
 Testing the Semiparametric Box-Cox Model with the Bootstrap 
 
 

N.E. Savin, Henry B. Tippie College of Business, Department of Economics, 

University of Iowa, 108 John Pappajohn Business Bldg., Iowa City, IA 52242-1000. Tel: 

(319) 335-0855, FAX (319) 335-1956, gene-savin@uiowa.edu. 

 Allan H. Würtz, Department of Economics, University of Aarhus, Building 322, 

DK 8000 Aarhus C, Denmark and Center for Applied Microeconomics. Tel: 45-8942-

1507; FAX:45-8613-6334   awurtz@econ.dk. 

September 1, 2002 

Abstract 

This paper considers tests of the transformation parameter of the Box-Cox model 

when the distribution of the error is unknown. Monte Carlo experiments are carried out to 

investigate the rejection probabilities of the GMM-based Wald and Lagrange Multiplier 

(LM) tests when the null hypothesis is true. The results show that the differences between 

empirical and nominal levels can be large when asymptotic critical values are used. In 

most cases, the bootstrap reduces the differences between the empirical and nominal 

levels, and, in many cases, essentially removes the distortions in levels that occur with 

asymptotic critical values. Experiments are also carried out to investigate the ability of 

the bootstrap to provide improved finite-sample critical values with Wald tests based on 

the semiparametric estimation procedure recently developed by Foster, Tian and Wei 

(2001). 
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1. INTRODUCTION 

The Box-Cox (1964) regression model is a transformation model of the form 

(1.1)     T Y( , ) ,X Uα β′= +             

where T is a strictly increasing function, Y is an observed positive dependent variable, X 

is an observed K dimensional random column vector, β is a vector of constant parameters 

that is conformable with X, and U is an unobserved random variable that is independent 

of X. Let the cumulative distribution function of U be denoted by F. It is assumed that 

E(U) = 0, V(U) < ∞ for all x in the support of X and that F is unknown. 

   The Box-Cox transformation is  

(1.2)     
1 , 0,( , )

log , 0, 0.
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The transformation provides a flexible parameterization of the relation between Y and X.  

In particular, the model is a linear model if α = 1, a power transformation model if α ≠ 0 

or 1, and a log linear model if α = 0.  

If F is known or known up to finite dimensional parameters, then α and β and any 

parameters of F can be estimated by maximum likelihood. A widely used procedure, 

which was suggested by Box and Cox (1964), is to estimate α and β by maximum 

likelihood (ML), assuming that U is normally distributed. The resulting estimator of 

α and β  is referred to as the Box-Cox ML estimator. The Box-Cox ML estimator is 

discussed in many econometric textbooks, for example, Amemiya (1985), Greene (2000), 

Mittelhammer, Judge and Miller (2000) and Ruud (2000). 
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 The assumption of normality cannot be strictly true, however.  The Box-Cox 

transformation T(y,α) is bounded from below (above) if α > 0 (α< 0) unless α is an odd 

integer or 0. Thus, the Box-Cox transformation cannot be applied to models in which the 

dependent variable can be negative or the distribution of U has unbounded support, and, 

hence, this rules out the case where U is normally distributed.   

 In practice, however, F is often unknown. Thus, an empirically relevant statistical 

problem is to obtain consistent estimators of α and β when F is unknown. A solution 

proposed by Amemiya and Powell (1981) is to use the nonlinear two-stage least squares 

(NL2SLS) estimator of α and β. The NL2SLS estimator is a generalized method of 

moments (GMM) estimator, and it is the efficient GMM estimator for the choice of 

instruments used by Amemiya and Powell if U is independent of X.  Horowitz (1998) 

discusses GMM estimation of α and β. 

         Khazzoom (1989) pointed out that the NL2SLS estimates for this model are ill-

defined for data sets in which the dependent variable always exceeds (or is exceeded by) 

one. The non-negative GMM objective function has a global minimum of zero as α tends 

to minus infinity when y >1 and infinity when y <1. Powell (1996) has proposed a simple 

rescaling of the GMM objective function that helps ensure the estimates are interior 

points of the parameter space.   

 The focus of this paper is on testing the transformation parameter α in the Box-Cox 

model when F is unknown. This null is tested using the GMM-based Wald and Lagrange 

Multiplier (LM) tests proposed by Newey and West (1987).  The test of the null is based 

on an estimator of the Type I critical value.  Horowitz and Savin (2000) define this 

critical value as one that would be obtained if the exact finite sample distribution of the 
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test statistic under the true data generation process is known.  In our setting, the true Type 

I critical value is unknown because the null hypothesis is composite: the exact finite-

sample distribution of the test statistic depends on β and F, population parameters not 

specified by the null.  Thus, an approximation to the Type I critical value is required to 

implement the test. 

An approximation to the Type I critical value can be obtained by using the first-

order asymptotic distribution of the test statistic to approximate its finite-sample 

distribution. The approximation is useful because most test statistics in econometrics are 

asymptotically pivotal: their asymptotic distributions do not depend on unknown 

population parameters when the null hypothesis being tested is true. In particular, this is 

true for the GMM-based Wald and LM statistics employed to test null hypotheses about 

the transformation parameter.  Hence, an approximate Type I critical value can be 

obtained from first-order asymptotic distribution theory without knowledge of the true 

data generation process.   

However, the Monte Carlo experiments carried out in this paper show that the 

first-order asymptotic distribution is often a poor approximation to the true, finite-sample 

distributions for the sample sizes available in applications. In other contexts, many 

investigators have found that the asymptotic approximation for GMM based tests is poor; 

for example, see the 1996 special issue of the Journal of Business and Economics.  

The bootstrap often provides a practical method for improving upon first -order 

asymptotic approximations. It is a method for estimating the distribution of a statistic or a 

feature of the distribution, such as a moment or a quantile. The bootstrap can be 

implemented for model (1.1) - (1.2) by randomly resampling (Y, X) pairs with 
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replacement or by randomly resampling GMM residuals with replacement, provided the 

bootstrap takes into account that Y can only take positive values.  This paper reports the 

numerical performance of the bootstrap for the two resampling schemes. The Monte 

Carlo experiments show that when bootstrap critical values obtained by resampling 

residuals are used, the differences between the empirical and nominal levels of the tests 

are often very small. 

In the context of the Box-Cox model, the linear model can be tested against 

models that are indexed by the transformation parameter. For example, the linear model 

can be tested against the log-linear model by testing the null hypothesis that α = 1 against 

the alternative α = 0. The tests have to be able to discriminate between alternative models 

in order to be useful. This paper also carries out a Monte Carlo investigation of the 

powers of the tests with bootstrap critical values. 

Recently, Foster, Tian and Wei (2001) have proposed an alternative to GMM 

estimation when U and X are independent and the distribution of U is unknown. Monte 

Carlo experiments are conducted to investigate the performance of Wald and LM tests 

when the model is estimated using the Foster, Tian and Wei (FTW) estimator.  In the 

experiments reported here, the tests are carried out with asymptotic critical values and 

bootstrap critical values.  

        The organization of the paper is the following. Section 2 reviews the GMM 

estimation of the Box-Cox model, Section 3 introduces the GMM-based Wald and LM 

tests, Section 4 describes the calculation of the bootstrap critical values, and Section 5 

presents the design of the experiments and the methods used to calculate the empirical 

rejection probabilities. Section 6 reports the Monte Carlo evidence on the numerical 
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performance of the GMM-based tests with asymptotic and bootstrap critical values, and 

Section 7 presents the results of the experiments using the FTW estimator. The 

concluding comments are contained in Section 8. 

2. GMM ESTIMATORS 

This section introduces the Box-Cox model employed in the Monte Carlo study, 

reviews GMM estimation of the parameters and presents the rescaling procedure 

proposed by Powell (1996) to address the problem noted by Khazzoom (1989).   

The model simulated in the Monte Carlo experiments is 

(2.1) 0 1( , )T Y X Uα β β= + +          

where X is a scalar random variable and X and U are independent. The instruments used 

are those employed by Amemiya and Powell (1981), namely, 1, X and X2.  With this set 

of instruments, the number of moment conditions is equal to the number of the 

parameters, and hence parameters are exactly identified. In the exactly identified case, 

NL2SLS is (trivially) the efficient GMM estimator. 

Denote the estimation data by {Yi, Xi: i = 1, …, n} and assume that they are a 

random sample from the joint distribution of (Y, X). Let ( , )θ α β ′ ′= , 

1( ) ( , ) and ( ) ( ( ),..., ( ))i i i nU T Y X U U Uθ α β θ θ θ′ ′= − = . Also let '1W [ ,W ..., ]nW=  denote the 

matrix of instruments where Wi is a vector of functions of Xi. Finally, let ˆ ˆˆ( , )n n na b ′θ ′=  

where  and  denote the unconstrained GMM estimators of α and β, respectively. ˆna n̂b

The unconstrained GMM estimator solves 

(2.2)    minimiz : ( ) ( ) W W (n ne S U U
θ

)θ θ θ′ ′= Ω    
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where the weight matrix  Ωn is a positive definite, possibly stochastic matrix. One 

possible choice of the weight matrix is 1[W ' W]n
−Ω = , in which case (2.2) gives the 

NL2SLS estimator of Amemiya (1974, 1985).  This choice is asymptotically efficient if 

the errors Ui are homoskedastic.  Amemiya and Powell (1981) and Amemiya (1985) 

discuss the use of NL2SLS for estimation of the Box-Cox model. The weight matrix does 

not matter in the exactly identified case, provided the sample moment conditions are 

solved by the unconstrained GMM estimator. 

The change in the NL2SLS estimate of β due to a rescaling of X is the same as the 

change in the ordinary least squares (OLS) estimate in the linear regression model. By 

contrast, the effect of rescaling Y depends on whether the parameters are exactly or 

overidentified.  In the exactly identified case, rescaling Y has no effect on the NL2SLS 

estimate of α; only β is affected.  In the overidentified case, rescaling Y changes the 

estimates of both α and β.  

The consistency of the estimator minimizing (2.2) is established by verification of 

three conditions: compactness of the parameter space; convergence in probability of the 

objective function Sn to its expected value, uniformly in α and β; and uniqueness of the 

solutions satisfying the population moment condition { { ( , ) ' ]} 0.E W T Y Xα β− =  The 

compactness and identification conditions turn out to be demanding due to the nature of 

the transformation function, T(Y, α).  

As Khazzoom (1989) notes, if y > 1, then T y( , ) 0 as -α α→ → ∞ , and, similarly, 

if y < 1, T y( , ) 0 as α α→ → ∞ . This implies that compactness of the parameter space 

plays a crucial role in the uniqueness of the solution of the population moment condition. 
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In particular, each residual U T '( ) ( , )i iy xiθ α= −

2 ,y

β can be set equal to 0 by setting α = -∞ 

and β = 0 if each yi >1. The resulting pathology of the objective function is important in 

practice since in many data sets all values of the dependent variable exceed one.  

α

|) .iy 


 

2y α−

]' [W ( ) / ]y U yα αθ′ ′= Ω

To avoid the problem associated with the scaling of the dependent variable, 

Powell (1996) suggested the following rescaling of the GMM objective function: 

(2.3)    Q S( ) ( ) ( )n nθ θ −= ⋅    

where the GMM objective function Sn is given in (2.2) and  is the geometric mean of 

the absolute values of the dependent variable: 

y

  

(2.4)    
1

1exp log(|
n

i
y

n =


≡  ∑    

 
The rescaled GMM objective function Qn is less likely than Sn to be minimized by values 

on the boundary of the parameter space. However, as Powell (1996) notes, rescaling the 

original GMM function by  cannot guarantee that a unique and finite minimizing 

value of α will exist. Following Powell, the estimator based on the rescaled GMM 

objective function is denoted RNL2SLS. 

The estimation procedure for rescaled GMM simplifies to a one-dimensional grid 

search and similarly for the original GMM. The objective function  

(2.5)    ( ) [ ( ) W /nQ Uθ θ   

can be concentrated as a function of α only. The reason is that for given α the optimal 

β in (2.5) is  

(2.6)   1

1 1 1 1
( ) [( ) ( )] ( ) ( ( , )

n n n n

i i i i i i i i
i i i i

W X W X W X W T Yβ α α−

= = = =

′ ′ ′′ ′= Ω Ω∑ ∑ ∑ ∑ ]   
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since y α−  cancels. The concentrated objective function is obtained by substituting (2.6) 

into (2.5), which gives 

(2.7)    Q Q 2( ) ( , ( )) ( , ( )) /n n nS y αα α β α α β α= = ,  

Note that if NL2SLS and RNL2SLS give the same estimate of α, then they both give the 

same estimate of β.  

 Powell (1996) argues that the original and rescaled GMM estimators have the same 

asymptotic distribution. Hence, the standard formulae for the first-order asymptotic 

distribution and asymptotic covariance matrix estimators for GMM estimators apply 

directly to the rescaled estimators. 

3. GMM-BASED TESTS 
 

This section introduces the null hypotheses tested in the experiments and presents 

the GMM-based Wald and LM test statistics proposed by Newey and West (1987). 

  The null hypotheses specify the value of the transformation parameter: H0: 

0α α= . Two values of α are considered: α0 = 0 and 1. The first value specifies a log-

linear model and the second a linear model.  

The GMM-based Wald test statistic is derived from the asymptotic distributional 

properties of the unconstrained GMM estimator.  Hansen (1982) showed under mild 

regularity conditions that ˆˆ ˆ( , )n n na bθ ′ ′= is a consistent estimator of θ  and that n̂θ  is 

asymptotically normally distributed: 

(3.1)           1/ 2 ˆ( ) (0,d
nn θ θ− → )N V

,

where 

(3.2)    V D    1( ' )D −= Ω

 8



with [ ( , ) ]D E W T Y Xα β
θ
∂

= −
∂

 and lim n
n

p
→∞

Ω = Ω .  Letting  U U ( ) /θ θ θ= ∂ ∂ and, 

ˆ( ) /nU Uˆ
θ θ θ= ∂ ∂ , V can be estimated by replacing D in (3.2) by ˆW Uθ′  and Ω  by Ω . 

Thus, (3.1) and (3.2) with V replaced by  

n

(3.3) ˆ ˆ ˆW Wn nV U Uθ θ
′ ′= Ω          

makes it possible to carry out inference in sufficiently large samples. 

The Wald test statistic for testing H0: 0α α=  is  

(3.4)     
2

0
2

ˆ( )
ˆ

n

n

n ald
s

α−
=Wa ,                                                                                            

where 2ˆns  is the first diagonal element in V . The Wald statistic (3.4) is distributed 

asymptotically as chi-square variables with one degree of freedom when the null 

hypothesis is true.  The GMM estimators that can be used in computing (3.4) include as 

special cases the NL2SLS and RNL2SLS estimators. The principle disadvantage of the 

GMM-based Wald statistic is that it is not invariant to reparametrization of the null 

hypothesis or rescaling of the dependent variable. Spitzer (1984) has shown a similar lack 

of invariance for the Wald statistic based on the Box-Cox ML estimator; see also Drucker 

(2000). 

n̂

Newey and West (1987) have developed an LM test based on the constrained 

GMM estimator. This LM test is presented in Greene (2000). Suppose the constrained 

estimator, denoted by ( , )n n na bθ ′ ′= , solves (2.2) subject to a constraint of the form H0: 

h(θ) = 0.  Then the GMM-based LM statistic is  

(3.5)   
1

( ) ( ) ( )( )n n n n n nS S SLM Varθ θ θ
θ θ θ

−
 ∂ ∂ ∂

=  ′∂ ∂  ∂
.  
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The LM statistic can also be written as  

(3.6) LM = ,     1
W W W[ ] /n U P U U P U U P U U Uθ θ θ θ

−′ ′′⋅ ′

where , U UW
-1W(W W) WP ′ ′= ( )nθ= and U U .( ) /nθ θ θ= ∂

WP U

∂  The (3.6) version of the LM 

statistic is  from a regression of U on 2n R⋅ θ . That is, the LM statistic can be obtained 

from regressing Uθ on W, calculating the predicted value, and then calculating  from 

a regression of the restricted residual on these predicted values. The constrained NL2SLS 

and RNL2SLS estimates of α are the same, and, hence, the constrained NL2SLS and 

RNL2SLS estimates of β are the same. As a result, the values of the LM statistic for 

NL2SLS and RNL2SLS are also the same. 

2n R⋅

Newey (2001) shows that the calculation of the GMM-based LM test statistic 

simplifies when the constraint imposed by the null hypothesis is H0: 0α α= and X is 

included among the instruments, Note first that by having Xi included in Wi, the 

constrained estimator is 0( , )n bαθ n
′ ′= , where β  is the OLS estimator obtained by 

regressing T Y 0( , )i α on Xi .. Therefore the constrained residual vector U  is just the residual 

vector from the OLS regression of 0( , )iT Y α on Xi . Also U U , 

where T T

, X] ( )n Tαθ −= ∂ / [θ θ∂ =

1 0( ( ,y 0,..., ( , ) /nT y) /α )α α α α ′= ∂ ∂ ∂ ∂  and X = [ 1,..., ]nX X ′ . Furthermore, if  Xi is 

included in Wi, then X ,[ TP αθWP U X]−= . Thus, the LM statistic for testing α can be 

obtained in three steps as follows: 

1.  Obtain the OLS residuals from regressing T Y 0( , )i α on Xi. 

2.  Obtain the predicted values from regressing T Y 0( , )i α  on Wi.  
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3.  Calculate the test statistic as n R2⋅ from regressing the residuals from step 1 on 

the predicted values from step 2 and the Xi’s .  

The GMM-based LM statistic is invariant to reparametrization of the null 

hypothesis, but not always to the rescaling of the dependent variable. Invariance to 

rescaling depends on whether the parameters are exactly identified. The LM statistic is 

invariant to rescaling of the dependent variable in the exactly identified case, but not in 

the overidentified case. 

4.  BOOTSTRAP CRITICAL VALUES 
 

This section describes the Monte Carlo procedure for computing the bootstrap 

critical values. The description is given for two resampling schemes, a nonparametric and 

a parametric scheme. In the nonparametric scheme, (Y, X) pairs are randomly sampled 

with replacement, and in the parametric scheme, residuals are randomly sampled with 

replacement. Resampling the (Y, X) pairs is used only for the GMM-based Wald test.  

When resampling (Y, X) pairs, the Monte Carlo procedure for computing the 

bootstrap critical value for the Wald test is the following: 

NP1.  Generate a bootstrap sample of size n by random sampling (Y, X) pairs from 

the estimation data with replacement. 

NP2.  Compute the unconstrained GMM estimators of θ  and V from the bootstrap 

sample. Call the results ˆ ˆˆ* ( *, * )n n na bθ ′ ′= and V .  ˆ *n

NP3.  Compute the bootstrap version of the Wald statistic, 

(4.1) 
2

2
ˆ ˆ( * )*

ˆ *
n n

n

n a aWald
s

−=          

where 2ˆ *ns  is the first element of V .  Note that Wald* is centered by replacing αˆ *n 0 by .  ˆna
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NP4. Obtain the empirical distribution function (EDF) of the test statistic Wald * 

by repeating steps NP2 and NP3 many times. The bootstrap critical value is obtained 

from the EDF.  For example, the 0.01 Type I critical value is estimated by the 0.99 

quantile of the EDF of Wald*.   Let  denote the bootstrap critical value for the 

nominal 0.01 level test. The 0.05 and 0.10 bootstrap critical values are obtained similarly. 

,0.01 *nz

The Monte Carlo procedure using resampled residuals is based on the functional 

form of the model (1.1) - (1.2).  The bootstrap critical values are calculated as follows: 

 P1.  Estimate 0θ  by constrained GMM using the estimation sample                    

{Yi, Xi: i = 1, … ,n}  and compute the constrained GMM residualsU U .  1,..., n

P2. Generate the bootstrap sample by setting 

where U01/* * *
0 0 1[ ( ) 1] a

i n i n iY b X b Uα= + + +

i

i* is sampled randomly with replacement from 

the U . The Xi  are fixed in repeated samples. 

P3. Estimate 0θ   by unconstrained GMM using the bootstrap sample and compute 

the Wald statistic  

(4.2)     0
2

2
ˆ( * )**

ˆ *
n

n

n ad
s

α−=Wal .  

P4. Obtain the EDF of Wald ** by repeating steps P2 and P3 many times. The 

bootstrap critical values are obtained from the EDFs.  The 0.01 Type I critical value is 

estimated by the 0.99 quantile of the EDF.  The 0.05 and 0.10 bootstrap critical values are 

obtained similarly. 

The advantage of resampling residuals compared to resampling (Y, X) pairs is 

numerical accuracy. Monte Carlo evidence (Horowitz (1997)) indicates that the 

numerical accuracy of the bootstrap tends to be much higher when residuals are 
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resampled than when (Y, X ) pairs are resampled.  This because the functional form of the 

model is exploited and the null hypothesis is imposed when obtaining the parameter 

estimate.  

In this paper, there is no need to recenter the GMM moment conditions due to 

over-identifying restrictions.  In general, when there are over-identifying restrictions, the 

GMM moment conditions have to be recentered for the bootstrap to improve upon first-

order approximations. This is because the sample analog of E(WU) = 0 is not satisfied in 

the estimation sample, and, hence, the bootstrap implements a moment condition that 

does not hold in the population that the bootstrap samples.  

When resampling the U , it may happen that the value of Y cannot be calculated 

(the implied value is complex) due to estimation error in the U . In such cases, Y is 

chosen to beY  = 0.0001.  This procedure is valid given that the estimation error vanishes 

rapidly as the sample size increases.   

i
*

i

i
*

i

*
i

The Monte Carlo procedure for computing the bootstrap critical value for the LM 

test when resampling residuals is similar to the one used for the Wald test. The main 

difference occurs in step P3. For the LM test, estimateθ0 in the bootstrap sample by 

constrained GMM and compute the LM statistic 

(4.3)    
1* * * * * *( ) ( ) ( )( )n n n n n nS S SLM Varθ θ θ

θ θ θ

−
 ∂ ∂ ∂

=  ′∂ ∂  ∂
,  

where is the objective function (4.4), and *
nS *

nθ is the constrained GMM estimator of θ. 

5.  DESIGN OF EXPERIMENTS AND COMPUTATIONS 
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This section presents the design of the Monte Carlo experiments used to 

investigate the ability of the bootstrap to reduce the distortions in the level of the Wald 

and LM tests that occur when asymptotic critical values are used.  

Two different specifications for the distribution function of U are considered for 

the Box-Cox model. The first specification is a truncated normal distribution suggested 

by Poirier (1978).  Let U be N(0, (0.5)2)  with left truncation point -1. The second is an 

exponential distribution for U with parameter λ = 4.  In both specifications, the 

distribution of U is corrected to have mean 0; for example, in the exponential case, U-1/4 

is used instead of U. Foster, Tian and Wei (2001) use the exponential distribution in their 

Monte Carlo experiments. The values of X are obtained by random sampling the 

following marginal distributions of X: uniform [-0.5, 0.5], lognormal based on N(0, 1) 

and exponential with λ = 1.  

The above specifications of the distribution function of U and of X are combined 

to produce four basic specifications of the model. The specifications are the following:  

Model 1: β0 = 1, β 1 =1, F truncated normal, σ = 0.5, X uniform [-0.5, 0.5]. 

Model 2: β0 = 0.1, β 1 =1, F truncated normal, σ = 0.5, X lognormal. (β0 = 0.1 

instead of β0 = 0 to avoid negative values of Y.) 

Model 3: β0 = 0, β 1 = 1, F exponential, X uniform [-0.5, 0.5]. 

Model 4: β0 = 0, β 1 = 1, F exponential, X exponential. 

Using these models, tests of the null hypothesis H0: 0α α= , α0 = 0 and 1, are conducted 

at three nominal levels: 0.01, 0.05 and 0.10. The sample sizes investigated are n = 25 and 

50.   
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The rejection probabilities of the tests when the null is true were estimated by 

conducting Monte Carlo experiments. The number of Monte Carlo replications in each 

experiment with the GMM estimators is 10,000. Each replication consists of the 

following steps: 

MC1. Generate an estimation dataset of size n by random sampling from the 

model (1.1) - (1.2) with the null hypothesis H0: 0α α= imposed. Compute the value of the 

Wald statistic Wald and the value of the LM statistic LM for testing H0.  

MC2. Generate a bootstrap sample of size n for the bootstrap-based test. Compute 

the bootstrap critical value for the Wald test using NP1- NP4 when the bootstrap samples 

are generated by resampling (Y, X) pairs and denote the estimated 0.01 critical value by 

. Compute the bootstrap critical value for the Wald test using P1- P4 when the 

bootstrap samples are generated by resampling residuals and denote the estimated 0.01 

critical value by .  In MC2 the EDF is obtained from 999 bootstrap replications. 

,0.01 *nz

,0.01 **nz

MC3.  Reject H0 at the nominal 0.01 level with the asymptotic critical value if 

Wald > 6.66, with the bootstrap critical value based on resampling (Y, X) pairs if Wald* >  

 and with the bootstrap critical value based on resampling residuals if Wald** 

> . The rules are similar for the nominal 0.05 and 0.10 Wald tests and for the 

nominal 0.01,0.05 and 0.10 LM tests. 

,0.01 *nz

,0.01nz **

The powers of the Wald and LM tests with asymptotic and bootstrap critical 

values are also estimated by conducting Monte Carlo experiments. In each replication of 

the power experiments, the first step consists of generating the estimation dataset under 

the alternative hypothesis instead of under the null. The remaining steps in each 

replication are the same as those above.  
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In the experiments, the unconstrained GMM estimate is calculated by minimizing 

the objective function over a grid of values of the transformation parameter α. To speed 

up the calculations the grid search is implemented in two steps. The first step is to use a 

coarse grid with width δ and precision p. The precision is the distance between two 

neighboring points in the grid. The coarse grid is located with the true value in the middle 

of the grid. Suppose the minimum of the objective function is located at a point inside the 

coarse grid. Denoting this point by P. The second step is to construct a fine grid with a 

width δ′ that is two times the precision of the coarse grid, δ′ = 2 p and a precision p′. The 

fine grid is located with the point P in the middle. Thus, the fine grid evaluates the 

objective function between two points in the coarse grid that are neighbors to the point P.  

In some cases, the solution using the coarse grid is a point on the boundary. If this 

occurs, then the coarse grid is shifted to cover the interval in the neighborhood of the 

boundary solution. Then a new minimum is located, and the algorithm proceeds to the 

fine grid. The sample is discarded if the new solution is also a boundary solution. 

Therefore, the estimate of the rejection probability under H0 is computed as R/G where R 

is the number of rejections of H0 in G non-deleted estimation samples.   

The total precision of this algorithm is a grid with a total width of 3δ and 

precision p′.  This algorithm is faster than simply using a grid with a width 3δ and a 

precision p′ because it is usually not necessary to shift the coarse grid to find the 

minimum. Also the fine grid is only evaluated around the minimum located with the 

coarse grid. This algorithm worked well for the objective function of the Box-Cox model. 

6.  EMPIRICAL REJECTION PROBABILITIES  
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This section reports the empirical rejection probabilities of the Wald and LM tests 

based on the GMM estimators. The results illustrate the numerical performance of the 

tests with asymptotic critical values and those with bootstrap critical values.  The 

empirical rejection probabilities under H0 are reported for Models 1-4 in Tables I-IV, 

respectively.  

A summary of the main features of the results is the following: 

Asymptotic Critical Values.  The results are first summarized for the Wald tests 

with asymptotic critical values. The tables show that the model influences the differences 

between the empirical and nominal levels. In Table I, the empirical levels are much 

smaller than the nominal levels for Model 1. By contrast, Table IV shows that the 

differences between the empirical and nominal levels are usually very small for Model 4.  

Table II shows that the empirical levels are sensitive to the estimation method and 

the null hypothesis.  Using NL2SLS estimation, the empirical levels are much smaller 

than the nominal levels when testing H0: α = 0 and larger than the nominal levels when 

testing H0: α = 1. On the other hand, when the model is estimated by RNL2SLS, 

empirical levels are larger than the nominal levels.  

The tables also show that the experimental evidence is mixed when comparing 

RNL2SLS and NL2SLS. The differences between the empirical and nominal levels of the 

RNL2SLS Wald tests are often, but not always, smaller than those of the NL2SLS Wald 

tests. Note that in Table IV the empirical rejection probabilities for the NL2SLS and 

RNL2SLS Wald tests with asymptotic critical values are identical when testing H0: 

1α = . The explanation here is that NL2SLS and RNL2SLS give the same estimate of α.  

When this occurs, both estimation methods produce the same estimate of β.  

 17



Turning to the LM tests, the differences between the empirical and nominal levels 

are much smaller for the LM tests than the Wald tests, both for n = 25 and n = 50. Indeed, 

inspection of Tables I-IV shows that when n = 50 the differences between the empirical 

and nominal levels are, almost without exception, essentially zero for all models. 

A striking feature of Tables I-IV is that the empirical levels of the LM tests do not 

depend on the hypothesized value of α. In particular, the levels for the test of H0: 0α =  

are identical to the levels for the test of H0: 1α = . The key to the explanation is provided 

by the Newey (2001) procedure for calculating the LM statistic, which is presented in 

Section 3. In this procedure, the LM statistic is obtained from regressing T Y 0( ,i )α  on Xi 

and Wi. In the Monte Carlo experiments, when H0: 0α α=  is true, the value of T Y 0( ,i )α  

is the same no matter what the value of 0α . This is because T Y 0 0 1i iX( , ) iUα β β= + + and 

i0 1 iX Uβ β+ + is the same independently of 0α ; that is, 0 1, , , andi iX Uβ β  are determined 

independently of 0α .  Even though Yi is different for different values of 0α , Yi only 

enters in the calculation of the LM statistic through T Y 0( ,i ).α  Hence, the results of the 

steps1 and 2 of the Newey procedure do not depend on the value of 0α . The same 

argument applies to the LM tests based on bootstrap critical values. 

 Bootstrap Critical Values: (Y, X) Pairs. The experiments investigated the ability 

of the bootstrap critical values obtained by resampling (Y, X) pairs to reduce the 

distortions in the levels of the Wald tests that occur when asymptotic critical values are 

used. The results are generally negative: the bootstrap based on resampling (Y, X) pairs 

does not reduce the distortions in the levels for most of the cases considered. Table I and 

Table III show that the distortions are often larger in Models 2 and 3, not smaller, when 
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bootstrap critical values obtained by resampling (Y, X) pairs are used. The poor numerical 

performance of these bootstrap critical values is disappointing, but not surprising because 

resampling (Y, X) pairs does not impose the null hypothesis in population that the 

bootstrap samples.  

Monte Carlo experiments were also carried out to investigate the rejection 

probabilities of the NL2SLS Wald test with bootstrap critical values obtained from 

resampling (Y, X) pairs when n = 100. At this sample size, the distortions in the levels of 

the tests tended to be much reduced. 

Bootstrap Critical Values: Residuals.  The results for the Wald tests show that 

bootstrap critical values obtained by resampling residuals reduce, in most cases, the 

differences between the empirical and nominal levels that occur when asymptotic critical 

values are used.  In some cases, however, the bootstrap does not remove the distortions. 

This is shown in Table I, especially for n = 25.  In other cases, the bootstrap essentially 

eliminates the level distortions present with asymptotic critical values. For example, this 

is illustrated for Model 3 by the results for the NL2SLS Wald test of H0: 0α =  with n = 

50 in Table III.  Again, the experimental evidence is mixed when comparing RNL2SLS 

and NL2SLS.  

As noted above, distortions in the levels of LM tests with asymptotic critical 

values, only occur when n = 25. The tabled results show that these distortions are 

essentially removed when the LM tests use bootstrap critical values obtained by 

resampling residuals.    

Finally, Monte Carlo power experiments were performed to investigate the ability 

of the Wald tests to discriminate between alternative values of the transformation 
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parameter. The powers were computed for NL2SLS Wald tests with bootstrap critical 

values obtained by resampling residuals. The empirical powers were calculated for a 0.05 

level tests of H0: 1α =  when the values of α are equal to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8,0.85 0.9 0.95, n = 25.  Figure 1 illustrates the empirical powers in the case of 

Model 2: β0 = 0.1, β1 = 1, F truncated normal, σ = .5, X lognormal, and Model 3: β0 = 0, 

β1 = 1, F exponential, X uniform [-0.5, 0.5].  

In Figure 1, the solid line shows the empirical powers for the tests with 

asymptotic critical values, and the dashed line shows the empirical powers for the tests 

with bootstrap critical values. For Model 2, the test using asymptotic critical values 

appears to have a bit higher power, which is partly because the test over-rejects under the 

null when asymptotic critical values are used. The empirical powers for Model 3 are 

dramatically lower than those for Model 2. This illustrates that the experimental design 

can make a substantial difference as to whether the test can discriminate among 

alternatives. Here, the powers are lower using asymptotic critical values, in part because 

the test under-rejects when asymptotic critical values are used.   

We conducted additional power experiments. These show that the Wald tests 

based on the NL2SLS and the RNL2SLS estimators have about the same power when 

they use bootstrap critical values. The LM tests appears to have higher power than the 

NL2SLS Wald test for Model 2 and lower power for Model 3, again when the tests are 

based on bootstrap critical values.  

7. FTW ESTIMATOR 

This section introduces the semiparametric estimator of the parameters of the 

Box-Cox model recently propoposed by Foster, Tian and Wei (2001) (henceforth FTW)) 
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and reports the results of a Monte Carlo investigation of the Wald test based on the FTW 

estimator.   

FTW (2001) motivate their estimation procedure by considering the case where 

α is known. Again let {Yi, Xi: i = 1, …,n} be a random sample from (Y, X). Then the least 

squares estimator of β is  

(7.1)    b a 1( ) [ ] ( , )n i i ii i
X X X T Yi α−′ ′= ∑ ∑ . 

To estimate α, consider the process { ( ), 0}iI Y t t< ≥ , where I( ) is the indicator function. 

The expected value of ( )iI Y t<  is 

(7.2)    [ ( )] ( ) [ ( , ) ( ( , ) )] ( ( , ) ).i i i i iE I Y t P Y t P T Y X T t X F T t Xiα β α β α β′ ′ ′< = < = − < − = −  

A consistent estimate of the distribution function of U can be obtained using the 

empirical distribution of the residuals: 

(7.3)    
1

1( ) [ ( ( , ) ( )) ]
n

n i i n
i

F t I T Y X b t
n

α α
=

′= −∑ < .  

The FTW estimator of α solves: 

(7.4)    2

1 0

1( ) [ ( ) ( ( , ) ( ))] ( )
n

n i n i n
i

nimize S I Y t F T t X b dh t
nα

α α
∞

=

′= < − −∑ ∫mi , α

where h( ) is a strictly increasing deterministic weight function. The resulting estimate of 

α is used to obtain the estimate of β via (7.1). A limitation of this procedure is that iX β′  

cannot be degenerate; that is, β cannot be equal to 0. 

FTW use the theory of U processes to show for large n that the estimator of α is 

the unique global minimizer of ( )nS α and is strongly consistent for α0 and that the 

estimator of β is strongly consistent for β0. The authors also show that the joint 
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distribution of the estimators is asymptotically normal with a finite covariance matrix that 

involves the unknown density function of F, which may not be well estimated by directly 

using nonparametric density estimation. They propose a new resampling method that they 

claim provides reliable estimates of the covariance matrix. 

In the Monte Carlo experiments reported here, the empirical rejection 

probabilities of the FTW Wald tests are investigated using the four models considered 

previously. The tests are carried out with asymptotic critical values and with bootstrap 

critical values obtained by resampling residuals. The sample size in the experiments is 

restricted to n = 25 because the simulations are very time consuming, which is a 

consequence of the method used by FTW to compute an estimate of the covariance 

matrix. For the same reason, only 500 Monte Carlo replications are used in each 

experiment. The bootstrap critical values are computed using 199 bootstrap replications 

The Monte Carlo results are presented in Table V.  The empirical levels of the 

FTW Wald tests based on the asymptotic critical value are larger than the nominal levels, 

except for Model 1. In Model 2, 3 and 4, the differences between the empirical and 

nominal levels are especially large when testing H0: α = 0.  The evidence from these 

experiments suggests that there may be no advantage in using the FTW Wald test instead 

of the GMM Wald test when asymptotic critical values are employed.  In most cases, the 

bootstrap reduces the distortions in the levels of the Wald tests that occur with asymptotic 

critical values. In the case of Model 1, 2 and 4, the bootstrap essentially removes the 

distortions in the levels that occur with asymptotic critical values.  

The bootstrap is very time consuming because of the fact that the estimation of 

the covariance matrix also involves simulation. Moreover, several tuning parameters have 
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to be chosen to implement the simulation approach.  An alternative approach is to use a 

non-Studentized test statistic to test the hypothesis. The non-Studentized test statistic 

proposed here is 0( nn a )α− where na  is the FTW estimator of α. This statistic has the 

advantage that it does not require calculation of the covariance matrix.  This approach is 

motivated by the fact that higher-order approximations to the distributions of statistics 

that are not asymptotically pivotal can be obtained through the use of bootstrap iteration 

(Beran (1988)). The idea is to obtain the critical values of the non-Studentized test using 

the double bootstrap. Although the double bootstrap itself is computationally intensive, it 

is, nevertheless, less so than bootstrapping the FTW Wald statistic.  

Table V also reports the results of Monte Carlo experiments using the non-

Studentized tests with single and double bootstrap critical values obtained by resampling 

residuals. Again, 500 Monte Carlo replications are used in each experiment. Both the 

single bootstrap and double bootstrap results are based on 199 bootstrap replications. 

Table V shows that the differences between the empirical and nominal levels are 

small when critical values based on the single bootstrap are used. There are essentially no 

distortions in the levels of the non-Studentized tests. The exception occurs when testing 

H0: α = 0 in Design 3.  The empirical levels when the critical values are based on the 

double bootstrap tend to be similar to the empirical levels based on the single bootstrap. 

This is surprising because the single bootstrap applied to statistics that are not 

asymptotically pivotal does not provide higher-order approximations to their 

distributions. This does not imply, of course, that the single bootstrap cannot be better 

than the asymptotically FTW Wald test.  The comparison of the numerical performance 

of the asymptotically FTW Wald test and the bootstrap for the non-Studentized tests 
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suggests that applying the bootstrap to the non-Studentized test is competitive with 

calculating the variance of the FTW estimator and using the asymptotically FTW Wald 

test.  

Finally, in a small power experiment, the FTW Wald test appears to have a bit 

higher power than the GMM Wald tests when both tests use bootstrap critical values. 

This result also appears to carry over to the case of the non-Studentized test based on the 

FTW estimator. 

8. CONCLUDING COMMENTS 

In this section, the results are briefly reviewed and three topics are recommended 

for further research. The first involves the NL2SLS and RML2SLS estimators, the second 

the wild bootstrap with GMM-based tests, and the third is the double bootstrap with tests 

based on the new estimation method proposed by FTW (2001). 

This study has focused on testing the transformation parameter in a Box-Cox 

model where U is independent of X. In a setting where U and X are independent, 

bootstrap critical values can be obtained by randomly resampling (Y, X) pairs with 

replacement or by randomly resampling residuals with replacement. The Monte Carlo 

experiments show that the bootstrap often essentially eliminates the level distortions that 

occur with asymptotic critical values when the bootstrap critical values are obtained by 

resampling residuals.  

Two versions of the GMM estimator developed for the Box-Cox model are 

NL2SLS and RNL2SLS where the latter was designed to address certain shortcomings of 

the former. The experiments compared Wald tests based on the NL2SLS estimator with 

Wald tests based on the RNL2SLS estimator. The results are somewhat mixed. The 
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differences between the empirical and nominal levels for the RNL2SLS Wald tests are 

often, but not always, smaller than those for the NL2SLS Wald tests. This is true when 

asymptotic or bootstrap critical values are used.  As a consequence, more evidence is 

needed to determine which estimator among the two is preferable for testing purposes. 

In applications, the U may have heteroskedasticity of unknown form. In 

particular, the variance of U may depend on the value of X.  In this situation, the 

bootstrap can be implemented by resampling (Y, X) pairs. However, in our experiments, 

the Wald and LM tests using bootstrap critical values obtained from resampling (Y, X) 

pairs often do not provide satisfactory control over the Type I error. An alternative to 

resampling  (Y, X) pairs is to use the wild bootstrap. Liu (1988) introduced the wild 

bootstrap following a suggestion by Wu (1986).  Horowitz (1997) reports the 

performance of the wild bootstrap in experiments using a linear regression model with 

heteroskedasticity of unknown form. The results show that using critical values obtained 

from the wild bootstrap substantially reduces the error in the rejection probability under 

the null hypothesis.  In the case of the Box-Cox model, the wild bootstrap has the 

drawback that it does not constrain the value of Y to be positive. Adapting the wild 

bootstrap to a Box-Cox model is a topic that merit further research.  

FTW (2001) have recently proposed a semiparametric estimation procedure for 

the Box-Cox model. A small Monte Carlo experiment was carried out to investigate the 

Wald test based on the FTW estimator. The results show that the differences between the 

empirical and the nominal levels can be large when the test uses asymptotic critical 

values. The bootstrap reduces, and often eliminates, the distortions that occur with 

asymptotic critical values. But there is a complication. The bootstrap is very time 
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consuming because of the fact that the estimation of the covariance matrix also involves 

simulation. The alternative explored here is to avoid the computation of a covariance 

matrix estimate by using a non-Studentized test and to obtain the critical values of the 

non-Studentized test by using the double bootstrap. The double bootstrap approach 

appears to be promising and one that merits further investigation. Indeed, what is 

surprising is that the empirical levels are often close to the nominal levels when the non-

Studentized test uses critical values based on the single bootstrap. 
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Model 2: F truncated normal, β0 = 0.1, β1 = 1, σ = .5, X lognormal, n = 25 

   
            
 Model 3: F exponential, β0 = 0, β1 = 1, X uniform [-0.5, 0.5], n = 25 
 
Figure 1.− Empirical powers of nominal 0.05 level NL2SLS-based Wald tests of H0: α = 
1 are given for α equal to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1.0 using 
asymptotic critical values (solid line) and bootstrap critical values (dashed line) obtained 
by randomly resampling residuals with replacement.  
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TABLE I 

Empirical Rejection Probabilities (Percent) of Wald and LM Tests for Model 1: β0 =1, β1 
= 1, F truncated normal, σ = 0.5,  X uniform [-0.5, 0.5] 

Nominal Rejection Probabilities Critical 
Values  

Hypothesis 
1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 25           
Asymptotic           
 α = 0 0.00 0.05 0.29 0.44 1.34 2.64 1.04 5.83 11.4 
 α = 1 0.00 0.17 0.78 1.21 3.26 5.62 1.04 5.83 11.4 
Bootstrap 
(Y, X) Pair 

          

 α = 0 0.03 0.17 0.49 0.00 0.01 0.02    
 α = 1 0.03 0.03 1.89 0.00 0.00 0.01    
Bootstrap 
Residuals 

          

 α = 0 0.69 3.23 7.10 0.03 3.05 6.98 1.10 5.17 9.89 
 α = 1 0.85 3.74 7.80 0.44 3.61 8.04 1.10 5.17 9.89 
n = 50           
Asymptotic α = 0 0.00 0.13 0.70 0.16 0.90 2.16 1.02 5.23 10.4 
 α = 1 0.03 0.43 1.66 0.72 2.15 4.45 1.02 5.23 10.4 
Bootstrap 
(Y, X) Pair 

          

 α = 0 0.00 0.17 0.78 0.00 0.00 0.05    
 α = 1 0.06 0.75 3.84 0.00 00.0 0.01    
Bootstrap 
Residuals 

          

 α = 0 0.83 3.84 8.16 0.11 3.31 7.86 1.06 5.10 9.87 
 α = 1 0.90 4.56 9.17 0.41 3.43 8.41 1.06 5.10 9.87 
           
           
The empirical rejection probabilities are computed using 10,000 Monte Carlo replications 
and 999 bootstrap replications. The 95 percent confidence intervals for the 0.01, 0.05 and 
0.10 levels are (0.80, 1.12), (4.57, 5.43) and (9.41, 10.59), respectively; the 99 percent 
confidence intervals are (0.744, 1.26), (4.44, 5.56) and (9.23, 10.8), respectively. 
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TABLE II  

Empirical Rejection Probabilities (Percent) of Wald and LM Tests for Model 2:  β0 = 0.1, 
β1 = 1, F truncated normal, σ = 0.5, X lognormal  

Nominal Rejection Probabilities Critical  
Values 

Hypothesis 
1 5 10 1 5 10 1 5 10 

  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 25           
Asymptotic           
 α = 0 1.05 2.89 5.39 2.78 7.44 12.4 1.09 6.20 12.2 
 α = 1 2.38 6.87 11.6 2.43 7.01 11.8 1.09 6.20 12.2 
Bootstrap 
(Y, X) Pair 

          

 α = 0 0.69 3.05 6.49 0.35 1.94 4.45    
 α = 1 1.20 5.51 11.7 0.97 4.72 10.5    
Bootstrap 
Residuals 

          

 α = 0 1.06 4.27 8.70 1.19 5.33 10.2 1.10 5.44 10.8 
 α = 1 1.19 5.45 10.2 1.16 5.41 10.2 1.10 5.44 10.8 
n = 50           
Asymptotic α = 0 0.38 1.63 3.17 1.91 6.71 11.7 1.06 5.35 10.8 
 α = 1 1.46 5.66 10.9 1.50 5.78 11.1 1.06 5.35 10.8 
Bootstrap 
(Y, X) Pair 

          

 α = 0 0.43 1.98 4.44 0.32 1.31 2.67    
 α = 1 1.26 5.64 11.4 1.20 5.55 11.2    
Bootstrap 
Residuals 

          

 α = 0 0.81 3.97 8.53 1.02 4.72 9.33 1.10 5.25 10.1 
 α = 1 1.05 4.97 10.1 1.04 4.97 10.0 1.10 5.25 10.1 
           
           
See notes to Table I. 
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TABLE III  
Empirical Rejection Probabilities (Percent) of GMM Wald and LM Tests for Model 3: 

β0 = 0, β1 = 1, F exponential, X uniform [-0.5, 0.5]  
Nominal Rejection Probabilities Critical  

Values 
Hypothesis 

1 5 10 1 5 10 1 5 10 
  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 25           
Asymptotic           
 α = 0 0.31 1.86 4.32 0.27 1.63 3.95 1.15 5.31 10.6 
 α = 1 0.64 2.85 6.17 0.58 2.63 5.72 1.15 5.31 10.6 
Bootstrap 
(Y, X) Pair* 

          

 α = 0 0.32 1.67 4.44 0.03 0.40 1.91    
 α = 1 0.44 2.51 6.51 0.01 0.61 3.28    
Bootstrap 
Residuals* 

          

 α = 0 1.25 5.24 9.83 0.76 4.49 9.00 1.22 4.79 9.44 
 α = 1 1.41 5.62 10.3 1.26 5.14 9.75 1.22 4.79 9.44 
n = 50           
Asymptotic α = 0 0.34 2.91 6.39 0.31 2.67 5.95 0.73 5.04 10.6 
 α = 1 0.96 4.45 8.13 0.91 4.20 7.77 0.73 5.04 10.6 
Bootstrap 
(Y, X) Pair* 

          

 α = 0 0.35 2.52 7.35 0.00 0.57 3.27    
 α = 1 0.71 4.62 9.22 0.02 0.98 5.81    
Bootstrap* 
Residuals 

          

 α = 0 1.09 5.40 10.4 0.77 4.85 9.82 0.84 4.84 9.95 
 α = 1 1.11 5.57 10.4 1.02 5.38 10.2 0.84 4.84 9.95 
           
See notes to Table I. 
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TABLE IV  
Empirical Rejection Probabilities (Percent) of Wald and LM Tests for Model 4: β0 = 0, β1 

= 1, F exponential, X exponential 
Nominal Rejection Probabilities Critical 

Values  
Hypothesis 

1 5 10 1 5 10 1 5 10 
  Wald LM 
  NL2SLS RNL2SLS NL2SLS 
n = 25           
Asymptotic           
 α = 0 1.89 6.41 11.3 1.95 6.65 11.7 1.58 5.89 11.2 
 α = 1 1.82 6.23 11.2 1.82 6.22 11.3 1.58 5.89 11.2 
Bootstrap 
(Y, X) Pair 

          

 α = 0 0.75 3.61 8.39 0.73 3.53 8.24    
 α = 1 0.55 3.50 8.12 0.48 3.21 7.77    
Bootstrap 
Residuals 

          

 α = 0 1.26 5.03 9.72 1.26 5.01 9.74 1.47 5.23 9.85 
 α = 1 1.32 4.91 9.70 1.30 4.90 9.68 1.47 5.23 9.85 
n = 50           
Asymptotic α = 0 1.33 5.47 10.2 1.46 5.66 10.5 1.42 5.32 10.3 
 α = 1 1.39 5.48 10.2 1.39 5.48 10.2 1.42 5.32 10.3 
Bootstrap 
(Y, X) Pair 

          

 α = 0 0.83 4.97 10.5 0.81 5.01 10.5    
 α = 1 0.71 4.92 10.3 0.70 4.89 10.3    
Bootstrap 
Residuals 

          

 α = 0 1.19 4.87 9.83 1.27 4.92 9.57 1.27 4.95 10.0 
 α = 1 1.24 4.99 9.74 1.24 4.99 9.74 1.27 4.95 10.0 
           
See notes to Table I. 
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TABLE V 

Empirical Rejection Probabilities (Percent) of FTW Tests 
Nominal Rejection Probabilities Form of Test and Critical Value 

1 5 10 1 5 10 
Hypotheses  

α = 0 α = 1 
Model 1: β0 =1, β1 = 1, F truncated normal, σ = 0.5,  X uniform [-0.5, 0.5] 

Wald       
         Asymptotic 1.00 5.20 12.4 1.80 5.20 10.2 
         Bootstrap  1.40 5.40 10.8 1.20 5.20 10.6 
Non-Studentized       
         Single Bootstrap 0.80 3.40 8.20 0.40 5.62 11.4 
         Double Bootstrap 0.40 4.00 8.40 0.80 5.20 10.6 

Model 2: β0 = 0.1, β1 = 1, F truncated normal, σ = 0.5, X lognormal  
Wald       
       Asymptotic 9.80 17.8 23.4 3.20 7.80 15.6 
       Bootstrap 1.20 4.20 8.80 0.80 4.80 11.6 
Non-Studentized       
       Single Bootstrap 1.40 3.80 9.60 0.80 4.80 9.20 
       Double Bootstrap 0.80 5.20 10.6 0.80 4.20 6.80 

Model 3: β0 = 0, β1 = 1, F exponential, X uniform [-0.5, 0.5] 
Wald       
       Asymptotic 3.40 10.8 17.4 2.80 8.40 15.2 
       Bootstrap 2.60 7.40 12.8 2.40 7.60 12.2 
Non-Studentized       
       Single Bootstrap 1.20 5.80 10.6 0.40 2.80 7.00 
       Double Bootstrap 0.60 4.80 8.80 0.20 3.20 6.60 

Model 4: β0 = 0, β1 = 1, F exponential, X exponential 
Wald       
       Asymptotic 7.20 13.6 17.6 1.80 8.0 12.4 
       Bootstrap 0.60 3.00 9.20 1.00 5.80 10.2 
Non-Studentized       
       Single Bootstrap 1.40 5.00 8.40 0.80 3.60 8.80 
       Double Bootstrap 0.20 4.00 8.60 0.40 4.20 9.20 
The empirical rejection probabilities are computed using 500 Monte Carlo replications 
and 199 bootstrap replications in both the single and double bootstrap. The 95 percent 
confidence intervals for the 0.01, 0.05 and 0.10 levels are (.013, 1.87), (3.09, 6.91) and 
(7.37, 12.63), respectively; the 99 percent confidence intervals are (-0.15, 2.15), (2.49, 
7.51) and (6.54, 13.5), respectively. 
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