
Two-stage least squares has been a widely used method of estimating the parameters of a single structural equation in a system of linear simultaneous equations. This article first considers the estimation of a full system of equations. This provides a context for understanding the place of two-stage least squares in simultaneous-equation estimation.  The article concludes with some comments on the lasting contribution of the two-stage least squares approach and more generally the future of the identification and estimation of simultaneous-equations models.

Two-stage least squares (2SLS) was originally proposed as a method of estimating the parameters of a single structural equation in a system of linear simultaneous equations.  It was introduced more or less independently by Theil (1953a; 1953b; 1961), Basmann (1957) and Sargan (1958).  The early work on simultaneous equations estimation was carried out by a group of econometricians at the Cowles Foundation.  This work was based on the method of maximum likelihood. In particular, Anderson and Rubin (1949; 1950) developed the limited information maximum likelihood (LIML) estimator for the parameters of a single structural equation. Anderson (2005) gives the history of 2SLS a revisionist twist by pointing out that Anderson and Rubin (1950) indirectly includes the 2SLS estimator and its asymptotic distribution.  The notation of that paper is difficult and the exposition is somewhat obscure, which may explain why few econometricians are aware of its contents. See Farebrother (1999) for additional insights into the precursors of 2SLS.

2SLS was by far the most widely used method in the 1960s and the early 1970s. The explanation involves both the state of statistical knowledge among applied econometricians and the state of computer technology. The classic treatment of maximum likelihood methods of estimation is presented in two Cowles Commission monographs: Koopmans (1950), Statistical Inference in Dynamic Economic Models, and Hood and Koopmans (1953), Studies in Econometric Method, which was directed at a wider audience.  Among applied econometricians, relatively few had the statistical training to master the papers in these monographs, especially Koopmans (1950).  By the end of the 1950s computer programs for ordinary least squares were available.  These programs were simpler to use and much less costly to run than the programs for calculating LIML estimates. Owing to advances in computer technology, and, perhaps, also the statistical background of applied econometricians, the popularity of 2SLS started to wane towards the end of the 1970s. In particular, the difficulty of calculating LIML estimates was no longer an important constraint. 

This article first considers the estimation of a full system of equations and then focuses on 2SLS. This approach provides a context for understanding the place of 2SLS in simultaneous-equation estimation.  The article is organized as follows.   A two-equation structural form model with normal errors and no lagged dependent variables is introduced in section 1.  Section 2 reviews the properties of the ordinary least squares estimator of the parameters of a structural equation.  The indirect least squares estimator is introduced in section 3.  In section 4 presents the indirect feasible generalized least squares estimator, and briefly discusses maximum likelihood methods. Section 5 develops two rationales for the 2SLS procedure, and the k-class family of estimators is defined in section 6. Finite sample results on the comparisons of estimators are reported in section 7, and the concluding comments are in section 8. (Our exposition of structural-form estimation draws heavily on the treatment by Goldberger, 1991.  For the presentation of GMM and more recent methods of simulation-equation estimation, see Mittelhammer, Judge and Miller, 2000.)
1. The model
In the spirit of Goldberger (1991), we consider a two-equation demand and supply model to fix ideas and notation. The endogenous variables are y1 (quantity) and y2 (price), the exogenous variable is x (income), and the disturbances are u1 (demand shock) and u2 (supply shock). For convenience the intercepts are suppressed in both equations. 

The structural form of the model is 
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With the terms in y1 and y2 transferred to the left-hand side, the matrix representation of structural form is
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In the structural-form coefficient matrices
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and
[image: image6.wmf]Β

, the columns refer to equations, while the rows refer to variables.

Each endogenous variable can be solved for in terms of the exogenous variables and structural shocks to get the reduced form of the model:



[image: image7.wmf]1111

Quantity.,

yxv

p

=+


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.3)


  
[image: image8.wmf]2122

Price..

yxv

p

=+


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.4)

In matrix form,
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The reduced form is derived by post-multiplying the structural form by 
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is the reduced-form disturbance vector.


Next we consider the statistical specification of a linear simultaneous-equation model for the general case of a m ( 1 endogenous-variable vector 
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, the k ( 1 exogenous-variable vector 
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 and the m ( 1structural-disturbance vector 
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. The specification is the following:  
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Here 
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 is m ( m. Assumption (A1) gives the system of m structural equations in m endogenous variables. Assumption (A2) says that the system is complete in the sense that 
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[image: image28.wmf]u

 given 
[image: image29.wmf]x

 is zero for all values of 
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. Assumption (A4) is a homoskedasticity requirement, and positive definiteness rules out exact linear dependency among the structural disturbances.

The implications of the specification (A1)-(A4) are the following:
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The reduced-form disturbance vector v is mean-independent of, and homoskedastic with respect to, the exogenous variable vector x.


Next we turn from the population to the sample. We suppose that a sample of n observations from the multivariate distribution of 
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is obtained by stratified sampling: n values of x are selected, forming the rows of the n ( k observed matrix X with rank (X) = k. For each observation, a random drawing is made from the relevant conditional distribution of y given x, giving the rows of the n ( m observed matrix Y, where the successive drawings are independent. The statements about asymptotic properties of the estimators rely on the additional assumption that the matrix 
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 has a positive definite limit.  If instead sampling is random from the joint distribution of 
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, there is no substantial change in the results.
2. Ordinary least squares 
In simultaneous equations models, the parameters of interest are the structural parameter, the 
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. Ordinary least squares (OLS) estimation of the structural parameters is not appropriate because the structural parameters are not coefficients of the conditional expectation functions among the observable variables. We now illustrate this point for the supply equation of the demand and supply model.



The reduced-form of the demand and supply model expressed explicitly in terms of the structural parameters:
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For convenience, suppose that x, u1 and u2 are trivariate-normally distributed with zero 

means, variances 
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, then the sample least squares regression of 
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From equations (2.1) and (2.2) we calculate
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Clearly the parameter of interest 
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 is not the slope of the conditional expectation function of 
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.  This result is usually described by saying that OLS gives a biased estimator of the structural parameter 
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 Another description is that OLS gives a unbiased estimator of slope of the conditional expectation function, which happens to differ from the slope of the structural equation. Observe that 
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The problem with OLS can be illustrated without relying on normality.  From (1.2) we get 
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From eq. (2.2),
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3.  Indirect least squares
The next method we consider uses OLS to estimate the reduced-form parameters, and then converts the OLS reduced-form estimates into estimates of the structural-form parameters. This method, called ‘indirect least squares’ (ILS), produces estimates that are consistent, although not unbiased.  Koopmans and Hood (1953) attribute ILS to M. A. Girshick.  Again see Farebrother (1999) for precursors.

The key to ILS is the relation that relates the reduced-form coefficients to the structural-form coefficients, namely, 
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.  When a structural parameter is uniquely determined, we say that the parameter is identified in terms of 
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 or, more simply, that is identified. This suggests that the identified structural-form parameters may be estimated via OLS estimates of the reduced-form coefficients.


The relation between reduced-form and structural coefficients for the demand and supply model is the following:
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There are two equations in three unknowns:
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On the right-hand-side of (3.1), solve the equation for 
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 We conclude that the slope coefficient of the supply equation is identified. With respect to estimation, the ILS estimate of 
[image: image83.wmf]3

a

 is obtained by replacing 
[image: image84.wmf]1112

and

pp

 by their OLS counterparts. 

The ILS estimator of 
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 is consistent since the equation-by-equation OLS estimators of 
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 are consistent.  Moreover, the equation-by-equation OLS estimates are the same as the generalized least squares (GLS) estimates, that is, the OLS and GLS estimates coincide in every sample. This is because the explanatory variables are identical in the two reduced-form equations. A consequence is that the ILS estimator is asymptotically efficient. 
4. Indirect feasible generalized least squares

For some simultaneous-equation models, prior knowledge that certain elements of  
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 are zero implies restrictions on 
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. In this situation, equation-by-equation OLS estimates of the  π’s are not optimal, and ILS does not yield a unique estimate of the structural parameters.  We now illustrate the case with restrictions on 
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 using a modification of the original structural model. 

The modified model has three exogenous variables, x1 (income), x2 (wage rate) and x3 (interest rate). 
The modification consists of allowing the three exogenous variables to enter the supply equation:
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The reduced-form of the modified structural-form system is
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In the 
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 format, the relation between the reduced-form and structural coefficients is:
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There are now six equations in six unknowns:
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                         (4.5)
The system on the left of (4.5) determines the parameters of the demand equation.  Solve either of the equations that has 0 on its right-hand side for 
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because on the left of (4.5) there are three equations in two unknowns.


The system on the right-hand side of (4.5), which refers to the supply equation, consists of three equations in four unknowns.  Once a value is assigned to
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 The solution is not unique. Hence, the coefficients of the supply equation are not identified in terms of
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 With respect to estimation, ILS using the equation-by-equation OLS estimates of  
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 will not give unique estimates of the structural parameters of the supply equation. The result is two different ILS estimates of
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Suppose there are restrictions on 
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. Then the fact that the explanatory variables are identical in every reduced-form equation does not imply that the OLS and GLS
estimates of the π’s are the same. In other words, OLS estimation of the reduced form will not be optimal.  If the variance matrix of the reduced-form disturbance vector 
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 is known, then GLS subject to the restrictions on
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 is the natural (nonlinear) estimation procedure.  The conversion of the GLS estimates of the π’s into estimates of the α’s can be described as ‘indirect GLS’. Since the GLS estimator is consistent and asymptotically efficient, the indirect-GLS estimators of 
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When 
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 is unknown, as is true in practice, feasible GLS is the natural estimation procedure for
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. Feasible GLS is similar to GLS except that an estimator 
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 comes from the residuals of the equation-by-equation OLS reduced-form regressions. The resulting estimates of the α’s are referred to as

‘indirect-FGLS’ estimates because the FGLS estimates of the π’s are converted into estimates of the α’s.  Because the FGLS estimator of 
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 is consistent and asymptotically efficient, the indirect-FGLS estimators of 
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Indirect GLS and indirect FGLS are referred to as ‘full-information’ methods because they use all the restrictions on 
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 at once. Estimation of a single structural equation using only the restrictions on 
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 for that equation alone is often called ‘limited information’ estimation. If all the restrictions are correctly specified, then full-information estimators are more efficient than limited-information estimators. 


In some variants of the simultaneous-equation model it is assumed that 
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 is multivariate normal. The addition of the normality assumption enables the estimation of 
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 by maximum likelihood.  The resulting estimator of the structural parameters is known as ‘full-information maximum likelihood’, or FIML. If 
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 is known, then FIML coincides with indirect-GLS. If 
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 is unknown, FIML differs from indirect-FGLS, but the estimators have the same asymptotic distribution.


The difference between FIML and indirect FGLS can be clarified by briefly turning from the population to the sample. Let
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  The maximum likelihood estimation of a single structural-form equation that uses only the restrictions on 
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 for that equation alone is referred to as ‘limited-information maximum likelihood’, or LIML.  We next consider another limited-information estimation method.

5. Two-stage least squares
The 2SLS estimator uses the unrestricted reduced-form estimate P, the equation-by-equation OLS estimates of the π’s, which accounts for its popularity.  The mechanics of the 2SLS method can be described simply.  In the first stage, the right-hand-side endogenous variables of the structural equation are regressed on all the exogenous variables in the reduced form, and the fitted values are obtained. In the second stage, the right-hand-side endogenous variables are replaced by their fitted values, and the left-hand-side endogenous variable of the equation is regressed on the right-hand-side fitted values and the exogenous variables included in the equation.

Two rationales for the 2SLS procedure are now developed using the demand equation of the modified structural model. The starting point for the first rationale is the expectation of the demand equation conditional on x1, x2, and x3. Taking expectations gives
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From the reduced-form eq. (4.4), 
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The second rationale exploits the fact that in the population the following moment conditions hold:
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These imply two orthogonality conditions:
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  2SLS chooses the estimates that make the analogous sample quantities zero, that is, 
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This illustrates that 2SLS has an instrumental-variable (IV) interpretation.

The IV interpretation can be illustrated more explicitly by writing the demand equation in terms of the observations for a sample size of n: 
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where in the context of the demand equation 
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[image: image162.wmf]1

y

on Z1 will not give a consistent estimator for
[image: image163.wmf]1

α

. Instead replace Z1 by 




[image: image164.wmf](

)

(

)

1

ˆ

ˆ

(),

==

1212121

ZNZNy,x=Ny,Nx=y,x


where N is the idempotent matrix
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the solution to which is the 2SLS estimator.  


The 2SLS normal equations are equivalent to a set of orthogonality conditions:
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 The equivalence follows from an algebraic fact: 
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The variables in 
[image: image172.wmf]ˆ

1

Z

are legitimate instruments because they are, at least asymptotically, uncorrelated with the disturbance.  The IV interpretation implies that the 2SLS estimator is consistent. In fact, it is the optimal feasible IV estimator.

We also note that the 2SLS estimator can be interpreted as a general-method-of-moments (GMM) estimator.  In the above example, this follows from the fact that 
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It can shown that 2SLS is the optimal feasible GMM estimator. An advantage of the GMM approach is that heteroskedasticity and autocorrelation can be accommodated by an appropriate redefinition of the optimal weighting matrix in the definition of the GMM estimator (see Ruud, 2000, pp. 718–21)

We conclude this section with some remarks on estimation in the simultaneous-equation model.

· If all the structural equations are identified, and there are no restrictions on
[image: image175.wmf]Π

, then ILS, indirect-FGLS, FIML, LIML and 2SLS all produce the same estimates.

· If there are restrictions on
[image: image176.wmf]Π

, then LIML and 2SLS produce different estimates in the sample, but the estimators have the same asymptotic distribution, and similarly for indirect FGLS and FIML. 
· If a parameter is not identified, then there is no method to estimate it consistently.

· We have confined our attention to the case in which the prior information used for identification consists of normalizations and exclusions (zero restrictions). If other information is available (for example, 
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 is diagonal, or a coefficient in one structural equation is equal to a coefficient in another), then some modifications are needed in the description of the estimators and their statistical properties.

6.  The k-class family
The k-class family of estimators of the coefficients of a single structural equation is illustrated for the demand equation of the modified structural model. For this equation, the estimator is 
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where 
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 This family was introduced by Theil (1953b; 1961). It includes the OLS estimator (k = 0) and the 2SLS estimator (k = 1).

A remarkable fact is that the k-class family includes LIML. The LIML estimator is obtained by setting 
[image: image180.wmf]*

,

k

l

=

 where
[image: image181.wmf]*

l

 the smallest root of  






[image: image182.wmf]||0.

l

=

1

W-W


In the determinantal equation, 
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 is the cross-product matrix of residuals from the OLS regression of  
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on 
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 (the included endogenous variables on the included exogenous variable), and 
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 is the cross-product matrix of the residuals from the OLS regression of  
[image: image187.wmf](

)

12

y,y

on X (the included endogenous on all the exogenous variables). Moreover, the LIML estimator of 
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Accordingly, the LIML estimator is also sometimes referred to as the ‘least-variance ratio’ estimator.


The k-class estimator is consistent if (k – 1) converges in probability to 0 and has the same limiting distribution as 2SLS if 
[image: image190.wmf]1/2
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converges in probability to 0.  These conditions are clearly not satisfied when k = 0 and hence by OLS.  A proof that these conditions are satisfied for LIML is given in Amemiya (1985, pp. 237-238). Zellner (1998) shows that a Bayesian method-of-moments approach justifies certain other members of the k-class (and double k-class) family of estimators. 
7. Finite sample distributions 
There has been debate about whether the LIML estimator is better than 2SLS. The reason for this debate is that the finite sample distributions of the estimators differ when there are restrictions on
[image: image191.wmf]Π

.  Hence we now limit our attention to the case where restrictions are present.

A key difference between the estimators is the existence of moments. The 2SLS estimator has moments up to certain order. By contrast, the LIML estimator has no moments. This result holds for an arbitrary number of included endogenous variables.  Mariano (2001) reviews the moment existence results.  

In addition to the moment existence results, closed form expressions for the moments and probability densities of 2SLS, LIML and k-class estimators have been derived.  These expressions are complicated; see Phillips (1983) for specific references.  

The finite sample results have mostly come from the study of a model with two included endogenous variables. Moreover, it is often assumed that the disturbances are normal. The finite sample results are obtained using analytical and simulation methods. A survey of the results and their practical implications is given in Mariano (2001). One of the results is that the LIML distribution is far more symmetric than 2SLS, though more spread out, and it approaches normality faster. Similarly, Anderson (1982) concludes that for many cases that occur in practice the standard the normal theory is inadequate for 2SLS, but provides a fairly good approximation to the actual distribution of the LIML estimator. The symmetry result is not surprising because the approximate distribution of the LIML estimator (obtained from large sample asymptotic expansions) is median unbiased. Median unbiasedness does not hold in general for 2SLS.

It is helpful to put the debate over the relative merits of LIML and 2SLS in perspective.  On the assumption that the model is correctly specified, the presumption is that maximum likelihood will have better properties in some well-defined sense.  This is because it uses more information than GMM. See Anderson, Kunitomo and Morimume (1986) and Takeuchi and Morimume (1985) for results on the second-order efficiency of LIML. An advantage of GMM is that it is robust to misspecifications of the disturbance distribution, although this advantage was not the original motivation for introducing 2SLS.
8. Epilogue
Keynesian economics initially played a key role in propelling research into the estimation of simultaneous-equation models.  Interest in the estimation of linear simultaneous-equation models began to wane from about the late 1970s. Historically, this decline paralleled the decline of the Keynesian paradigm as a result of the monetarist counterrevolution and later rational expectations.  At the same time, there was growing awareness that linear simultaneous-equation models often suffered from potentially serious misspecification. On the one hand, even taking for granted the statistical specification of the model (A1–A4), economic theory did not provide a satisfactory basis for deciding what endogenous and exogenous variables should be excluded from individual structural equations. As a consequence, the identification of structural parameters was open to question. On the other hand, the statistical specification of the linear structural-form model was itself questionable, due to either the nature of the data or considerations of economic theory or both.  The issue of identification was highlighted by Sims (1980) in a well-known paper aptly titled ‘Macroeconomics and Reality’. 

Simultaneous-equation models have been generalized by the introduction of nonlinear structural equations. Amemiya (1974) generalized the 2SLS method to nonlinear models.  His nonlinear 2SLS estimator is a GMM estimator. However, unlike in the case of linear models, it cannot be thought of as being obtained in two steps where the first consists of running a least squares regression. The GMM is a two-step estimator, but the first step consists of choosing a weighting matrix.  More generally, GMM and IV estimators can be thought of as the descendants of the 2SLS approach. They constitute the contemporary basis for much of the estimation of structural parameters macroeconomics. It is in this sense that 2SLS lives on as a structural estimation method. 

Does the identification and estimation of simultaneous-equation models have a future? There are some positive signs. Although indirectly, these issues continue to play a role in the identified vector autoregression literature, for example,  Bernanke and Blinder (1992), Gordon and Leeper (1995), Cushman and Zha (1997).  More recently, there has been a revival of interest in simultaneous-equations models formulated as nonlinear dynamic stochastic general equilibrium models.  This formulation has the advantage that the resulting models are viewed as more firmly anchored in economic theory. Estimation of such models presents serious challenges.  Some examples where these challenges are addressed include DeJong, Ingram and Whiteman (2000) and Fernandez-Villaverde and Rubio-Ramirez (2005).    
N. E. Savin

See also seemingly unrelated regressions; simultaneous equation models
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