because it provides a funda-
mental understanding of how a unit’s 
health status progresses over time. 
Furthermore, the HI facilitates data 
visualization and health comparisons 
in a dashboard, providing a scientific 
way to support maintenance schedul-
ing, sparse part logistics, and inven-
tory control based on multiple units’ 
health status in real time. Specifically, 
let x(i,.,t) = [x(i,1,t) …, x(i,s,t)] ∈ R(1×s) be 
the s sensor data for unit i at obser-
vation time t. Then, HI h(i,t) can be 
constructed via a fusion model, h(i,t) 

= f(x(i,.,t)).
Researchers have made various 

efforts along this direction in the lit-
erature, although not always explic-
itly using the term HI. For example, 
multivariate statistical process con-
trol (SPC) methods combine multiple 
sensor data into an HI (called moni-
toring statistics in the SPC field) for 
change detection and fault diagno-
sis. However, these methods cannot 
effectively present an HI that con-
tinuously and accurately measures a 
unit’s health status across the life cy-
cle. Although few purely data-driven 
methods attempt to tackle this issue, 
they often act like a black box that 
only provides a final predicted result 
without any insights into the under-
lying degradation process, meaning 
they are not suitable for service deci-
sion making, either. In practice, the 
HI is constructed by combining sen-
sor data (or KPIs) based on simplified 
physical laws and empirical knowl-
edge. However, such approaches rely 
on special personnel skills and many 
years’ experience, and they are lim-
ited to systems with simple structures 
and few sensor data.

In theory, the main challenge lies in 
the fact that HI h(i,t) is not observable, 
so the problem substantially differs 
from conventional regression-based 
issues (that is, assuming the response 
variable is known). Consequently, 

in isolation, neither conventional 
physical-based modeling nor purely 
data-driven empirical techniques can 
effectively address the challenge. De-
veloping advanced system informat-
ics that seamlessly integrates domain 
knowledge and data analytics models 
is quite essential.

Since the first introduction of sys-
tem informatics, researchers have 
made some initial achievements tai-
lored to the needs of service decision 
making. One work,2 for example, 
considered the degradation process’s 
inherent characteristics and identi-
fied two essential properties that the 
HI should possess for successful ser-
vice decision making: maximizing 
the HI’s monotonic property over 
the service life cycle and minimizing 
variance in the failure threshold. An 
optimization formulation that opti-
mizes these two properties was devel-
oped to construct a composite HI via 
a weighted average of multiple sen-
sor data. Considering that the con-
structed HI might not be suitable for 
the selected degradation model, re-
searchers3 further proposed a semi-
parametric data fusion model that 
aims to minimize degradation model 
uncertainty while constructing the 
HI. In this way, degradation model-
ing and the fusion procedure were 
solved in a unified manner. Case 
studies performed on aircraft gas tur-
bine engines showed that the devel-
oped HI provides a much better char-
acterization of a unit’s condition than 
any original sensor data, leading to 
superior prediction for the remaining 
lifetime.

Research Challenges and 
Future Opportunities
Thanks to IoT technology, histori-
cal offline records of a large number 
of units’ service life cycles have be-
come available. In addition, multiple 
sensor data from in-service units can 
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be collected in real time, providing a 
tremendous opportunity to make op-
timal service decisions. Although sys-
tem informatics topics have been in-
vestigated in several research areas, 
including multistage manufacturing 
modeling, sensor allocation and net-
work design, and SPC, few efforts 
have focused on service decision mak-
ing, especially in exploring IoT-en-
abled opportunities and challenges. 
Recently, initial achievements in the 
HI approach have demonstrated a 
promising path.

One unique advantage is that the 
constructed HI can be regarded as 
another point of single-sensor data, 
something to readily integrate with 
the existing literature on service de-
cision making. However, the current 
state of the art is limited to linear 
fusion models and assumes that the 
unit resulted from one single failure 
mode under a single environmental 
condition. Apparently, practical sce-
narios are much more complex and 
dynamic, leading us to believe that 
the ultimate solution relies on a ho-
listic, system-level data fusion and 
analytics approach through a seam-
less integration of theories, tools, and 
techniques from multiple disciplines 
such as engineering domain knowl-
edge, statistics, data mining, opera-
tion research, and decision control. 
Indeed, this has been an ever-growing 
trend in many other research fields as 
well.4 In particular, we believe the 
following challenges and problems 
will be investigated soon, and corre-
sponding research efforts will grow 
significantly in the near future.

The term big data refers to the is-
sues that result when dealing with 
high volumes of, high velocity in, and 
a high variety of information. Among 
the three characteristics, high variety 
presents a central challenge for ser-
vice decision making because each 
sensor’s data can convey a different 

message when used to assess, diag-
nose, and predict a unit’s condition 
due to different data characteristics, 
signal-to-noise ratios, and complex 
dependent relationships. On the other 
hand, because each sensor’s data can 
exhibit different measurement units 
and signal scales, they also impose a 
severe challenge to the development 
of system informatics techniques. 
How to overcome this big data chal-
lenge by effectively leveraging the di-
verse “gene” pool created by multiple 
sensors is a question that remains to 
be resolved.

The second challenging issue is 
how to simultaneously deal with mul-
tiple sensor data and multiple failure 
modes. In practice, different failure 
modes can have distinct influences 
on a unit’s lifecycle path. Therefore, 
an essential task here is to continu-
ously and accurately estimate failure 
along the life cycle. The central chal-
lenge lies in that some sensors might 
be sensitive to certain types of failure 
modes by showing a strong degrada-
tion pattern, and other sensors might 
not. Although many data fusion stud-
ies have been done for online fault di-
agnosis, they either employ a simple 
voting scheme that combines results 
created by separately analyzing each 
individual sensor’s data or they fail to 
address the specific needs of service 
decision making. Particularly, two 
unique requirements must be satisfied 
when developing the system infor-
matics technique: the fault diagnosis 
must be estimated and updated con-
tinuously along the life cycle, and the 
diagnostic result must be more accu-
rate as the unit approaches its end of 
life, to ensure better service planning 
and avoid unexpected failure. How 
to tackle these unique challenges 
isn’t well addressed in the existing 
literature.

Multiple and time-varying envi-
ronmental conditions have been a 

challenge for service decision mak-
ing, with environmental conditions 
having a big impact on a unit’s service 
life cycle, which in turn influences the 
decision-making process. As shown 
in several applications, units are often 
operated under complex and dynamic 
conditions, some of which might not 
even be known or predictable. Some 
studies consider the effects of envi-
ronmental conditions based on a sin-
gle sensor’s data, but there’s still a 
lack of effective system informatics 
methods that simultaneously over-
come the challenges from both mul-
tiple sensors and multiple conditions.

Finally, the ultimate goal of after-
sales service and support is to improve 
customer satisfaction, overall cost, 
productivity, and efficiency at the 
enterprise level, all of which require 
making an effective maintenance and 
control decision that leverages health 
assessments and predictions from 
multiple units in real time. Existing 
methods often optimize service de-
cisions based on an individual unit’s 
condition, and thus they can lead to a 
loss of overall throughput, efficiency, 
and cost without considering the en-
terprise’s resource constraints and 
availability. How to solve this new 
challenge is still lacking in the current 
literature.

A lmost 25 billion devices are con-
nected worldwide, with IoT push-
ing the fourth industrial revolution. 
A recent report from the McKin-
sey Global Institute stated that IoT 
could unleash up to $6.2 trillion in 
new global economic value annu-
ally by 2025, and that 80 to 100 per-
cent of manufacturers will be using 
IoT applications by then.5 In par-
ticular, after-sales service and sup-
port is likely to generate new revenue 
greater than $300 billion by 2020. 
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With data availability and compu-
tational power reaching an unprece-
dented level in recent years, the ques-
tion of how to exploit these emerging 
opportunities to improve service de-
cision making will take the center 
stage of engineering research in the 
near future. We believe that system 
informatics research concentration 
will play an important role and will 
stimulate numerous opportunities for 
both academia and industry.
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The semiconductor industry relies on 
informatics tools to extract useful in-
formation such as process conditions 
and yield rate predictions from mul-
tiple data sources.1,2 In semiconduc-
tor manufacturing, various online 
sensor signals for monitoring process 
conditions and detecting defects are 
collected while semiconductor wafers 
are fabricated. Something as basic 
as 1-Gbyte dynamic random access 
memory (DRAM) has approximately 
8.5 billion cells, with each cell’s elec-
trical device sorting (EDS) test results 
stored for later analysis.

Perfecting the automatic identifi-
cation of defective chips on DRAM 
wafers based on big data analytics 
tools is one of the semiconductor in-
dustry’s key challenges. Even though 
various studies have analyzed semicon-
ductor wafer data, they’ve been limited 
to simple flash memory wafers from 
functional testing results. The DRAM 
wafer has a complex data structure, 
with multiple spatial maps and 2D fail 
bit maps for each chip. Several research 
challenges and opportunities related to 
massive DRAM wafers data include

•	 detection of spatial abnormalities 
in DRAM wafers with multiple 
spatial maps;

•	 defect pattern classification both 
at the chip level based on fail bit 
maps and at the wafer level based 
on multiple spatial maps;

•	 big data analytics with features 
with uncertain values; and

•	 quantification of the risk level for 
functional chips.

In addition, each integrated circuit 
(IC) involves multiple stages during 
fabrication. Output variables from a 
preceding stage in a multistage man-
ufacturing process (MMP) some-
times function as input variables for 
the current stage. Also, there are lots 
of missing values in data due to sam-
pling and other technical issues such 
as dysfunctional equipment or dam-
aged sensor devices. Thus, additional 
challenges and opportunities in this 
area include

•	 inputting a substantial amount of 
missing values;

•	modeling the interrelationship among 
the multiple stages under the presence 
of massive missing data; and

•	 quantifying the contribution of 
each individual stage to the vari-
ability of quality characteristics in 
the final stage.

Here, we introduce the important 
topic of quantifying the risk level of 
functional chips based on wafer test-
ing results.

Quantifying the Risk Level
In the DRAM wafer process, each 
chip goes through a series of fail bit 
tests (FBTs), which are commonly 
used as a diagnosis tool for testing 
memory devices.3,4 Based on mul-
tiple FBT results, each chip on a 
DRAM wafer is determined to be 
functional or defective. Figure 3 
shows the graphical representation 
of the DRAM wafer testing pro-
cess and corresponding test results. 



22		  www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

Multiple spatial FBT maps are gen-
erated based on FBT results in the 
final test process; a binary DRAM 
wafer map is built by overlapping 
those FBT maps. In practice, how-
ever, even though the chip is con-
sidered functional, it’s important to 
quantify the probability of its being 
defective based on FBT results; we 
define these chips to be risky func-
tional chips (marked as red in Figure 
3d). Note that these risky functional 
chips were classified as functional in 
the inspection process but could fail 
in the near future. Thus, even though 

a functional chip passes all FBTs, it’s 
important to quantify the risk of be-
ing defective so that engineers can 
take appropriate actions and ensure 
customer satisfaction.

This article introduces a novel pro-
cedure for quantifying the risk level 
of functional chips along with accu-
rately identifying defective chips on 
DRAM wafer maps. To screen for 
risky functional chips, we propose us-
ing a robust relevance vector machine 
(RRVM) that can give the probability 
that a functional chip could poten-
tially be defective. 

Methodology
The discriminant analysis classifier 
and RRVM for classification quantify 
a functional chip’s risk level.

Discriminant Analysis
Suppose we have n FBT results of 
a chip, x = [x1, x2, …, xn], and the 
chip is either defective or functional. 
We can calculate the chip’s distance 
to a decision boundary in the lin-
ear discriminant analysis (LDA) as 
follows5:
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In addition, the distance between a 
chip and a quadratic decision bound-
ary can be obtained in the following 
quadratic equation5:
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Figure 3. Graphical representation of the DRAM wafer testing process: (a) 
conceptual wafer manufacturing process; (b) multiple spatial fail bit test (FBT) 
maps generated from FBT tests; (c) binary wafer map; and (d) binary wafer map 
with the level of risk for functional chips. Risky functional chips can be classified as 
functional in the inspection process but could fail in the near future.

Binary map with risky
functional chips

White: functional chips
Black: defective chips
Red: risky functional chips

DRAM wafer map

Multiple FBT maps

(a)
(b)

(d) (c)
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RRVM
Relevance vector machine (RVM) is 
a Bayesian inference-based machine 
learning method for regression and 
classification problems.6 RVM can 
provide probabilistic outputs for the 
given inputs while achieving a sparse 
prediction model. To build a predic-
tive model that is robust to noises in 
the process, a robust relevance vector 
machine (RRVM) for classification 
was proposed recently.7 

Consider a dataset of N FBT results 
target pairs { , }x i i i

Nt =1, where xi repre-
sents a d-dimensional input vector and 
ti represents binary class labels: ti = 1 
if a chip is defective, and ti = 0 other-
wise. We can obtain a nonlinear deci-
sion boundary as a linear combination 
of M nonlinear basis functions (such as 
a Gaussian kernel function) as follows:
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f1 (x),..., fM (x))T is a vector of basis 
functions. Assuming independently 
distributed data, the conditional dis-
tribution for t under the framework 
of a standard logistic regression can 
be written as
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Here, su is the logistic function de-
fined as s(u) = 1/(1 + e–u). To obtain 
robust model coefficients a, a weight-
ing strategy can be employed to max-
imize the likelihood function of the 
standard logistic regression model as 
follows

min {( ) ( ( )),
ββ

w l t fi i i
i

N

2 1
1

−
=
∑ φ x

where wi is a weight associated with 
the ith observation, and l(u) = ln(1 + 
e–u) denotes the logistic loss function. 
We approximate the posterior distri-
bution over model coefficients a using 
a variational inference method under 
the following prior distributions over 
the model parameters:
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Then, the best candidate model 
can be obtained by minimizing the 
following variational lower bound 
based on the iterative algorithm:

L
~

[Q(a, `, w)] = E[ln h(a, w, w)] 
  + E[ln p(a | `)] + E[ln p(` | a, b)]
  + E[ln p(w | c, d)] – E[ln Qa(a)]
  – E[ln Q`(`)] – E[ln Qw(w)]

Performance Evaluation
A company in the semiconductor 
industry collected 62 DRAM wa-
fers with 1,461 chips per wafer for 

experiments. Table 2 shows the data 
structure, where the second column 
(i, j) indicates each chip’s location on 
a given DRAM wafer, and the other 
columns show the number of failed 
unit cells on each chip from each FBT. 
The last column shows whether each 
chip is defective (value = 1) or func-
tional (value = 0). The dataset was 
randomly split into a training set of 
42 wafers and a test set of 20 wafers.

Table 3 shows RRVM and other 
procedures’ performance in terms of 
classification accuracies. The RRVM 
approach shows superior perfor-
mance compared to LDA and QDA. 
Even though this is classified as func-
tional, we need to quantify the risk 
level of being defective. Figure 4 visu-
alizes the level of risk for each func-
tional chip on a wafer map using the 
proposed RRVM approach. Here, a 
black unit block represents a defec-
tive chip, whereas white ones indicate 
functional chips. Each unit block’s 
color represents the estimated risk 
level for the corresponding functional 
chip. A red chip represents a func-
tional chip with a higher probabil-
ity of failure in the near future. We 
can see that a functional chip close to 

Table 2. Data structure of FBT results from a DRAM wafer.

Wafer index (i, j) FBT 00 FBT 01 FBT N-2 FBT N-1 Test result

188G1W02 14, 54 6828717 454942 … 172 8073979 1

188G1W02 14, 55 3387648 448173 … 163 4650002 1

… … … … … … …

188G1W10 52, 59 24 128 … 0 220 0

188G1W10 52, 60 1 107 … 0 192 0

Table 3. Accuracies of classification methods (%).

Method Actual class

Predicted class

AccuracyDefective Functional

Linear discriminant analysis Defective 79.1 21.0 83.9

Functional 10.6 89.4

Quadratic discriminant analysis Defective 78.1 21.9 83.8

Functional 9.9 90.1

Robust relevance vector machine Defective 94.2 5.7 93.5

Functional 7.5 92.3
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defective chips tends to have a higher 
risk level.

Our proposed Bayesian inference-
based machine learning method ef-
fectively addresses the problem of 
quantifying risk levels for functional 
chips in semiconductor industry. Fur-
ther investigations will aim to de-
velop advanced models to deal with 
risky functional chips and confirm 
the effectiveness of informatics tools 
by experiments with massive real-life 
DRAM wafers.

Acknowledgments
Part of this work was supported by US Na-
tional Science Foundation grant 1233800 
and Chonnam National University internal 
grant 2014-0542.

References
	 1.	J. Lee, B. Bagheri, and H. Kao, “Recent 

Advances and Trends of Cyber-Physical 

Systems and Big Data Analytics in In-

dustrial Informatics,” Proc. Int’l Conf. 

Industrial Informatics, 2014, DOI: 

10.13140/2.1.1464.1920. 

	 2.	A. Bleakie and D. Djurdjanovic, “Fea-

ture Extraction, Condition Monitoring, 

and Fault Modeling in Semiconductor 

Manufacturing Systems,” Computers in 

Industry, vol. 64, 2013, pp. 203–213.

	 3.	B. Kim et al., “A Regularized Singular 

Value Decomposition-Based Approach 

for Failure Pattern Classification on 

Fail Bit Map in a DRAM Wafer,” IEEE 

Trans. Semiconductor Manufacturing, 

vol. 28, no. 1, 2015, pp. 41–49.

	 4.	B. Kim et al., “Step-Down Spatial Ran-

domness Test for Detecting Abnormalities 

in DRAM Wafers with Multiple Spatial 

Maps,” to be published in IEEE Trans. 

Semiconductor Manufacturing, 2015.

	 5.	T. Hastie, R. Tibshirani, and J. Fried-

man, The Elements of Statistical 

Learning, Springer, 2001.

	 6.	M.E. Tipping, “Sparse Bayesian Learn-

ing and the Relevance Vector Ma-

chine,” J. Machine Learning Research, 

vol. 1, 2001, pp. 211–244.

	 7.	S. Hwang and M.K. Jeong, “Robust 

Relevance Vector Machine for Clas-

sification with Variational Inference,” 

to be published in Annals Operations 

Research, 2015.

Young-Seon Jeong is an assistant profes-

sor in the Department of Industrial Engi-

neering at Chonnam National University, 

Republic of Korea. Contact him at young.

jeong@jnu.ac.kr.

Byunghoon Kim is a senior researcher in 

the Department of Small- and Medium-

Sized Enterprises Innovation at the Korea 

Institute of Science and Technology Infor-

mation (KISTI), Republic of Korea. Contact 

him at bhkim@kisti.re.kr.

Seung Hoon Tong is a master engineer 

(executive) in the Department of Memory 

Business at Samsung Electronics, Republic 

of Korea. Contact him at shtong@samsung.

com.

In-Kap Chang is a principle research engi-

neer in the Department of Memory Business 

at Samsung Electronics, Republic of Korea. 

Contact him at inkap.chang@samsung.com.

Myong K. Jeong is an associate professor 

in the Department of Industrial and Systems 

Engineering at Rutgers University. Contact 

him at mjeong@rci.rutgers.edu.

Flight Operations 
Monitoring through 
Cluster Analysis: A Case 
Study

Florent Charruaud and Lishuai Li, City 
University of Hong Kong

Although aviation safety has im-
proved significantly over the past few 
decades, its track record is far from 
perfect in light of recent mishaps that 
have made worldwide headlines. De-
spite the industry’s continuing efforts 
to monitor and analyze flight opera-
tions, modern aircraft systems have 
become immensely complex, to a de-
gree that traditional analytical meth-
ods are reaching their limits. We’re 
sitting on piles of underutilized data 
that could be otherwise used to im-
prove aviation safety.

Digital flight data are a good ex-
ample. Recorded continuously from 
engine start to engine shutdown on 
each flight, the data contain rich 

Figure 4. Visualization of risky functional chips. A red chip represents a functional 
chip with a higher probability of failure in the near future. We can see that a 
functional chip close to defective chips tends to have a higher risk level.

Risky Good
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information about aircraft systems, 
pilot operations, and flight condi-
tions. A typical tool the airline indus-
try uses is called exceedance detec-
tion (ED), in which flight parameters 
are compared with predefined thresh-
olds to raise the red flag and identify 
safety risks, such as equipment prob-
lems, environmental hazards, and pi-
lot errors. Needless to say, ED’s ef-
fectiveness is limited to known safety 
issues only—for emerging issues that 
are unknown, the tool can’t respond 
until thresholds are eventually up-
dated, possibly triggered by another 
accident.

Recent advances in data mining have 
attracted new interest in monitoring 
and analyzing flight data. Compared 
with existing options, data-driven ap-
proaches can proactively detect anom-
alies based on data patterns rather 
than predefined thresholds. The In-
ductive Monitoring System (IMS),1 for 
example, uses supervised learning in 
which typical system behaviors are de-
rived from a training dataset and then 
compared with operational data to 
detect abnormal behaviors. However, 
IMS doesn’t account for temporal 

patterns (event sequence and timing), 
which are critical features of dynamic 
systems such as aircraft. The sequence 
miner algorithm2 focuses on discrete 
flight parameters to monitor pilot op-
erations, such as cockpit switch flips, 
yet a majority of flight data come from 
continuous parameters, such as alti-
tude, airspeed, and engine tempera-
ture. Multiple kernel anomaly detec-
tion (MKAD)3 applies a one-class 
support vector machine (SVM) for 
anomaly detection, but it assumes one 
type of data pattern for normal opera-
tions, which isn’t always valid in real 
operations because standards can vary 
according to flight conditions.

We propose a new method4,5 to 
help airline safety experts monitor 
daily flights and detect anomalies. 
Without knowing the norm standard 
a priori, this method, referred to as 
cluster-based anomaly detection to 
detect abnormal flights (ClusterAD-
Flight), applies clustering techniques 
on flight data to identify standard 
operations and anomalies. We also 
provide a case study to demonstrate 
ClusterAD-Flight in action with real 
data.

Flight Operations 
Monitoring via  
ClusterAD-Flight
ClusterAD-Flight is based on cluster 
analysis, a widely used data mining 
technique to identify common pat-
terns. We assume that most flights 
exhibit common patterns under rou-
tine operations; a few outliers that 
deviate from those common patterns 
are of interest to airline safety man-
agement. Our method includes three 
key steps, as Figure 5 shows. The 
first step is to transform flight data 
into high-dimensional data vectors 
that capture each flight’s multivari-
ate and temporal characteristics. In 
the second step, the dimensions of 
these vectors are reduced to address 
issues related to data sparseness and 
multicollinearity. The third step ap-
plies cluster analysis to the reduced 
vectors. Groups of proximate vectors 
are clusters, or the common patterns; 
stand-alone vectors are anomalies, 
also called outliers.4,5

We developed a process of apply-
ing ClusterAD-Flight for flight op-
erations monitoring (see Figure 6). 
First, raw flight data from different 

Flight data

Time

Xm

X1

High-dimesional
vectors

Reduced
dimensional vectors

Clusters and outliers
in hyperspace

Clusters 2

Clusters 1

Abnormal
flights

Data
transformation

Dimension
reduction

Cluster
analysis

...

Step 1 Step 2 Step 3

ν ν′

Figure 5. Key steps in ClusterAD-Flight. The first step is to transform flight data into high-dimensional data vectors that capture 
each flight’s multivariate and temporal characteristics. In the second step, the dimensions of these vectors are reduced to 
address issues related to data sparseness and multicollinearity. The third step applies cluster analysis to the reduced vectors.
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recording devices, such as Quick Ac-
cess Recorder (QAR), and Digital 
Flight Data Recorder (DFDR), are 
translated from binary files into en-
gineering values using available flight 
data processing software tools. Sec-
ond, a preprocessing step segments 
data by flight and phase, and selects 
subsets of interest for analysis. Af-
terward, ClusterAD-Flight identi-
fies common patterns and anomalies. 
Finally, a group of domain experts 
(similar to some airlines’ monthly 
safety review boards, which include 
safety experts, line pilots, flight data 
analysts, and pilot training experts) 
review the results to check if common 
patterns are consistent with standard 

procedures and identify risks from 
anomalies, if any, and inform opera-
tions before accidents occur.

Case Study
We tested ClusterAD-Flight on opera-
tional data from an international air-
line. Our objective was to illustrate its 
capability in recognizing common pat-
terns in flight operations and detecting 
anomalies with unique data patterns. 
A highlight of this case study is that 
we’re evaluating a method that doesn’t 
rely on pre-existing criteria but is ca-
pable of detecting unknown issues. 
There’s no “gold standard” that de-
fines which flights are abnormal in de-
finitive terms, nor is there labeled data 

for benchmarking. Thus, unlike stan-
dard evaluation metrics such as detec-
tion accuracy rates or receiver oper-
ating characteristic (ROC) curves, we 
used qualitative analysis based on in-
put from airline experts in this study.

As a proof-of-concept, we focused 
on the takeoff operation of the B777-
300ER fleet at the Hong Kong Interna-
tional Airport (HKG) over a period of 
one month. We incorporated 17 flight 
parameters from 957 flights in the anal-
ysis, including but not limited to engine 
parameters, aircraft position, speeds, 
accelerations, attitudes, control surface 
positions, and wind information.

Common Patterns
Cluster-AD Flight identified three dis-
tinct clusters, which airline experts 
later confirmed as common patterns 
of standard takeoff operations at 
HKG over that period. Table 4 sum-
marizes key characteristics of the three 
clusters; Figure 7 shows important 
flight parameters. All the short-haul 

Table 4. Key characteristics of three clusters identified by ClusterAD-Flight.

No. flights Flight length Gross weight Power setting Flap angle

Cluster 1 (red) 483 Long-haul Heavy High 15

Cluster 2 (green) 198 Short-haul Light Low 5

Cluster 3 (blue) 181 Long-haul Heavy High 5

Aircraft sensors & on board
system

1 –  File separation into
flights 1 –  Data transformation

2 –  Dimension reduction

Reduced
Dimensional vectors

3 – Cluster analysis

Cluster & outliers

Data visualization of
the results

Identify latent
risks

Anomalies

Examine the
consistency of
current
operations

Common patterns

High-dimensional
vectors

2 –  Flight phases
extraction

3 –  Flight parameters
selection

Subset of flight data
compatible with
clusterAD–flight

Data transformation
from binary values into
engineering values–
each file may contain
one or more flights

I – Flight data acquisition II – Flight data pre-
processing

III – ClusterAD-flight IV – Expert review

Flight data
recorder
(FDR)

Quick access
recorder
(QAR)

Figure 6. Process of using ClusterAD-Flight for flight operations monitoring. First, raw flight data from different recording 
devices are translated from binary files into engineering values. Second, a preprocessing step segments data by flight and 
phase, and selects subsets of interest for analysis. Afterward, ClusterAD-Flight identifies common patterns and anomalies. 
Finally, a group of domain experts review the results.
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flights, marked in green and labeled 
cluster 2, are a distinct group due to 
their light weight, low takeoff power, 
low flap setting, and slower-climbing 
airspeed. Long-haul flights can be fur-
ther grouped into clusters 1 and 3; 
the former accounted for the majority 
and the latter consisted of flights with 
lower power and flap settings due to 
specific environmental conditions.

Anomalies
Flights with distinct data patterns are 
clearly identifiable from ClusterAD-
Flight results, and their unusual opera-
tions could indicate latent risks. We de-
scribe three examples from the top 1 
percent of abnormal flights detected here.

Figure 8 shows an abnormal flight 
classified as high-power takeoff, with 
an altitude and airspeed profile signif-
icantly higher than others of the same 
common pattern. For a short-haul 
flight with relatively light weight, the 

use of a full takeoff power setting con-
tradicts the common procedures used 
by other short-haul flights, as shown 
in the green cluster. Clearly, this is an 
uncommon operation inviting further 
investigation for latent risks. Aside 
from being an operational mistake, 
a senior pilot suggested it could be 
a conscious choice of the pilot in re-
sponse to potential wind shear.

Figure 9 shows another abnormal 
flight of low-and-slow takeoff under 
tailwind conditions. As a short-haul 
flight, it should be part of the green 
cluster, yet its altitude and airspeed 
profile is consistently lower than most 
others in the common pattern. The 
10- knots tailwind could cause this de-
graded takeoff performance. In addi-
tion, there’s a sudden 12-degree change 
of roll attitude 70 seconds after take-
off (shown in the Rollatt chart in Fig-
ure 9), while heading and crosswind 
remained unchanged. Airline safety 

experts suggested a case of wake tur-
bulence encounter, which is especially 
hazardous when a takeoff climb is low 
and slow. Wake turbulence forms be-
hind an aircraft as it passes through 
the air; it creates risks to other aircraft 
in the vicinity, and the danger is great-
est when an aircraft is operating at low 
speed and low height because it leaves 
little room to recover from any upset.

The third example is a takeoff with 
an unusual flap setting (see Figure 10). 
The common flap setting is 5 (green and 
blue clusters) or 15 degrees (red clus-
ter) for takeoff, while this unique flight 
set the flap angle to 20 degrees. Conse-
quently, its climb rate and acceleration 
were higher than most other flights. The 
cause of this high flap angle setting in 
this anomaly is worth investigating to 
determine whether it was an intentional 
maneuver to overcome potential risks of 
wind shear, turbulence, or other unde-
sired weather conditions during takeoff.
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Figure 8. High-power takeoff. For a short-haul flight with relatively light weight, the use of a full takeoff power setting 
contradicts the common procedures used by other short-haul flights, as shown in the green cluster.

Figure 9. Low-and-slow takeoff with tailwind. As a short-haul flight, it should be part of the green cluster, yet its altitude and 
airspeed profile is consistently lower than most others in the common pattern.
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O ur results demonstrate several 
advantages of applying ClusterAD-
Flight in flight operations monitoring. 
Compared with the industry standard 
method of ED, it’s no longer limited to 
predefined criteria and can detect flights 
with rare data patterns, allowing airline 
safety experts to identify patterns wor-
thy of further investigation from tens 
of thousands of routine flights. Unlike 
other recently developed anomaly de-
tection methods, ClusterAD-Flight can 
recognize common patterns in the form 
of clusters, allowing the management 
team to check the consistency of current 
operations. In our case study, the airline 
found it useful to know that most take-
offs reached at least 1,500 feet (height 
above takeoff) in 80 seconds, achieving 
at least 210 knots after 90 seconds, and 
exhibiting the target pitch between 12 
to 16 degrees. Our method is particu-
larly useful in proactive airline safety 
management, where a broader toolset 
is needed. ClusterAD-Flight can also be 

applied in other fields where unknown 
issues are quickly emerging, while the 
standard of the norm is absent or not 
up to date. 
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Figure 10. Unusual flap setting takeoff. The common flap setting is 5 (green and blue clusters) or 15 degrees (red cluster) for 
takeoff, while this unique flight set the flap angle to 20 degrees.
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