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ABSTRACT 

 This paper considers testing the null hypothesis that a times series is uncorrelated 

when the time series is uncorrelated but statistically dependent. This case is of interest in 

economic and finance applications. The GARCH (1, 1) model is a leading example of a 

model that generates serially uncorrelated but statistically dependent data. The tests of 

serial correlation introduced by Andrews and Ploberger (1996, hereafter AP) are 

generalized for the purpose of testing the null. The rationale for generalizing the AP tests 

is that they have attractive properties for case for which they were originally designed:  

They are consistent against all non-white noise alternatives and have good all-round 

power against nonseasonal alternatives compared to several widely used tests in the 

literature. These properties are inherited by the generalized AP tests.  
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1. INTRODUCTION 

 
 As noted by Hong and Lee (2003), there has been growing interest in developing 

consistent tests for serial correlation of unknown form; examples include AP, Hong 

(1996), Chen and Deo (2004) in estimated regression residuals and Durlauf (1991) and  

Deo (2000) in the observed raw data. The tests assume independently and identically 

distributed regression errors under the null except for Deo (2000), which generalizes 

Durlauf (1991) to allow for a restrictive form of conditional heteroskedasticity. This 

paper considers testing the null that a times series is uncorrelated when the time series is 

uncorrelated but statistically dependent. For a more extensive literature review, see 

Francq, Roy and Zakoian (2005). 

The case of uncorrelated dependent time series is of interest in economic and 

financial applications because many problems such as financial (non-) predictability are 

related to a martingale difference sequence (MDS) hypothesis after demeaning, which 

implies serial uncorrelatedness but not serial independence. The GARCH (1, 1) model is 

a leading example of a model that generates serially uncorrelated but statistically 

dependent data. The rationale for generalizing the AP tests is that they are consistent 

against all non-white noise alternatives and have good all-round power against 

nonseasonal alternatives when compared to several tests in the literature, including the 

Box-Pierce (1970, hereafter BP) tests.  The generalized AP tests inherit the properties of 

the AP tests in power comparisons. In our simulation experiments, the generalized AP 

tests typically have substantially better power than the generalized BP (Lobato, 

Nankervis and Savin (2002)) tests against non-seasonal alternatives and power equal to or 

better than the Deo (2000) test.  
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 AP introduced tests of serial correlation designed for the case where the time 

series is generated by ARMA (1, 1) models under the alternative.  As they noted, it is 

natural to consider tests of this sort because ARMA (1, 1) models provide parsimonious 

representations of a broad class of stationary time series.  ARMA(1, 1) models for 

financial returns series follow from the mean-reversion models of Poterba and Summers 

(1988) and the price-trend models of Taylor (2005).  However, testing for serial 

correlation generated by an ARMA (1, 1) model is a nonstandard testing problem because 

the ARMA (1, 1) model reduces to a white noise model whenever the AR and MA 

coefficients are equal. The testing problem is one in which a nuisance parameter is 

present only under the alternative hypothesis. For the problem addressed by AP, the 

standard likelihood ratio (LR) statistic does not possess its usual asymptotic chi-squared 

distribution or its usual asymptotic optimality properties. It is also possible that an 

ARMA(1,1) generates white noise when the AR and MA coefficients are not equal, as is 

the case for the all-pass filter model; see Andrews, Davis and Breidt (2006). 

The LR test has the attractive feature of being consistent against all forms of serial 

correlation (Potscher (1990)). AP show that this feature also holds for tests introduced 

into the literature by Andrews and Ploberger (1994, 1995), namely, the sup Lagrange 

Multiplier (LM) and average exponential LM and LR tests. AP establish the asymptotic 

null distribution for the LR, sup LM and average exponential test statistics under the 

assumption that the generating process is a conditionally homoskedastic martingale 

difference sequence (MDS).  The asymptotic critical values for these tests were 

calculated by simulation. In Monte Carlo power experiments, AP compared the finite-

sample powers of the LR, sup LM, average exponential, BP, and other tests. The 
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alternatives include Gaussian ARMA (1, 1) models. Against this class of alternatives, the 

LR test was found to have very good all-around power properties for non-seasonal 

alternative models, especially compared to BP tests.  

 For serially uncorrelated but statistically dependent time series, the true levels of 

the LR, sup LM and average exponential tests can differ substantially from the nominal 

levels when the tests use the asymptotic critical values calculated by AP.  This paper 

generalizes a subset of the tests considered by AP so that they have the correct level 

asymptotically when the time series is serially uncorrelated but statistically dependent. 

The subset consists of LM-based tests, namely the sup LM test and the average 

exponential LM tests.  The generalization is obtained by using the true asymptotic 

covariance matrix of the sample autocorrelations, or a consistent estimator. The same 

approach has been used by Lobato, Nankervis and Savin (2002) to generalize the BP tests 

to settings where the time series is serially uncorrelated but statistically dependent.  The 

asymptotic critical values reported by AP remain valid for the generalized LM-based 

tests. 

 The finite-sample levels of the generalized LM-based tests with asymptotic 

critical values are assessed by simulation.  In Monte Carlo power experiments, these tests 

are compared to generalized BP tests and the Deo (2000) test. The generalized AP tests 

typically have better level-corrected power against non-seasonal alternatives. Hence, 

generalized AP tests can be recommended for use in economic and finance applications.  

The paper reports the results of an empirical application to stock return indexes.  

 
2. ARMA (1, 1) MODEL AND TEST STATISTICS 
 
 This section reviews the model, hypothesis and test statistics considered by AP.  
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The model is the ARMA (1, 1) model, 
         
 1 1 for 2,3,...,t t t tY Y tφ ε πε− −= + − =                         (1) 
where { : 1,..., }tY t T= are observed random variables and { : 1,2,...}t tε =  are unobserved 

innovations. AP reparameterize (1) as  

   1 1( ) for 2,3,...,t t t tY Y tβ π ε πε− −= + + − =   
      
where β φ π= − , the parameter space forπ is Π and that for β is B .  They assume that 

Π and B are such that the absolute value of the autoregressive coefficient | |π β+ <1, Π  

is closed and B contains a neighborhood of zero. The former condition rules out unit root 

and explosive behavior of { : 1,..., }tY t T= . 

The null hypothesis is that { : 1,..., }tY t T=  is white noise, and the alternative is 

that { : 1,..., }tY t T= is serially correlated. These hypotheses are given by  

   0 1: 0 and : 0.H Hβ β= ≠                  (2) 
         
When β  = 0, the model (1) reduces to Yt = εt , and the parameterπ  is no longer present. 

The testing problem is non-standard becauseπ is not identified when the null hypothesis 

is true. 

Let LRT (π ) denote the standard LR statistic for testing H0 versus H1 when π is 

known under the alternative. Then the LR statistic for the unknown π  is  

 
LR sup LR ( ),T

π
π

∈Π
=  

where 2 2ˆLR ( ) log( / ( )),T Y YTπ σ σ π=   
 

     2 2

1

1 ,
T

Y t
t

Y
T

σ
=

= ∑   

and 
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2 22 2

2 2
1 1

2 0 2 0

1ˆ ( ) .
T t T t

i i
Y Y t t i t i

t i t i

Y Y Y
T

σ π σ π π
− −

− − − −
= = = =

⎡ ⎤⎛ ⎞ ⎛ ⎞= − ÷⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑    (3) 

Note that ˆLR LR ( )T π= , where π̂  is the ARMA (1, 1) ML estimate of π.   

 AP proved that an asymptotically equivalent test statistic to the LR statistic (under 

the null and local alternatives) is the sup LM statistic 

            
 supLM ( )T

π
π

∈Π
, (4) 

 
where   
 

 
22

2 4
1

2 0

1LM ( ) (1 ) / .
T t

i
T t t i Y

t i
Y Y

T
π π π σ

−

− −
= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑  (5) 

 
The LR and sup LM tests are shown to satisfy an asymptotic admissibility property, and 

as a consequence, beat any given test in terms of weighted average power against 

alternatives that are local to, but sufficiently distant from the null; for details, see p. 1333 

of AP.  

 Andrews and Ploberger (1994) introduced average exponential tests. These tests 

are asymptotically optimal in the sense that they minimize weighted average power for a 

specific weight function.  The weight functions for the parameter β are mean zero normal 

densities with variances proportional to a scalar c > 0. The weight function J for the 

parameter π  is chosen by the investigator. For the simulation results in AP, the function 

is taken to be uniform on Π, and similarly in this article.  For each c∈ (0, ∞ ), the average 

exponential LM test statistic is given by  

 1/ 2 1Exp-LM (1 ) exp LM ( ) ( )
2 1cT T

cc dJ
c

π π− ⎛ ⎞= + ⎜ ⎟+⎝ ⎠∫ , (6) 
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where LMT (π) is as defined in (5), and J(⋅) is probability measure on Π.  The average 

exponential LR test statistic, Exp-LRcT, is defined analogously with LMT (π) being 

replaced by LRT (π). The limiting average exponential LM test statistics as 0c →  and 

c → ∞  are given by  

 0Exp-LM = LM (  ) ( )T T dJπ π∫  
 
and 

 1Exp-LM ln exp LM ( ) ( )
2T T dJπ π∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ . (7) 

 

Andrews and Ploberger (1994) show that the average exponential tests have asymptotic 

local power optimality properties.   

3. ASYMPTOTIC AND FINITE-SAMPLE NULL DISTRIBUTIONS OF AP TEST 
STATISTICS 
  
 AP established the asymptotic null distribution of the test statistics previously 

introduced. This section reviews the asymptotic theory.  

 The asymptotic null distributions of the test statistics are established by showing 

that the sequences of stochastic processes {LR ( ) : 1}T T⋅ ≥  and {LMT (⋅): T ≥ 1} indexed 

by π ∈Π converge weakly to a stochastic process G(⋅) and then by applying the 

continuous mapping theorem. Let 
d

→  denote converge in distribution of a sequence of 

random variables. Let { : 0}iZ i ≥  be a sequence of iid N(0,1) random variables. Define 

   
2

2

0

( ) (1 ) fori
i

i

G Zπ π π π
∞

=

⎛ ⎞= − ∈Π⎜ ⎟
⎝ ⎠
∑ .   

 (8) 
  
The following theorem is proved by AP under a variety of assumptions. 
 
Theorem 1.  
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0

a. LM ( ) ( ),

b. sup LM ( ) sup ( ),

c. Exp-LM ( ) ( ),

1d. Exp-LM ln exp( ( )) ( ), and
2

T
d

T

d

T

d

T

G

G

G dJ

G dJ

π ππ π

π π

π π

∈Π ∈Π

∞

⋅ ⇒ ⋅

→

→

→

∫

∫

 

 e. parts (a)-(d) hold with LM replaced by LR. 

 Theorem 1 holds for time series where the asymptotic covariance matrix of the 

first T-1 of the sample autocorrelations is equal to the identity matrix. A time series 

generated by a conditional homoskedastic martingale difference sequence is an example 

where the asymptotic covariance matrix of the sample autocorrelations is the identity 

matrix.  On the other hand, Theorem 1 does not hold for many models used in economics 

and finance, for example, a GARCH (1, 1) with normal innovations.  The implications of 

the identity matrix condition for testing H0 are explored in the next section. 

 From Theorem 1, the LR, sup LM and average exponential LR and LM tests are 

asymptotically pivotal, that is, the asymptotic distributions does not depend on any 

unknown parameters.  Hence, the asymptotic critical values for the tests can be simulated 

by truncating the series 
0

i
ii

Zπ∞

=∑  at a large value rT .  AP report simulated critical values 

of the tests in their Table 1.The critical values are based on the parameter space Π = {0, ± 

.01,…, ±.79, ±.80}, rT = 50 and 40,000 repetitions. They also calculate finite-sample 

critical values for the tests. 

The LR, sup LM and average exponential LR and LM tests are shown by AP to 

be consistent against all deviations from the null hypothesis of white noise within a class 

of weakly stationary strong mixing sequences of random variables. This consistency 

property illustrates the robust power properties of the tests.  
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 The tests introduced by AP can also be used to test whether regression errors are 

serially correlated. The tests are constructed using the residuals ˆ{ : }tY t T≤ rather than the 

random variables{ : }tY t T≤ ; see AP for details.  Provided that the regressors are 

exogenous, the resulting LR, sup LM and average exponential LR and LM test statistics 

have the same asymptotic distributions as when the actual errors are used to construct the 

statistics. Thus, the asymptotic critical values previously calculated by AP are applicable. 

However, the tests are not valid when applied to the residuals of a dynamic regression 

model. 

4. GENERALIZATION OF LM BASED TESTS  

 In this section, the LM-based tests considered by AP are generalized such that the 

tests have the correct asymptotic level under the null when the asymptotic covariance 

matrix of the sample autocorrelations is not the identity matrix.  The asymptotic 

distributions of the generalized AP test statistics are based on a central limit theorem for 

the sample autocorrelations and a consistent estimator of the asymptotic covariance 

matrix.   

We begin with a review of the asymptotic distribution theory of the sample 

autocorrelations when { : 1,2,...}tY t = is a covariance stationary sequence of statistically 

dependent but uncorrelated random variables with mean zero (or allow for mean μ, as we 

do below). Define the lag-j autocovariance by γj = E(Yt Yt+ j ) and the lag-j autocorrelation 

by ρ j = γj /γ0.  The variance and lag-j autocovariance are given by 2
0  1

ˆ ( ) /T
tt

Y Tγ
=

= ∑  

and -

 1
ˆ ( ) /T j

j t t jt
Y Y Tγ +=

= ∑ .  We assume that Yt is a weak dependent process for which the 

vector of sample autocovariances 1 2( , ,..., )Kγ γ γ γ ′= satisfies the following central limit 
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theorem: ˆ( ) (0, ),
d

T N Cγ γ ′− →  where C (assumed to be finite and positive definite) is 

2π times the spectral density matrix at zero frequency of the vector with elements t t jYY − .  

A straightforward application of the delta method leads to a central limit theorem 

for the sample autocorrelations:  Under general weak dependence conditions,  

  1 2( , ,..., ) (0, ),
d

KT r T r r r N V′= →      (9) 
 
where 0ˆ ˆ/j jr γ γ=  and the ijth element of V is given in Lobato, Nankervis and Savin 

(2002, p. 732) and Romano and Thombs (1996). A variety of weak dependence 

conditions are reviewed in Lobato, Nankervis and Savin (2002). Using the idea of near 

epoch dependence (NED), De Jong and Davidson (2000) show that the preceding central 

limit theorem for γ̂  holds under the following assumption: 

Assumption 1. Let Yt be a covariance stationary process that satisfies | |stE Y < ∞  for some 

s > 4 and all t and is L2-NED of size –1/2 on a process Ut where Ut is an α-mixing 

sequence of size –s/(s – 4).   

Davidson (2000) has proved that many nonlinear times series models satisfy the NED 

assumption. 

  Next consider testing the null hypothesis H0(K): ρ = (ρ1, … , ρK)’ = 0 against the 

alternative ρ ≠ 0.  Suppose V is known. Then a test can be based on the test statistic  

    1BPK( ) 'V Tr V r−= ,    (10) 

where the statistic is asymptotically chi-square distributed with K degrees of freedom 

when H0(K) is true. In practice, V is unknown.  In the standard BP statistic, V is replaced 

by I, the identity matrix. If V is not equal to the identity, the standard BP test can produce 

misleading inferences.   
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 Under the null, V simplifies to 0 2 0
0[( ) ]V Cγ −=  where 0C  has as its ijth element 

  0 ( )( )( )( )
d

ij t t i t d t d j
d

c E Y Y Y Yμ μ μ μ
=∞

− + + −
=−∞

= − − − −∑  for i,j  = 1,…,K, (11) 

  
where the above formula covers the case ( )tE Y μ= . Lobato, Nankervis and Savin (2002) 

use this simplification to construct a generalized BP test statistic. This test statistic is   

 0 0 1ˆ ˆBP ( ) ( )K V Tr V r−′= , (12) 
where 0V̂ is a consistent estimator of 0V under H0(K).  A consistent estimator can be 

obtained by using 0γ̂ to estimate 0γ  and a consistent nonparametric estimator of 0C . 

 Our generalization of the LM-based tests exploits the fact that the LM test statistic 

is a function of sample autocorrelations. Rewriting the LMT (π) statistic in (5) gives 

 
2 22 2

2 2 2
1 1

0 2 0

1LM ( ) / (1 ) (1 ) ,
T T T

i i
T t t i Y i

i t i i
T YY T r

T
π π σ π π π

− −

− − +
= = + =

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑               (13) 

                 
where the ith sample autocorrelation in (13) is 

2

1

( / )
T

i t t i Y
t i

r Y Y T σ−
= +

= ÷∑ . 

          
 Suppose that the series 2

10

T i
ii

rπ−

+=∑  is truncated at a large value rT .  We can then 

write the statistic in (13) as 

2 2LM ( ) (1 )( ) ,T p T rπ π ′= −  

where 12(1, , ,..., )rTp π π π − ′= , 1 2( , ,..., )
rTr r r r ′= . The vector T r  is asymptotically N (0, 

V) where V is a r rT T× matrix.  If V = I, the LM-based tests of 0 : 0H β = can be carried 

out using the asymptotic critical values calculated by AP. If V ≠ I, the true levels of the 

tests with AP asymptotic critical values can differ substantially from the nominal levels 

in finite-samples and asymptotically.   
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 The level distortion of the LM-based tests when V ≠ I can be corrected 

asymptotically by using T Lr  in place of T r  in (13) where 1V L L− ′= . Our proposed 

generalization is to replace V by 0V and consistently estimate 0V  by 0V̂ .  The generalized 

tests we consider are: 

 

0

0 0
0

0 0

ˆsup LM ( , )
ˆ ˆExp-LM ( ) LM ( , ) ( ),

1ˆ ˆExp-LM ( ) ln exp LM ( , ) ( ),
2

T

T T

T T

V

V V dJ

V V dJ

π π

π π

π π

∈Π

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫

             (14) 

where 0 2 0 2ˆ ˆLM ( , ) (1 )( )T V p T L rπ π ′= − with 0 1 0 0ˆ ˆ ˆ( )V L L− ′= . ` 

 A brief sketch of proof that the generalized AP tests have the same limiting 

distribution as the AP tests is the following. In the AP case where ( )Var T r = I, we have  

that  

22(1 ) ' (1 ) (0,1) (0,1),rd TT p r N Nπ π− ⎯⎯→ − =  

when max(π) = 0.8 and rT = 20 ( 401 0.8 0.9999− = ), the parameter values used in our  

numerical calculations.  The asymptotic correlation between 

2(1 )k kT p rπ ′− and 2(1 )m mT p rπ ′−  is 2 2(1 )(1 )(1 ) /(1 )r rT T
k m k m k mπ π π π π π− − − − , 

where 12 3(1 ... ).rT
j j j j jp π π π π −′ =   Thus, the AP tests are functions of correlated 

asymptotically standard normal variables, 2(1 )j jT p rπ ′− . In the case where ( )Var T r = 

V we have that 

2 0̂(1 ) (0,1),dT p L r Nπ ′− ⎯⎯→  
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and that the asymptotic correlation between 2 0̂(1 )k kT p L rπ ′− and 2 0̂(1 )m mT p L rπ ′−  is 

2 2(1 )(1 )(1 ) /(1 ).r rT T
k m k m k mπ π π π π π− − − −  This shows that the generalized AP tests are the 

same functions of asymptotically standard normal variables with identical asymptotic 

correlations.  

The asymptotic critical values reported by AP remain valid for our generalization 

of the LM-based tests.  We use critical values based on rT  = 20, whereas AP use rT = 50.  

We have set, as AP did, max |π| = 0.8. Using rT  = 20 rather than 50 has a negligible 

effect on the 1%, 5% and 10% asymptotic critical values through terms 2 1(1 )rTπ × −− .  This 

is seen in Table 1 where we report the asymptotic critical values for the three test 

statistics for Π = {0, ± .01,…, ±.79, ±.80}, rT  = 20 and rT = 50, using 150 million 

replications.   

  The generalized versions of BP and LM-based tests require a consistent estimator 

of 0V . We use the VARHAC estimation procedure proposed by den Haan and Levin 

(1997).  The consistency of the VARHAC estimator is proved by den Haan and Levin 

(1998) under very general conditions. They demonstrate that, in many cases, the 

VARHAC estimator achieves a faster convergence rate than kernel-based methods.  

Francq et al. (2005, p. 539) also prove the consistency of the VARHAC estimator. Their 

proof uses the existence of the eighth moment of tY  and a mixing condition.  

The VARHAC procedure uses a vector autoregressive (VAR) estimator of the 

covariance matrix where the order of equation in the VAR is automatically selected.  To 

present the explicit formula for the VARHAC estimator of 0C , let ˆ ( )( )it t t iw Y Y Y Y−= − − , 

1 ,ˆ ˆ ˆ( ,..., ) '
rt t T tw w w= , and let S be the maximum lag order chosen for the VAR. For 
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consistency, den Haan and Levin (1998) also require that the maximum lag grows at rate 

1/3T .  The estimated residuals from the VAR regressions are  

    
1

ˆˆ ˆ ˆ
S

t t s t s
s

e w A w −
=

= − ∑ , 

where ˆ
sA are the matrices of estimated coefficients from the VAR, and the estimated 

innovation covariance matrix is 

    
1

ˆ ˆ '
T

t t
t S

e e T
= +

Σ = ∑  . 

Then the VARHAC estimator of 0C  is 

       0 1 1

1 1

ˆ ˆ ˆ( ) ( ' )
S S

s s
s s

C I A I A− −

= =

= − Σ −∑ ∑  .        (15) 

 We report results for the VAR with the AIC (Akaike (1973)) and the SBC 

(Schwarz (1978)) criteria. The resulting estimators are denoted by ˆ (AIC)V and ˆ (SBC)V . 

The maximum lag length is 3, 4, 5 and 8 for sample sizes T = 200, 500, 1000 and 5000, 

and, for any equation in the VAR, the same lag length is used for each element of the 

vector process. To mitigate the effect of occasional extreme estimates we used the 

procedure of Andrews and Monahan (1992), and set the minimum singular values of the 

inverse of the recoloring matrix, 
1

ˆ ,
S

s
s

I A
=

′− ∑ to be 0.005. 

The form of the 0V matrix is simplified when the time series is a martingale 

difference sequence.  For a MDS process, the only possible nonzero elements of 0C are 

terms of the form 2( ) ( )( )t t i t jE Y Y Yμ μ μ− −− − − . In (11) these occur at d = 0.  Guo and 

Phillips (1998) have developed a version of the BP test for the MDS case. This special 
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form of 0V matrix can also be used in constructing a generalization of the LM- based tests 

for general MDS processes. 

 For certain MDS processes, such as Gaussian GARCH processes, 0V is diagonal, 

with the jth diagonal element equal to 2 2 2( (0)) ( ) ( )t t jE Y Yγ μ μ−
−− − . Generalizations of 

the LM-based tests can be constructed for the diagonal case. The BP test for the diagonal 

case has been repeatedly reinvented in the literature; see, for example, Taylor (1984), 

Diebold (1986), Lo and MacKinlay (1989), Lobato, Nankervis and Savin (2001) and also  

Deo (2000).  

We denote the estimator of 0V in the general MDS case by GPV . A consistent 

estimator of the ijth element of GPV  is  

  2 2
0

1

ˆˆ ˆ ˆ/ and ( ) ( )( ) / ; , 1,...,
r

T
GP GP GP
ij ij ij t t i t j r

t T

v c c Y Y Y Y Y Y T i j Tγ − −
= +

= = − − − =∑ .     (16) 

The diagonal 0V  matrix is denoted by *V .   A consistent estimator of the jth diagonal 

element of *V  is  

* * 2 * 2 2
0 1

ˆˆ ˆ ˆ/ and ( ) ( ) / , 1,...,
r

T
jj jj jj t t j rt T

v c c Y Y Y Y T j Tγ −= +
= = − − =∑ .    (17) 

 
As noted earlier, AP show that their tests apply to residuals from regressions with 

exogenous regressors (Assumptions 4 and 5 in AP). The same holds for the generalized 

tests. The reason these assumptions rule out an extension to dynamic regression models is 

because they require that the conditional mean of the unobserved errors is zero given past 

values of the errors and past and future values of the regressors.  

5. MONTE CARLO COMPARISONS 
 
 This section considers the true levels of the LM-based tests, the BP tests and the 

Deo (2000) test when the tests use asymptotic critical values. The LM-based tests are the 
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sup LM, Exp-LM0 and Exp-LM∞  tests. The finite sample level-corrected powers of these 

tests and the other tests are compared. The BP tests are included because they are widely 

employed in the economics and finance literature and the Deo (2000) test is included 

because it is consistent against all non-white noise alternatives when V is diagonal in the 

MDS case, a property not shared by the BP tests.  

 The model we consider in the level experiments is the location model with 

serially uncorrelated but dependent errors,   

   for 1,2,..., ,t tY t Tμ ε= + =        (18) 
 

where V ≠ I. The models used for the errors εt in the experiments include two MDS 

processes and two non-MDS processes.  

 The two MDS models for the errors are variants of the GARCH model of 

Bollerslev (1986), namely, Gaussian GARCH (1, 1) and the exponential GARCH (1, 1) 

or EGARCH (1, 1).  Both models are described in Campbell, Lo and MacKinlay (1997).  

GARCH (1, 1). ,t t tZε σ= ⋅  where {Zt }is an iid N(0,1) sequence and 

2 2 2
0 1 0 1t t tσ ω α ε β σ− −= + + . The constants α0 and β0 are such that 0 0 1α β+ < . This condition 

is needed so that Yt is covariance stationary. He and Teräsvirta (1999) show that the 

unconditional 2mth moment of Yt for GARCH (1, 1) models of Yt exists if and only if 

2
0 0( ) 1m

tE Zα β+ < . We set ω = 0.001, α 0 = 0.08, and β0 = 0.89.  With this parameter 

setting, the He and Teräsvirta condition for the existence of the fourth and eighth 

moments of Yt are satisfied.  For this process, 2
0 ( ) 0.033,tE Yγ μ= − =  

3 3/ 2
0( ) / 0,tE Y μ γ− =  4 4

0( ) / 3.83,tE Y μ γ− =  and V is diagonal. We note that our results 
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are invariant to the value of ω. Estimates from stock return data suggest that 0 0α β+ is 

close to one with β0 also close to one; for example, see Bera and Higgins (1997). 

EGARCH (1, 1).  ,t t tZε σ= ⋅  where {Zt }is an iid N(0,1) sequence and where 

2 2
1 0 1 0 1ln( ) | | ln( )t t t tZ Zσ ω ψ α β σ− − −= + + + . We set ω = 0.01, 0.5ψ = ,α 0 = −0.2, and 

β0 = 0.95.  He, Teräsvirta and Malmsten (2002) show that Yt is stationary if | | 1β <  and 

that with Gaussian {Zt} all moments of Yt exist.  We have that (the skewness is an 

estimate) 2
0 ( ) 10.8tE Yγ μ= − = , 3 3/ 2

0( ) / 0,tE Y μ γ− = and 4 4
0( ) / 23.4,tE Y μ γ− =  and V is 

no longer diagonal.  Our results are invariant to the value of the intercept and the 

variance. 

 The two models for the non-MDS errors are the nonlinear moving average model, 

and the bilinear model. Tong (1990) considers the nonlinear moving average model, and 

Granger and Andersen (1978) the bilinear model.  The motivation for entertaining non-

MDS processes is the growing evidence that the MDS assumption is too restrictive for 

financial data; see, for example, El Babsiri and Zakoian (2001). For both models 

considered below, V is non-diagonal.  

Nonlinear Moving Average Model. Let εt = Zt -1⋅ Zt -2 ⋅ ( Zt -2 + Zt + c) where { Zt } is a 

sequence of iid N(0, 1) random variables and c = 1.0. For this process all moments exist 

with 2 3 3/ 2 4 4
0 0( ) 5, ( ) / 0, ( ) / 37.80.t t tE Y E Y E Yμ μ γ μ γ− = − = − =  

Bilinear Model.  Let εt = Zt + b⋅ Zt -1⋅ εt -2, where { Zt } is a sequence of iid N(0, σ2) 

random variables,  b = 0.50 and σ2 = 1.0. The Yt process is covariance stationary provided 

that b2 σ2 < 1.  The fourth moment of this process exists if 3b4σ4 < 1. For this process, 

2 2 2 2( ) (1 )tE Y bμ σ σ− = − = 1.333, 3 3/ 2
0( ) / 0,tE Y μ γ− =  and 4 4

0( ) /tE Y μ γ−  



 17

4 4 4 43(1 ) /(1 3 ) 3.462b bσ σ= − − = .  Bera and Higgins (1997) have fitted a bilinear model 

to stock return data. 

 We simulated the finite-sample rejection probabilities (percent) of the nominal .05 

LM, Exp-LM0 and Exp-LM∞  tests of 0 : 0H β =  for the MDS and non-MDS error 

models.  The rejection probabilities for the sup LM, Exp-LM0 and Exp-LM∞ tests are 

computed using { .80, .79,...,.79,.80}Π = − − , which is the same set as used by AP. The 

rejection probabilities are based on rT  = 20. Increasing rT  does not produce a noticeable 

difference in the rejection probabilities when using Π as defined above. For comparison, 

the simulations included the BP6, BP12, BP20 tests and the Deo (2000) test; BP6 and 

BP12 were considered by AP. The MDS and non-MDS models are simulated for sample 

sizes T = 200, 500, 1000 and 5000 using 25, 000 replications.  Results for the non-MDS 

models are not reported because they do not change the conclusions from the MDS 

models and also to save space. 

The results for the GARCH models are presented in Table 2. The results show 

that the differences between the true and nominal levels are substantial when the identity 

matrix is used. The differences are largest for the BP tests with the EGARCH (1, 1) 

model. The differences tend to increase as the sample size increases. The increase is large 

for the EGARCH (1, 1).  

 Next we consider the generalized tests in Table 2. We first compare the LM –

based tests.  The differences between the true and nominal levels tend to be essentially 

eliminated for GARCH (1, 1) when the tests use the consistent estimators *V̂ , GPV̂  or 

ˆ(SBC)V and T  ≥ 500.  For EGARCH (1, 1), the difference is essentially eliminated when 
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the tests use the consistent estimators GPV̂  or ˆ(SBC)V  and T  ≥ 500.  In both cases larger 

sample sizes are needed to eliminate the difference when ˆ(AIC)V is used, especially for 

the sup LM test. Overall, the Exp-LM0 and Exp-LM∞ tests tend to have better control 

over the level than the sup LM tests.  The estimator of *V̂  is inconsistent in the EGARCH 

case.  The results for *V̂  in Table 2 show only a small tendency for over rejection at T = 

1000 because the average off-diagonal elements of V are close to zero at this sample size. 

Next consider other tests. The generalized BP tests generally tend to show less 

satisfactory control over the level than the LM-based tests, especially BP20. The levels of 

the Deo (2000) test are similar to those of the generalized LM tests in the V* case. We 

also calculated the finite-sample rejection probabilities using the skewed t(5) GARCH (1, 

1) using the standardized version given in Lambert and Laurent (2001) and  the mixtures 

of normal GARCH (1,1) proposed by Haas, Mittnik and Paolella, (2004). The previous 

conclusions are not altered by the results for these latter models.  

 The location model (18) is also used for the power comparisons, but now with 

serially correlated errors. Following AP, the models used for the errors εt include 

 
1AR(1) : ,t t tuε φε −= +  

 
1MA(1): ,t t tu uε θ −= +  

 
6

1

7AR(6): ,
6t t j t

j

j uε φ ε −
=

−
= +∑  

 
12

1

13AR(12) :  ,
12t t j t

j

j uε φ ε −
=

−
= +∑  

 
6

1

1

7AR(6) : ( 1) ,
6

j
t t j t

j

j uε φ ε+
−

=

−
± = − +∑  



 19

 
  

 
12

1

1

13AR(12) :  ( 1) .
12

j
t t j t

j

j uε φ ε+
−

=

−
± = − +∑  (19) 

The above models were chosen by AP because they include a wide variety of patterns of 

serial correlation with both positive and negative serial correlations. The models used for 

the innovations ut   are the GARCH (1, 1) and EGARCH (1, 1) models and the nonlinear 

moving average and bilinear models. 

We calculated the .05 level-corrected powers by simulation for sample size T = 

1000 using 25,000 replications.  The finite-sample critical values are simulated using 

25,000 replications. The parameter values are chosen so that the maximum powers are 

approximately .4 and .8 for the two parameter values considered. All models are 

simulated with an approximately stationary startup by taking the last T random variables 

from a simulated sequence of the T + 500 random variables where startup values are set 

equal to zero.  

  Table 3 presents the .05 level-corrected power of each of the tests for the AR(1), 

MA(1), AR(6), AR(12), AR(6)± , and AR(12)± models with GARCH(1 ,1) innovations. 

The powers in Table 3 present a mixed picture.  A comparison of the LM-based tests 

shows that Exp-LM0 tends to have the highest power for the AR(1) and MA(1) models 

and the lowest power for the AR(12), AR(6)± , and AR(12)± models. For the latter 

models, the sup LM test has the highest power.  We conclude that the sup LM test has 

higher all-around power than the Exp-LM∞  by a small margin. The same pattern tends to 

hold when different values of φ and θ are used in the error models. 

  Among the BP tests, the BP6 has the highest power. The sup LM test has higher 

power than the BP6 test and by a considerable margin in many cases. The powers of the 
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BP6 test tend to be higher than the powers of the Exp-LM0 for the AR(12)± model.  The 

powers of the BP6 test are lower than the powers of the Exp-LM∞  test.  The power of the 

Deo (2000) test is slightly higher than the power of the generalized AP tests in the AR(1) 

and MA(1) cases, but in other cases it is smaller and sometimes substantially so.   

When the powers of the tests are compared for models with EGARCH (1, 1) 

innovations, our conclusions are essentially the same as those for GARCH (1, 1), and 

similarly for the models with nonlinear moving average innovations and with bilinear 

innovations.  

 Following AP, we also investigated the .05 level-corrected powers where ARMA 

(1, 1) models are used for the errors. As previously, the innovations ut  are  generated by 

the MDS or non-MDS models considered previously. In simulation experiments where 

ARMA(1,1) models are used for the errors, the sup LM tests no longer have the best all 

around power compared to the Exp-LM0 and Exp-LM∞  tests.  Once the results from 

ARMA error models are taken into account, the sup LM, Exp-LM0 and Exp-LM∞  tests 

all have better power than the BP tests, but none is dominant. 

 Of course, the power results are influenced by the models and parameter values 

used in the simulation experiments.  Note that the data generation processes used in the 

above experiments have declining weights as the lag length increases. As a consequence, 

the first autocorrelation is dominant. This type of design is relevant for applications in 

economics and finance.  As we have seen, for this type the generalized AP tests tend to 

have higher power than the generalized BP tests. However, the reverse can be hold for 

designs where the first autocorrelation is not important.  A simple example of a data 
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generation process with this property is an AR(2) where the coefficient on 1tY −  is zero 

and on 2tY −  is negative. This caveat should be kept in mind when interpreting the results.  

AP considered seasonal MA models for the errors εt. The models are  

            MA( ) : , 1,...,6.t t t jj u u jε θ −= + =                                      (20)     
           
We calculated the .05 level corrected power for these error models with θ =.15 where the 

ut  are generated by the EGARCH (1, 1) model. For the seasonal models, the BP6 and 

B12 tests are best of those considered, with BP6 test having the highest all around power.  

This conclusion is the same as that reached by AP.   

 AP implement the tests using rT  = 50 and we do so using rT  = 20.  We 

investigated whether this affects the consistency of the tests.  We found that with |  Π | ≤ 

0.8 and a process with 1 20 21... 0, 0ρ ρ ρ= = = ≠  increasing the truncation lag does not 

make any very noticeable difference to powers and thus the consistency of the tests as the 

sample size T increases to 15,000. Further, we simulated the level-corrected powers for T 

= 1000 using rT  = 40. The powers of the LM-based tests for rT  = 40 are essentially the 

same for rT  = 20, and hence the conclusions from the power comparisons are unchanged.  

Computing. The random number generator used in the experiments was the very long 

period generator RANLUX with luxury level p = 3; See Hamilton and James (1997).  The 

program used for VARHAC was the version of the program by den Haan and Levin 

(http://econ.ucsd.edu/~wdenhaan/varhac.html) modified to run substantially faster.  

6. EMPIRICAL APPLICATION 
 
 As Campbell, Lo and MacKinlay (1997) note, the predictability of stock returns is 

an active research topic.  They illustrate the empirical relevance of predictability by 
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applying the BP tests to CRSP stock return indexes. In this section, their empirical 

application is extended in two ways: First, results are presented for the AP tests as well as 

the generalized AP and BP tests; second, results are presented for an extension of their 

sample period. 

 Campbell, Lo and MacKinlay (1997) report the means, standard deviations, the 

first four sample autocorrelations (in percent) as well as the BP5 and BP10 statistics in 

their Table 2.4 for monthly, weekly and daily value-weighted (VWRETD) and equal-

weighted (EWRETD) stock return indexes (NYSE/AMEX). The sample period is July 3, 

1962 to December 31, 1994.  We replicated the results by Campbell, Lo and MacKinlay 

(1997) for this sample period and the sub-periods they selected.  

In this section, the sample period is July 3, 1962 to December 30, 2005.  Results 

were calculated for the sup LM, Exp-LM0 and Exp-LM∞ tests, and the generalized AP 

and BP tests, both for the sample period and sub-periods considered by Campbell Lo and 

MacKinlay (1997) and for the extended sample period and selected sub-periods. The 

skewness and kurtosis statistics were also calculated to provide a check on the normality 

of the returns. As expected, the kurtosis statistics provide strong evidence against 

normality.  

For the sake of brevity, we only report results for the monthly equal-weighted 

stock return indexes. Table 4 illustrates that inferences from the generalized AP tests can 

conflict with those from the generalized BP tests. The generalized AP tests tend to reject 

and the generalized BP tests tend not to reject.  For the data used by Campbell, Lo and 

MacKinlay (1997), the BP tests tend to not reject at the nominal .05 level and similarly 

for the generalized BP tests.  The greater number of rejections by the generalized AP tests 
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may be explained by the higher power of the generalized AP tests compared to the 

generalized BP tests.  

Table 4 also shows that both the AP and BP tests tend to reject at the nominal .05 

and or .01 levels for the extended sample period and selected sub-periods.  The same is 

true for the generalized AP tests. Again there are substantially fewer rejections by the 

generalized BP tests than the generalized AP tests.  

  In light of our Monte Carlo experiments, the results reported by Campbell, Lo 

and MacKinlay (1997) for the BP tests are difficult to interpret in isolation. Although the 

BP statistics are often enormous for weekly and daily data, this alone does not provide 

strong evidence that the null of zero correlation is false.  This is because the BP tests tend 

to substantially over-reject when data are generated by uncorrelated dependent processes 

such as a GARCH (1, 1) or EGARCH (1, 1) model. In particular, the over-rejection is 

most pronounced for large sample sizes, sizes similar to those in this empirical 

application.  

The motivation of the empirical application is predictability of stock returns, 

which is characterized by a MDS condition in stock returns. The MDS hypothesis implies 

that stock returns are white noises, so it is valid to use tests for serial correlation in testing 

the predictability of stock returns. Hence, robustness under conditional heteroskedasticity 

in the case of GARCH and EGARCH is an appealing property of the generalized AP test. 

However, robustness under the non-MDS cases (nonlinear MA and bilinear) may be 

interpreted as a drawback for this purpose because non-MDS processes which can be 

used for prediction will be missed. 

7. CONCLUDING COMMENTS 
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In the simulations in this paper, the differences between the true and nominal 

levels of the generalized AP tests are essentially zero for suitable sample sizes, and the 

generalized AP tests have good power properties for nonseasonal alternatives compared 

to the generalized Box-Pierce tests and the Deo (2000) tests. The Exp-LM∞ test is 

recommended for nonseasonal applications in economics and finance. The paper includes 

an empirical application to stock return indexes that is motivated by the search for 

predictability in returns. The results illustrate that inferences from the generalized AP 

tests can conflict with those from the generalized Box-Pierce tests and can make a 

difference to the inferences drawn from the data.    

Andrews, Liu and Ploberger (1998) extended their approach to testing white noise 

against multiplicative seasonal ARMA (1, 1) models. A topic for further research would 

be to use our approach to generalize the LM-based test for this case.  The generalized 

LM-based tests do not apply to residuals from ARMA models. We plan to investigate this 

topic in future research. 
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Table 1. Asymptotic Critical Values 
rT  sup-LM  Exp-LM0  Exp-LM∞ 

 10% 5% 1%  10% 5% 1%  10% 5% 1% 
20 4.608 5.945 9.081  2.408 3.326 5.586  1.418 1.973 3.348 
50 4.608 5.945 9.081  2.409 3.326 5.586  1.418 1.973 3.347 
NOTE: Critical values obtained by setting Π = {0, ± .01,…, ±.79, ±.80}. The number of 
replications is 150 million.   
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Table 2. Rejection Probabilities (Percent) of Nominal 0.05 Tests: MDS Models 
  GARCH(1, 1) EGARCH(1, 1) 

0V̂  T 200 500 1000 5000 200 500 1000 5000 
          
I sup LM 7.6 9.3 10.6 12.3  25.2  37.9  47.2  61.8 
 Exp-LM0 7.2 8.8 9.4 10.7  23.1  32.5  39.8  51.2 
 Exp-LM∞ 7.7 9.4 10.2 11.7  25.1  35.9  44.1  57.3 
 BP6 9.8 13.1 14.9 17.6  40.0  57.2  67.9  82.5 
 BP12 10.6 15.3 18.3 22.4  41.7  63.4  75.9  90.6 
 BP20 10.3 16.5 20.6 25.4  37.8  62.7  76.8  92.9 
          

*V̂  sup LM 5.4 5.1 5.0 5.3   7.9   6.3   6.0   6.0 
 Exp-LM0 5.1 4.9 4.9 5.0   6.9   5.4   5.1   5.3 
 Exp-LM∞ 5.3 5.0 5.0 5.2   7.5   5.9   5.5   5.6 
 BP6 5.8 5.1 4.8 4.9   8.7   6.1   5.3   4.9 
 BP12 6.0 5.2 5.0 5.1   9.3   6.7   5.7   5.0 
 BP20 5.8 5.2 5.2 5.2   8.9   6.5   5.9   5.4 
 DEO 4.6 4.7 4.8 4.9   4.8   4.5   4.6   4.8 
          

GPV̂  sup LM 5.3 4.8 5.0 5.1   7.5   5.1   4.8   4.2 
 Exp-LM0 5.1 4.7 4.9 5.0   6.9   5.1   4.7   4.8 
 Exp-LM∞ 5.2 4.8 4.9 5.1   7.2   5.0   4.6   4.5 
 BP6 5.3 4.4 4.6 4.7   8.1   4.8   4.1   3.9 
 BP12 4.5 3.8 4.1 4.9   8.7   4.3   3.4   3.5 
 BP20 3.3 2.9 3.4 4.6   8.7   3.7   3.0   3.6 
          
ˆ (AIC)V  sup LM 6.5 5.9 6.0 5.1  13.7   8.0   6.4   6.7 

 Exp-LM0 5.0 4.7 4.7 4.7   9.2   5.2   4.2   4.7 
 Exp-LM∞ 5.6 5.1 5.1 4.9  11.2   6.0   4.9   5.4 
 BP6 7.0 5.0 4.7 4.5  18.8   8.0   5.1   5.3 
 BP12 8.9 5.1 4.6 4.6  27.6  10.4   6.0   6.4 
 BP20 11.1 4.9 4.2 4.4  37.5  13.5   7.3   8.7 
          
ˆ (SBC)V  sup LM 5.4 4.9 5.1 4.9   9.9   6.2   5.6   6.3 

 Exp-LM0 5.0 4.6 4.8 5.0   7.4   4.8   4.1   4.4 
 Exp-LM∞ 5.2 4.8 4.8 5.0   8.5   5.2   4.5   5.0 
 BP6 5.4 4.5 4.7 4.7  12.8   6.7   4.8   4.8 
 BP12 4.7 4.0 4.2 4.9  16.7   8.1   5.4   5.9 
 BP20 3.7 3.1 3.6 4.7  20.9   9.7   6.5   7.8 

NOTE: The tests, as functions of 0V̂ , are defined in (12) and (14) above. The estimator 
*V̂ is consistent in the diagonal MDS case; GPV̂ is consistent for general MDS processes; 

the estimators ˆ(AIC)V  and ˆ(SBC)V  are consistent estimators in both MDS and non-MDS 
cases.  DEO refers to the Deo (2000) test, which is consistent in the diagonal MDS case. 
The number of replications is 25,000. 
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Table 3. Level-Corrected Powers of .05 Tests for AR and MA Models With GARCH (1, 1) 
Errors, T =1000 

0V̂   AR(1) MA(1) AR(6) AR(12) AR(6) +- AR(12) +- 
 φ .05 .1   .05 .075 .025 .05 .05 .075 .075 .1 
 θ   .05 .1         
              
I sup LM 20 67 20 66 53 88 25 81 29 64 79 97 
 Exp-LM0 25 74 24 73 43 80 17 61 26 54 51 75 
 Exp-LM∞ 23 72 23 71 50 86 21 75 29 61 68 92 
 BP6 12 46 12 45 39 79 16 67 20 45 54 82 
 BP12 9 33 9 32 29 69 14 64 14 30 39 65 
 BP20 8 25 8 24 22 59 12 56 11 22 28 48 
              
*V̂  sup LM 21 68 20 67 54 88 26 81 29 64 79 96 
 Exp-LM0 25 75 25 74 44 80 17 61 27 54 52 75 
 Exp-LM∞ 24 73 24 72 50 86 20 73 29 61 65 89 
 BP6 13 48 13 47 40 80 17 67 21 47 56 82 
 BP12 10 36 10 35 31 70 15 65 15 32 41 67 
 BP20 9 28 9 27 24 61 12 57 12 24 30 51 
 DEO 26 76 26 75 38 75 14 52 24 50 44 67 
              
GPV̂  sup LM 21 68 21 68 47 86 20 76 38 73 87 98 
 Exp-LM0 25 75 25 74 41 78 15 57 29 58 57 81 
 Exp-LM∞ 24 74 24 73 46 83 17 68 35 68 76 94 
 BP6 13 48 13 48 35 75 14 61 26 56 68 90 
 BP12 10 37 10 36 26 63 12 55 19 43 63 88 
 BP20 9 29 9 28 20 52 10 45 15 33 51 79 
              

ˆ (AIC)V
 

sup LM 
19 63 19 65 30 68 10 51 45 78 91 98 

 Exp-LM0 25 74 25 74 33 67 12 43 35 65 67 88 
 Exp-LM∞ 23 72 24 72 34 71 11 48 41 75 84 97 
 BP6 13 45 13 46 22 49 9 33 33 66 82 96 
 BP12 9 32 9 33 14 32 7 24 23 52 77 95 
 BP20 8 23 8 24 11 22 6 16 17 40 65 90 
              

ˆ(SBC)V
 

sup LM 
20 67 21 67 45 84 19 74 39 74 88 98 

 Exp-LM0 26 75 26 75 40 76 15 56 31 60 60 83 
 Exp-LM∞ 25 73 25 73 44 82 17 67 36 70 78 95 
 BP6 13 48 13 48 33 72 13 59 27 58 70 92 
 BP12 10 36 10 36 24 59 11 52 20 44 65 89 
 BP20 9 28 9 28 19 49 9 42 15 34 52 81 

 NOTE:  See Table 2. The number of replications is 25,000 
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Table 4. Tests of Serial Correlation in Monthly CRSP EWRETD Stock Index Returns 

NOTE: See Table 2 for definitions of functions of 0̂V . In the VARHAC procedure to 
compute the generalized statistics the maximum lag is set at int(T0.25).  One and two stars 
denote rejection at the nominal 0.05 and 0.01 levels, respectively. 

Sample  
Period 

07:31:62 
12:30:94 

07:31:62 
09:29:78

10:31:78
12:30:94

07:03:62 
12:30:05

01:03:95 
12:30:05 

10:30:78 
12:30:05 

01:29:88 
12:30:05

Sample Size 390 195 195 522 132 326 216 
Mean (×100) 1.077 1.05 1.104 1.089 1.122 1.18 1.06 
SD (×100) 5.749 6.148 5.336 5.357 4.001 4.68 3.957 
Skewness -0.45 0.30 -1.59 -0.54 -1.11 -1.40 -0.72 
Kurtosis 

7.367 5.299 10.607 7.821 6.734 10.625 5.753 
1ρ̂ (×100) 17.1 18.4 15 17.5 19.7 18.8 23.2 
2ρ̂ (×100) -3.4 -2.5 -1.6 -4.1 -8.4 -4.0 -3.0 
0V̂ = I 

sup LM 11.8** 6.8* 4.4 16.6** 5.8 11.8** 11.8** 
Exp-LM0 8.6** 5.7** 2.7 11.9** 3.8* 8.0** 8.1** 
Exp-LM∞ 5.0** 2.9* 1.6 7.2** 2.3* 4.9** 5.0** 
BP5 12.8* 7.4 8.7 18.6** 10.3 19.9** 19.9** 
BP10 20.9* 12.3 13.7 27.8** 12.1 26.5** 21.3* 
BP20 40.7** 30.6 20.4 47.7** 17.6 32.7* 27.5 

0V̂ = ˆ (AIC)V  
sup LM  9.5**  6.4*   2.7 13.8**  3.0 1.9**  8.3*   
Exp-LM0 7.4**  4.7*   2.0 10.3**  1.4 6.9**  5.2*   
Exp-LM∞ 4.1**  2.6*   1.0 6.1**  0.9 4.1**  3.3*   
BP5 9.8 6.5 3.8 14.2*   5.4 13.1*   10.6 
BP10 16.5 8 8.6 20.0*   7.3 19.1*   11.1 
BP20 22.2 13.4 25.5 26.0 11.1 24.5 15.9 

0V̂ = ˆ (SBC)V  
sup LM 9.4** 5.0 3.5 13.3** 5.3 11.3** 8.4* 
Exp-LM0 6.3** 3.6* 2.3 9.0** 3.3 6.9** 5.5* 
Exp-LM∞ 3.8** 2.0 1.3 5.6** 2.0* 4.3** 3.4** 
BP5 11.0 5.1 7.4 16.1** 7.5 15.3** 11.8* 
BP10 17.0 9.7 12.6 22.6* 10.8 22.2* 12.2 
BP20 24.4 16.9 22.7 29.4 15.4 29.3 14.6 


