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SUMMARY 
 

This paper illustrates the pitfalls of the conventional heteroskedasticity and 

autocorrelation robust (HAR) Wald test and the advantages of new HAR tests developed 

by Kiefer and Vogelsang (2005) and Phillips, Sun and Jin (2003a, 2003b). The 

illustrations use the Fama-French (1993) three-factor model. The null that the intercepts 

are zero is tested for five-year, ten-year and longer sub-periods.  The conventional HAR 

test with asymptotic P-values rejects the null for most five-year and ten-year sub-periods. 

By contrast, the null is not rejected by the new HAR tests.  This conflict is explained by 

showing that the inferences based on the conventional HAR test are misleading for the 

sample sizes used in this application.  
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1. INTRODUCTION 

 
This paper illustrates the pitfalls of the conventional heteroskedasticity and 

autocorrelation robust (hereafter HAR (Phillips (2005)) Wald test and the advantages of 

new HAR tests developed by Kiefer and Vogelsang (2005, hereafter KV) and Phillips, 

Sun and Jin (2003a, 2003b, hereafter PSJ). The illustrations use the Fama-French (1993) 

three-factor model. This model provides an empirically relevant framework since it is one 

of the most popular multifactor models that now dominate empirical research on expected 

returns (Cochrane, (2005)).  Fama-French (1996) present a summary of empirical 

findings with the three-factor model.  See also Cochrane (1999) for an excellent survey of 

empirical results. 

The three-factor model is formulated as a multivariate linear regression model 

where the dependent variables are the CRSP monthly excess returns of ten portfolios.  

The stocks are assigned to portfolios based on market equity (stock price times the 

number of shares). The explanatory variables are the Fama-French factors, namely the 

market excess return factor, the size factor and the book-to-market-equity factor. The null 

hypothesis is that the intercepts are zero. The explanation by Fama-French (1996) for 

testing the zero-intercept null is that if the intercepts are close to zero, then regressions 

that use the three-factors to absorb common time series variation in returns do a good job 

explaining the cross-section of average stock returns. In this paper, the three-factor model 

is estimated by least squares for five-year, ten-year and longer sub-periods. 

 The null is first tested using the conventional HAR Wald test. This test employs a 

heteroskedastic and autocorrelation consistent (HAC) estimator of the covariance matrix.  

We use the well-known HAC estimator proposed by Newey and West (1987, 1994) for 

the conventional HAR tests. The conventional test rejects the null for most five-year and 

ten-year sub-periods of monthly data using asymptotic P-values. There are two reasons 

for thinking that these results are problematic. The first is that the absolute values of most 

of the estimated intercepts are small in economic terms.  Thus, there is a conflict between 

the economic significance and the statistical significance when statistical significance is 

judged by the conventional HAR test. The second is that the null is not rejected for most 

of the five-year and ten-year sub-periods when it is tested with new HAR tests. The 



 2

conflict between the results produced by the conventional and new tests suggests that the 

results of the conventional test should not be accepted without further examination. 

 One potential explanation for the conflicting results is that the conventional test 

has high power compared to the new tests, assuming that conventional test has the correct 

Type I error in finite-samples, that is, the correct level. Another potential explanation for 

the conflict is that the actual finite-sample level of the conventional test is much larger 

than the nominal level when asymptotic critical values are used, or equivalently, the 

finite-sample P-value is substantially larger than the asymptotic P-value.  Our study 

supports the second explanation.  

The advantage of the new HAR tests over the conventional tests is better control 

over the level. This has been shown in simulation experiments by Kiefer and Vogelsang 

(2002a) and PSJ. Jansson (2004) and Phillips, Sun and Jin (2005) have explained the 

simulation results using higher-order asymptotic theory. The disadvantage is lower level-

corrected power compared to the conventional HAR tests.  The lower power is clearly 

shown in the simulations reported by KV and PSJ. Hence, the power of the new tests of 

the intercept vector is of interest.  We simulated the level-corrected powers of the new 

HAR tests for the sample sizes used in this study.  The simulated powers show that the 

new tests have good power against empirically relevant alternatives. This evidence 

suggests that low power is not the explanation for the non-rejections by the new tests. 

The organization of the paper is the following: Section 2 reviews the classical 

Wald test and the conventional HAR Wald test.  The new HAR tests are described in 

Section 3. HAR test results using asymptotic P-values are reported in Section 4, and 

results using finite-sample P-values are presented in Section 5. The effect of the number 

of intercepts tested on the level of the tests is considered in Section 6.  Section 7 reports 

on the powers of the new robust tests. The concluding comments are in Section 8. 

2. CLASSIC AND HAR WALD TESTS 

This section considers the three-factor model as a classical multivariate linear 

regression model with random regressors and reviews the classic and conventional Wald 

tests for the intercept vector.  

Define the variables 1,..., Ny y , where yi is the excess return for the ith portfolio or 

asset, and the variables x1, x2, x3, where 1x  is the market factor (the excess return on the 
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market portfolio), 2x  is the size factor (the difference between the return on a portfolio of 

small capitalization stocks and the return on a portfolio of large capitalization stocks 

(SMB, small minus big)) and 3x  is the book-to-market factor (the difference between the 

return on a portfolio of high-book-to-market stocks and the return to a portfolio of low-

book-to-market stocks ( HML, high minus low)). 

 Suppose that the conditional expectation function is linear, 

 0 1 1 2 2 3 3( | )E y x x x xβ β β β= + + + , (1) 

and the conditional variances are constant, 

 ( | ) ,V y x = Σ  (2) 

where 1 0 01 0 1 11 1 2 21 2( ,..., ) , ( ,..., ) , ( ,..., ) , ( ,..., ) ,N N N Ny y y β β β β β β β β β′ ′ ′ ′= = = = and  

3 31 3( ,..., )Nβ β β ′= .   A nonzero value of the intercept is interpreted as saying that the 

model leaves an unexplained return, a mean excess return that is unexplained by the three 

factors. 

           Denote the tth observation on y by 1( ,..., )t t Nty y y• ′= and on x by 1 2 3( , , )t t t tx x x x• ′= . 

In addition, suppose the population of y and x is randomly sampled, that is, the pairs 

( ,t ty x• • ) are independently and identically distributed (iid).  Then random sampling from 

the above multivariate population supports the classical multivariate linear regression 

model with random regressors.  The assumption of iid returns is, of course, highly 

unrealistic and will be relaxed below to allow for empirically relevant volatility clustering 

effects. 

Following Greene (2003), the multivariate regression model can be restated as a 

seemingly unrelated regressions (SUR) model with identical regressors for the purpose of 

presenting the classic and conventional robust Wald tests. The SUR model is formulated 

using the N regression equations , ( 1,..., ),i i iy X u i Nθ• •= + =  where 1( ,..., )i i iTy y y• ′= ,  

1 2 3 1 0 1 2 3[ , , , ], (1,...,1) , ( ,..., ) , ( 1, 2,3), ( , , , ) ,j j jT i i i i iX x x x x x x jι ι θ β β β β• • • • •′ ′ ′= = = = =  and  

1( ,..., )i i iTu u u• ′= . Stacking the N regressions, 

( ) ,y I X u Z uθ θ•• •• •• •• ••= ⊗ + = +  
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where I is an N×N identity matrix, 1( ,..., ) ,Nθ θ θ••
′ ′ ′=  and 1( ,..., )Nu u u•• • •

′ ′ ′= .  The least 

squares estimator of θ••  is obtained by regressing y••  on Z. This produces the estimator 

1ˆ ( ' ) 'Z Z Z yθ −
•• ••= 1( ' ) 'Z Z Z uθ −

••= + . 

The null hypothesis of interest is 0 0: 0H β = , and the alternative is 1 0: 0H β ≠ .  

The classic Wald statistic for testing H0 is  

 1 1
0 0

ˆ ˆˆ ,W c β β− −′= Σ  

where 11( )c X X′= is the 1,1-th element of the inverse of ,X X′  

0
ˆ ˆ ˆ( (1,0,0,0))I Rβ θ θ•• ••= ⊗ = , 1ˆ ˆ ˆt tt

T u u−
• •′Σ = ∑  and 0 1 1 2 2 3 3

ˆ ˆ ˆ ˆˆ ( )t t t t tu y x x xβ β β β• •= − − − − . 

Under suitable regularity conditions, the statistic W has a limiting chi-square distribution 

with N degrees of freedom when H0 is true. 

 In the case where the ty•  are independently distributed as 

0 1 1 2 2 3 3( , )t t tN x x xβ β β β+ + + Σ , or equivalently, the tu•  are iid N(0, Σ), the 

statistic (( 3) / )F T N NT W= − −  is unconditionally distributed as central F with N 

degrees of freedom in the numerator and (T-N-3) degrees of freedom in the denominator.  

This follows from the fact that (T-4)W/T  is a generalized Hotelling’s T-2 statistic where 
11 1/ 2

0
ˆ[( ) ]X X β−′  is distributed as (0, )N Σ  under H0, and ˆTΣ  is independently distributed 

as a Wishart with parameters (T-4) and Σ; see Anderson (1958, Theorem 5.2.2, p. 106). 

For further treatment of testing in the normal case, see Stewart (1997). 

 Campbell, Lo and MacKinlay (1997, p. 208) review the ample evidence in 

finance on the failure of the classical assumptions to hold when tested with real data. In 

particular, assumptions (1) and (2) may not hold and/or the sampling scheme may not 

produce independent observations. Consider the standardized estimator  

 1 1 1/ 2 1 1/ 2

1

ˆ ˆ( ) ( ' ) ( ' )
T

t
t

T T Z Z T Z u Q T vθ θ − − − − −
•• •• •• •

=

− = = ∑ , (3) 

 where 1 1ˆ ' ( ( ' ))Q T Z Z I T X X− −= = ⊗ and 1 2 3(1, , , )t t t t tv u x x x• • ′= ⊗ .  Under general 

assumptions, for example, those given in KV (2002a) and Phillips, Sun and Jin (2005),  

 1 1ˆ( ) ~ (0, )T N Q Qθ θ − −
•• ••− Ω  (4) 
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where ( )Q I Q= ⊗ , 1lim 'Q p T X X−= , and Ω is the long run variance of tν•   in (3). The 

conventional approach to HAR testing relies on HAC estimation of Ω and hence on 

consistent estimation of the sandwich variance matrix Q-1ΩQ-1. The term Q  can be 

consistently estimated by 1 .T X X− ′   The method proposed by Νewey and West (1987, 

1994) for obtaining an HAC estimator of Ω is commonly used in practice.  We use this 

HAC estimator for the conventional HAR test in this paper. The estimation of Ω is 

discussed in more detail in Section 3. The conventional HAR statistic is 

 
11 1

HAC 0 0
ˆ ˆ ˆ ˆˆW T RQ Q Rβ β

−
− −⎡ ⎤′ ′= Ω⎣ ⎦ , (5) 

where Ω̂  is an HAC estimator of  Ω. When 0 0: 0H β =  is true, WHAC is asymptotically 

distributed as a chi-square with N degrees of freedom; for details, see KV.  

3. NEW WALD HAR TESTS 

 This section presents a brief review of the new HAR Wald tests. The new tests 

considered in this section are based on either the Bartlett or the Parzen kernel. 

Following PSJ consider an n-vector stationary process 1{ }T
t tz = with non-singular 

spectral density matrix ( ),zzf λ [0, ]λ π∈ . The long run variance matrix of zt is defined as 

            0
1
( ) 2 (0)h h zz

h
fγ γ γ π

∞

=

′Ω = + + =∑ ,  

where ( )h t t hE z zγ −′= . To estimate Ω, a 4 4N N×  matrix in the three-factor model, 

consider the following lag kernel estimator of (0)zzf , 

         

 
1

1

1ˆ ˆ(0) ( ) ,
2

T

zz h
h T

hf k
bTρ γ

π

−

=− +

= ∑  (6) 

     

 
1

1

1
1

for 0,
ˆ

for 0,

T h
t h tt

h T
t h tt h

T z z h

T z z h
γ

−−
+=

−
+=− +

⎧ ′ ≥⎪= ⎨
′ <⎪⎩

∑
∑
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where ( )k xρ  is the kernel ( )k x  raised to some positive integer power ρ.  Here, as in KV, 

the bandwidth M has been set equal to bT where (0,1]b∈  is a constant (remains fixed) 

asT → ∞ . 

When ( )k x  is the Bartlett kernel,  

 
(1 | |) | | 1,

( )
0 | | 1,
x x

k x
x

ρ

ρ

⎧ − ≤
= ⎨

>⎩
  

where ( )k xρ  is the usual Bartlett kernel when ρ  = 1. In this case, given b =1, PSJ (2004) 

call ˆ (0)zzf  the sharp origin estimator. When ( )k x is the Parzen kernel,  

 

2 3

3

(1 6 6 | | ) for 0 | | 1/ 2,
( ) (2(1 | |) ) for 1/ 2 | | 1,

0 otherwise,

x x x
k x x x

ρ

ρ
ρ

⎧ − + ≤ ≤
⎪= − ≤ ≤⎨
⎪
⎩

  

where ( )k xρ  is the usual Parzen kernel when ρ  = 1. In this case, given b = 1, PSJ call 

ˆ (0)zzf a steep origin estimator. See PSJ for a detailed discussion of the properties of the 

kernels. 

 The HAR test statistic for testing the null 0 0: 0H β =  is  

 * 1 1 1
0 0

ˆ ˆ ˆ ˆˆ[ ( ) ]W T RQ b Q Rρβ β− − −′ ′= Ω , (7) 

where ˆˆ ( ) 2 (0)b fρ ννπΩ = is the long run variance of tv• and ˆ (0)fνν is defined similarly to 

(6).  Setting ρ = 1, expression (7) gives the HAR test statistic considered by KV statistic, 

and, setting b = 1, gives the statistic considered by PSJ.  In this paper, the test statistic 
*W  is referred to as the fixed-b test statistic when ρ = 1 and the fixed-ρ test statistic when 

b = 1. 

 The asymptotic theory for the estimator 1
ˆ ( )bΩ is developed by KV and for ˆ (1)ρΩ  

by PSJ. The asymptotic theory for 1
ˆ ( )bΩ depends on the rate conditions on b and T, and 

for ˆ (1)ρΩ  on the rate conditions on ρ and Τ.  For example, PSJ show that  ˆ (1)ρΩ  based 

on the Bartlett kernel is consistent for Ω when ρ → ∞  as T→∞ and similarly for the 

Parzen kernel.  In this case, under the null, the limiting distribution of *W is chi-square 
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with N degrees of freedom. By contrast, the estimator ˆ (1)ρΩ is inconsistent when T→∞ 

for a fixed ρ.  Consider testing p restrictions when ρ is fixed. PSJ show under the null 

that asymptotically   

 
11 1*

0 0
(1) ( ) ( ) ( ) (1)p p p pW W k r s dV r dV s Wρ

−
⎡ ⎤′ ′−⎢ ⎥⎣ ⎦∫ ∫∼  (8) 

where ( )pW r , [0,1]r ∈ , is a (p×1) vector of independent standard Wiener processes and 

( ) ( ) (1)p p pV r W r rW= − is a (p×1) vector of standard Brownian bridges. The nonstandard 

limiting distribution (8) arises from the random limit of ˆ (1)ρΩ  when ρ is fixed as T→∞.    

The asymptotic critical values for the fixed-b and the fixed-ρ tests are needed to 

implement the tests. These critical values have not been available in the literature except 

in special cases. We computed the critical values numerically by approximating the 

Wiener processes and Brownian bridges using normalized partial sums of iid N(0, 1) 

deviates. Using 1,000 deviates, the fixed-b critical values of a 5 percent level test for p = 

1, 2,…,10 were computed using 50,000 replications for the Bartlett kernel. The fixed-ρ 

critical values of a 5 percent level test for p = 1, 2,…,10 were computed using 10,000 

replications for the  Bartlett and Parzen kernels. Table I reports the fixed-b asymptotic 

critical values for b = 0.00625, 0.0125, 0.025, 0.05, 0.10, 0.125, 0.20, 0.25, 0.40, 0.80, 

1.00, and Table II reports the fixed-ρ  asymptotic critical values for ρ  = 1, 4, 8, 16, 32, 

64, 128.  

The tabled results essentially match those for the untruncated Bartlett kernel in 

Kiefer and Vogelsang (Table 2, 2002a) for the case ρ  = 1 and p = 1, 5 and 10, and those 

in PSJ (Table 3, 2003a) for the case ρ = 1, 4, 8, 16 and p = 1. The time required for 

computing an approximation to the fixed-b or fixed-ρ asymptotic critical value depends 

on the kernel. In the case of the Bartlett kernel, the double integral in (8) can be replaced 

by a single integral; for example, see KV and PSJ. This replacement substantially reduces 

the computational burden, which explains why more replications are used in the case of 

Bartlett than Parzen. In the special case where p = 1, b = 1 and ρ = 1, namely the case of 

the t statistic, Abadir and Paruolo (2002) and Kiefer and Vogelsang (2000b) have 

obtained the analytical form of the density. 
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The accuracy of the asymptotic critical values in Tables I and II depends on the 

number of discrete steps, that is, the number of N(0,1) deviates used and the number of 

replications. In the case of the Bartlett kernel, the critical value for b = ρ = 1 for p = 10 

was recalculated using 4,000 iid N(0, 1) deviates and 50,000 replications.  The value is 

512.4677 with 1,000 deviates (Table I) and 511.8423 with 4,000 deviates, a change in the 

third digit. The computation time for 4,000 deviates was about 10 times that for 1,000 

deviates. Turning to Table II, the value is 510.60 with 1,000 deviates and 10, 000 

replications, again a change in the third digit.  These results suggest that 1,000 deviates 

and 10,000 replications provide two-digit accuracy. 

The objective of introducing the fixed-b test is to obtain better control over the 

ERP while maintaining the power of the conventional test.  Hence, the benchmark to beat 

is the ERP of the conventional test with asymptotic chi-square critical values.  In the 

simulation experiments, Kiefer and Vogelsang (2002a) estimated the ERP of the fixed-b 

test with b = 1 (untruncated kernel) when it uses fixed-b asymptotic critical values. The 

ERP tended to be smaller for the fixed-b test with b = 1 than for the conventional test. 

Jansson (2004) has explained this result using higher-order asymptotic theory in the 

context of a simple Gaussian location model. He shows that the ERP of the fixed-b test is 

of a smaller order for sample size T than the corresponding ERP of the conventional test. 

 In light of the analytical and simulation results for untruncated kernels, PSJ 

proposed a new class of HAR tests based on untruncated kernels (b = 1) raised to some 

positive integer exponent ρ, namely, the fixed-ρ  tests. In the simulation results reported 

by PSJ, the ERP was smaller for the fixed-ρ test with fixed-ρ asymptotic critical values 

than for the conventional test. Also the ERP was smaller for the Parzen-based tests than 

the Bartlett-based tests. Phillips, Sun and Jin (2005) use higher-order asymptotics 

comparable to Jansson (2004) to analyze the properties of the fixed-ρ test in a Gaussian 

location model and obtain similar results. 

4.  ASYMPTOTIC TEST RESULTS 

 This section reports test results for three-factor models using the conventional 

HAR test and the new HAR tests when the tests are based on asymptotic P-values.  The 

asymptotic P-values are obtained from asymptotic chi-square distribution for the 
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conventional test and the simulated nonstandard asymptotic distributions for the fixed-b 

and fixed-ρ tests.  

 The return data consists of CRSP monthly returns, including distributions, for ten 

(N =10) value-weighted portfolios with NYSE, AMEX and NASDAQ stocks. The stocks 

are assigned to the portfolios based on market value of equity and quarterly rebalanced. 

The data for the three factors is taken from the Fama and French section of the Wharton 

Research Data Services (WRDS) website. The sample extends from January 1965 

through December 2004 (T = 480). The one-month Treasury bill as reported on the Fama 

and French section of the WRDS website is used as a measure of the risk-free return. The 

tests are performed for five-year, ten-year, thirty-year sub-periods and longer periods. 

The sub-periods include those used by CLM plus additional periods made possible by 

more recent data.  

 The asymptotic P-values for the conventional and new HAR tests are presented in 

Table III.  The asymptotic P-values for the conventional test reject the null at the 5 

percent significance level for almost all of the five-year and ten-year sub-periods. 

Turning to the thirty-year and longer sub-periods, the null is rejected for all six sub-

periods. The Newey and West (1987, 1994) version of the conventional HAR test uses a 

HAC estimator based on the truncated Bartlett kernel. The bandwidth for the tabled 

results is M = 6. The result are not qualitatively changed by using M = 4. A well known 

guideline for choosing the bandwidth for the Bartlett kernel is 1/30.75M T= ; see Andrews 

(1991).  

 By contrast, the asymptotic P-values of the new HAR tests do not reject the null 

at the 5 percent significance level for most of the five-year and ten-year sub-periods. The 

P-values for the fixed-b tests are calculated using the Bartlett kernel and b =1 and those 

for the fixed-ρ  tests use the Parzen kernel and ρ  = 32.  The results are similar for values 

of b greater than 0.10 and for ρ  = 16 and 64. The null is also not rejected by the 

asymptotic P-values for three out of six thirty-year and longer sub-periods. 

 As noted in the introduction, there are two reasons for thinking that results of the 

conventional HAR test are problematic. The first is the absolute values of most of the 

estimated intercepts are economically insignificant for the five-year and ten-year sub-

periods. Table IV reports the estimated values of the intercepts for all the sub-periods.  
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For the eight five-year sub-periods and the four ten-year sub-periods the absolute values 

of the estimated intercepts are for the most part less than 0 .001 and hence less than 10 

basis points monthly. This is considered small in the finance literature; see Fama and 

French (1996, p.57). There are some exceptions. The economically big intercepts are 

concentrated in the smallest capitalization portfolio, portfolio ten. Thus, we have a 

situation where most of the intercepts are small in economic terms but the null is rejected 

when the conventional HAR test is applied. The second reason is that the asymptotic P-

values of the new HAR tests do not reject the null for most of the five-year and ten-year 

sub-periods. 

 There are two possible explanations for the conflict between economic and 

statistical significance and the conflict between the conventional and new HAR test 

results. One is a power story. This says that the conventional test has high power against 

economically insignificant intercepts. An alternate version of the power story is that 

rejection is caused by the few economically significant intercepts.  In either case, the 

assumption here is that the conventional test based on asymptotic critical values has close 

to the correct Type I error or level. The other is a level story or ERP story.  This says that 

true level of the test is substantially larger than the nominal level or equivalently, the 

finite-sample P-value is substantially larger than the asymptotic P-value.  The finite 

sample results reported in section 5 below provide support for the ERP story.   

5. FINITE SAMPLE TEST RESULTS 

This section reports simulated finite-sample P-values of the conventional and the 

new HAR tests. The P-values are calculated for the three forms of the HAR test in four 

different experiments. The four experiments are conducted for each of the sub-periods.  

 The purpose of the simulation experiments is to provide examples of the finite 

sample performance of the tests. The null that the intercepts are zero is a composite 

hypothesis because the values of the nuisance parameters are unknown in practice. The 

nuisance parameters include not only the slope parameters but also those that specify the 

process generating the factors and the errors. In our experiments, the values of the 

nuisance parameters are set equal to estimates based on the sample data. The level of the 

tests refers to the probability of a Type I error, not the size where the latter is defined as 

the maximum level over all admissible values of the nuisance parameters. In this paper, 
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the simulated finite sample P-values are treated as exact, meaning that they are 

conditional on the values of the nuisance parameters used in the designs. This should be 

borne in mind when reviewing the discussion of the test results.  

The experiments are now described for the January 1965 to 1969 sub-period. The 

value of ty•  is simulated using the constrained least squares estimate of the conditional 

expectation function (1) under the null:  

 * * * * *
1 1 2 2 3 3 ( 1,..., ),t t t t ty x x x u t Tβ β β• •= + + + =� � �  (9) 

where *
ty• , *

tx• , *
tu•  are the simulated values of ty• , tx• , tu•  and 1 2 3, ,β β β� � � , the constrained 

least squares estimates of the slope vectors calculated from the sample data for the sub-

period.  

  Normal-Normal (NN) P-value Experiment.  This experiment produces data 

that satisfies the assumptions of the classical normal SUR model with normally 

distributed regressors. The P-value simulation procedure consists of five steps:  

 S1.  Generate a sample of T = 60 *
tx•  vectors by randomly sampling the ( , )N x S  

 distribution where 1
tt

x T x−
•= ∑ and 1 ( )( )t tt

S T x x x x−
• • ′= − −∑  are calculated 

 from sample data for the sub-period. 

 S2.  Generate a sample of T = 60 *
tu•  vectors independently of *

tx•  by randomly 

 sampling the (0, )N Σ�  distribution where  1 ( )( )t tt
T u u u u−

• • • • ′Σ = − −∑� � � � �  and 

 1
tt

u T u−
• •= ∑� �  are calculated from the constrained residual vectors 

 1 1 2 2 3 3( )t t t t tu y x x xβ β β• •= − − −� � ��  for the sub-period.  

S3.  Generate a sample of T = 60 *
ty•  vectors from (9) using the *

tx•  vectors from 

S1, the *
tu•  vectors from S2 and the constrained least squares estimates as the 

values for the slope parameters. 

S4. Compute the three forms of the HAR test statistic from the simulated dataset 

 of size T = 60. 

 S5. Repeat steps S1, S2, S3 and S4 10, 000 times. Compute the P-value for each 

 form of the HAR test statistic from the empirical distribution of the test statistic. 
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  Resample-Resample (RR) P-value Experiment.  This experiment captures the 

non-normality present in the data. In this and the remaining experiments, only one or both 

of the first two steps differ from those in the NN experiment. 

 S1′ . Generate a sample of T = 60 *
tx•  vectors by randomly sampling with 

 replacement the observations tx• .  

 S2′ .  Generate a sample of T = 60 *
tu•  vectors independently of *

tx•  by randomly 

 sampling with replacement the demeaned constrained least squares 

 residuals tu u• •−� � .  

 Normal-VAR (NV) P-value Experiment. This experiment introduces serial 

correlation in the errors. The first step is the same as in the NN experiment.  

 S2′′ .  Generate a sample of T = 60 *
tu•  vectors independently of *

tx•   using a 

 Gaussian VAR(1) process 

 * * *
1t t tu u η• • − •= Φ +� ,  

where Φ�  is a 10×10 matrix of autoregressive coefficients. The autoregressive 

matrix Φ� is obtained by a least squares regression of tu•� on 1tu• −�  using the 

constrained least square residuals for the sub-period. The vector *
tη•  is randomly 

sampled from the N(0, ηΣ� ) distribution, where 1
1
( )( )T

t tt
Tη η η η η−

• • • •=
′Σ = − −∑� � � � � and 

1
tt

Tη η−
• •= ∑� �  are calculated from the VAR residuals. The  conditions for 

covariance-stationarity are checked by calculating the roots of the Φ� matrix. In 

each replication, the initial values of *
1tu• −  in the VAR (1) are set equal to zero, 

and the first 200 draws are discarded in order make the results independent of the 

initial values.  

 Resample-Block (RB) P-value Experiment. This experiment allows for 

volatility clustering of the returns. The first step is the same as in the RR experiment.  

 S2 .′′′  Generate a sample of T = 60 *
tu•  vectors independently of *

tx•  by randomly 

 sampling with replacement the demeaned constrained least squares 
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 residuals tu u• •−� � in consecutive fixed-length non-overlapping blocks where the 

 block length is six months.  

 The NN and RR experiments provide evidence on how the tests perform when the 

multivariate iid assumption holds with and without normality. If the tests exhibit poor 

performance under this assumption, it is unlikely that they will perform well in the 

presence of autocorrelation or volatility clustering. 

 The rationale for the NV and RB experiments is a substantial body of evidence in 

finance documenting departures from the iid assumption. As a preliminary check for 

heteroskedasticity and autocorrelation, the Breusch and Pagan (1979) test for 

heteroskedasticity as modified by Cook and Weisberg (1983) and the Breusch-Godfrey 

test for autocorrelation (Godfrey (1988)) were performed equation-by-equation for each 

sub-period. The tests tended to reject for the smaller capitalization portfolios at the usual 

levels, especially for the ten-year and longer sub-periods. 

 There is considerable evidence that asset return volatility is both time-varying and 

predictable; for example, see Bollerslev (1986) and Bollerslev, Engle and Nelson (1995). 

As a preliminary check for autoregressive conditional heteroskedasticity, a GARCH (1, 

1) model for the errors was estimated equation-by-equation for each sub-period. The 

maximization of the pseudo-log likelihood frequently failed for the five-year sub-periods 

and for some of the ten-year sub-periods.  Estimates of the ARCH and GARCH 

coefficients were obtained for the thirty-year and longer sub-periods, and these were 

often significantly different from zero.  

In the simulation experiments, it was not feasible to generate the errors for each 

period using an estimated multivariate GARCH model. Instead, we use a procedure that 

is employed in bootstrap sampling with dependent data.  The procedure is to divide the 

residual vectors for each sub-period into blocks, and then randomly resample the blocks 

with replacement. In the RB experiments, six-month length blocks were chosen because 

this is approximately the half-life of an estimated univariate GARCH process for monthly 

stock returns; for example, see French, Schwert and Stambaugh, (1987) for estimates for 

the period 1928-1984.   

 More generally, the RB experiments capture dependence in the errors. There are 

other processes that may be generating dependence in addition to autoregressive 
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conditional heteroskedasticity. These include ARMA models and also models that 

produce non-martingale difference sequences such as nonlinear moving average and 

bilinear models. Consequently, the results of the RB experiments cannot be interpreted as 

only due to volatility clustering, although this may be the dominant effect. 

 Table V presents the simulated finite-sample P-values for the conventional and 

new HAR tests. The message from this table is that the null is not rejected at the five 

percent level by the simulated finite-sample P-values for most of the five-year and ten-

year sub-periods for the three forms of the HAR test.  

  For the conventional test, the differences between the asymptotic and simulated 

finite-sample P-values for the five-year sub-periods are quite large in all four 

experiments. This suggests that the conventional test based on asymptotic P-values 

produces misleading inferences when testing the three-factor model. For these sub-

periods, the conflict between the economic and statistical significance is much reduced 

when the conventional HAR test is based on finite-sample P-values. As expected, the 

difference between the asymptotic and finite-sample P-values decreases as the length of 

the sample period increases with the consequence that the rejections for the thirty-year 

and longer sub-periods are the same for both asymptotic and finite-sample P-values with 

the exception of one sub-period.  

 For the fixed-b and the fixed-ρ tests, there is almost no conflict between the 

inferences based on the asymptotic and simulated finite-sample P-values for the five-year 

and ten-year periods.   The same is true for the six thirty-year and longer sub-periods.  

Hence, the null is not rejected for three out of six thirty-year and longer sub-periods 

based on asymptotic and finite-sample P-values.  

 Two more general features of the results merit attention. The first is that the 

difference between the asymptotic and finite-sample P-values is much smaller for the 

new HAR tests than for the conventional test. This is consistent with the simulation 

results of KV and PSJ and the theoretical results obtained by Jansson (2004) and PSJ 

(2005).  Second, the differences between the asymptotic and finite-sample P-values tend 

to be smaller for the fixed-ρ test than for the fixed-b test.  

6.  MULTIVARIATE COMPLICATIONS 
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This section reports the effect of increasing the number of intercepts tested on the 

rejection probabilities of the conventional and new HAR tests. The rejection probabilities 

for the three forms of the HAR test with asymptotic critical values are simulated in four 

different experiments. 

Consider a three-factor model with i equations and hence i intercepts.  Model i is 

 0 1 1 2 2 3 3 ( 1,...,10, 1,..., ),i i i i i i
t t t t ty x x x u i t Tβ β β β• •= + + + + = =      (10) 

where 1 0 01 0 1 11 1 2 21 2( ,..., ) , ( ,..., ), ( ,..., ) , ( ,..., ) ,i i i i
t t it i i iy y y β β β β β β β β β• ′ ′ ′= = = =  

3 31 3( ,..., )i
iβ β β ′=  and ( ,..., )i

t it itu u u• ′= . The ordering of the models and equations makes 

use of the fact that the portfolios are ordered by market equity. The ith intercept is the 

intercept of the equation for the ith portfolio of stocks. 

  For the ith model, the null hypothesis of interest is 0 0: 0i iH β = , and the alternative 

is 1 0: 0i iH β ≠ . The null 0
iH  is tested for the ith model using the conventional, fixed-b and 

fixed-ρ tests with five percent asymptotic critical values. The finite-sample levels of the 

tests for the ith model are obtained by simulation. In the simulation experiments, the null 

0 0: 0i iH β = is imposed. In the ith model, the value of ty•  is simulated using  

   * * * * *
1 1 2 2 3 3 ( 1,...,10, 1,..., ),i i i i i

t t t t ty x x x u i t Tβ β β• •= + + + = =� � �   

where * * *, ,  i i
t t ty x u• • • are the simulated values of , , i i

t t ty x u• • •  and 1 2 3, ,i i iβ β β� � �  are the 

constrained least squares estimates of the slope vectors. The slope estimates are 

calculated using the data for January 1965 through December 2004.  The rejection 

probabilities are simulated for T = 60, 120 and 240. 

 Normal-Normal (NN) Rejection Probability Experiments.  For T = 60, the 

simulation procedure for the rejection probabilities consists of five steps:  

 S1.  Generate a sample of T = 60 *
tx•  vectors by randomly sampling the ( , )N x S  

 distribution where 1
tt

x T x−
•= ∑ and 1 ( )( )t tt

S T x x x x−
• • ′= − −∑  are calculated 

 from the entire sample. 

 S2.  Generate a sample of T = 60 *i
tu• vectors independently of *

tx•  by randomly 

 sampling the (0, )iN Σ�  distribution, where 1 ( )( )i i i i i
t tt

T u u u u−
• • • • ′Σ = − −∑� � � � �  and 
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 1i i
tt

u T u−
• •= ∑� � are calculated from the constrained residual vectors 

 1 1 2 2 3 3( )i i i i i
t t t t tu y x x xβ β β• •= − − −� � ��  from the entire sample. 

S3.  Generate a sample of T= 60 *i
ty• for the ith model  using the *

tx•  vectors from 

S1, the *i
tu• vectors from S2 and the constrained least squares estimates as the 

values for the slope parameters. 

S4. Compute the three forms of the HAR test statistic from the simulated dataset 

 of size T = 60. 

 S5. Repeat steps S1, S2, S3 and S4 10, 000 times. Compute the rejection 

 probabilities for each form of the HAR test statistic from the empirical 

 distributions using five percent asymptotic critical values.  

 The steps are similar for T = 120 and 240. The steps in the RR, NV and RB 

rejection probability experiments are obtained by making the analogous changes to the 

RR, NV and RB P-value simulation experiments. 

 Table VI reports the results for the NN experiments. The number of intercept 

parameters has a very strong effect on the simulated levels for the Bartlett-based 

conventional robust test with M = 6.  The results for T = 60 show that the ERP is about 

4.5  percent for the one equation model and 70 percent for the ten equation model, about 

a fourteen-fold increase in the ERP as the number of intercept parameters tested is 

increased from one to ten. Given T = 120, the ERP is about 3 percent for the one equation 

model and about 35 percent for all ten equations. Although the ERP is not large for one 

parameter, it is very substantial for ten parameters. A point worth stressing is that the 

distortion in the level in the NN experiments is not due to a violation of the iid 

assumption or the normality assumption.  

Procedures such as prewhitening have been proposed for improving the 

performance of conventional robust Wald tests, for example, Andrews (1991) and 

Andrews and Monahan (1992).  We note that in the NN and RR experiments 

performance will not be significantly improved by prewhitening since these experiments 

generate iid data.  

Table VI reports the effect of the number of intercepts on the level of the fixed-b 

and fixed-ρ test when the tests use five percent asymptotic critical values. For the fixed-b 
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test, the effect of the number of intercepts is much reduced, although not eliminated. The 

number of intercepts has a small effect on the Parzen-based test with ρ = 32. For T = 60, 

the ERP is about 1 percent for the one equation model and about 2 or 3 percent for the ten 

equation model. For T = 120 and 240, the ERP tends to be less than 1 percent for all ten 

equations.  

 The increase in level distortion of as the number of intercepts increases is roughly 

the same in the RR, NV and RB experiments. See the supplemental Appendix on the JAE 

website. Experiments were also carried out when the equation ordering is reversed. In 

this case, the excess return of the first equation is the excess return of the tenth portfolio 

(the portfolio of stocks with the smallest market value of equity), and the excess return of 

the tenth equation is that of the first portfolio (the portfolio of stocks with the largest 

market value of equity).   

 

7. POWER OF NEW HAR TESTS 

This section reports simulated level-corrected powers of the conventional and the 

new HAR tests. The level-corrected powers are calculated for the three forms of the HAR 

test in four different experiments. The four experiments are conducted for each of the 

sub-periods.  

The simulated powers are estimates of the true level-corrected powers conditional 

on the experimental design. The design specifies the vector of intercepts under the 

alternative, the nuisance parameters including the slope vectors and the long run variance 

matrix and the process generating the factors as well the errors. 

The powers are calculated for a test of H0 against the alternative 

1 0: (0.0005), | | 0H c cβ ι= > . Here the alternative intercept vector β0 is proportional to a 

vector of ones, ι, where c is a scalar. With this setup, a unit increase in c translates into an 

increase in the monthly excess return of 5 basis points. As noted earlier, in finance a 

monthly excess return of 10 basis points (c = 2) is considered small. On the other hand, a 

monthly excess return of 50 basis points (c = 10) is considered large by traditional 

benchmarks. One benchmark is the equity premium. This is about 6 percent per annum, 

which translates into a monthly excess return of 50 basis points. Another is the monthly 

excess return on the market portfolio, which is between 80 and 100 basis points. Hence, 



 18

this setup provides a natural metric for interpreting the power, which is often absent in 

power studies.  

The power experiments are now described for the January 1965 to 1969 sub-

period. The value of ty•  is simulated using  

 * * * * *
0 1 1 2 2 3 3 ( 1,..., ),t t t t ty x x x u t Tβ β β β• •= + + + + =� � � �  (11) 

where *
ty• , *

tx• , *
tu•  are the simulated values of ty• , tx• , tu• . The intercept vector β0 is 

known constant given by the alternative H1. The slopes 1 2 3, ,β β β� � �  are obtained by running 

a constrained least squares regression of ont ty x• •  for the sample data where the 

constraint is 0 0β = .   

  Normal-Normal (NN) Power Experiment.  The power simulation procedure 

consists of five steps for each value of c. For c = 0, steps S1, S2, S3 and S4 are the same 

as in the P-value simulation procedure. The fifth step is:  

S5. Repeat steps S1, S2 S3 10, 000 times. Compute the 5 percent critical value for 

each form of the HAR test statistic from the empirical distribution of the test 

statistic under H0  (c = 0).  

For c = 1, steps S1, S2, S3, S4 are the same as the P-value simulation procedure. The 

fifth step is:  

 S5. Repeat steps S1, S2, S3 and S4 10,000 times. Compute the power for each 

 form of the HAR test statistic from the empirical distribution of the test statistic 

 using the simulated five percent critical value obtained from the c = 0 experiment. 

For c > 1, the power experiments are similar to those for c = 1. 

 The steps in the RR, NV and RB power simulation experiments are obtained by 

making the analogous changes to the RR, NV and RB P-value simulation experiments. 

 The powers for the NN experiments are reported in Table VII. The powers are 

reported only for positive values of c since the power curves are symmetric in c. The 

results show that the tests tend to have high level-corrected power against empirically 

relevant departures from the null. The level-corrected powers tend to be close to one at c 

= 2 (monthly excess return of 10 basis points) for T = 60 and close to one at c =1.5 

(monthly excess return of 7.5 basis points) for T = 120.  The power results support the 

conclusion that the non-rejections by the fixed-b tests and fixed-ρ tests are due to small 
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intercepts rather than low power. The same conclusion is supported by the results from 

the RR, NV and RB power experiments. Again see the supplemental Appendix on JAE 

website. 

Table VII shows that the powers do depend on the kernel and hence on choice of 

the HAR test. Additional simulations show that the powers of the fixed-b tests tend to 

increase as b decreases and the powers of the fixed-ρ  tests tend to increase as ρ 

increases. These results are consistent with the findings in KV and PSJ. However, this 

does not imply that a small b should be chosen for the fixed-b test or a large ρ  for the 

fixed-ρ test. This is because as b decreases the ERP of the fixed-b test increases and as ρ 

increases the ERP of the fixed-ρ test increases.  The trade-off between the ERP and 

power is analyzed in detail in Phillips, Sun and Jin (2005).  

8. CONCLUDING COMMENTS 
 

This paper reports the results of testing the Fama and French  three-factor model 

using the conventional and the new HAR tests developed by Kiefer and Vogelsang 

(2005) and Phillips, Sun and Jin (2003a, 2003b). The zero intercept null is rejected for 

most sub-periods by the conventional HAR test with the asymptotic P-values. This 

occurs even though the absolute values of the estimated intercepts are considered small in 

economic terms.  Simulation results show that the conventional test with asymptotic P-

values over-rejects. The null is not rejected for most sub-periods by the new tests with 

asymptotic P-values. The new tests produce similar results with finite-sample P-values. 

The power results show that the new tests have high power against empirically relevant 

alternatives.  The conflict between the conventional test and the new tests for the five-

year and ten-year sub-periods tends to disappear when the tests are based on simulated 

finite-sample P-values.  

We conclude with two remarks. One is that our experimental results are consistent 

with the theory provided by Jansson (2004) for fixed b-asymptotics and Phillips, Sun and 

Jin (2005) for fixed-ρ asymptotics. However, these authors have focused on testing a 

single parameter in a Gaussian location model.  Additional theory is needed for the more 

general class of multivariate models considered in this paper.  The second is that 

Gonclaves and Vogelsang (2006) as well as Kiefer and Vogelsang (2005) apply the naïve 
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block bootstrap to HAR tests in simulation studies.  The studies suggest that the naïve 

block bootstrap works much better than predicted by the existing literature. Goncalves 

and Vogelsang (2006) establish that the naïve block bootstrap yields an approximation to 

the distributions of HAR test statistics that is as accurate as the approximation obtained 

by fixed-b asymptotic theory. A challenging research project is to investigate whether the 

naïve block bootstrap provides an asymptotic refinement relative to fixed-b asymptotics.  
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Table I. Fixed-b asymptotic 5 percent critical values using Bartlett kernels 

Power Parameter p = 1   p = 2   p = 3   p = 4   p = 5   p = 6   p = 7   p = 8   p = 9 p = 10 
  
b  = 0.00625 4.06 6.38 8.38 10.18 11.97 13.69 15.32 17.02 18.71 20.31 
b  = 0.0125 4.17 6.58 8.60 10.53 12.50 14.28 16.05 18.09 19.78 21.79 
b = 0.025 4.11 6.54 8.77 11.02 12.96 15.18 17.12 19.41 21.69 24.08 
b = 0.05 4.40 7.27 9.76 12.67 15.27 18.26 21.36 24.81 27.95 31.96 
b = 0.10 5.01 8.67 12.48 16.61 21.22 26.19 32.40 38.90 45.89 54.23 
b = 0.125 5.24 9.47 13.86 18.99 24.85 31.75 39.36 48.10 57.31 68.36 
b = 0.20 6.46 12.47 19.41 27.78 37.87 49.85 63.15 78.45 94.13 112.65 
b = 0.25 7.36 14.41 23.79 34.55 47.74 62.96 80.19 98.89 119.10 141.43 
b = 0.40 9.89 21.79 36.75 55.67 78.03 101.34 127.70 157.10 190.83 223.06 
b = 0.50 11.97 27.25 45.97 67.92 95.52 125.77 157.95 193.50 232.12 274.00 
b = 0.80 18.39 41.95 71.08 106.32 146.57 192.82 241.42 294.96 356.23 417.62 
b = 1.00 22.57 52.94 87.24 129.56 180.07 234.56 291.15 360.25 431.30 512.47 
Note: The Brownian motion and Brownian bridge processes were approximated using normalized partial sums of T = 1000 iid N(0,1) 
random variables. The simulations used 50,000 replications.  
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Table II. Fixed-ρ asymptotic 5 percent critical values using Bartlett and Parzen kernels 
Power p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10 
Bartlett           

ρ = 1 22.27 52.39 87.44 127.24 177.07 226.99 293.00 351.95 428.96 510.60 
ρ = 4 8.55 16.47 24.79 35.92 48.18 61.77 76.61 91.36 113.92 131.40 
ρ = 8 6.11 11.13 15.98 22.19 28.55 35.16 42.67 51.68 60.16 70.74 
ρ = 16 5.12 8.20 11.61 15.41 19.19 23.15 26.80 32.05 36.61 41.26 
ρ = 32 4.47 7.07 9.91 12.41 14.67 17.64 20.28 22.69 25.85 29.02 
ρ = 64 4.06 6.55 8.60 11.04 12.78 14.82 16.79 19.03 21.17 23.35 
ρ = 128 3.95 6.16 8.21 10.16 11.84 13.67 15.46 17.28 19.18 20.58 
ρ = O(T2/3) 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51 16.92 18.31 

Parzen           
ρ = 1 31.28 147.01 535.10 1369.90 2781.40 4747.50 7896.16 12626.82 18618.29 27975.88 
ρ = 4 11.56 28.93 64.13 150.96 309.72 599.02 1080.68 1851.99 3018.91 4450.50 
ρ = 8 8.52 18.36 34.83 64.76 110.01 191.28 333.62 570.04 959.41 1476.88 
ρ = 16 6.62 12.76 21.93 34.57 51.84 77.87 116.65 176.11 279.85 398.61 
ρ = 32 5.70 10.38 15.99 22.49 30.27 41.71 56.87 72.99 98.32 135.53 
ρ = 64 5.01 8.67 12.52 17.52 22.23 27.53 34.91 43.60 52.59 66.08 
ρ = 128 4.50 7.53 10.61 13.85 17.87 21.80 25.53 30.24 35.66 42.74 
ρ = O(T2/3) 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51 16.92 18.31 

Note: The Brownian motion and Brownian bridge processes were approximated using normalized partial sums of T =1000 
iid N(0,1) random variables. The simulations used 10,000 replications.  
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Table III. Asymptotic P-values (%) for HAR tests 

Note: The tabled asymptotic P-values are computed by simulation using 10,000 replications of each 
experiment

 Conventional: Barlett Fixed-b: Barlett Fixed-ρ: Parzen 
Sub-Period WHAC  

M = 6 
P-value W* 

b = 1 
P-value W* 

ρ = 32 
P-value 

Five-Year      
1/65-12/69 56.59 0.00 527.14 4.35 82.67 16.12 
1/70-12/74 22.17 1.43 208.95 45.10 44.72 42.86 
1/75-12/79 49.32 0.00 441.65 8.30 88.38 14.08 
1/80-12/84 54.16 0.00 358.77 15.07 77.29 18.31 
1/85-12/89 23.10 1.04 239.92 36.33 27.61 67.94 
1/90-12/94 33.28 0.02 253.19 32.93 94.99 12.21 
1/95-12/99 58.71 0.00 543.50 3.98 374.2 0.22 
1/00-12/04 22.33 1.35 201.57 47.50 28.67 66.25 
Ten-Year       
1/65-12/74 28.82 0.13 343.79 16.66 43.746 43.97 
1/75-12/84 41.73 0.00 522.24 4.54 174.02 2.34 
1/85-12/94 21.88 1.57 360.43 14.90 51.276 36.25 
1/95-12/04 24.11 0.73 416.63 10.03 124.79 6.23 
Thirty-Year       
1/65-12/94 43.33 0.00 979.70 0.18 195.75 1.78 
1/70-12/99 25.80 0.40 536.55 4.25 163.27 2.93 
1/75-12/04 22.73 1.18 390.49 12.45 89.30 13.84 
More Years       
1/65-12/99 33.59 0.02 692.47 1.20 109.78 8.57 
1/70-12/04 25.35 0.47 417.83 10.10 135.84 4.98 
1/65-12/04 33.33 0.00 481.45 6.22 151.78 3.61 
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Table IV. Estimated intercepts for the ten portfolios sorted by market equity 
Sub-Period Portfolio 

1 
Portfolio 

2 
Portfolio 

3 
Portfolio 

4 
Portfolio 

5 
Portfolio 

6 
Portfolio 

7 
Portfolio 

8 
Portfolio 

9 
Portfolio 

10 
Five-Year    
1/65-12/69 3.822E-04 -2.362E-04 1.320E-03 -4.658E-04 9.617E-04 2.176E-03 -2.221E-03 1.103E-04 -2.349E-03 -9.040E-04
1/70-12/74 4.281E-04 -6.098E-04 1.246E-03 2.588E-04 5.778E-04 -1.536E-04 -3.791E-04 -2.646E-04 -2.208E-03 -1.007E-03
1/75-12/79 -1.161E-04 -7.023E-04 1.686E-03 1.139E-03 9.320E-04 1.804E-03 2.582E-04 4.974E-04 -2.404E-03 -4.070E-03
1/80-12/84 1.317E-03 -3.560E-05 3.682E-04 -7.732E-05 -9.035E-04 7.401E-05 -1.182E-03 -1.141E-03 -2.044E-03 -6.015E-03
1/85-12/89 -2.149E-05 4.837E-04 7.247E-04 1.646E-03 1.053E-03 9.673E-04 6.799E-04 9.882E-04 -1.879E-03 -4.430E-03
1/90-12/94 2.761E-04 1.547E-04 3.490E-04 5.801E-04 2.195E-03 1.154E-03 8.797E-04 -7.023E-04 -4.065E-04 -5.559E-04
1/95-12/99 2.010E-03 -2.419E-03 -1.826E-03 -1.514E-03 -5.114E-03 -8.584E-04 -6.192E-04 4.593E-05 1.072E-03 -4.102E-04
1/00-12/04 -4.784E-04 9.241E-04 -2.439E-04 1.290E-04 -5.197E-04 8.961E-04 -1.492E-03 1.821E-03 3.585E-03 1.278E-02
Ten-Year    
1/65-12/74 4.470E-04 -6.370E-04 9.400E-04 0.000E+00 4.560E-04 3.360E-04 -1.283E-03 -6.180E-04 -2.657E-03 -1.199E-03
1/75-12/84 7.680E-04 -6.780E-04 4.760E-04 -6.800E-05 -3.320E-04 6.840E-04 -1.105E-03 -1.051E-03 -2.858E-03 -6.063E-03
1/85-12/94 2.270E-04 3.790E-04 5.530E-04 9.790E-04 1.520E-03 9.510E-04 8.930E-04 2.660E-04 -8.390E-04 -2.094E-03
1/95-12/04 1.221E-03 -5.370E-04 -1.263E-03 -1.091E-03 -3.128E-03 -7.050E-04 -1.794E-03 -1.210E-04 8.360E-04 3.373E-03
Thirty-Year    
1/65-12/94 3.980E-04 -1.960E-04 6.350E-04 3.900E-04 6.230E-04 8.630E-04 -3.270E-04 -3.000E-04 -1.925E-03 -2.675E-03
1/70-12/99 7.100E-04 -7.790E-04 1.110E-04 -8.400E-05 -2.630E-04 6.640E-04 -2.560E-04 -2.640E-04 -1.368E-03 -2.781E-03
1/75/12/04 7.650E-04 -2.170E-04 -9.600E-05 1.900E-05 -5.580E-04 3.590E-04 -6.810E-04 -2.700E-04 -9.260E-04 -1.589E-03
More Years    
1/65-12/99 6.960E-04 -6.540E-04 2.640E-04 -4.400E-05 -9.600E-05 6.280E-04 -5.230E-04 -3.110E-04 -1.462E-03 -2.262E-03
1/70-12/04 7.260E-04 -3.370E-04 9.400E-05 -1.700E-05 -4.460E-04 4.180E-04 -5.390E-04 -2.900E-04 -1.248E-03 -2.000E-03
1/65/12/04 6.590E-04 -3.030E-04 2.540E-04 2.300E-05 -2.380E-04 5.090E-04 -6.850E-04 -2.510E-04 -1.254E-03 -1.533E-03

Note: The first portfolio is the portfolio of stocks with the largest market value of equity and the tenth portfolio is the one with the smallest market 
value of equity. 
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Table V. Simulated finite-sample P-values (%) for HAR tests 

Note: The tabled finite-sample rejection probabilities are computed by simulation using 10,000 replications of each experiment. 

Conventional test: Bartlett Fixed-b: Bartlett Fixed-ρ : Parzen 
Sub-Period M = 6 b= ρ = 1 ρ = 32 
Five-Year NN RR NV RB NN RR NV RB NN RR NV RB 
1/65-12/69 16.07 18.74 11.63 21.53 10.77 13.20 7.56 16.17 22.99 25.13 20.28 35.70 
1/70-12/74 66.61 68.84 62.64 80.86 56.95 60.09 52.92 75.45 50.17 52.97 48.21 72.63 
1/75-12/79 22.17 25.30 18.64 25.76 17.81 20.73 14.47 20.91 20.77 23.01 19.01 29.61 
1/80-12/84 17.78 20.19 13.94 32.07 26.87 29.67 21.30 40.66 25.12 27.25 22.95 44.64 
1/85-12/89 64.42 68.49 57.73 64.81 49.03 53.55 42.27 51.51 74.13 76.86 70.92 78.70 
1/90-12/94 39.70 46.08 31.06 40.21 43.17 48.94 34.01 42.75 14.92 19.08 12.31 24.64 
1/95-12/99 15.18 16.88 13.55 14.79 10.41 11.98 9.36 10.27 0.51 0.62 0.42 1.46 
1/00-12/04 69.07 70.94 61.85 58.36 62.84 65.13 55.07 50.36 74.19 76.31 71.68 72.99 
Ten-Year     
1/65-12/74 12.45 13.70 10.90 23.43 19.68 21.04 17.56 30.25 45.70 46.03 45.11 56.55 
1/75-12/84 3.62 3.75 3.13 7.53 6.32 6.37 5.79 10.43 2.97 2.95 3.02 7.75 
1/85-12/94 27.65 28.40 26.89 30.31 18.51 18.81 17.89 21.17 37.66 38.39 37.81 45.15 
1/95-12/04 23.00 24.51 19.31 21.86 13.51 14.32 11.04 12.50 7.39 7.97 7.23 11.23 
Thirty-Year     
1/65-12/94 0.04 0.03 0.07 0.16 0.17 0.17 0.20 0.32 1.90 1.81 1.59 2.07 
1/70-12/99 2.58 2.76 2.24 4.35 4.64 4.44 4.13 6.05 3.18 3.00 2.90 3.67 
1/75-12/04 5.39 5.66 4.13 7.03 13.19 13.04 12.06 14.62 13.64 14.39 14.06 15.92 
More Years     
1/65-12/99 0.38 0.31 0.23 0.76 1.59 1.51 1.20 1.69 8.89 9.07 8.21 9.71 
1/70-12/04 2.24 2.56 2.20 3.22 10.40 10.41 9.33 12.14 4.39 5.25 4.90 5.82 
1/65-12/04 16.07 18.74 11.63 21.53 10.77 13.20 7.56 16.17 22.99 25.13 20.28 35.70 
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Table VI. Simulated rejection probabilities (%) of nominal 5 percent HAR tests by equation 
subsets for the NN experiments 

 Conventional 
Bartlett  
 M = 6 

Fixed-b:  
Bartlett  
b = 0.10 

Fixed-b: 
Bartlett  
b= ρ = 1 

Fixed-ρ :   
Parzen  
ρ = 32 

Eqs     
 T = 60 
1 9.67 6.22 5.82 5.42 
1-2 14.18 7.05 5.71 5.23 
1-3 20.11 7.96 6.15 6.05 
1-4 26.33 8.84 6.97 6.49 
1-5 34.07 9.30 6.53 6.52 
1-6 42.91 11.05 7.71 6.97 
1-7 50.43 11.20 7.98 6.26 
1-8 59.00 13.31 9.00 7.94 
1-9 68.25 14.70 9.50 7.86 
1-10 74.97 15.12 9.37 6.83 
 T =120 
1 7.35 5.70 5.52 5.24 
1-2 9.08 5.94 5.07 4.61 
1-3 11.37 6.28 5.31 4.86 
1-4 13.49 6.44 5.62 5.49 
1-5 17.10 7.40 5.78 5.66 
1-6 21.03 7.84 5.91 5.87 
1-7 24.61 7.92 6.08 5.16 
1-8 29.41 8.37 6.34 6.34 
1-9 34.42 9.00 6.20 6.01 
1-10 39.80 9.05 6.20 5.61 
 T = 240 
1 6.18 5.46 5.57 5.12 
1-2 6.90 5.46 4.76 4.57 
1-3 7.90 5.72 5.15 4.82 
1-4 9.16 5.65 5.44 5.22 
1-5 10.31 6.05 5.25 5.66 
1-6 11.68 6.09 5.33 5.41 
1-7 13.33 6.96 5.84 5.37 
1-8 15.32 6.87 5.52 5.72 
1-9 17.10 7.07 5.49 5.67 
1-10 19.29 7.15 5.85 5.12 
Note:  The tabled rejection probabilities are computed by simulation using 10,000 
replications of each experiment. The fixed-b and fixed-ρ asymptotic critical values 
are from Tables I and II. 
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Table VII. Simulated Power (%) of level-corrected 5 percent new HAR tests for the NN 
experiments 

Note: The tabled finite-sample powers are computed by simulation using 10,000 replications of 
each experiment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fixed-b  Fixed-ρ 
Sub-Period Bartlett Kernel, b = ρ  = 1 Parzen Kernel, ρ = 32, b =1 
Five-Year c = 0.5 c = 1 c = 1.5 c = 2 c = 0.5 c = 1 c= 1.5 c = 2 
1/65-12/69 45.2 96.4 99.9 100.0 32.0 86.9 99.4 100.0 
1/70-12/74 35.2 91.6 99.7 100.0 25.3 78.3 98.0 99.9 
1/75-12/79 15.2 56.6 90.3 98.6 11.9 40.9 75.5 93.5 
1/80-12/84 18.8 64.7 94.1 99.3 14.8 47.9 82.8 96.6 
1/85-12/89 59.7 98.9 100.0 100.0 42.7 94.4 99.9 100.0 
1/90-12/94 39.6 93.5 99.8 100.0 26.8 81.2 98.5 99.9 
1/95-12/99 17.0 58.9 91.1 98.9 12.8 42.4 76.6 94.1 
1/00-12/04 10.6 33.2 67.7 90.1 8.2 23.7 49.4 75.0 
Ten-Year         
1/65-12/74 70.5 99.7 100.0 100.0 51.5 97.6 100.0 100.0 
1/75-12/84 21.4 72.6 96.6 99.7 15.8 53.6 87.7 98.3 
1/85-12/94 56.0 98.5 100.0 100.0 37.8 92.5 99.8 100.0 
1/95-12/04 20.6 72.2 96.6 99.7 15.6 52.9 86.9 98.1 
Thirty-Year         
1/65-12/94 70.8 99.7 100.0 100.0 50.2 97.6 100.0 100.0 
1/70-12/99 65.2 99.4 100.0 100.0 45.5 96.0 100.0 100.0 
1/75-12/04 51.7 98.1 99.9 100.0 35.6 90.9 99.8 100.0 
More Years         
1/65-12/99 77.2 99.8 100.0 100.0 57.0 99.0 100.0 100.0 
1/70-12/04 64.3 99.3 100.0 100.0 46.9 96.5 100.0 100.0 
1/65-12/04 73.0 99.8 100.0 100.0 52.5 98.2 100.0 100.0 


