
   

Testing the Momentum Anomaly 
 
 

Abstract 
 

The consensus view in asset pricing, shaped by the results of Fama and French (1996), is 
that the three-factor model fails to account for stock return momentum while the Carhart 
(1995, 1997) four-factor model ‘explains’ the returns of momentum-sorted portfolios. 
According to Cochrane (2006), “The three-factor is worse than useless…” and “the 
returns of … momentum-sorted portfolios can be explained by an additional momentum 
factor….”  Using momentum-sorted portfolios and a variety of tests over five-year and 
longer sub-periods during 1965-2004, we show that the consensus is not strongly 
supported by the data. The performance of the three-factor model is qualitatively similar 
to that of the four-factor model both on statistical and economic grounds. Hence, 
attaching a greater weight to the results from the four-factor model relative to the three-
factor model in empirical applications may not be justified. 
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I. Introduction 
 

Stock return momentum (Jegadeesh and Titman (1993, 2001)) is widely regarded 

as one of the most robust anomalies in the empirical asset pricing literature.  In an 

influential paper Fama and French (1996) conclude that the three-factor Fama-French 

model fails to account for the cross-sectional differences in momentum-sorted stock 

portfolios during the period July 1963-December 1993.  This conclusion is based on a F-

test of the null hypothesis that the intercepts are zero for the three-factor model.  By 

contrast, Carhart (1995, p. 51) presents evidence using 27 size, book-to-market and 

momentum-sorted portfolios for the Fama-French period that the four-factor model 

“noticeably reduces the average pricing errors relative to the CAPM and the [three]-factor 

model.”   

Since then, a consensus view has emerged that (a) the three-factor model is 

rejected using momentum-sorted stock portfolios as test assets, and (b) the four-factor 

model is superior to the three-factor model in the context of the momentum anomaly.  For 

example, according to Cochrane (2006, p. 19) “The three-factor model is worse than 

useless at capturing the expected returns of this “momentum” strategy….”  He goes on to 

note that “…the returns of these 10 momentum-sorted portfolios can be explained by an 

additional “momentum factor” umd of winner stocks less loser stocks.” Contrary to the 

consensus, this paper shows that the data for five-year sub-periods tend to favor the zero 

intercept null for the three-factor model, and, more generally, the data do not provide 

strong support for the four-factor model relative to the three-factor model.  These 

contrary results are due to the application of recently developed robust tests that suffer 

from substantially less size distortion relative to the conventional tests. This highlights 
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that debates in financial economics can often be shaped by the interaction between 

evolving statistical methodology and data.  

This study reexamines the momentum anomaly over the period 1965-2004.  The 

performance of the three-factor and four-factor models is analyzed using monthly returns 

on ten equally-weighted and value-weighted momentum-sorted portfolios.  We focus on 

model performance during eight five-year and four ten-year sub-periods, in addition to 

longer time periods.  A key question is whether the three-factor model is in fact rejected 

by the data.  The consensus view regarding the failure of the three-factor model is shaped 

by the results of the F-tests reported by Fama and French (1996) for the approximately 

thirty-year period July 1963 – December 1993.  As noted above, we find that the 

evidence from five-year sub-periods is generally favorable to the three-factor model. 

Turning to the four-factor model, its performance is qualitatively similar to that of the 

three-factor model for both the five-year sub-periods as well as the longer sub-periods; 

the zero intercept null is often accepted for the shorter periods and generally rejected for 

the longer periods.    

In light of this evidence, a natural question is how much credence should be given 

to the thirty-year periods compared to shorter periods.  Long-standing concerns about 

parameter stability in empirical research in finance (see, for example, Fama and Macbeth 

(1973)) would argue in favor of shorter sub-periods.  We construct plausible scenarios 

that suggest inferences based on long periods of monthly data may be problematic due to 

structural breaks.  For this purpose, we employ a simulation design that incorporates 

structural breaks at five-year intervals.  With this design, the zero-intercept null is falsely 

rejected when the test uses the entire thirty-year sample period.  These results suggest 
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that concerns about parameter stability over long periods in tests of asset pricing models 

are well founded and hence that the long period results are best interpreted with caution.   

Our analysis begins by examining the evidence based on the classic F-test.   Our 

test results show that the consensus is not strongly supported by the data for the five-year 

sub-periods.  The F-test does not reject the null that the intercept vector for the three-

factor model is zero at the 1% level for the majority of the five-year sub-periods.  In light 

of the evidence on violations of the assumptions of the classic F-test, we extend the 

analysis using the conventional heteroskedasticity and autocorrelation robust (HAR) 

Wald test.  This test employs a heteroskedastic and autocorrelation consistent (HAC) 

estimator of the covariance matrix.  We use the well-known HAC estimator proposed by 

Newey and West (1987, 1994) for the conventional HAR Wald test.  The conventional 

HAR test with asymptotic P-values rejects the three-factor model for all the five-year as 

well as the longer sub-periods.  These rejections require further examination because it is 

well known that the conventional test suffers from size distortions that occur with 

asymptotic P-values, that is, error in the rejection probability (ERP) under the null 

hypothesis.   

To reduce the ERP, Keifer, Vogelsang and Bunzel (2000, hereafter KVB) and 

Keifer and Vogelsang (2005, hereafter KV) proposed the use of kernel-based covariance 

estimators in which the bandwidth parameter M is set proportional to the sample size T, 

that is, M bT= .  In this case, when the parameter b is fixed as T goes to infinity, the 

kernel-based estimators have a random limiting distribution, which implies that they are 

inconsistent. In turn, the associated test statistics have nonstandard limit distributions. 
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The nonstandard or new HAR tests are carried out in practice by approximating the finite 

sample distribution of the test statistic by its nonstandard limit distribution.   

In the Gaussian location model, Sun, Phillips and Jin (2008) have analyzed the 

ERP for tests where b is fixed as T goes to infinity and where the critical values are 

obtained from the nonstandard limit distribution.  This ERP is compared to that for 

conventional tests with critical values obtained from the standard approximation. They 

show that the ERP of the nonstandard approximation is smaller than that of the standard 

approximation by an order of magnitude. This result is an extension of an earlier finding 

by Jansson (2004). These analytical findings support the earlier simulation results by 

KVB, KV (2002a, 20002b) and Phillips, Sun and Jin (2006, 2007, hereafter PSJ). The 

conclusion from this analysis is that the nonstandard approximation provides a more 

accurate approximation to the finite sample distribution of the test statistic. Consequently, 

the nonstandard test has less size distortion than the conventional test.  

Ray and Savin (2008) investigated the performance of the new HAR tests using 

size-sorted portfolios, namely the case where stocks are assigned to portfolios based on 

market equity. Their study illustrates that the new HAR tests can change the inferences 

drawn from the data. Consistent with these results, our study shows that when the new 

HAR tests are applied to momentum data they deliver results that are in stark contrast to 

those of the conventional HAR tests.  

 In this paper, the new HAR tests fail to reject the three-factor model in at least 

four of the eight five-year sub-periods we examine.  We show that the conflict between 

the results of the conventional HAR test and the new HAR tests is resolved when 

inferences are based on simulated finite-sample P-values.  The finite- sample P-values 
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favor the three-factor model for a majority of the five-year sub-periods considered.  In 

contrast, the finite-sample evidence is less favorable for the model over thirty-year and 

longer time periods.  

We next investigate whether the intercepts, which represent the model pricing 

error, are consistently smaller in economic terms in the four-factor model compared to 

the three-factor model.  We analyze the intercepts for the two models in each of the eight 

five-year sub-periods for the ten equally-weighted momentum-sorted portfolio returns.  

Our results indicate that there is little difference between the models in terms of the 

pricing errors for the five-year sub-periods.  The median absolute value of the model 

intercepts across the ten portfolios in each five-year sub-period is smaller for the three-

factor model in three out of the eight five-year sub-periods.  In nearly all cases the 

differences in the median values of the intercepts are small in economic terms, less than 

or equal to 10 basis points per month in absolute value.  In fact, the three-factor model 

yields a slightly higher proportion of intercepts smaller than 10 basis points per month in 

absolute value, 29 percent compared to 25 percent for the four-factor model.   

In summary, this paper demonstrates that the consensus view regarding the merits 

of the Fama-French three-factor model, both on its own as well as relative to the four-

factor model, should be reconsidered.  While the momentum anomaly continues to be a 

challenge for asset pricing, it poses a challenge for both the three-factor as well as the 

four-factor model.  Our analysis suggests that the four-factor model does not dominate 

the three-factor model in either statistical or economic terms.  Hence, attaching greater 

weight to the results from the four-factor model may not be justified. The latter issue is 
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important in applications, for example, when interpreting tests of abnormal performance 

in event studies that employ the four-factor model.  

The organization of the paper is the following: Section II reviews the classical 

Wald test for the vector of intercepts while Section III presents empirical results based on 

the classic test statistic.  Section IV motivates the conventional and the new HAR tests in 

the case of a simple location model and provides the intuition behind the superior 

performance of the new tests. Section V describes the conventional and new HAR tests 

for testing the intercept in the three-factor model.   HAR test results using asymptotic P-

values are reported in Section VI, and results using simulated finite-sample P-values are 

presented in Section VII.  The power of the new HAR tests for the five-year sub-periods 

is investigated in Section VIII. The impact of structural change on test results is 

considered in Section IX.  Section X considers the economic significance of the 

intercepts from the three-factor and the four-factor models.  Section XI contains the 

concluding comments. 

II. Classic Wald Test  

In this section, the three- and four-factor models used by Fama and French (1996) 

and Carhart (1997) are formulated as multivariate linear regression models with random 

regressors.  The classic Wald test for the intercept vector is reviewed.  

Define the variables 1,..., Ny y , where yi is the excess return for the ith momentum 

portfolio, and the variables x1, x2, x3, x4,  where 1x  is the market factor (the excess return 

on the market portfolio), 2x  is the size factor (the difference between the return on a 

portfolio of small capitalization stocks and the return on a portfolio of large capitalization 

stocks (SMB, small minus big)), 3x  is the book-to-market factor (the difference between 
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the return on a portfolio of high-book-to-market stocks and the return to a portfolio of 

low-book-to-market stocks ( HML, high minus low)) and x4 is the momentum factor (the 

average of the returns on two (big and small) high prior return portfolios minus the 

average of returns on two low prior return portfolios (MOM). 

The classic Wald test is developed for the three-factor model. Suppose that the 

conditional expectation function is linear, 

 0 1 1 2 2 3 3( | )E y x x x xβ β β β= + + + , (1) 

and the conditional variances are constant, 

 ( | ) ,V y x = Σ  (2) 

where 1 0 01 0 1 11 1 2 21 2( ,..., ) , ( ,..., ) , ( ,..., ) , ( ,..., ) ,N N N Ny y y β β β β β β β β β′ ′ ′ ′= = = = and  

3 31 3( ,..., )Nβ β β ′= .   A nonzero value of the intercept is interpreted as saying that the 

model leaves an unexplained return, a mean excess return that is unexplained by the three 

factors.          

Denote the t-th observation on y by 1( ,..., )t t Nty y y• ′= and on x by 

1 2 3( , , )t t t tx x x x• ′= . In addition, suppose the population of y and x is randomly sampled, 

that is, the pairs ( ,t ty x• • ) are independently and identically distributed (iid).  Then 

random sampling from the above multivariate population supports the classical 

multivariate linear regression model with random regressors.   

Following Greene (2003), the multivariate regression model can be restated as a 

seemingly unrelated regressions (SUR) model with identical regressors for the purpose of 

presenting the classic and conventional robust Wald tests. The SUR model is formulated 

using the N regression equations , ( 1,..., ),i i iy X u i Nθ• •= + =  where 1( ,..., )i i iTy y y• ′= ,  
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1 2 3 1 0 1 2 3[ , , , ], (1,...,1) , ( ,..., ) , ( 1, 2,3), ( , , , ) ,j j jT i i i i iX x x x x x x jι ι θ β β β β• • • • •′ ′ ′= = = = =  and  

1( ,..., )i i iTu u u• ′= . Stacking the N regressions, 

( ) ,y I X u Z uθ θ•• •• ••= ⊗ + = +  

where I is an N×N identity matrix, 1( ,..., ) ,Nθ θ θ′ ′ ′=  and 1( ,..., )Nu u u•• • •
′ ′ ′= .  The least 

squares estimator of θ  is obtained by regressing y••  on Z. This produces the estimator 

1ˆ ( ' ) 'Z Z Z yθ −
••= 1( ' ) 'Z Z Z uθ −

••= + . 

The null hypothesis of interest is 0 0: 0H β = , and the alternative is 1 0: 0H β ≠ .  

The classic Wald statistic for testing H0 is based on  

 1 1
0 0

ˆ ˆˆ ,W c β β− −′= Σ  

where 11( )c X X′= is the 1,1-th element of the inverse of ,X X′  

0
ˆ ˆ ˆ( (1,0,0,0))I Rβ θ θ= ⊗ = , 1ˆ ˆ ˆt tt

T u u−
• •′Σ = ∑  and 0 1 1 2 2 3 3

ˆ ˆ ˆ ˆˆ ( )t t t t tu y x x xβ β β β• •= − − − − . 

Under suitable regularity conditions, the statistic W has a limiting chi-square distribution 

with N degrees of freedom when H0 is true. 

In the case where the ty•  are independently distributed as 

0 1 1 2 2 3 3( , )t t tN x x xβ β β β+ + + Σ , or equivalently, the tu•  are iid N(0, Σ), the 

statistic (( 3) / )F T N NT W= − −  is unconditionally distributed as central F with N 

degrees of freedom in the numerator and (T-N-3) degrees of freedom in the denominator 

when H0 is true.  This follows from the fact that (T-4)W/T  is a generalized Hotelling’s T-2 

statistic where 11 1/ 2
0

ˆ[( ) ]X X β−′  is distributed as (0, )N Σ  under H0, and ˆTΣ  is 

independently distributed as a Wishart with parameters (T-4) and Σ; see Anderson (1958, 

Theorem 5.2.2, p. 106).  For further treatment of testing in the normal case, see Stewart 
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(1997).  Both Greene (2003) and Campbell et al. (1997) report the F-statistic for the one-

factor model. However, in Greene, the denominator is missing the term T. 

In the case of the four-factor model, X, θ  and u••  are modified to incorporate x4. 

If the ty•  are independently distributed as 0 1 1 2 2 3 3( , )t t tN x x xβ β β β+ + + Σ , then the 

statistic (( 4) / )F T N NT W= − −  is distributed as a central F with N and (T-N-4) degrees 

of freedom when H0 is true.  

III. Empirical Results for the Classic Test 

 This section presents test results for the three- and four-factor models using the 

classic Wald test. These results are of interest because the qualitative conclusions are not 

essentially different from those produced by the new HAR tests with asymptotic P-

values.   

The data are obtained from Ken French’s website (March 25, 2007). The return 

data consist of value-weighted and equally-weighted monthly returns for ten (N  = 10) 

momentum-sorted portfolios.  In this paper, the focus is on the sample from January 1965 

through December 2006.  The one-month Treasury bill as reported on the website is used 

as a measure of the risk-free return.  The tests are performed for five-year, ten-year, 

thirty-year sub-periods and longer periods. The sub-periods include those used by 

Campbell et al. (1997) and Fama and French (1996).  

Table 1 reports the results of the F-tests when the tu•  are iid N(0, Σ). The 

consensus view is that the F-test rejects the zero intercept null for the three-factor model 

when it is estimated from equally-weighted returns.  The test results show that this view 

is not strongly supported by the data for the five-year sub-periods: The null is not rejected 

for five out of eight sub-periods at the 1 percent level.  Support for the consensus view is 
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primarily based on the results for the thirty-year and longer sub-periods.  The null is 

rejected at the 1 percent level for all of the thirty-year and longer sub-periods.  The story 

is essentially the same for the four-factor model.  At the 1 percent level, the P-values do 

not reject the null for six out of the eight five-year sub-periods and one of the longer sub-

periods.  Notice that the four-factor model is not strictly superior to the three-factor 

model when comparing the magnitudes of the P-values. 

Another aspect of the consensus is that the value-weighted returns favor the null. 

The P-values in Table 1 for the value-weighted returns tend to support this view, 

especially for the three-factor model.  The null is not rejected at the 1 percent level for 

seven out of the eight five-year sub-periods for the three-factor model and five out of the 

eight five-year sub-periods for the four-factor model.  The null is also not rejected at the 

1 percent level for two out of the four of the ten-year periods for the three-factor model 

and three out of the four of the ten-year periods for the four-factor model.  On closer 

examination, Table 1 reveals that the P-values for the value-weighted returns are not 

always larger than the P-values for the equally-weighted returns.  

Although there are more rejections when the tests use the 5 percent level as the 

criterion, the number of rejections is the same for the three-factor and four-factor models 

for the equally-weighted portfolios, and there are fewer rejections for the three-factor 

models than the four-factor models for the value-weighted portfolios. 

The P-value for a five-year sub-period is sensitive to the choice of dates and 

similarly for longer sub-periods.  This is illustrated by using a different set of sub-periods 

for data analysis.  Table 2 reports the P-values when all the sub-periods in Table I are 

shifted forward by two years.  The results for the shifted sub-periods show that a shift by 



 11

two years can have a large impact on the P-value.  For example, in the case of the three-

factor model, shifting the five-year sub-period January 1965 - December 1969 to January 

1967 - December 1971 increases the P-value from 0.24 percent to 8.55 percent for 

equally-weighted returns and reduces the P-value from 12.98 percent to 0.60 percent for 

value-weighted returns.  

 A comparison of Tables 1 and 2 for the equally-weighted returns shows that 

number of rejections for the five-year sub-periods is similar at the 1 percent level. 

However, at the 5 percent level, the shift in the five-year sub-periods considered here has 

a substantial effect.  There are six rejections at the 5 percent level in Table 1 and only 

three in Table 2.  In the case of value-weighted returns, the number of rejections in Table 

1 is not much different from that in Table 2.  Hence, the conclusion from Table I that the 

zero intercept null is often supported by the three-factor model in the case of five-year 

sub-periods is not overturned by the shifts in the sub-periods considered here. 

The P-values in Table 1 are calculated on the assumption that the disturbances are 

normally distributed.  The normality assumption may or may not be a good 

approximation to the actual distribution of the disturbances.  Assuming that the iid 

assumption is correct, the relevant approximation to the actual distribution of the 

disturbances is the empirical distribution of the residual vectors.  Table 3 reports the 

simulated P-values obtained by randomly resampling the empirical distribution of the 

residuals.  The null hypothesis is imposed in the simulation experiments. Accordingly, 

the residual vectors are obtained by estimating the three- and four-factor models by 

constrained least squares where the constraint is that the intercept vector is zero.  The 

constrained residual vectors are demeaned so that the mean of the empirical distribution 
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of the residual vectors is zero.  In the experiments, the regressor vectors are randomly 

sampled with replacement from the empirical distribution of regressor vectors tx•  and, 

independently, the demeaned constrained residual vectors are randomly resampled with 

replacement.  Further details of this resample-resample (RR) experiment are given in 

Appendix A.   

The simulated P-values in Table 3 differ from the exact normal theory P-values in 

Table 1.  They are larger than the exact normal theory P-values for all of the five-year 

and ten-year sub-periods for both the three-factor and four-factor models.  This indicates 

that the empirical distribution of the regression errors have fatter tails than those of the 

normal distribution.  The results are similar for the value-weighted returns.  However, the 

qualitative results for Table 3 are the same as for Table 1.  For example, for equally-

weighted returns, the P-values do not reject the null at the 1 percent level for six out eight 

of the sub-periods for the three-factor and four-factor models.  This suggests that the 

inferences based on Table 1 are relevant for the actual distributions of the disturbances.  

There are two complementary explanations for the similarity of the P-values.  One is that 

the departures from normality are relatively small and the other is effects of the 

departures are washed out, at least partially, by the operation of the Central Limit 

Theorem. 

The empirical results in this section show that the evidence from five-year sub-

periods tends to be favorable to the three-factor model, while the evidence from the 

thirty-year and longer sub-periods is unfavorable to both the three-factor and four-factor 

models. The apparent contrast between the five-year sub-period results and those for the 

thirty-year and longer sub-periods is essentially accounted for by the smaller standard 
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deviations for the longer sub-period results, assuming no structural change over the 

extended time frames. This is because the estimates of the model pricing errors, that is, 

the intercepts, for the five-year sub-periods are roughly similar in magnitude to those for 

the thirty-year and longer sub-periods. As will be seen below, the rejection of the zero 

intercept null for the longer sub-periods is also a feature of the new HAR test results. 

However, it is plausible that the thirty-year and longer sub-periods may have structural 

breaks. In the presence of structural breaks the contrast may be one of appearance rather 

than substance. The potential impact of structural breaks on inference is investigated in 

more detail in Section 8 below.  

IV. HAR Inference for the Mean 

Campbell et al. (1997, p. 208) present evidence in finance on the failure of the 

classical assumptions to hold when tested with real data.  The departures include 

nonnormality, heteroskedasticity and temporal dependence.  These departures call for the 

use of robust tests. This section reviews HAR testing of the mean in the case of a simple 

location model. In the context of this model, the conventional and nonstandard or new 

tests reduce to t-tests.  This simplification is an advantage when describing the motivation 

for and the construction of the tests. Another advantage is of the location model is that it 

permits an analytical investigation of the properties of the tests.  In this section, results on 

the accuracy of the normal and the nonstandard approximations are reported, and the 

intuition behind the superior accuracy of the new HAR tests is discussed. 

Following KVB and Jansson (2004), consider inference about β  in the case of 

the location model: 

 , ( 1,..., )t ty u t Tβ= + =  
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where tu  is a zero mean process with a nonparametric autocorrelation process. The least 

squares estimator of β gives 1
1

ˆ ,T
tt

Y T yβ −
=

= = ∑ and the scaled and centered estimation 

error is  

 1/2 1/2ˆ( ) ,TT T Sβ β −− =  

where
1

.t
tS uττ =

= ∑  Let ˆû yτ τ β= −  be the time series of residuals. Suppose that  TS  

satisfies assumptions such that the estimation error converges in distribution to a normal 

distribution:  

 2ˆ( ) (1) (0, ).T W Nβ β ω ω− ⇒ =  

This result provides the usual basis for robust testing about .β  Here 2ω is the long run 

variance of tu  and W(r) is standard Brownian motion. 

   The conventional approach is to estimate 2ω using kernel-based nonparametric 

estimators that involve some smoothing and possibly truncation of the autocovariances. 

When tu  is stationary with spectral density function  ( ),uuf λ  the long run variance 

(LRV) of tu  is   

 2
0

1
2 ( ) 2 (0),uu

j
j fω γ γ π

∞

=

= + =∑  

where ( ) ( ).t t jj E u uγ −=  The HAC estimates of 2ω typically have the following form 

 
1

1
12

1
1

1

ˆ ˆ for 0,
ˆ ˆ ˆ( ) ( ) ( ), ( )

ˆ ˆ for 0,

T j
T t j tt

T
j T t j tt j

T u u jjM k j j
M T u u j

ω γ γ
−−

− +=

−
=− + +=− +

⎧ ≥⎪= = ⎨
<⎪⎩

∑
∑

∑
 

involving the sample covariances ˆ( ).jγ  In this expression, ( )k ⋅  is some kernel; M is a 

bandwidth parameter and consistency of 2ˆ ( )Mω requires M → ∞ and / 0M T → as 
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;T → ∞ see, for example, Andrews (1991), Hansen (2002) and Newey and West (1987, 

1994).  

 To test the null 0 0:H β β=  against the alternative 1 0: ,H β β≠  the conventional 

approach relies on a nonparametrically studentized t-ratio statistic of the form 

 1/2
ˆ 0( )

ˆ ˆ( ) / ( ),Mt T Mω β β ω= −  

which is asymptotically (0,1)N . The use of this t-statistic is convenient empirically and is 

widespread in practice, in spite of well-known problems with size distortion in inference. 

To reduce size distortion, that is, the error in the rejection probability (ERP) under 

the null,  KVB and KV(2005) proposed the use of kernel-based estimators of 2ω  in 

which the M is set equal to or proportional to T, that is, M bT= for some ( ]0,1b ∈ .  In 

this case, the estimator becomes  

 
1

2

1

ˆ ˆ( ),
T

b
j T

jk j
bT

ω γ
−

=− +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  

and the associated t-statistic is given by  

 1/2
0

ˆ ˆ( ) /b bt T β β ω= − . 

The estimate ˆbω  is inconsistent and tends to a random quantity instead ofω  with the 

result that so the bt -statistic is no longer standard normal. 

 When the parameter b is fixed asT → ∞ , KV showed that under suitable 

assumptions 2 2ˆb bω ω⇒ Ξ , where the limit bΞ  is random.  Under the null hypothesis,  

 1/2(1)b bt W −⇒ Ξ . 

Thus, the bt -statistic has a nonstandard limit distribution arising from the random limit of 

the LRV estimate ˆbω .  
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 Sun, Phillips and Jin (2008) have obtained the properties of the tests analytically 

under the assumption of normality. The assumption employed is that tu is a mean zero 

covariance stationary Gaussian process with 2 | ( ) | .
h

h hγ∞

=−∞
< ∞∑   The ERP of the 

nonstandard t-test with b fixed is compared to that of the conventional t-test. The 

nonstandard test is based on the bt -statistic and uses critical values obtained from the 

nonstandard limit distribution of 1/2(1) bW −Ξ , while the conventional test is based on the 

ˆ ( )Mtω -statistic and uses critical values from the standard normal distribution. Sun et al. 

show that the ERP of the nonstandard test is 1( ),O T −  while that of the conventional 

normal test is O(1). Hence, when b is fixed, the error of the nonstandard approximation to 

the finite sample distribution of the bt -statistic under the null is smaller than that of the 

standard normal approximation to the finite sample distribution of the ˆ ( )Mtω -statistic, 

again under the null. Moreover, the error of the nonstandard approximation is smaller 

than that of the normal approximation by an order of magnitude.  

This result is related to that of Jansson (2004), who showed that the ERP of the 

nonstandard test based on the Bartlett kernel with b = 1 is O(logT/T). The Sun et al. 

(2008) result generalizes Jansson’s result in two ways. First, it shows that the log (T) 

factor can be dropped. Second, while Jansson’s result applies only to the Barlett kernel 

with b = 1, the Sun et al. result applies to more general kernels than the Bartlett kernel 

and to kernels with both b = 1 and b <1.  

 There are two reasons for the improved accuracy of the nonstandard 

approximation. One is that the nonstandard distribution mimics the randomness of the 

denominator of the t-statistic. In other words, the nonstandard test behaves in large 
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samples more like its finite sample analogue than the conventional asymptotic normal 

test.  By contrast, the limit theory for the conventional test treats the denominator of the t-

ratio as if it were non-random in finite samples. The other reason is that the nonstandard 

distribution accounts for the bias of the LRV estimator resulting from the unobservability 

of the regressors errors, that is, the inconsistency mimics the bias.   

In related work, PSJ (2006, 2007) proposed an estimator of 2ω  of the form  

 
1
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ˆ ˆ( ) ( ),
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j T
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⎡ ⎤= ⎢ ⎥⎣ ⎦
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which involves setting M equal to T and taking an arbitrary power 1ρ ≥ of the traditional 

kernel. The associated t-statistic 1/2
0

ˆ ˆ( ) /t Tρ ρβ β ω= −  has a nonstandard limiting 

distribution arising from the random limit of the estimator ˆρω  when ρ is fixed as 

T → ∞ . Statistical tests based on 2ˆbω  and 2ˆρω share many of the same properties, which is 

explained by the fact ρ  and b play similar roles in the construction of the estimates. An 

analysis of tests based on tρ  is reported by PSJ (2005a, 2005b)  

V. HAR Tests of the Three-Factor  Model 

This section presents the conventional HAR test and the new HAR tests for the 

intercept vector in the three-factor model.  The extension to the four-factor model is 

straightforward.  

From Section 2, the scaled and centered estimator is 

            1 1 1/2 1 1 1/2

1

ˆ( ) ( ' ) ( ' ) ( ( ' ))
T

t
t

T T Z Z T Z u I T X X T vθ θ − − − − − −
•• •

=

− = = ⊗ ∑ ,  

 where 1 2 3(1, , , )t t t t tv u x x x• • ′= ⊗ .  Under general assumptions, for example, those given in 

KV and PSJ (2005), the estimator converges in distribution to a normal: 
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           1 1ˆ( ) (0, )T N Q Qθ θ − −− ⇒ Ω   

where 1( ( lim ' ))Q I p T X X−= ⊗ and Ω is the long run variance of tν• . In the case of the 

three-factor model, Ω is a 4 4N N×  matrix 

The conventional HAR Wald statistic for testing the null hypothesis 0 0: 0H β =  is  

             
11 1

0 0
ˆ ˆ ˆ ˆˆ ( )MW T RQ M Q Rβ β

−
− −⎡ ⎤′ ′= Ω⎣ ⎦ ,  

where ˆ ( )MΩ  is an HAC estimator of  Ω and ˆ ˆˆ ( (1,0))I Rα θ θ= ⊗ = .  When 0 0: 0H β =  is 

true, is asymptotically distributed as a chi-square with N degrees of freedom; for details, 

see KV.   

The conventional approach to HAR testing relies on consistent estimation of the 

sandwich variance matrix Q-1ΩQ-1. The term Q  can be consistently estimated by 

1ˆ ( ( ' )).Q I T X X−= ⊗   When tν•  is stationary with spectral density matrix ( )fνν λ , the 

LRV of tν•   is  
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where ( ) ( )t t jj E ν ν• • −′Γ = . Consistent kernel-based estimators of Ω  are typically of the 

form 
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which involves sample covariances ˆ ( )jΓ  based on estimates 1 2 3ˆ ˆ (1, , , )t t t t tv u x x x• • ′= ⊗  of 

tν•  that are constructed from regression residuals 0 1 1 2 2 3 3
ˆ ˆ ˆ ˆˆ ( )t t t t tu y x x xβ β β β• •= − − − − . 
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The method proposed by Νewey and West (1987, 1994) is used to obtain the HAC 

estimator of Ω  for the conventional HAR test in this paper. 

The new HAR Wald statistics used to test 0 0: 0H β =  are generalizations of the 

new t-statistics for testing the mean, namely bt  and tρ .  When M bT= , the kernel-based 

estimator of Ω becomes  

            
1

1

ˆ ˆ ( ),
T

b
j T

jk j
bT

−

=− +

⎛ ⎞Ω = Γ⎜ ⎟
⎝ ⎠

∑      

and the associated test statistic is given by   

            1 1 1ˆ ˆˆˆ ˆ[ ]b bW T RQ Q Rα α− − −′ ′= Ω . 

In the case of exponentiated or power kernels, the estimator of Ω is 
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and the associated test statistic is given by   

 1 1 1ˆ ˆˆˆ ˆ[ ]W T RQ Q Rρ ρα α− − −′ ′= Ω . 

In this paper, two kernel functions are considered, both of which are commonly 

used in practice. One is the Bartlett kernel,  
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and the other is the Parzen kernel,  
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Taking an arbitrary power 1ρ ≥  of these kernels gives  
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and  
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The properties of the kernels are discussed in PSJ (2006, 2007).  
 
VI.  Asymptotic Test Results  

 This section reports test results for equally-weighted returns for the three- and 

four-factor models using the conventional HAR test and the new HAR tests when the 

tests are based on asymptotic P-values.  The asymptotic P-values are obtained from 

asymptotic chi-square distribution for the conventional test and the simulated 

nonstandard asymptotic distributions for the fixed-b and fixed-ρ tests.  

 The asymptotic P-values for the conventional HAR tests for the three-factor 

model are presented in Table 4.  The asymptotic P-values reject the null at the 1 percent 

significance level for all sub-periods.  A truncated Bartlett kernel (Newey and West 

(1987, 1994)) is used to calculate the HAC estimator.  The bandwidth for the tabled 

results is M = 6.  The results for the four-factor model are not reported since they are 

qualitatively the same as those for the three-factor model.   

Regarding the bandwidth choice, in conventional approaches (Andrew (1991); 

Newey  and West (1987, 1994)) the value of M is chosen to minimize the asymptotic 

mean squared error of the asymptotic standard error. Following this approach, the optimal 

M is approximated by the square root of T when the Bartlett kernel is employed. As Sun, 

Phillips and Jin (2008) note, this approach is not necessarily best suited for hypothesis 

testing. They advocate choosing a value of M that minimizes a loss function that involves 

a weighted average of Type I and Type II errors. Using this approach, the optimal M is 

approximated by the cube root of T when using the Bartlett kernel.  We computed WM 
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using both the square and cube root rules for M. For all sub-periods, WM is smaller using 

the cube square root, and the asymptotic P-values are essentially zero for this choice.  

Hence, the null is rejected at the 1 percent level using both approaches. For simplicity, we 

report the P-values for M = 6 in Table 4 and subsequent tables. The value of WM for M = 

6  is  between the value of WM for the square root and cube root rules for the five-year 

sub-periods and is close to the value of WM for the cube root rule for the ten-year and 

longer sub-periods.  

 In contrast to the results of the conventional test, the null is often not rejected by 

the asymptotic P-values for the new HAR tests, especially for the five-year and ten-year 

sub-periods.  The asymptotic P-values for the new HAR tests are shown in Table 4 for 

the three-factor model.  The asymptotic P-values for the fixed b-test do not reject the null 

at the 1 percent significance level for six out of the eight five-year sub-periods, for all of 

the four  ten-year sub-periods, but do reject for all but one of the thirty-year and longer 

sub-periods.  In the case of the fixed-ρ tests, the results are even more favorable for the 

three-factor model.  The null is not rejected at the 5 percent level by the asymptotic P-

values for the fixed-ρ tests for six out of eight-five sub-periods, for all of the ten-year 

sub-periods, and for three out of the six thirty-year and longer sub-periods.  The null is 

rejected for the Fama-French period by all the tests.  The asymptotic P-values for the 

fixed-b tests are calculated using the Bartlett kernel and b =1 and those for the fixed-ρ  

tests use the Parzen kernel and ρ  = 32.  The results are qualitatively similar for values of 

b = 0.5 and for ρ  = 16.  

  The difference between the results for the conventional test and the new HAR 

tests suggests that the chi-square distribution provides a poor approximation to the finite 
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sample distribution of the conventional test statistic for the shorter sub-periods. The next 

section reports evidence that shows the chi-square distribution is a poor approximation 

for the five-year and ten-year sub-periods. 

VII. Finite Sample Test Results  

This section reports simulated finite-sample P-values for the conventional and the 

new HAR tests for the three-factor model. The simulated P-values are calculated for the 

three forms of the HAR test in four different experiments. The four experiments are 

conducted for each of the sub-periods.  

A description of the experiments for the January 1965 -1969 sub-period follows.  

The value of ty•  is simulated using the constrained least squares estimate of the 

conditional expectation function under the null:  

 * * * * *
1 1 2 2 3 3 ( 1,..., ),t t t t ty x x x u t Tβ β β• •= + + + =% % %   

where *
ty• , *

tx• , *
tu•  are the simulated values of ty• , tx• , tu•  and 1 2 3, ,β β β% % % , the constrained 

least squares estimates of the slope vectors calculated from the sample data for the sub-

period.  The simulated finite-sample P-values are conditional on the values of the 

parameters not specified by the null, that is, the nuisance parameters.  The nuisance 

parameters include not only the slope parameters but also those that specify the process 

generating the factors and the errors.  The values of the nuisance parameters are set equal 

to estimates based on the sample data.  The level of the tests refers to the probability of a 

Type I error, not the size where the latter is defined as the maximum level over all 

admissible values of the nuisance parameters.  

A brief statement of the purpose of each of the P-value experiments is the 

following: 
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Normal-Normal (NN) Experiment.  This experiment produces data that satisfy the 

assumptions of the classical normal SUR model with normally distributed 

regressors.   

Resample-Resample (RR) Experiment.  This experiment captures the non 

normality present in the data.  

 Normal-VAR (NV) Experiment. This experiment introduces serial correlation in 

the errors.   

Resample-Block (RB) Experiment. This experiment allows for volatility 

clustering of the returns.   

Details of the steps in the simulation procedure for the each of the four experiments are 

given in Appendix A. 

 The NN and RR experiments provide evidence on how the tests perform when the 

multivariate iid assumption holds with and without normality. If the tests exhibit poor 

performance under this assumption, it is unlikely that they will perform well in the 

presence of autocorrelation or volatility clustering. The rationale for the NV and RB 

experiments is a substantial body of evidence in finance documenting departures from the 

iid assumption for stock portfolio returns.  A preliminary check for heteroskedasticity and 

autocorrelation for momentum based portfolios was carried out using the Breusch and 

Pagan (1979) test for heteroskedasticity as modified by Cook and Weisberg (1983) and 

the Breusch-Godfrey test for autocorrelation (Godfrey (1988)).  These tests were 

performed equation-by-equation for each sub-period.  The test of heteroskedasticity 

tended to reject the null of constant variance at the usual levels.  The test for zero 
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autocorrelation did not reject for many of the five-year and ten-year sub-periods, 

especially for the higher momentum portfolios.     

 There is considerable evidence that asset return volatility is both time-varying and 

predictable, again for portfolios sorted by market equity; for example, see Bollerslev 

(1986) and Bollerslev et al. (1994).  As a preliminary check for autoregressive 

conditional heteroskedasticity, a GARCH (1, 1) model for the errors was estimated 

equation-by-equation for each sub-period.  The maximization of the pseudo-log 

likelihood tended to fail for the five-year sub-periods and for some of the ten-year sub-

periods.  Estimates of the ARCH and GARCH coefficients were obtained for the thirty-

year and longer sub-periods, and these were often significantly different from zero.  

In the simulation experiments, it was not feasible to generate the errors for each 

period using an estimated multivariate GARCH model.  Instead, we use a procedure that 

is employed in bootstrap sampling with dependent data.  The procedure is to divide the 

residual vectors for each sub-period into blocks, and then randomly resample the blocks 

with replacement.  In the RB experiments, six-month length blocks were chosen because 

this is approximately the half-life of an estimated univariate GARCH process for monthly 

stock returns; for example, see French et al. (1987) for estimates for the period 1928-

1984.   

 More generally, the RB experiments capture dependence in the errors.  There are 

other processes that may be generating dependence in addition to autoregressive 

conditional heteroskedasticity.  These include ARMA models and also models that 

produce non-martingale difference sequences such as nonlinear moving average and 
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bilinear models.  Consequently, the results of the RB experiments cannot be interpreted 

as only due to volatility clustering, although this may be the dominant effect. 

 Table 5 reports the simulated finite-sample P-values for the conventional and new 

HAR tests for the four experiments.  The simulated finite-sample P-values tend to be 

larger for the RR, NV and RB experiments than for the NN experiments.  As a 

consequence, in the RR, NV and RB experiments, the null is not rejected at the 5 percent 

level as well as the 1 percent level for most of the five-year and ten-year sub-periods. The 

results are qualitatively similar for values of M = 4, b = 0.5 and for ρ  = 16. In summary, 

the finite-sample evidence favors the null for most of the shorter sub-periods, even when 

using the conventional test statistic. 

Table 5 illustrates that the asymptotic chi-square distribution may be a poor 

approximation to the finite-sample distribution of the conventional test statistic for 

samples of T = 60 and T =120.  A comparison of Tables 4 and 5 shows that the difference 

between the asymptotic and finite-sample P-values is much smaller for the new HAR 

tests than for the conventional test.  This is consistent with the simulation results of KVB, 

KV (2002a, 20002b) and PSJ (2006, 2007) and the theoretical results obtained by Jansson 

(2004) and PSJ (2008).  Our results are also consistent with previous studies in business 

and financial economics that have documented finite-sample size distortions in the 

conventional HAR tests; see, for example, Ferson and Foerster (1994), Burnside and 

Eichenbaum (1996) and Altonji and Segal (1996).  

VIII.  Power of New HAR Tests  

This section reports simulated level-corrected powers of the conventional and the 

new HAR tests.  The main motivation for calculating the powers is the frequent non-
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rejections of the null by the new HAR tests.  The level-corrected powers are calculated 

for the three forms of the HAR test in four different experiments.  The four experiments 

are conducted for each of the sub-periods.  

The simulated powers are estimates of the true level-corrected powers conditional 

on the experimental design. The design specifies the vector of intercepts under the 

alternative, the nuisance parameters including the slope vectors and the long run variance 

matrix and the process generating the factors as well the errors. 

The powers are calculated for a test of H0 against the alternative 

1 0: (0.001), | | 0H c cβ ι= > .  Here the alternative intercept vector β0 is proportional to a 

vector of ones, ι, where c is a scalar.  With this setup, a unit increase in c translates into 

an increase of 10 basis points per month in the intercept. In Section 9, we present the 

portfolio intercepts for the three-factor and four-factor models for each of the ten equally-

weighted momentum sorted portfolios for the eight five-year sub-periods.  The median 

absolute values of the intercepts for the three-factor model range between 8.43 and 68.18 

basis points per month. The median values are similar for the four-factor model.  This 

suggests that the empirically relevant range for alternative values of the intercepts, and 

hence c is from c = 1 to c = 6.  This setup provides a natural metric for interpreting the 

power, which is often absent in power studies.  

A description of the power experiments for the January 1965 to 1969 sub-period 

follows. The value of ty•  is simulated using  

 * * * * *
0 1 1 2 2 3 3 ( 1,..., ),t t t t ty x x x u t Tβ β β β• •= + + + + =% % % %   
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where *
ty• , *

tx• , *
tu•  are the simulated values of ty• , tx• , tu• . The intercept vector β0 is 

known constant given by the alternative H1. The slopes 1 2 3, ,β β β% % %  are obtained by running 

a constrained least squares regression of ont ty x• •  for the sample data where the 

constraint is 0 0β = .  Further details of the power experiments are given in Appendix B. 

The powers for the RR experiments are reported in Table 6. The powers are 

reported only for positive values of c since the power curves are symmetric in c. The 

results show that the tests tend to have high level-corrected power against empirically 

relevant departures from the null. The level-corrected powers tend to be high at c = 5 

(monthly pricing error of 50 basis points), and, although not reported, close to one at c = 

6. The power results support the conclusion that the non-rejections by the fixed-b tests 

and fixed-ρ tests are not due to low power. The same conclusion is supported by the 

results from the NN, NV and RB power experiments.  

IX. Structural Change 

As noted in the introduction, support for the consensus view about the three-factor 

model rests primarily on the results for the thirty-year and longer sub-periods.  This 

section examines the interpretation of the results for the longer sub-periods when the 

five-year sub-periods represent structural breaks.  

The results reported in this paper for the ten-year and longer sub-periods 

implicitly assume that the data generation process is constant over the length of the sub-

period.  This assumption implies that the longer the period, the higher the precision of the 

estimator, and hence the higher the power of the test.  In turn, the higher power is 

reflected in a smaller P-value.   This interpretation is the basis for attaching greater 

weight to the results for the longer sub-periods. The problem with this approach is that it 
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can produce misleading conclusions if there are structural breaks in the longer sub-

periods.  A more plausible assumption is that the data generation process is changing 

over time.  A well known procedure in finance for coping with structural breaks is to 

divide the time series into five-year sub-periods.  As in Fama and Macbeth (1973), the 

motivation for using a five-year sub-period is the presumption that the change is small 

over a period of this length.   

Table 7 illustrates what can go wrong in the presence of structural breaks.  The 

table reports simulated P-values for the conventional test for the thirty-year sub-periods 

where the data is generated by a sequence of six models, one for each five-year sub-

period.  The RR design is used to simulate the ten portfolio returns in each sub-period.  

The simulated finite-sample P-values for the January 65-December 1994 sub-period are 

presented in Panels A and B.  

In Panel A the zero intercept null is imposed in each sub-period.  Despite the fact 

that the null is true in each of the six five-year sub-periods that constitute the thirty-year 

period, the simulated finite-sample P-values for the thirty-year sub-periods are less than 1 

percent implying a Type I error.  In Panel B the null is not imposed in each five-year sub-

period. Instead, the values of the intercepts are set equal to their empirical counterparts.  

In this exercise, the finite-sample P-values in percentage terms turned out to greater than 

5 percent, and hence the null was not rejected for the thirty-year sub-periods even though 

the null was false for some of the five-year sub-periods.  With respect to the two other 

thirty-year sub-periods in Table 7, the null is rejected in some cases in Panel A when it is 

in fact true, and the null is not rejected in Panel B when it is in fact false for some five-

year sub-periods.  
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These results illustrate that using the entire thirty-year sample period for testing 

can lead to incorrect rejections of the three-factor model.  This suggests that the thirty-

year evidence is problematic at best, and that long-standing concerns about parameter 

stability in empirical tests are well-founded. In other words, the seeming contrast between 

the results for the five-year sub-period and the thirty-year periods may be one of 

appearance rather than substance. 

X. Economic Significance 

The three-and four-factor models can be evaluated in terms of economic 

significance as well as by using tests of statistical significance.  Following Fama and 

French (1996), this section considers the economic significance of the model pricing 

errors as measured by the absolute value of the intercepts translated into basis points. Of 

course, the model pricing errors are subject to sampling variation. In the spirit of 

Cochrane (1996, p. 17), our objective is to provide the reader with a sense of the 

economic magnitude of estimated pricing errors to supplement the evidence from the 

formal statistical tests presented earlier. 

In the finance literature, a monthly excess return of 10 basis points is considered 

small in terms of the model pricing error; see Fama and French (1996, p.57). Table 8 

shows that the momentum-sorted portfolio intercepts are generally larger than 10 basis 

points.  This table displays the portfolio intercepts from the Fama-French model (Panel 

A), and the Carhart model (Panel B) for each of the ten equally-weighted momentum-

sorted portfolios for the eight five-year sub-periods.  The intercepts are reported in terms 

of absolute values and expressed in basis points per month.  The median values of the 
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intercepts for the three-factor model range between 8.43 and 68.18. The median values 

are similar for the four-factor model.   

For the eight five-year sub-periods in our sample, the median absolute value of 

the model intercept across the ten portfolios is smaller for the three-factor model in three 

cases.  It can be readily calculated from Table 8 that the proportion of the portfolio 

intercepts smaller than 10 basis points per month, is slightly higher for the three-factor 

model (29 percent) compared to the four-factor model (25 percent).  As expected, the 

four-factor model does a better job of explaining returns for the high momentum portfolio 

(portfolio 10).  This is evidenced by the fact that the four-factor model intercepts are 

almost always smaller for the high momentum portfolio.  However, even for this 

portfolio, the four-factor model intercepts are higher than 10 basis points in absolute 

value, in seven out of the eight five-year sub-periods.   

To underscore that the four-factor model does not consistently dominate the three-

factor model, Panel C presents the ratios of the absolute value of the Fama-French model 

intercepts to the absolute value of the corresponding Carhart model intercepts.  In many 

cases, these ratios are less than one. In the same spirit, Figure 1 displays the actual (not 

absolute) values of the intercepts for each portfolio for all eight five-year sub-periods for 

the three-factor model (top panel) and the four-factor model (bottom panel). The figure 

illustrates that the intercepts for the both the three-factor and four-factor models are often 

quite large in magnitude and that the four-factor model intercepts are not noticeably 

smaller. In summary, it is clear that the four-factor model does not dominate the three-

factor model when judged on the basis of the economic significance of the model pricing 

errors. 
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XI. Concluding Comments 

 The empirical evidence of momentum in stock returns has proven to be a 

challenge for rational asset pricing.  In the face of this anomaly, a consensus view has 

emerged in the finance literature during the past decade regarding the relative merits of 

some well known asset pricing models.  According to the consensus, the Fama-French 

(1993) three-factor model is rejected by the data, and the Carhart (1995, 1997) four-factor 

model dominates the three-factor model in both statistical and economic terms.  In this 

study we examine the momentum anomaly over the period 1965-2004 using monthly 

returns on ten momentum-sorted stock portfolios.  Our analysis indicates that the 

performance of the three-factor and four-factor models is qualitatively similar for both 

the five-year sub-periods as well as the longer sub-periods; the zero intercept null is often 

accepted for the shorter periods and generally rejected for the longer periods.    

As noted earlier, Cochrane (2006) considers the three-factor model to be  

“worse than useless” in the context of the momentum anomaly.  If this were true, the 

logical implications of our findings would be that the Carhart four-factor model also does 

not merit serious consideration. Fortunately, both the three-factor and four-factor models 

perform better than claimed by Cochrane, although they suffer from limitations  

We provide evidence on the performance of the models using a variety of test 

procedures.  These include the classic F-test, the conventional HAR Wald test and the 

new HAR tests developed by KVB, KV (2005), and PSJ (2006, 2007).  The test results, 

when based on finite sample P-values, produce a consistent message which can be readily 

summarized.  The zero-intercept null hypothesis for the three-factor model is not rejected 

for most five year sub-periods during 1965-2004.  In contrast to the five-year sub-
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periods, the evidence for the thirty-year or longer sub-periods is less favorable for both 

the three-factor and four-factor models.   

We identify a major concern with regards to the interpretation of the evidence for 

the longer periods: How much weight should be attached to the evidence from thirty-year 

periods relative to the shorter periods, given the potential for structural breaks over long 

periods?  To investigate this issue we employ a simulation design in which portfolio 

returns are generated according to the three-factor model, subject to structural breaks at 

five-year intervals.  We confirm that using the entire thirty-year sample period for testing 

can lead to incorrect rejections of the three-factor model.  This suggests that the thirty-

year evidence is problematic at best, and that long-standing concerns about parameter 

stability in empirical tests are well-founded.    

We next show that the three-factor model performs no worse than the four-factor 

model when judged by the magnitude of the model intercepts, which provide an 

economic measure of the model pricing error.  Hence, the four-factor model fails to 

dominate the three-factor model in both statistical and economic terms.   

The central message of this paper is that the consensus view regarding the 

appropriate benchmark model to be used in a range of empirical applications needs to be 

revised.  As noted in the introduction, one has to be cautious when interpreting measures 

of abnormal returns in event studies that rely on the four-factor model.  Similar caution is 

advisable when relying on the four-factor model intercept or alpha as the measure of 

managerial skill in the performance evaluation of managed portfolios.  The four-factor 

model is clearly useful in applications where the primary objective is to control for the 

momentum investing style favored by many managers.  However, in light of our results, 
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the four-factor alpha may not necessarily be a better measure of managerial skill than the 

three-factor alpha.  In this context, the framework suggested by Pástor and Stambaugh 

(1999) and Pástor (2000) that explicitly allows for the possibility of less-than-perfect 

model pricing ability in various applications, represents an important advance.  Our 

analysis provides further evidence that the search for a satisfactory factor model for asset 

pricing remains unfinished business.  
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Appendix A: P-Value Experiments 

Normal-Normal (NN) P-value Experiment.  The P-value simulation procedure 

consists of five steps:  

 S1.  Generate a sample of T = 60 *
tx•  vectors by randomly sampling the ( , )N x S  

 distribution where 1
tt

x T x−
•= ∑ and 1 ( )( )t tt

S T x x x x−
• • ′= − −∑  are calculated 

 from sample data for the sub-period. 

 S2.  Generate a sample of T = 60 *
tu•  vectors independently of *

tx•  by randomly 

 sampling the (0, )N Σ%  distribution where  1 ( )( )t tt
T u u u u−

• • • • ′Σ = − −∑% % % % %  and 

 1
tt

u T u−
• •= ∑% %  are calculated from the constrained residual vectors 

 1 1 2 2 3 3( )t t t t tu y x x xβ β β• •= − − −% % %%  for the sub-period.  

S3.  Generate a sample of T = 60 *
ty•  vectors from (9) using the *

tx•  vectors from 

S1, the *
tu•  vectors from S2 and the constrained least squares estimates as the 

values for the slope parameters. 

S4. Compute the three forms of the HAR test statistic from the simulated dataset 

 of size T = 60. 

S5. Repeat steps S1, S2, S3 and S4 10,000 times. Compute the P-value for each 

form of the HAR test statistic from the empirical distribution of the test statistic. 

Resample-Resample (RR) P-value Experiment.  In this and the remaining 

experiments, only one or both of the first two steps differ from those in the NN 

experiment. 

 S1′ . Generate a sample of T = 60 *
tx•  vectors by randomly sampling with 

 replacement the observations tx• .  
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 S2′ .  Generate a sample of T = 60 *
tu•  vectors independently of *

tx•  by randomly 

 sampling with replacement the demeaned constrained least squares 

 residuals tu u• •−% % .  

Normal-VAR (NV) P-value Experiment.  The first step is the same as in the NN 

experiment.  

 S2′′ .  Generate a sample of T = 60 *
tu•  vectors independently of *

tx•   using a 

 Gaussian VAR(1) process 

 * * *
1t t tu u η• • − •= Φ +% ,  

where Φ%  is a 10×10 matrix of autoregressive coefficients.  The autoregressive 

matrix Φ% is obtained by a least squares regression of tu•% on 1tu• −%  using the 

constrained least square residuals for the sub-period. The vector *
tη•  is randomly 

sampled from the  

N(0, ηΣ% ) distribution, where 1
1
( )( )T

t tt
Tη η η η η−

• • • •=
′Σ = − −∑% % % % % and 1

tt
Tη η−

• •= ∑% %  

are calculated from the VAR residuals.  The conditions for covariance-stationarity 

are checked by calculating the roots of the Φ% matrix.  In each replication, the 

initial values of *
1tu• −  in the VAR (1) are set equal to zero, and the first 200 draws 

are discarded in order make the results independent of the initial values.  

Resample-Block (RB) P-value Experiment. The first step is the same as in the RR 

experiment.  

S2 .′′′   Generate a sample of T = 60 *
tu•  vectors independently of *

tx•  by randomly 

sampling with replacement the demeaned constrained least squares residuals 
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tu u• •−% % in consecutive fixed-length non-overlapping blocks where the block length 

is six months.  

Appendix B: Power Experiments 

Normal-Normal (NN) Power Experiment.  The power simulation procedure 

consists of five steps for each value of c. For c = 0, steps S1, S2, S3 and S4 are the same 

as in the P-value simulation procedure. The fifth step is:  

S5. Repeat steps S1, S2 S3 10, 000 times. Compute the 5 percent critical value for 

each form of the HAR test statistic from the empirical distribution of the test 

statistic under H0  (c = 0).  

For c = 1, steps S1, S2, S3, S4 are the same as the P-value simulation procedure. 

The fifth step is:  

S5. Repeat steps S1, S2, S3 and S4 10,000 times. Compute the power for each 

form of the HAR test statistic from the empirical distribution of the test statistic 

using the simulated five percent critical value obtained from the c = 0 experiment. 

For c > 1, the power experiments are similar to those for c = 1. 

The steps in the RR, NV and RB power simulation experiments are obtained by 

making the analogous changes to the RR, NV and RB P-value simulation experiments. 
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Table 1. P-values (%) for intercept F-tests for ten equally-weighted and value-weighted momentum-sorted portfolios 

 
 

 Equally-Weighted  Portfolios Value-Weighted  Portfolios 
 Three-factor Model Four-factor Model Three-factor Model Four-factor Model 
Sub-Period F-Statistic P-value F-Statistic P-value F-Statistic P-value F-Statistic P-value 
Five-Year         
1/65-12/69 3.33 0.24 3.62 0.13 1.62 12.98 1.60 13.61 
1/70-12/74 1.76 9.48 1.77 9.46 1.34 23.92 1.28 27.11 
1/75-12/79 2.48 1.78 2.37 2.34 1.14 35.41 0.86 57.63 
1/80-12/84 3.71 0.10 3.58 0.14 1.37 22.20 3.68 0.11 
1/85-12/89 2.38 2.25 2.43 2.02 5.72 0.00 6.18 0.00 
1/90-12/94 2.42 2.07 1.81 8.56 2.69 1.09 2.96 0.60 
1/95-12/99 3.36 0.23 2.30 2.75 2.14 3.91 2.28 2.87 
1/00-12/04 1.95 6.21 2.68 1.13 1.11 37.24 2.24 3.17 
Ten-Year         
1/65-12/74 3.84 0.02 2.82 0.38 2.72 0.51 1.92 5.07 
1/75-12/84 5.10 0.00 4.05 0.01 1.78 7.20 2.25 1.98 
1/85-12/94 2.56 0.82 2.36 1.46 4.79 0.00 4.81 0.00 
1/95-12/04 3.45 0.06 2.75 0.47 1.32 22.89 1.38 19.98 
Thirty-Year         
1/65-12/94 8.40 0.00 5.10 0.00 7.62 0.00 5.99 0.00 
1/70-12/99 7.34 0.00 3.90 0.00 6.59 0.00 5.36 0.00 
1/75-12/04 4.91 0.00 3.32 0.04 4.04 0.00 3.50 0.02 
More Years         
1/65-12/99 9.59 0.00 5.34 0.00 8.24 0.00 6.22 0.00 
1/70-12/04 5.63 0.00 3.19 0.06 4.62 0.00 3.36 0.03 
1/65-12/04 7.03 0.00 4.16 0.00 5.65 0.00 3.95 0.00 
Fama-French         
7/63-12/93 8.83 0.00 5.40 0.00 8.02 0.00 6.13 0.00 
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 Table 2. P-values (%) for F-tests for ten equally-weighted and value-weighted momentum-sorted portfolios for shifted sub-periods 
 

 

 Equally-Weighted Portfolios Value-Weighted Portfolios 
 Three-factor Model Four-factor Model Three-factor Model Four-factor Model 
Sub-Period F-Statistic P-value F-Statistic P-value F-Statistic P-value F-Statistic P-value 
Five-Year         
1/67-12/71 1.81 8.55 1.52 16.43 2.94 0.60 2.76 0.93 
1/72-12/76 2.02 5.26 2.04 5.09 1.12 36.48 0.93 51.50 
1/77-12/81 4.12 0.04 3.50 0.17 2.34 2.48 3.37 0.23 
1/82-12/86 2.40 2.14 2.71 1.07 2.02 5.21 2.69 1.10 
1/87-12/91 1.12 36.86 1.05 41.74 4.06 0.05 4.20 0.04 
1/92-12/96 5.82 0.00 5.40 0.00 1.06 41.36 2.30 2.76 
1/97-12/01 1.93 6.37 1.62 13.14 2.07 4.60 1.74 10.02 
1/02-12/06 1.98 5.78 3.64 0.13 1.02 43.97 1.87 7.38 
Ten-Year         
1/67-12/76 3.27 0.10 2.54 0.88 2.47 1.05 1.74 8.04 
1/77-12/86 4.63 0.00 3.70 0.03 2.94 0.27 3.76 0.02 
1/87-12/96 3.57 0.04 2.89 0.32 4.06 0.01 4.98 0.00 
1/97-12/06 2.40 1.32 2.09 3.13 0.88 55.47 1.18 31.20 
Thirty-Year         
1/67-12/96 8.45 0.00 5.10 0.00 7.21 0.00 5.99 0.00 
1/72-12/01 6.05 0.00 3.34 0.04 5.21 0.00 3.35 0.03 
1/77-12/06 4.91 0.00 3.51 0.02 3.99 0.00 3.91 0.01 
More Years         
1/67-12/01 6.66 0.00 3.73 0.01 6.58 0.00 4.45 0.00 
1/72-12/06 6.20 0.00 3.70 0.01 4.14 0.00 2.99 0.12 
1/67-12/06 6.78 0.00 4.05 0.00 5.25 0.00 3.83 0.01 
Fama-French         
7/63-12/93 8.83 0.00 5.40 0.00 8.02 0.00 6.13 0.00 
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Table 3. P-values (%) for F-tests for equally-weighted and value-weighted momentum-sorted portfolios for the RR experiments 
 

The resample-resample (RR) simulation experiment is described in detail in Section VII and Appendix A of the text. 
 

 Equally-Weighted Portfolios Value-Weighted  Portfolios 
 Three-factor Model Four-factor Model Three-factor Model Four-factor Model 
Sub-Period F-Statistic P-value F-Statistic P-value F-Statistic P-value F-Statistic P-value 
Five-Year         
1/65-12/69 3.33 0.58 3.62 0.37 1.62 16.52 1.60 16.19 
1/70-12/74 1.76 12.58 1.77 12.34 1.34 27.00 1.28 29.92 
1/75-12/79 2.48 3.46 2.37 3.65 1.14 38.85 0.86 59.38 
1/80-12/84 3.71 0.37 3.58 0.48 1.37 25.60 3.68 0.37 
1/85-12/89 2.38 4.12 2.43 3.44 5.72 0.00 6.18 0.00 
1/90-12/94 2.42 3.75 1.81 11.65 2.69 2.41 2.96 1.26 
1/95-12/99 3.36 0.47 2.30 4.01 2.14 5.75 2.28 4.07 
1/00-12/04 1.95 9.82 2.68 1.79 1.11 44.55 2.24 5.78 
Ten-Year         
1/65-12/74 3.84 0.03 2.82 0.49 2.72 0.71 1.92 5.91 
1/75-12/84 5.10 0.02 4.05 0.04 1.78 8.45 2.25 2.04 
1/85-12/94 2.56 1.08 2.36 1.73 4.79 0.00 4.81 0.00 
1/95-12/04 3.45 0.14 2.75 0.64 1.32 26.11 1.38 22.63 
Thirty-Year         
1/65-12/94 8.40 0.00 5.10 0.00 7.62 0.00 5.99 0.00 
1/70-12/99 7.34 0.00 3.90 0.00 6.59 0.00 5.36 0.00 
1/75-12/04 4.91 0.01 3.32 0.04 4.04 0.00 3.50 0.03 
More Years         
1/65-12/99 9.59 0.00 5.34 0.00 8.24 0.00 6.22 0.00 
1/70-12/04 5.63 0.00 3.19 0.02 4.62 0.00 3.36 0.04 
1/65-12/04 7.03 0.00 4.16 0.00 5.65 0.00 3.95 0.00 
Fama-French         
7/63-12/93 8.83 0.00 5.40 0.00 8.02 0.00 6.13 0.00 
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Table 4. Asymptotic P-values (%) for HAR tests of the three-factor model with ten equally-

weighted momentum-sorted portfolios  

The tabled asymptotic P-values for the fixed-b and fixed-ρ tests are computed by simulation 
using 10,000 replications of each experiment. The P-values for the conventional HAR test are 
calculated from the chi-square distribution with ten degrees of freedom. 

 
 
 
 
 
 
 
 
 

 Conventional: Bartlett Fixed-b: Bartlett Fixed-ρ: Parzen 
Sub-Period WM  

M = 6 
P-value 

bW  
b = 1 

P-value Wρ  
ρ = 32 

P-value 

Five-Year      
1/65-12/69 75.26 0.00 702.20 1.14 83.41 15.88
1/70-12/74 26.99 0.00 245.25 36.31 36.75 53.37
1/75-12/79 38.27 0.00 299.14 24.54 43.81 43.88
1/80-12/84 216.84 0.00 1570.50 0.00 303.15 0.42
1/85-12/89 49.81 0.00 416.51 10.21 59.21 29.35
1/90-12/94 63.38 0.00 653.61 1.70 88.76 13.97
1/95-12/99 230.68 0.00 1670.30 0.00 337.78 0.27
1/00-12/04 50.39 0.00 418.95 10.04 65.47 24.78
Ten-Year       
1/65-12/74 51.11 0.00 545.88 3.96 82.75 16.11
1/75-12/84 59.38 0.00 542.27 4.08 69.59 22.69
1/85-12/94 29.48 0.00 488.60 5.92 64.60 25.36
1/95-12/04 49.94 0.00 324.50 20.44 77.18 18.38
Thirty-Year      
1/65-12/94 88.09 0.00 1011.40 0.16 174.45 2.34
1/70-12/99 67.91 0.00 921.25 0.29 132.49 5.37
1/75-12/04 41.67 0.00 584.90 2.92 110.15 8.47
More Years      
1/65-12/99 97.68 0.00 1484.30 0.01 282.90 0.55
1/70-12/04 51.30 0.00 877.25 0.37 124.82 6.23
1/65-12/04 71.55 0.00 1442.3 0.01 254.16 0.74
Fama-French      
7/63-12/93 92.91 0.00 1205.18 0.00 192.16 0.02
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Table 5. Simulated finite-sample P-values (%) for HAR tests of the three-factor model with equally-weighted momentum-sorted portfolios 

The tabled asymptotic P-values are computed by simulation using 10,000 replications of each experiment. The simulation experiments are          
described in Section VII and Appendix A of the text.

Conventional test: Bartlett Fixed-b: Bartlett Fixed-ρ : Parzen 
Sub-Period M = 6 b= ρ = 1 ρ = 32 
Five-Year NN RR NV RB NN RR NV RB NN RR NV RB 
1/65-12/69 6.88 8.93 5.17 10.11 4.24 5.75 2.90 7.04 22.47 24.28 19.66 29.84 
1/70-12/74 54.91 58.58 47.63 66.74 46.69 51.20 40.28 60.72 60.11 63.63 56.37 76.60 
1/75-12/79 36.64 39.01 34.42 40.80 38.39 41.21 35.76 41.07 53.82 56.19 51.72 61.33 
1/80-12/84 0.02 0.17 0.09 0.94 0.09 0.26 0.12 1.14 0.81 1.39 0.60 3.94 
1/85-12/89 20.36 24.89 14.31 20.99 18.76 23.16 12.52 18.59 36.47 40.40 31.77 42.18 
1/90-12/94 9.16 11.87 6.56 25.03 3.71 5.67 2.79 15.86 16.91 19.20 15.30 39.36 
1/95-12/99 0.02 0.13 0.03 0.56 0.04 0.27 0.04 0.74 0.60 1.12 0.40 3.24 
1/00-12/04 23.29 28.6 22.17 33.87 21.76 27.3 20.74 31.70 34.84 39.28 33.63 48.45 
Ten-Year     
1/65-12/74 1.27 1.36 0.74 3.16 4.86 5.59 4.28 7.73 17.59 18.79 16.92 24.58 
1/75-12/84 0.63 0.79 0.66 1.33 5.81 6.96 5.23 7.21 25.23 26.28 24.98 29.91 
1/85-12/94 11.87 14.27 11.55 19.42 7.54 8.72 6.93 12.52 27.23 29.10 27.07 36.39 
1/95-12/04 1.36 2.34 1.59 4.19 24.25 27.41 25.08 28.59 20.71 22.70 20.93 28.58 
Thirty-Year     
1/65-12/94 0.00 0.00 0.00 0.00 0.18 0.17 0.18 0.28 2.72 2.43 2.35 3.14 
1/70-12/99 0.00 0.00 0.00 0.00 0.43 0.46 0.28 0.49 5.74 5.77 5.59 6.43 
1/75-12/04 0.06 0.12 0.10 0.17 3.00 3.36 3.13 3.76 8.90 9.21 8.71 10.01 
More Years     
1/65-12/99 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.45 0.50 0.53 0.51 
1/70-12/04 0.00 0.00 0.01 0.02 0.41 0.42 0.44 0.65 6.29 6.39 6.09 7.40 
1/65-12/04 0.00 0.00 0.00 0.00 0.10 0.10 0.02 0.02 0.71 0.74 0.71 0.74 
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Table 6. Simulated Power (%) of level-corrected 5 percent new HAR tests of the three-factor model for the 
RR experiments. 

The tabled finite-sample powers are computed by simulation using 10,000 replications of each 
experiment.  A unit increase in c translates into an increase of 10 basis points per month in the model 
intercept.  
 
 

Fixed-b Fixed-ρ 
Sub-
Period 

Bartlett Kernel,  b= ρ = 1 Parzen Kernel, ρ = 32, b =1 

Five-Year c = 1 c = 2 c = 3 c = 4 c = 5 c = 1 c = 2 c = 3 c = 4 c = 5 
1/65-12/69 8.36 23.91 52.83 78.97 93.35 7.48 17.54 38.19 62.09 81.63 
1/70-12/74 7.74 23.40 53.43 80.94 94.60 7.22 18.55 40.50 65.49 84.26 
1/75-12/79 8.01 19.66 41.95 67.93 85.82 7.55 16.55 32.21 53.05 72.06 
1/80-12/84 5.67 13.36 31.24 56.09 79.26 5.70 10.87 23.63 42.14 62.28 
1/85-12/89 7.31 20.13 47.60 75.01 91.19 6.62 15.22 33.92 57.78 77.56 
1/90-12/94 7.72 20.12 43.93 72.13 89.32 7.07 15.82 33.20 55.77 75.43 
1/95-12/99 7.29 15.86 31.00 51.94 72.54 6.64 12.02 22.28 36.95 54.41 
1/00-12/04 5.92 7.90 11.72 17.35 24.81 5.66 7.28 9.91 14.03 19.23 
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Table 7. Finite sample P-values for the conventional HAR test: sensitivity to structural breaks 

Three-factor Model Four-factor Model 
P-Value P-Value Sub-Period Statistic Asymptotic Finite sample Statistic Asymptotic Finite sample 

Panel A: Zero-Intercept Null Hypothesis is True 
1/65-12/94 75.2585 0.0000 0.0001 100.8660 0.0000 0.0000 
1/70-12/99 26.9914 0.0026 0.0629 35.1390 0.0001 0.0045 
1/75-12/04 41.6708 0.0000 0.0026 26.9130 0.0027 0.0646 

Panel B: Zero-Intercept Null Hypothesis is False 
1/65-12/94 75.2585 0.0000 0.8563 100.8660 0.0000 0.0653 
1/70-12/99 26.9914 0.0026 1.0000 35.1390 0.0001 0.9331 
1/75-12/04 41.6708 0.0000 0.9988 26.9130 0.0027 0.9867 

This table presents the finite sample P-values corresponding to the conventional Newey-West test statistic based on the Bartlett kernel with bandwidth 
parameter M = 6. The finite sample P-values are based on the RR simulation design described in Section VII and Appendix A. For each 30-year period 
we generate simulated returns for 10 momentum-based portfolios using the RR design described in the text. Panel A reports results for the case when the 
simulated portfolio returns conform to the zero-intercept null while Panel B reports results for the case when the portfolio returns are generated under the 
alternative of the non-zero intercept. Within each 30-year period, portfolio returns are generated for six five-year sub-periods based on the model 
parameter estimates for each individual sub-period. In each replication we compute the value of the test statistic based on the full 30-year simulated 
sample. The reported finite sample P-values are based on 10,000 replications each.  
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Table 8. Absolute values of ten equally-weighted momentum-sorted portfolio intercepts in basis points per month 
Sub-Period Portfolio 
 1 (low) 2 3 4 5 6 7 8 9 10 (high) Median 

A: Three-factor Model Intercepts  
1/65-12/69 77.97 19.78 3.46 18.97 7.51 7.82 20.76 17.76 43.48 53.46 19.37 
1/70-12/74 41.37 0.54 3.69 14.32 8.89 7.97 4.62 10.42 5.20 41.41 8.43 
1/75-12/79 17.17 3.67 16.49 2.51 9.96 11.52 21.17 30.52 41.10 54.30 16.83 
1/80-12/84 126.67 32.21 10.74 18.56 4.33 10.77 28.90 33.60 72.14 81.57 30.55 
1/85-12/89 119.09 40.11 19.48 2.71 1.04 0.26 1.68 8.52 16.25 21.02 12.39 
1/90-12/94 7.37 12.69 14.84 5.46 16.30 21.42 33.10 37.76 64.01 78.32 18.86 
1/95-12/99 48.75 28.64 20.80 9.80 9.12 2.42 18.19 36.11 36.17 99.62 24.72 
1/00-12/04 165.29 58.46 40.67 60.21 54.97 71.11 65.25 78.86 110.35 105.52 68.18 

B: Four-factor Model Intercepts  
1/65-12/69 33.47 13.12 35.62 4.85 20.71 3.05 15.79 7.82 26.14 19.54 17.66 
1/70-12/74 24.59 14.16 12.80 19.80 9.26 9.43 9.61 21.80 23.57 16.77 15.46 
1/75-12/79 39.30 43.04 53.04 22.01 25.67 15.10 14.40 20.23 25.60 16.37 23.81 
1/80-12/84 85.41 6.86 24.70 5.09 15.46 14.76 24.69 9.86 40.87 30.53 20.07 
1/85-12/89 95.23 26.47 8.33 9.75 2.20 0.59 1.54 1.91 5.38 8.34 6.85 
1/90-12/94 53.93 22.52 7.05 12.67 25.63 23.25 21.22 21.90 52.40 45.92 22.88 
1/95-12/99 49.95 22.34 19.36 42.82 0.10 5.68 21.94 31.17 20.82 75.55 22.14 
1/00-12/04 123.96 39.00 27.44 51.30 48.11 67.82 64.06 80.88 116.53 120.38 65.94 

C: Ratio of Model Intercepts 
1/65-12/69 2.33 1.51 0.10 3.91 0.36 2.56 1.31 2.27 1.66 2.74 1.97 
1/70-12/74 1.68 0.04 0.29 0.72 0.96 0.85 0.48 0.48 0.22 2.47 0.60 
1/75-12/79 0.44 0.09 0.31 0.11 0.39 0.76 1.47 1.51 1.61 3.32 0.60 
1/80-12/84 1.48 4.70 0.43 3.65 0.28 0.73 1.17 3.41 1.77 2.67 1.62 
1/85-12/89 1.25 1.52 2.34 0.28 0.47 0.44 1.09 4.47 3.02 2.52 1.38 
1/90-12/94 0.14 0.56 2.10 0.43 0.64 0.92 1.56 1.72 1.22 1.71 1.07 
1/95-12/99 0.98 1.28 1.07 0.23 87.92 0.43 0.83 1.16 1.74 1.32 1.12 
1/00-12/04 1.33 1.50 1.48 1.17 1.14 1.05 1.02 0.97 0.95 0.88 1.10 
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Fama-French Model Intercepts
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Carhart Model Intercepts
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Figure 1. –Intercepts for the equally weighted momentum-sorted portfolios for five-year sub-periods in basis 

points per month. The top panel shows the Fama-French three-factor model intercepts while the bottom panel 

shows the intercepts for the Carhart four-factor model. 


