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Abstract 

This paper presents methods for second order meta-analysis along with several illustrative 

applications. A second order meta-analysis is a meta-analysis of a number of statistically 

independent and methodologically comparable first order meta-analyses examining ostensibly the 

same relationship in different contexts. First order meta-analysis greatly reduces sampling error 

variance but does not eliminate it. The residual sampling error is called second order sampling error. 

The purpose of a second order meta-analysis is to estimate the proportion of the variance in mean 

meta-analytic effect sizes across multiple first order meta-analyses attributable to second order 

sampling error and to use this information to improve accuracy of estimation for each first order 

meta-analytic estimate. We present equations and methods based on the random effects model for 

second order meta-analysis for three situations and three empirical applications of second order 

meta-analysis to illustrate the potential value of these methods to the pursuit of cumulative 

knowledge.   

Keywords: Meta-analysis, second order meta-analysis, research synthesis, sampling error 
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Methods for Second Order Meta-Analysis and Illustrative Applications 

By integrating and synthesizing effect sizes across primary studies measuring ostensibly the 

same relation, a first order meta-analysis provides a mean effect size that is more accurate than any 

effect size available from the primary studies included in the meta-analysis (Hedges & Olkin, 1985; 

Hunter & Schmidt, 2004; McDaniel, 2007). One of the strengths of first order meta-analysis is its 

ability to reduce sampling error by synthesizing effect sizes estimates across multiple primary 

studies. However, given the total number of studies in any meta-analysis is less than infinite, this 

process does not reduce sampling error to zero; the remaining sampling error is called second order 

sampling error (Hunter & Schmidt, 2004, chapter 9). It is this second order sampling error that is 

the focus of second order meta-analysis, the methodology of conducting a meta-analysis of meta-

analyses by synthesizing evidence from multiple meta-analyses. Second order meta-analysis is also 

known as overview of reviews, umbrella review, meta-meta-analysis, and meta-analysis of meta-

analyses in other fields of the social sciences (e.g., Cooper & Koenka, 2012, p. 446). A major goal 

of second order meta-analysis is to determine how much of the variance in mean effect sizes1 across 

different first order meta-analyses of the same relation is due to second order sampling error 

(variance) and to use this information to improve estimates in individual meta-analyses.  

Numerous meta-analyses have been conducted in various areas of industrial-organizational 

psychology and the related fields of Management, Organizational Behavior and Human resource 

Management. The same is true in other disciplines and research areas in psychology.  For example, 

some research topics (e.g., the relation between personality and job performance; Oh, 2009) have 

been meta-analytically examined independently in multiple countries. As illustrated later, there are 

quite a few research areas in these literatures in which there are multiple independent first order 

meta-analyses on the same relationship.   Hence there is need to integrate multiple meta-analyses 

conducted to estimate ostensibly the same relation by means of second order meta-analysis. Further, 
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this need will increase in the future as more multiple meta-analyses accumulate in the literature. 

Cooper and Koenka (2012) examined methods for integrating results across different meta-analyses 

and concluded that none of the currently available methods are really satisfactory (particularly in 

estimating the amount of true variance). If we decide to synthesize effect size across the first order 

meta-analyses, there are three options to choose from as suggested in Borenstein, Hedges, Higgins, 

and Rothstein (2009, pp. 184-186).  

The first option is to conduct a full meta-analysis including all primary studies. This is an 

omnibus meta-analysis pooling all primary studies across all potential moderators followed by 

separate meta-analyses for different potential moderators. As stated in Borenstein et al. (2009, p. 

186), “if the subgrouping is not of major importance, or if multiple different subgroupings of the 

studies are being considered, then [this] is the more logical choice”. However, this option is 

possible only if all primary studies and data used in each first order meta-analysis are available to 

the researcher(s); in practice, this is often not the case. For example, studies in some of the meta-

analyses might be written in languages that the researchers do not understand.  In addition, although 

this procedure produces the same grand mean estimate as second order meta-analysis, it does not 

allow one to estimate the variance (and the percentage of that variance) across sub-group meta-

analyses that is (and is not) due to second order sampling error, because the method does not allow 

second order sampling error variance to be computed.  This option is frequently advocated and 

therefore we later discuss in more detail the disadvantages of this option in comparison to a second 

order meta-analysis. That material is presented later in this paper after the necessary conceptual 

foundations for understanding second order meta-analysis have been presented. The two options 

described next are viable when first order meta-analytic estimates are the only available input. 

The second option (Borenstein et al., 2009) is to combine (i.e., average) mean effect sizes 

across first order meta-analyses of interest while ignoring the between-meta-analysis variance. 
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Some scholars have conducted a second order analysis of this sort on the relations between 

personality and job performance across multiple, minimally overlapping, prior first order meta-

analyses (e.g., Barrick, Mount, & Judge, 2001). According to Cooper and Koenka (2012; p. 458), 

this is the most common way in which second order meta-analysis is conducted at present. 

However, as discussed later, this option does not allow estimation of the amount of true (i.e., non-

artifactual) variance between meta-analyses means (useful in estimating the credibility intervals for 

the second order meta-analytic means). Nor does it allow estimation of the amount of observed 

variation across meta-analyses that is due to second order sampling error (useful in estimating the 

confidence intervals for the second order meta-analytic means).  

The third option (Borenstein et al., 2009) is to combine mean effect sizes across meta-

analyses of interest while modeling the between-meta-analysis variance. This is the best option 

when primary studies from all relevant first order meta-analyses are unavailable (a second order 

meta-analysis can be conducted using only first order meta-analytic estimates), and there is a need 

to estimate the between-meta-analysis variance (for example, when each meta-analysis represents a 

random sample of a different population [e.g., country, occupation, type of industry, military vs. 

civilian]). As noted by Cooper and Koenka (2012; p. 458), complete statistical methods necessary 

for conducting this type of second order meta-analysis have not yet been introduced. Hunter and 

Schmidt (2004, pp. 406-408) briefly discussed how to compute second order sampling error but did 

not fully explicate the statistical methods necessary for estimating the between-meta-analysis 

variance. Borenstein et al. (2009, p. 183) acknowledged that second order meta-analysis needs to 

model this additional source of variability, but “[t]he mechanism for doing so is beyond the scope of 

an introductory book”.   

The major goal of this study is to present statistical methods for second order meta-analysis 

modeling between-meta-analysis variation with several illustrative applications.  Later in this paper, 
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after the conceptual and methodological bases for second order meta-analysis have been presented, 

we consider and address several potential objections to this procedure. The methods of second order 

meta-analysis are a straightforward generalization of first order random effects (RE) meta-analysis 

methods to the meta-analytic analysis of the mean effect size estimates across multiple meta-

analyses.  The methods presented in this paper cannot be applied to fixed effects (FE) meta-

analyses. In response to critiques of the FE model (e.g., Hedges, 1994; Hunter & Schmidt, 2000; 

Schmidt, Oh, & Hayes, 2009), FE meta-analysis model is rarely used today. This is because FE 

models assume a priori that there can be no real variation in effects sizes across studies (i.e., no 

variation beyond sampling error variance), an unrealistic assumption (Hunter & Schmidt, 2000; 

Raudenbush, 1994; 2009; Schmidt et al., 2009). This assumption would substantially bias 

downward the estimate of second order sampling error in any second order meta-analysis.  The 

methods presented in this paper are based on the Hunter-Schmidt meta-analysis methods, which 

include only RE models.  The second order meta-analysis methods introduced below are based on 

“a fully random-effects model” because they assume random effects both within and across meta-

analyses (Borenstein et al., 2009, p. 183). To explicate this, we first present a brief review of the 

basic equations of first order meta-analysis, using the correlation coefficient as the illustrative 

statistic. Analogous equations apply for the d statistic. In first order meta-analysis, effect sizes from 

primary studies/samples are weighted by the inverse of their sampling error or a close 

approximation thereof. The following discussion of first order meta-analysis assumes such study 

weights. See Schmidt, Oh, and Hayes (2009; see also Brannick, Yang, & Cafri, 2011) for an 

extended discussion of the weighting of primary studies in first order meta-analysis. 

Review of First Order Meta-Analysis Methods 

Simple (Bare Bones) First Order Meta-Analysis 
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 The simplest form of meta-analysis is one in which only sampling error is taken into 

account, referred to as bare bones meta-analysis (Hunter & Schmidt, 2004, chapter 3). In this 

version of meta-analysis, there is no correction for measurement error. Eqs. 1 and 2 are the 

fundamental equations for this form of meta-analysis: 

  )( 222
irxy er SESS += ρ ,        (1) 

where 2
rS  is the weighted variance of the observed correlations ( ir ) across statistically independent 

primary studies, 2
ireS  is the sampling error variance for each correlation, and E( 2

ireS ) is the weighted 

average of these sampling error variances. Transposing, we obtain Eq. 2: 

  )(ˆ 222
irerxy SESS −=ρ .       (2) 

The term on the left in Eq. 2 is the variance of the actual population study correlations, estimated as 

the (weighted) observed variance of the correlations minus the expected (weighted average of) 

sampling error variance as computed from the usual formula for the sampling error variance of 

correlations  (Hunter & Schmidt, 2004, chapter 3). If the term on the left side of Eq. 2 is zero or 

very small, the final result is the (weighted) mean observed correlation ( r ) and its standard 

deviation corrected for sampling error alone ( xySDρ ). [Note that in a FE model, this value is 

assumed by fiat to be zero.]  If the term on the left side of Eq. 2 is large, there may be a search for 

moderators, which may be conducted either by subgrouping studies by moderator values and 

conducting separate meta-analyses or by regressing study correlations onto hypothesized 

moderators (i.e., meta-regression) (Aguinis, Gottfredson, & Wright, 2011; Borenstein et al., 2009, 

chapters 19-20). 

First Order Meta-Analysis Correcting Each Effect Size Individually  



Second Order Meta-Analysis 8 
 

Measurement error is present in all measures used in all research and it biases all estimates 

of relationships in research. As a result, it is important to include corrections for these biases in 

order to obtain unbiased estimates of relationships. In comparison with bare bones meta-analysis, a 

more complete and accurate form of meta-analysis (Hunter & Schmidt, 2004, chapter 3) is one in 

which each correlation is first corrected for the downward biases created by measurement error (and 

for range restriction and dichotomization, if present). The meta-analysis is then performed on these 

corrected correlations (symbolized rc). Eq. 3 is the basic equation for this form of meta-analysis.  

  )(ˆ 222

icrecr SESS −=ρ ,       (3) 

where the term on the left side of the equation is the estimated variance of the actual (disattenuated) 

population correlations, 2
crS  is the weighted variance of the correlations that have been corrected 

individually for measurement error, 2

icreS  is the sampling error variance for each corrected 

correlation, and )( 2

icreSE is the weighted mean across the corrected correlations of these sampling 

error variance values. In this form of meta-analysis, each corrected correlation (
icr ) is weighted by 

iyyixxi rrN ×× ; that is, by the three-way product of sample size ( iN ), the reliability of the 

independent variable measure (
ixxr ), and the reliability of the dependent variable measure (

iyyr ), 

where i indicates the ith study. This 3-way product represents the inverse of the sampling error 

variance of a correlation corrected for measurement error (Hunter & Schmidt, 2004, chapter 3). If 

there is, in addition, a correction for range restriction, this study weight becomes a 4-way product.  

The first term on the right side of Eq. 3 is the observed weighted variance of the correlations 

that have been individually corrected for measurement error; this figure is typically larger than the 

weighted variance of the uncorrected correlations, because the correction for measurement error 
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increases the variance of the correlations.  The second term on the right is the expected weighted 

sampling error variance of these correlations. This sampling error is larger than in the case of Eq. 2 

because the corrections for measurement error increase the sampling error in each correlation 

(Hunter & Schmidt, 2004, chapter 3). Procedures for calculating this sampling error variance are 

given in Hunter and Schmidt (2004, pp. 206-207).  The term on the left side of Eq. 3 ( 2ˆ
ρS ) is the 

estimate of the variance of the disattenuated population correlations (i.e., the population parameter 

true score correlations).  If this term is zero or very small, the final result of the meta-analysis is the 

(weighted) mean corrected correlation ( ρ̂ ) and its standard deviation corrected for sampling error 

and measurement error ( ρSD ). If the term on the left side of Eq. 3 ( 2ˆ
ρS ) is large, there may be a 

search for moderators.  

First Order Artifact Distribution Meta-Analysis 

       If few of the primary studies provide the estimates of reliability (and other relevant artifacts) 

required to correct for measurement error (and other artifacts), meta-analysis can nevertheless be 

carried out by use of such estimates from other credible sources—other relevant studies, test 

manuals, etc. This procedure is called artifact distribution meta-analysis (Hunter & Schmidt, 2004, 

chapter 4). Eq. 4 is the fundamental equation for this form of meta-analysis. 

  )(
ˆˆˆ 2

2
2

2
2

irer SE
r

S
r

S 







−








=

ρρ
ρ .     (4) 

The term on the left side of Eq. 4 is the estimate of the variance of the population (parameter) 

disattenuated correlations. In this form of meta-analysis, it is not possible to directly compute the 

variance of the corrected correlations, because observed correlations are not corrected individually. 

However, the first term on the right side of Eq. 4 estimates this value as the product of the variance 

of the uncorrected correlations and the square of the mean correction factor. The correction factor is 
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the factor by which the mean observed correlation, r  (the bare bones meta-analytic mean estimate), 

is increased when the mean true score population correlation, ρ̂ , is estimated, based on the 

correction for mean level of measurement error. This follows from the fact that the measurement 

error corrections increase the variance of the correlations by the square of this factor (Hunter & 

Schmidt, 2004, chapter 4). The basic statistical principle here is that if one multiplies any set of 

numbers by a constant, the standard deviation is multiplied by that constant and the variance is 

multiplied by the square of that constant.  The second term on the right side of Eq. 4 estimates the 

sampling error variance in the same manner, based on the same principle. The corrections for 

measurement error increase sampling error variance, and the factor by which it is increased is again 

the square of the mean correction factor. In the second term on the right in Eq. 4, the sampling error 

variance is the weighted average of the sampling error variances in the individual (primary) studies 

included in the meta-analysis. The term on the left side of Eq. 4 ( 2ˆ
ρS ) is the estimate of the variance 

of the disattenuated population correlations (i.e., the true score correlations).  If this term is zero or 

very small, the final result is the (weighted) mean corrected correlation ( ρ̂ ) and its standard 

deviation corrected for sampling error and measurement error ( ρSD ). If the term on the left side of 

Eq. 4 ( 2ˆ
ρS ) is large, there may be a search for moderators.  

These are the basic principles and methods of first order psychometric meta-analysis. It is 

well accepted that meta-analysis has proven to be a critical and important methodological advance 

and has contributed greatly to the advancement of research progress and cumulative knowledge 

(e.g., see Bangert-Drowns, 1986; Chan & Arvey, 2012; DeGeest & Schmidt, 2010; McDaniel, 

2007; Murphy & Newman, 2003; Sackett, 2003). However, it is nevertheless important to continue 

to strive for additional methodological advances in order to add additional useful tools for 

researchers that will help to further clarify the knowledge bases contained in our research 
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literatures. In this connection, meta-analysis has been and will be a constantly evolving research 

integration tool (Schmidt, 2008). This is the motivation for the present paper on second order meta-

analysis methods.  

Second Order Meta-Analysis: General Principles 

 As mentioned briefly, second order meta-analysis has two important advantages over other 

approaches to interpreting multiple meta-analyses on the same question. First, second order meta-

analysis allows estimation of the extent to which second order sampling error variance explains the 

differences between the mean effects across first order meta-analysis and allows estimation of the 

amount (if any) of true (i.e., non-artifactual) variance across these mean effect sizes. Second, second 

order meta-analysis allows one to compute the reliability of the differences between meta-analyses 

in mean effect sizes. This, in turn, allows more accurate estimation of the true mean effect sizes in 

each first order meta-analysis. No other method of interpreting multiple first order meta-analyses 

allows either of these advantages. The nature and value of these advantages will become clearer as 

we present and examine the methods of second order meta-analysis.     

These basic equations and principles of first order meta-analysis can be generalized to 

second order meta-analysis. We again use the correlation coefficient as the illustrative statistic; the 

equations for the d statistic are directly analogous. The input to a first order meta-analysis is an 

effect size estimate from each of the primary studies included in the meta-analysis. The input to a 

second order meta-analysis is, by contrast, the meta-analytic mean effect size estimate from each of 

the m meta-analyses included in the second order meta-analysis; that is, 1ρ̂ , 2ρ̂ , 3ρ̂ …….. mρ̂ . 

Among other purposes, second order meta-analysis provides a method for testing the reality of 

multiple hypothesized moderator variables simultaneously. A finding that second order sampling 

error accounts for all of the variability of the mean correlations or effect sizes across the individual 

meta-analyses suggests that the observed differences among the individual meta-analysis means do 
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not represent real moderator effects. As discussed later, alternatives to second order meta-analysis 

cannot provide this information. In addition, as shown later, if second order sampling error accounts 

for less than 100 percent of the variance of the mean correlations or effect sizes across meta-

analyses, the method of second order meta-analysis provides a useful means for increasing the 

accuracy of the estimates of the mean correlations in each individual meta-analysis.  

It is important to note that second order meta-analysis requires the assumption that the 

different first order meta-analyses are statistically independent. Strictly speaking, the requirement of 

statistical independence means that the primary studies or samples contained in a first order meta-

analysis should not also be included in any of the other first order meta-analyses. There are many 

situations in which this assumption is met. For instance, we later present an example application of 

second order meta-analysis in which the first order meta-analyses were all carried out in different 

countries and were therefore statistically independent (Oh, 2009). We present another example 

application in which multiple independent first order meta-analyses were carried out by the same 

research team (Mesmer-Magnus, DeChurch, Jimenez, Wildman, & Shuffler, 2011). Other examples 

of multiple independent meta-analyses can be found in the literature. For recent examples, 

Podsakoff, Bommer, Podsakoff, and MacKenzie (2006) examined industry type (manufacturing vs. 

service) as a moderator of the relationship between leader behavior and subordinate performance.  

Combs, Liu, Hall and Ketchen (2006) also conducted separate, statistically independent meta-

analyses split out by type of industry. These subgroup meta-analyses had no studies in common and 

so were statistically independent. Van Inddekinge, Roth, Putka, and Lanisvich (2011) conducted 

separate statistically independent meta-analyses on job applicants and job incumbents and also on 

predictive and concurrent validity studies in examining the relation between vocational interests and 

job performance. Wang, Oh, Courtright, and Colbert (2011) conducted separate, statistically 
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independent meta-analyses on public and private organizations as well as on North American and 

East Asian samples.  

 However, in many cases this assumption is not met or is only partially met. Cooper and 

Koenka (2012) suggest that simply minimizing the lack of independence might be the best that can 

sometimes be expected (p. 458). Tracz, Elmore, and Pohlmann (1992), in an extensive simulation 

study, found that violations of independence had little or no effect on meta-analytic results. We 

discuss this question in more detail later in the paper. Finally, in many cases the equations presented 

below can be further simplified; however, we present them in pre-simplified form to facilitate 

understanding of the logic reflected in the equations.   

Second Order Meta-Analysis of Bare Bones Meta-Analyses 

Eq. 5 is the fundamental equation when the first order meta-analyses entering the second 

order meta-analysis have corrected only for sampling error:  

  )(ˆ 2
ˆ

2
ˆ

2

irerxy SES −=ρσ ,       (5) 

where the term on the left side of the equation is the estimate of the population variance of the 

uncorrected mean correlations ( xyρ̂ ) across the meta-analyses after second order sampling error has 

been subtracted out.  The first term on the right side of Eq. 5 is the weighted variance of the mean 

correlations across the m meta-analyses, computed as follows: 

  ( )∑ ∑−=
m m

iiir wrrwS
1 1

2
2
ˆ /ˆˆ , where                                                       (5a)  

  ∑∑=
m

i

m

ii wrwr
11

/ˆˆ ; and      (5b)  

  
12 −











=

i
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i k

S
w ,        (5c) 
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and where 2
irS  is the variance of the observed correlations (rs) in the ith meta-analysis, ir̂  is the 

estimate of the mean effect size for the ith meta-analysis, r̂  is the estimate of the (weighted) grand 

mean effect size across the m meta-analyses, ki is the number of primary studies included in the ith 

meta-analysis, and the wi is the weight applied to the ith meta-analysis. The second term on the right 

side of Eq. 5 is the expected (weighted average) second order sampling error variance across the m 

meta-analyses: 

  ∑∑ 










=

m

i

m

i

ir
i

ir
e w

k
S

wSE
11

2
2
ˆ /)( .      (5d) 

Eq. 5d reduces to Eq. 5e: 

∑=
m

i
ir

e wmSE
1

2
ˆ /)( .       (5e) 

To summarize, each meta-analysis will have reported a mean uncorrected (i.e., mean 

observed) correlation, ir̂ . The first term on the right in Eq. 5 is the weighted variance of these mean 

correlations. This computation is shown in Eqs. 5a and 5b. The weights (wi) used in Eqs. 5a, 5b, 5d, 

and 5e are as defined in Eq. 5c. Each weight is the inverse of the random effect (RE) sampling error 

variance for the mean correlation in the ith meta-analysis (Schmidt et al., 2009). The second term on 

the right in Eq. 5 is the sampling error variance of these mean correlations. Each of the meta-

analyses will have reported the variance of the observed correlations in that meta-analysis. Dividing 

each such variance by ki (the number of studies in that meta-analysis) yields the RE sampling error 

variance of the mean r ( ir̂ ) in that meta-analysis (Schmidt et al., 2009). [This reflects the well 

known principle that the sampling error variance of the mean of any set of scores is the variance of 

the scores divided by the number of scores (and the standard error of the mean is the square root of 

this value).]  The weighted average of these values across the m meta-analyses estimates the RE 
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sampling error variance of the mean rs as a group, as shown in Eq. 5d and Eq. 5e. The square root 

of this value divided by the square root of m is the standard error (
r

SE ˆ ) and can be used to put 

confidence intervals around the estimate of the (weighted) grand mean ( r̂ ; computed in Eq. 5b). 

Also, using the square root of the value on the left side of Eq. 5 ( xyρσ̂ ) one can construct a 

credibility interval around the grand mean correlation across the m meta-analyses, within which a 

given percentage of the first order population meta-analytic (mean) effect sizes ( xyρ̂ ) is expected to 

lie (Hunter & Schmidt, 2004, chapter 3). For example, 80% would be expected to lie within the 

80% credibility interval.  If the value on the left side of Eq. 5 is zero, the conclusion is that the mean 

population correlation values are the same across the meta-analyses. In that case, all the observed 

variance is accounted for by second order sampling error, and the conclusion is that there are no 

moderators. If it is greater than zero, one can compute the proportion of variance between-meta-

analyses that is due to second order sampling error. This is computed as the ratio of the second term 

on the right side of Eq. 5 to the first term on the right side, i.e.: 

ProportionVar = 2
ˆ

2 /)(
ˆ re SSE
ir

,              (5f) 

and 1 – ProportionVar denotes the proportion of the variance across first order meta-analytic (bare 

bones) mean correlations that is “true” variance (i.e., variance not due to second order sampling 

error). As such, this number is the reliability of the meta-analytic correlations (considered as a set of 

values, one for each first order meta-analysis) (Hunter & Schmidt, 2004). This follows because 

reliability is the proportion of total variance that is true variance (Ghiselli, 1964; Magnusson, 1966; 

Nunally & Bernstein, 1994).  As discussed later, this value can be used to produce enhanced 

accuracy for estimates of these mean (meta-analytic) correlations from the first order meta-analyses 

by regressing them towards the value of the grand mean correlation (the mean across the first order 



Second Order Meta-Analysis 16 
 

meta-analyses).  Both of these analyses are unique to second order meta-analysis and cannot be 

performed using other analysis methods.            

Second Order Meta-Analysis When Correlations have been Individually Corrected 

Measurement error is present in all research and it biases all relationships examined in 

research. Therefore it is important to include corrections for these biases. One approach in meta-

analysis is to correct each correlation individually for the downward bias created by measurement 

error (Hunter & Schmidt, 2004, chapter 3).  When the first order meta-analyses entering the second 

order meta-analysis have corrected each correlation individually for measurement error (and range 

restriction and dichotomization, if applicable), the fundamental equation for second order meta-

analysis is: 

  )(ˆ 22
ˆ

2
ˆ i

eSES
ρρρσ −= ,       (6) 

Where the term on the left in Eq. 6 is the estimate of the actual (non-artifactual) variance across the 

m meta-analyses of the population mean disattenuated correlations ( ρ̂ ); that is, the variance after 

variance due to second order sampling error has been subtracted out. The first term on the right side 

of Eq. 6 is the variance of the mean individually corrected correlations across the m meta-analyses, 

computed as follows: 

  ( )∑ ∑−=
m m

iii wwS
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and where 2
icrS  is the weighted variance of the disattenuated (individually corrected) correlations in 

the ith meta-analysis, iρ̂  is the  mean meta-analytic disattenuated correlation in that meta-analysis, 

ρ̂  is the (weighted) grand mean effect size across the m meta-analyses, ki is the number of primary 

studies included in the ith meta-analysis, and the wi* is the weight applied to the ith meta-analysis. 

The second term on the right side of Eq. 6 is the weighted average second order sampling error 

variance across the m meta-analyses: 

  ∑∑ 
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
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Equation 6d reduces to Eq. 6e: 

  ∑=
m

i
i

e wmSE
1

*2
ˆ /)(
ρ

       (6e) 

where the wi* are as defined in Eq. 6c.  

To summarize, each first order meta-analysis will have reported an estimate of the mean 

disattenuated correlation (the meta-analytic mean correlation, iρ̂ ). The first term on the right side of 

Eq. 6 is the variance of these meta-analytic mean correlations across first order meta-analyses. This 

computation is shown in Eqs. 6a and 6b. Eq. 6c shows the weights that are used in Eqs. 6a and 6b. 

The second term on the right side of Eq. 6 is the expected value of the second order sampling error 

variance of these meta-analytic correlations. Each meta-analysis will have reported an estimate of 

the variance of the corrected correlations it included, preferably to four decimal places, for 

precision.2 Dividing this value by k (the number of studies in the meta-analysis), yields the RE 

sampling error variance of the meta-analytic correlation for that meta-analysis (Schmidt et al., 

2009). [As noted earlier, this reflects the well known statistical principle that the sampling error 

variance of the mean of any set of scores is the variance of the scores divided by the number of 
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scores (and the standard error of the mean is the square root of this value).] As shown in Eq. 6d and 

Eq. 6e, the weighted mean of these values across the m meta-analyses yields the second order 

sampling error variance needed in Eq. 6. The square root of this value divided by the square root of 

m is the standard error (
ρ̂

SE ) and can be used to put confidence intervals around the grand mean 

( ρ̂ ; shown in Eq. 6b). 

The term on the left side of Eq. 6 is the estimate of the actual (non-artifactual) variance 

across meta-analysis of the population mean disattenuated correlations (the iρ̂ ); that is, the variance 

across first order meta-analytic estimates after removal of variance due to second order sampling 

error. Using the square root of this value ( ρσ̂ ), credibility intervals can be place around the grand 

mean computed in Eq. 6b. For example, 80% of population mean values are expected to lie within 

in the 80% credibility interval.  

 If the value on the left side of Eq. 6 is zero, the indicated conclusion is that the mean 

population correlation values are the same across the multiple meta-analyses. All the variance is 

accounted for by second order sampling error. If this value is greater than zero, one can compute the 

proportion of the between-meta-analyses variance that is explained by second order sampling error. 

This is computed as ratio of the second term on the right side of Eq. 6 to the first term on the right 

side, i.e.: 

ProportionVar = 2
ˆ

2 /)(
ˆ ρρ

SSE
i

e ,      (6f) 

and 1 – ProportionVar denotes the proportion of the variance across the first order meta-analysis 

mean population correlation values that is true variance (i.e., variance not due to second order 

sampling error). As such, this number is the reliability of the estimated mean first order population 

correlations (Hunter & Schmidt, 2004), because reliability is the proportion of total variance that is 
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true variance (Ghiselli, 1964; Magnuson, 1966; Nunnally & Bernstein, 1994). As illustrated later, 

this value can be used to refine the estimates of these first order meta-analysis mean values by 

regressing them towards the value of the grand mean disattenuated correlation (the mean across the 

m meta-analyses, computed in Eq. 6b). This procedure is illustrated in the example applications 

presented in the next section of this paper. Both these analyses are unique to second order meta-

analysis and are not available from other methods. In addition, when 2
ρ̂S  is zero, the ProportionVar 

is 100% and the reliability of the vector of m first order meta-analytic mean estimates is zero (e.g., 

Conscientiousness, in Column 11 of Table 2). This is the same as the situation in which all 

examinees get the same score on a test, making the reliability of the test zero. 

We note that ProportionVar is less informative when the observed variance of the meta-

analytic mean correlations across the m meta-analyses ( 2
ρ̂S ) is close to zero. A percent-based 

estimate can be misleading when it is interpreted blindly without considering the size of its 

denominator. For example, a ProportionVar figure of 50% could be .1000 / .2000 or .00010 / .00020. 

The latter case would not suggest the existence of moderator(s) across m first order meta-analytic 

mean estimates, given the tiny amount of observed variation to begin with and the even smaller 

amount of non-artifactual variance.  For purposes of detecting the likely presence of moderators 

across the m first order meta-analytic mean estimates, the absolute amount of true variance across m 

first order meta-analytic mean estimates ( 2ˆρσ  ) (or even better, its square root, the SD) can be more 

important than the relative percent of variance attributable to second order sampling error. (This 

same principle applies within first-order meta-analyses.) We suggest that meta-analysts consider 

both estimates.  

Second Order Meta-Analysis with Artifact Distribution Meta-Analyses 
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Often the information needed to correct each correlation individually for measurement error 

is unavailable for many or most of the studies. In such literatures, meta-analysis can nevertheless 

correct for measurement error by use of measurement error estimates (reliability estimates) from 

other credible sources, as indicated earlier. This method of meta-analysis is called artifact 

distribution meta-analysis (Hunter & Schmidt, 2004, chapter 4).   Equation 7 is the fundamental 

equation for second order meta-analysis when the first order meta-analyses have applied the artifact 

distribution method of meta-analysis. 

)(ˆ 2
ˆ

2
ˆ

2

i
eSES
ρρρσ −= ,       (7) 

where the term on the left side of Eq. 7 is the estimate of the non-artifactual variance of the 

population meta-analytic (disattenuated) correlations (population parameter values) across the m 

first order meta-analyses. This is the variance remaining after variance due to second order 

sampling error has been subtracted out. The first term on the right side of Eq. 7 is the variance of 

the mean disattenuated correlations across the m meta-analyses, computed as follows: 
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and where 2
irS  is the variance of the observed correlations within a given meta-analysis, iρ̂  is the 

mean disattenuated correlation in that meta-analysis, ir  is the meta-analytic (bare bones) mean 

correlation in that meta-analysis, ρ̂  is the (weighted) grand mean effect size across the m meta-

analyses, ki is the number of primary studies included in the ith meta-analysis, and wi** is the 
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weight applied to the ith meta-analysis. The second term on the right side of Eq. 7 is the weighted 

average second order sampling error variance across the m meta-analyses: 
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Eq. 7d reduces to Eq. 7e: 

∑=
m

i
i

e wmSE
1

**2
ˆ /)(
ρ

.       (7e) 

The wi** are as defined in Eq. 7c. Eq. 7 has the same form as Eq. 6 but some of the terms in 

it are estimated differently, so some explanation is indicated. The first term on the right side of Eq. 

7 is the computed variance across the meta-analyses of the first order meta-analytic mean 

disattenuated population correlations. Computation of this value is shown in Eqs. 7a and 7b. Eq. 7c 

shows the weights that are applied in Eqs. 7a and 7b. The second term on the right in Eq. 7 is the 

sampling error variance of these estimates. As shown in Eq. 7d and Eq. 7e, this sampling error is 

estimated as the weighted average across meta-analyses of the product of the square of the mean 

correction factor and the mean sampling error variance of the bare bones (uncorrected) meta-

analytic correlations ( 2
reS ; see Eq. 5d). Each meta-analysis will have reported the variance of the 

observed correlations it included. Dividing this variance by k (the number of studies in the meta-

analysis) yields the RE sampling error variance of the mean of the observed (uncorrected) 

correlations in that meta-analysis. As shown in Eq. 7d and Eq. 7e, the weighted average of the 

product of these values and the square of the correction factors across the m meta-analyses is the 

random effects sampling error variance estimate needed for Eq. 7 (Hunter & Schmidt, 2004, chapter 

4). This is based on the well known principle that if one multiples a distribution of scores by a 

constant, the standard deviation is multiplied by that constant and the variance is multiplied by the 
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square of that constant. Here the constant is the mean measurement error correction ( ii r/ρ̂ ). The 

square root of the  value of the left side of Eq. 7d divided by the square root of m is the standard 

error (
ρ̂

SE ) and can be used to put confidence intervals around the grand mean ( ρ̂ ; computed in 

Eq. 7b).  

The value on the left side of Eq. 7 is the estimate of the non-artifactual variance of the 

population disattenuated correlations across the m meta-analyses. This is the variance remaining 

after subtraction of variance due to second order sampling error. When this value is negative (i.e., 

second order sampling error variance is greater than the observed variance across the first order 

meta-analytic mean estimates), it is set to zero. Using the square root of this value ( ρσ̂ ), credibility 

intervals around the grand mean correlation can be computed, as described earlier.  If the value on 

the left side of Eq. 7 is zero, the indicated conclusion is that these mean population correlations are 

the same across the m meta-analyses. All variance is accounted for by second order sampling error, 

leading to the conclusion that there are no moderators. If this value is greater than zero, one can 

compute the proportion of between-meta-analysis variance that is accounted for by second order 

sampling error variance. This is computed as the ratio of the second term on the right side of Eq. 7 

to the first term, i.e.: 

ProportionVar = 2
ˆ

2
ˆ /)( ρρ

SSE
i

e ,                                     (7f) 

where 1 – ProportionVar denotes the proportion of the variance of the population disattenuated 

correlations that is true variance (i.e., variance not due to second order sampling error). Because of 

this, this number is the reliability of the vector of mean corrected correlations across the m first 

order meta-analyses. This reliability reflects the extent to which the mean first order corrected 

correlations discriminate between the first order meta-analysis results. This reliability value can be 

used to increase the accuracy of the estimates of first order meta-analytic (disattenuated) 
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correlations from the individual first order  meta-analyses by regressing these estimates towards the 

grand correlation mean (the second order mean across the m meta-analyses; shown in Eq. 7b), as 

illustrated later in the example applications.  

We are aware that the procedures and concepts of second order meta-analysis are complex. 

For this reason, Table 1 presents a convenient summary of the equations for all three approaches to 

second order meta-analysis. The entries in Table 1 are annotated for increased clarity. 

Mixed Second Order Meta-Analysis 

 In some cases, some of the first order meta-analyses might have corrected each correlation 

individually while others applied the artifact distribution method. How, then, should the second 

order meta-analysis be conducted? The meta-analyses that corrected each coefficient individually 

can be “converted” to artifact distribution meta-analyses and the Equations for second order artifact 

distribution meta-analysis can be applied to all the first order meta-analysis.  The quantities needed 

in these equations (Equations 7 and 7a through 7f) are typically reported in meta-analyses that have 

corrected each correlation individually, making this conversion possible.  

Three Illustrative Applications 

Case 1: Cross-cultural validity generalization analysis 

Oh (2009) examined the criterion-related validity of self-report personality measures 

explicitly developed to assess the Big Five traits for predicting supervisor ratings of job 

performance in four East Asian countries including Korea, China, Taiwan, and Singapore.3 Oh 

(2009) expected different results across these countries because cultural values, industrialization 

levels, and management practices of these countries are different to some extent (Hofstede, 2000). 

He conducted a separate meta-analysis for each country for each of the Big Five personality 

measures, with each meta-analysis being based on only the primary studies that had been conducted 



Second Order Meta-Analysis 24 
 

in that country. Hence the meta-analytic results across countries are statistically independent of each 

other, meeting this assumption of second order meta-analysis.  

The major first order meta-analytic results from Oh (2009) are presented in Columns 1 

through 4 of Table 2; they are the input to the subsequent second order meta-analyses, shown in 

columns 5 through 12 of Table 2. All the first order meta-analyses were based on the artifact 

distribution method. Visual inspection of the input data (first order meta-analytic results) in Table 2 

suggested that there were indeed substantial differences in validity across countries. For example, 

the personality trait of Emotional Stability appears to be most valid in Singapore (.26) and least 

valid in Taiwan (-.04). So, initial examination of the results suggested a country by validity 

interaction (a moderating effect of country/culture on validity). However, each meta-analytic 

estimate (correlation) contains some residual sampling error given that sample sizes are less than 

infinite (k is often less than 10); that is, there is second order sampling error in these estimates. The 

values for this second order sampling error are presented in Column 5 of Table 2 next to each mean 

first order mean operational validity estimate in Column 4. For each first order meta-analysis, these 

values are computed as the inverse of Eq. 7c.   

To determine the degree to which the differences in operational validity across countries 

shown in Table 2 were due to second order sampling error, we conducted a second order meta-

analysis for each Big Five personality measure across countries, using the methods presented earlier 

in this paper for meta-analyses based on the artifact distribution method. Note that this second order 

meta-analysis was conducted “using only the first order meta-analytic results” reported in Oh 

(2009). The results are shown in columns 5 through 12 of Table 2. Column 6 shows the weighted 

grand mean operational validity across the countries for a given Big Five measure (from Eq. 7b) and 

in Column 7, the expected second order sampling error associated with each grand mean (from Eq. 

7d) (along with its SD [in parenthesis]). In Column 8, the observed variance and SD (in 
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parentheses) of the mean operational validity estimates across countries are shown; these values are 

computed using Eqs. 7a, 7b, and 7c. Column 9 shows these values after second order sampling error 

is subtracted out. These values are computed using Eq. 7, and they estimate the actual/true (i.e., 

non-artifactual) variability of the operational validities across countries. As expected, these values 

are reduced in comparison to the observed values of variance in the row above them. Column 10 

presents the proportion of the variance that is due to second order sampling error. This value is 

computed using Eq. 7f. If multiplied by 100, this represents the percentage of between-country (or 

between-meta-analyses) variance that is due to second order sampling error. Column 11 presents the 

reliabilities of the validity vectors shown in Column 4 of Table 2. These values are computed as 

1.00 minus the values in Column 10 and represent the proportion of the variance that is not due to 

second order sampling error (i.e., they represent the proportion of between-country variance that is 

true variance).   

  On average across the Big Five personality traits, 40% of the cross-country variance is 

explained by second order sampling error. The results for the personality trait of Consciousness are 

of particular interest, because across multiple meta-analyses conducted in the U.S. and Europe, 

Conscientiousness has been found to be the most valid of the Big Five personality traits for the 

prediction of job performance (e.g., see Barrick et al., 2001; Schmidt, Shaffer, & Oh, 2008). The 

second order meta-analysis results show that all the variability of the operational validities for 

Conscientiousness across these East Asian countries is due to second order sampling error. This 

suggests that the grand mean operational validity across these countries (.21) is the best estimate for 

each country and other East Asian countries not included.  

For the other four Big Five personality traits, removal of second order sampling error 

reduced variability but not to zero. For Emotional Stability measures, second order sampling error 

accounted for 34% of the observed between-country variance, indicating a correlation of .58 
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between country-specific mean operational validity estimates and second order sampling errors 

( 34.  = .58). For Extraversion measures, 16% of the variance is accounted for, indicating a 

correlation of .40 between between-country mean operational validity estimates and second order 

sampling errors. For Agreeableness measures, these values are 29% (r = .54) and for Openness 

measures, these values are 21% (r = .46). As implied above, for Conscientiousness measures, this 

correlation is 1.00, because all the variance is due to second order sampling error.  

As noted earlier, the reliability values (shown in Column 11 of Table 2 for our example) can 

be used to increase the accuracy of estimates of the first order meta-analytic mean correlation values 

obtained in the m individual first order meta-analyses. We explain and illustrate this process using 

the data in our example applications of second order meta-analysis. This process is directly 

analogous to the estimation of an individual’s true score on a measure from his/her observed score 

by using the reliability coefficient to regress the obtained score towards the mean of the group. The 

equation is (Ghiselli, 1964; Magnusson, 1966; Nunnally & Bernstein, 1994):  

XXXrT ixxi +−= )(ˆ ,        

where iT̂ is the estimate of true score on the measure for Person i, rxx is the reliability (the ratio of 

true score variance to observed score variance for the measure), Xi is the person’s observed score, 

and X is the mean of the observed scores across persons. It can be shown that the above equation is 

the linear regression equation (Magnusson, 1966) for predicting true score from observed score and 

application of the regression equation improves accuracy. When used in psychometrics, the error 

variance in question is measurement error variance. In second order meta-analysis, second order 

sampling error variance functions in the same way as measurement error. Just as a measurement 

error is the random deviation of a person’s observed score from his/her true score, so a second order 

sampling error is the random deviation of the computed first order mean meta-analytic correlation 
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in a meta-analysis from its actual population parameter value. Thus second order sampling error 

functions analogously to measurement error here. Hence, the above equation can be translated to Eq. 

7g below: 

ρρρρ ρρ
ˆ)ˆˆ(ˆ +−= iir r ,       (7g) 

where riρ̂  is the regressed ith first order meta-analytic estimate adjusted for unreliability in the first 

order meta-analytic values, ρρr  is the reliability of i first order meta-analytic values (vectors), ρ̂  is 

the second order, grand mean meta-analytic estimate,  and iρ̂  is the ith first order meta-analytic 

estimate.  

Columns 4 and 12 of Table 2, respectively, show the original first order meta-analytic mean 

operational validities as reported in the m meta-analyses (column 4) and the more accurate values 

produced by application of Eq. 7g (regressed values; column 12). For Conscientiousness, the 

reliability value is .00, and so the estimate for each country is equal to the grand mean value of .21. 

For the other Big Five measures, the regressed values are less variable across countries than the 

original reported values. This reduction in variability is greatest for Emotional Stability. It is 

interesting to note that the negative value for Emotional Stability in the Taiwan meta-analysis (-.04) 

yields a regressed value that is positive (.03), indicating that the initial negative value was due to 

second order sampling error. 

It can be seen in this example application that the second order meta-analysis indicates that 

the deep structure underlying the data is simpler than the surface structure particularly for 

Conscientiousness. In the case of Conscientiousness, the second order meta-analyses suggest a 

much more parsimonious explanation than did examination of the first order meta-analysis results. 

A single value (.21) for the validity of Conscientiousness across the four East Asian countries is 

simpler and more parsimonious than different values for different countries/cultures. That is, the use 



Second Order Meta-Analysis 28 
 

of second order meta-analysis as a tool for cross-cultural/national validity generalization reveals 

that the principle of parsimony (Occam’s razor) applies to the validity of Conscientiousness. 

Without the use of second order meta-analysis, we are not able to detect “the lies data tell” (Schmidt, 

2010), resulting in the erroneous acceptance of the less parsimonious conclusion that the operational 

validity of Conscientiousness differs across the East Asian countries, ranging from .19 to .36.  

In sum, first order meta-analysis is a useful tool to test hypotheses about within-

culture/nation variability, and second order meta-analysis is a useful tool to test hypotheses about 

cross-culture/nation variability. As discussed and shown later, second order meta-analysis can 

directly test certain hypotheses about cross-nation variability that first order meta-analysis cannot 

test.  

Case 2: Differential validity analysis 

Dudley, Orvis, Lebiecki, and Cortina (2006) examined the criterion-related validity (in the 

form of true score correlations) of four major facet measures of Conscientious (achievement, 

dependability, order, and cautiousness) for predicting supervisor ratings of various job performance 

criteria (global performance, task performance, job dedication, interpersonal facilitation, and 

counterproductive work behavior). All meta-analytic estimates were computed using the artifact 

distribution psychometric correction procedures. However, meta-analytic results across job 

performance criteria are not completely statistically independent though mostly so; there were small 

numbers of overlapping studies across criteria (in particular, between interpersonal facilitation and 

job dedication). Hence, first order meta-analytic results for a given criterion mostly, though not 

completely, met the assumptions of second order meta-analysis (see also the section below). In fact, 

this is a typical case for most if not all second order meta-analyses (Cooper & Koenka, 2012). It is 

well known that minor violations of statistical assumptions do not change research conclusions 

(Cooper & Koenka, 2012). Tracz, Elmore, and Pohlmann (1992) used simulations to examine the 
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effect of violations of independence on the results of first order meta-analyses. Surprisingly, they 

found that that means, standard deviations, and confidence intervals were almost identical under 

conditions of independence and substantial violations of independence. We could locate no other 

studies examining the effects of violations of independence on meta-analytic results. 

To determine the degree to which the differences in true score correlation across job 

performance criteria for a given Conscientiousness facet were due to second order sampling error, 

we conducted a second order meta-analysis for each Conscientiousness facet. Note that this second 

order meta-analysis was conducted using only the first order meta-analytic results reported in 

Dudley et al. (2009). Across the proportion of variance values shown in column 10 of Table 3, on 

average across the four facets of the Conscientiousness trait, 65% of the cross-criterion variance in 

true score correlation is explained by second order sampling error. In particular, the second order 

meta-analysis results show that almost all of the variability of the true score correlations for the 

order facet across job performance criteria is due to second order sampling error, indicting there is 

no differential validity by criterion type for this facet. For the dependability and cautiousness facets, 

more than 60% of the cross-criterion variance in true score correlation is explained by second order 

sampling error. For the achievement facet, about 40% of the cross-criterion variance is due to 

second order sampling error. The more accurate regression-based true score correlation estimates 

are reported in Column 12. Overall, these results suggest that the validities of all major 

Conscientious facets (with the possible exception of the achievement facet) do not differ much by 

criterion type; differences in job performance criterion are not likely to moderate validity for most 

Conscientiousness facets.  This conclusion is contrary to that reached by Johnson, Steel, Scherbaum, 

Hoffman, Jeanneret, and Foster (2010), who suggested the presence of considerable differential 

validity by different job performance criteria.  
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In sum, second order meta-analysis is a useful tool to test differential validity hypotheses or 

whether validity meaningfully differs by moderators (e.g., different job performance criteria, ethnic 

groups, job characteristics).  

Case 3: Moderator analysis particularly dealing with a moderator with more than two 

classes/conditions  

Mesmer-Magnus, DeChurch, Jimenez-Rodriguez, Wildman, and Shuffler (2011) examined 

whether the true score relationship between information team sharing and team performance varies 

across levels of three dimensions of team virtuality (e.g., extent of reliance on virtual tools, 

informational value, and synchronicity afforded by the tools). All meta-analytic estimates were 

based on the artifact distribution method and, more importantly, were completely statistically 

independent. Hence, first order meta-analytic results for a give relationship fully met the 

assumptions of second order meta-analysis (see also the section below).  

To determine the degree to which the differences in true score correlation across levels for a 

given dimension of team virtuality were due to second order sampling error, we conducted a second 

order meta-analysis for each dimension of team virtuality. Note that this second order meta-analysis 

was conducted using only the first order meta-analytic results reported in Mesmer-Magnus et al. 

(2011). The proportion of variance values shown in column 10 of Table 4 are all 100%. That is, all 

of the variance across varying levels of each team virtuality dimension is completely explained by 

second order sampling error. The more accurate regression-based true score correlation estimates 

are reported in Column 12. Overall, these results suggest that the true relationships between team 

information sharing and team performance do not differ by the level of team virtuality; differences 

in level of team virtuality are unlikely to moderate the true score correlation between team 

information sharing and team performance. This conclusion is starkly different from that reached by 

Mesmer-Magnus et al. (2011), who concluded that the degree of team virtuality “set[s] important 
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boundary conditions for the information sharing – team performance relationship” (p. 221); i.e., the 

relationship between team information sharing and team performance is stronger in hybrid teams 

(using both face to face and fully virtual interaction tools), teams using tools of moderate 

information values, and teams using a variety tools (moderate synchronicity). What we found 

through the second order meta-analyses as shown in Table 4 is that the relationship between team 

information sharing and team performance is consistent across teams regardless of the degree of 

each team virtuality dimension. That is, team virtuality does not set a boundary condition.  

We note that in some first order meta-analyses, the subgroups are not statistically 

independent. For example, in a validity generalization meta-analysis, each sample in each primary 

study usually produces estimates of the validity of several abilities. So, for example, the subgroup 

results for verbal ability will not be independent of the subgroup results for quantitative ability.  In 

the Mesmer-Magnus et al. (2011) meta-analyses used in our Case 3 illustrative example  all 

subgroup analyses were statistically independent of each other.  

In sum, given statistical independence, second order meta-analysis is particularly useful in 

testing moderators that have more than two classes (or conditions) as shown above. If a moderator 

has only two classes, then moderator analysis can be conducted by checking the overlap in the 95% 

confidence intervals between the two first order meta-analytic mean estimates. However, when a 

moderator has more than two classes (e.g., the first two dimensions of team virtuality in Table 4), 

comparing the overlap in the 95% confidence intervals through the first order meta-analysis may 

not be a good solution because simultaneously comparing three or more 95% confidence intervals 

for overlap is not feasible in most cases. More importantly, this procedure does not reveal how 

much (if any) of the variance across first order meta-analytic mean estimates is explained by the 

moderator and how much is explained by second order sampling error. Finally, we note that second 

order meta-analysis can gauge not only whether or not a moderator exists, but also to what extent 
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the moderator explains the variance in effect size for a given relationship. By contrast, comparing 

the 95% confidence intervals of first order meta-analytic means can answer only whether a 

moderator exists or not, but not to what extent the moderator explains the variance (differences) in 

effect size for a given relationship. 

Requirement of Statistical Independence of the m Meta-Analyses 

The requirement of statistical independence means that the primary studies/samples 

contained in any first order meta-analysis should not also be included in any of the other first order 

meta-analyses. This requirement was clearly met in Cases 1 and 3, and relatively well in Case 2. For 

example, in Case 1, only studies conducted in China on Chinese subjects were included in the meta-

analysis for China—and similarly for the other three countries. This assumption is important given 

that second order meta-analysis can be used to test a moderator (e.g., cross-country differences as a 

potential moderator of the personality-performance relationship in Case 1; differences in job 

performance criteria as a moderator of Conscientiousness facet validity in Case 2; and the degree of 

team virtuality as a potential moderator of the team information sharing and team performance 

relationship in Case 3). In testing such potential moderators, statistical independence should be met 

across classes of the moderator (across meta-analyses results for four East Asian countries in Case 

1; across meta-analytic results for different job performance criteria in Case 2; and across different 

degrees of team virtuality in Case 3). A minor violation as in Case 2 may affect the results in minor 

ways but will not change conclusions (Tracz et al., 1992; Cooper & Koenka, 2012). Nonetheless, 

we recommend that researchers do their best to meet this assumption of statistical independence to 

produce optimally accurate results when conducting second order meta-analysis. Finally, as noted 

earlier, this assumption also needs to be met in comparing first order meta-analytic subgroup mean 

estimates (and checking their 95% confidence intervals for overlap) as an approach to moderator 

analysis; that is, this assumption is not a limitation specific to second order meta-analysis.   
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Second order meta-analysis is appropriate for the case in which cumulative meta-analyses 

on the same question have been conducted with no or few overlapping studies across the meta-

analyses over time. For example, suppose the first meta-analysis on a particular relation (e.g., the 

correlation between job satisfaction and job performance) was conducted in 1981, the second in 

1991, and the third in 2001. If the three meta-analyses were conducted with no (or relatively few) 

overlapping studies (that is, the first including studies conducted until the end of 1980, the second 

including studies conducted between 1981 and 1990, and the third including studies conducted 

between 1991 and 2000), it is appropriate to conduct a cumulative second order meta-analysis to 

determine the degree of second order sampling error and other estimates (e.g., second order, grand 

mean estimates); in this case, time (or differences in decade) can be tested as a moderator and 

second order meta-analysis can serve as a tool for updating prior meta-analyses. However, if each 

meta-analysis after the first one contains all or most of the primary studies in the first meta-analysis 

plus a group of newer studies, then the different meta-analyses will not be statistically independent 

and it is inappropriate to conduct a second order meta-analysis.  

In other cases, the statistical independence assumption will be met. For example, suppose 

the question is whether a particular training program or selection procedure works in the same way 

for several minority groups and the majority group. Separate meta-analyses may then be conducted 

for Blacks, Whites, Hispanic Americans, and Asian Americans. In such a case, the different meta-

analyses would be expected to be statistically independent, because no individual should have been 

included in more than one of these sub-groups. That is, second order meta-analysis will be useful in 

research on differential validity (e.g., whether or to what extent the validity of cognitive tests will 

differ across ethnic groups). Another example in which the statistical independence assumption 

should be met would be second order meta-analysis of validity of personality measures between 

Europe (e.g., Salgado, 1997, 1998) and North America (e.g., Barrick & Mount, 1991; Hurtz & 
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Donovan, 2000).4 Other examples of statistically independent meta-analyses examining the same 

relation were provided in an earlier section. The reader can probably think of other such scenarios.  

It may prove to be the case that a major value of second order meta-analysis will be the 

analysis of cross-cultural and cross-national validity generalization studies. For example, recent 

meta-analysis study by Li and Cropanzano (2009) compared the relationships between justice 

perceptions and other attitudinal outcomes (e.g., trust, commitment, satisfaction) between North 

America and East Asia. They conducted East Asian meta-analyses and compared the meta-analytic 

results with corresponding, pre-existing North American meta-analytic results (Colquitt, Conlon, 

Wesson, Porter, & Ng, 2000). What they compared (see their Table 2, p. 797) was sample size 

weighted observed correlations and their 95% conference intervals (CIs) for East Asia and North 

America. They concluded that there is no statistically significant difference between the two regions 

for some relationships (e.g., the procedural justice – turnover intention relationship) in that the two 

corresponding 95% CIs overlap. We believe that although well executed, the Li and Cropanzano 

(2009) meta-analysis would have been more informative if they had used the second order meta-

analysis described in this paper using corrected correlations. (In fairness to the authors, we note that 

at the time they conducted their meta-analysis second order meta-analysis methods were not 

available.) Using second order meta-analysis, they could have provided the degree, rather than 

dichotomy, of true cross-cultural differences (= 1 minus the proportion of cross-region variance due 

to second order sampling error) and some of the other important information  shown in our Tables 2 

through 4 (e.g., second order, grand mean estimates and regressed estimates for country mean effect 

sizes).  

Although it may go without saying, first order meta-analytic studies included in second 

order meta-analyses should all examine the same relationship, using ostensibly comparable 

measures and samples (e.g., self-report measures of Big Five traits, supervisor ratings of 
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performance, employees), and comparable meta-analytic methods (see Spector, 2001, p. 23 for 

more details). Finally, all first order meta-analytic studies included in the second order meta-

analyses should be of high quality and transparency and free of publication bias (Aytug, Rothstein, 

Zhou, & Kern, 2012; Kepes, Banks, McDaniel, & Whetzel, in press). Ideally, the question of 

possible publication bias should be satisfactorily addressed in each first order meta-analysis, and 

this requirement is increasingly being imposed on published meta-analyses. However, where this 

has not been done, the researcher applying second order meta-analysis will need to consider the 

possibility of publication bias and may need to contact the authors of the first order meta-analysis to 

make this determination. The accuracy of the second order meta-analyses depends on the accuracy 

of the first order meta-analyses synthesized, whose accuracy in turn depends on the accuracy of the 

primary studies synthesized. 

Reporting Standards for First Order Meta-Analyses 

In our presentation of the methods of second order meta-analysis, we defined the items of 

information from the first order meta-analyses that are needed for application of second order meta-

analysis methods. For the sake of future cumulative research knowledge, it is critical that this 

information be reported. For bare bones second order meta-analyses, these include the variance of 

the observed correlations (which is sometimes not reported) and mean observed correlation (almost 

always reported). These are also the values that are critical for artifact distribution meta-analyses. 

When the first order meta-analyses have corrected each correlation individually, it is critical to 

report not only the mean corrected correlation (always reported), but also the variance of the 

corrected correlations (not always reported). Other values (such as k, the number of studies in the 

meta-analysis and the mean corrected correlation) are virtually always reported.   

Limitations and Potential Criticisms of Second Order Meta-Analysis 
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One limitation of second order meta-analysis methods is that the requirement for statistical 

independence of meta-analysis could limit the frequency with which the methods can be applied. 

The extent to which moderate violations of this assumption affect the results is unknown. Cooper 

and Koenka (2012), in discussing an older, cruder form of second order meta-analysis (our option 2, 

discussed earlier) suggest that minimizing the lack of independence might be sufficient to produce 

reasonably accurate results and they give several examples of such published second order meta-

analyses. And, as noted earlier, Tracz et al. (1992) found that violations of independence had almost 

no effect on the results of first order meta-analyses. In general, we believe this is a question that will 

require further research to produce a definitive answer; more studies similar to the Tracz et al.’s 

(1992) study are needed.  But even if it turns out that second order meta-analysis cannot be applied 

on a broad basis, it is important to note that a number of other procedures with limitations on 

frequency of use are well represented in the literature. These include methods for latent growth 

modeling (e.g., analysis of longitudinal data collected over multiple time periods), generalizablity 

theory of reliability, and a number of complex structural equation modeling (SEM) methods (e.g., 

multi-level SEM). In each case, the procedures are quite useful when they can be applied and this is 

viewed in the methodological literature as compensating for the fact that they cannot be applied 

frequently.  

 Second order meta-analysis is not directly concerned with the variability of study 

population correlations within each of the first order individual meta-analyses. To be sure, this 

within-meta-analysis variability (i.e., non-artifactual variability between-primary studies in first 

order meta-analyses) is taken into account mathematically in second order meta-analysis methods, 

as can be seen in Equations 5a, 5b, 5c, 6a, 6b, 6c, 7a, 7b, and 7c. However, a finding that second 

order sampling error accounts for all of the variability in the mean values across first order meta-

analyses does not imply that population parameters do not vary within first order meta-analyses. 
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Such a finding simply means that the mean values are equal across the different first order meta-

analyses. For example, our finding that the mean meta-analytic operational validity for 

Conscientiousness is the same across four East Asian countries does not mean that this validity 

cannot vary somewhat across subpopulations within, say, within South Korea. If this is the case, this 

variability will be reflected in the results of the first order meta-analysis. It is the purpose of the 

original first order meta-analyses to address this non-artifactual between-primary-studies variability 

within each first order meta-analytic context. The purpose of second order meta-analysis is to gauge 

the true (i.e., non-artifactual) between-meta-analyses (e.g., cross-country, cross-region, cross-

criterion, cross-setting) variability of mean effect size values of ostensibly the same relationship and 

to use this information to improve accuracy of estimation for each first order meta-analytic mean 

estimate. 

A possible objection to second order meta-analysis is the following: Instead of second order 

meta-analysis, why not conduct an overall meta-analysis pooling all primary study data from all 

meta-analyses (which will yield the same grand mean as the second order meta-analysis), and then 

break out into sub-meta-analyses based on hypothesized moderators (which yields the same 

subgroup means as those used in the second order meta-analysis)? First, this is often an impossible 

or impractical alternative. For example, in all cases illustrated above, the primary studies used in all 

first order meta-analyses were not available. Some journals (e.g., Journal of Applied Psychology) in 

the fields of Organizational Behavior and Human Resource Management have only recently 

required that meta-analysts be transparent about their procedures and report all date from primary 

studies used in their meta-analysis (Aytug et al., 2012; Kepes et al., in press). As mentioned, second 

order meta-analysis can be conducted using only first order meta-analytic results (k, mean observed 

r, mean corrected r, and variance across observed or corrected rs) and thus it can be applied to most 

if not all previous first order meta-analyses. Second, such omnibus meta-analyses typically have 
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problems of lack of independence of subgroup meta-analyses. For example, in a typical validity 

generalization meta-analysis each primary study estimates validity for several ability measures. So 

the separate subgroup analyses for, say, verbal and quantitative ability are not independent. Third, 

and perhaps most important, this procedure does not allow one to estimate the variance (and the 

percentage of variance) across sub-group meta-analyses that is (and is not) due to second order 

sampling error variance, because second order sampling error variance is not computed (or 

computable) in the omnibus meta-analysis approach. This is because omnibus meta-analyses and 

their sub-group meta-analyses are both first order meta-analyses. For example, application of this 

approach to the Conscientiousness validity data in our first example would not have revealed that all 

the variance across the four East Asian countries in meta-analytic operational validity values was 

due to second order sampling error. Instead, the values would have been taken at face value. 

Likewise, it would not have been possible to improve the accuracy of the estimates of meta-analytic 

operational validity for the other Big Five measures for which not all the variance across countries 

was accounted for by second order sampling error. That is, the analysis shown in Tables 2 through 4 

could not be performed. So the omnibus meta-analysis procedure is not a substitute for second order 

meta-analysis.  

A variation on this objection is the following: Why not just conduct an omnibus, pooled 

meta-analysis along with sub-group meta-analyses based on hypothesized moderators and then look 

at the relative variances? The difference between the estimated population parameter variance in the 

omnibus meta-analysis and the average of this figure across the sub-group meta-analyses estimates 

the variance of the subgroup means (the variance of means across subgroup meta-analyses). This 

statement reflects the well known analysis of variance (ANOVA) principle that total variance is the 

sum of between group variance and average within group variance. However, knowing the variance 

of the subgroup means does not allow one to estimate how much of this variance is (or is not) due to 
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second order sampling error and therefore does not allow computation of the proportion of this 

variance that is due to second order sampling error. As a result, the analyses presented in our 

example cannot be conducted. For example, if all the between-mean variance was accounted for by 

second order sampling error (as was the case with Conscientiousness in our first example 

application), there would be no way for one to know this. The procedure advocated here allows one 

to compute the percentage of total variance that is accounted for by between group variance in 

mean values, but this is not the same as the percentage of between-group variance in mean values 

that is due to second order sampling error variance. So again, this is a procedure that is not a 

substitute for second order meta-analysis.  

Related to the aforementioned ANOVA principle, researchers may want to know whether 

the true (non-artifactual) between-group variance in mean (meta-analytic) values across subgroup 

meta-analyses is lager or smaller than the mean true (non-artifactual) within-group variance across 

the same subgroup meta-analyses. This is computed as the ratio of true between-group (i.e., 

between-meta-analysis) variance to average true within-group (i.e., within-meta-analysis) variance:  

Variance ratio for psychometric meta-analyses = ,  

where the numerator is the estimated true between-meta-analyses variance in mean (meta-analytic) 

values across m first order meta-analyses (see Eqs. 6 and 7) and the denominator is the weighted 

mean of the estimated true within-meta-analysis variance across m first order meta-analyses (see 

Eqs. 3 and 4). Because most first order psychometric meta-analyses report true variance in the form 

of standard deviation ( ρSD ), this ratio can be computed in most cases. Given many readers’ 

familiarity with the ANOVA principle, we have to caution against using this variance ratio (which 

is analogues to the F static) to determine statistical significance. This is problematic particularly 

because sample size (m) in this context is the number of the first order meta-analyses contributing to 
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a second order meta-analysis. Further, we note that, like first order meta-analysis methods, second 

order meta-analysis methods presented here are also developed to overcome problems in statistical 

significance testing. 

Another possible objection is this: Why not just compute a meta-regression in which coded 

hypothesized moderators are used to predict the primary study correlations pooled across all the 

first order meta-analyses? (These correlations can be either observed correlations, as in bare bones 

meta-analysis, or correlations corrected for measurement error.) This procedure fails for the same 

reason as above: The squared multiple correlation (after the appropriate adjustment for 

capitalization on chance) will reveal the percentage of the total variance that is accounted for by the 

hypothesized moderator or moderators. But it will not reveal the percentage of the variance in the 

mean values that is explained by second order sampling error, and therefore the analyses allowed by 

second order meta-analysis cannot be done. That is, one could again not obtain the information 

(e.g., true between-meta-analysis variance) presented in our examples in Tables 2 through 4. So this 

procedure is also not capable of being a substitute for second order meta-analysis.  

Conclusion 

In conclusion, the methods of second order meta-analysis provide unique information that 

cannot be obtained using the more traditional methods of first order meta-analysis. The methods are 

particularly useful in conducting cross-culture generalization studies (i.e., synthesizing first order 

meta-analyses conducted in different countries for the same relationship) and meta-analytic 

moderator analyses (i.e., comparing first order meta-analytic results of the same relationship across 

different settings and/or groups). This unique information can be important from the point of view 

of cumulative knowledge and understanding, as illustrated in our empirical examples.         
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Footnotes 

1. A mean effect size (e.g., ρ̂ ) represents a first order meta-analytic estimate of effect sizes 

across statistically independent primary studies/samples computed using a meta-analytic methods 

based on the random-effects model; if the true or non-artifactual variance ( 2ˆ ρσ ) turns out to be zero, 

a meta-analytic (mean) effect size computed using a method based on the random-effects model 

( ρ̂ ) reduces to (equals) a meta-analytic effect size ( ρ̂ ) computed using  the fixed-effect model. 

Because the random-effects model subsumes the fixed-effect model (and not vice versa) and is 

more generally accepted than the fixed-effect model (Borenstein, Hedges, Higgins, & Rothstein, 

2009; Schmidt et al., 2009), we use the term mean effect size ( ρ̂ ) to represent a meta-analytic 

estimate for a relation computed using a method based on the random-effects model. Thus, a second 

order mean effect size ( ρ̂ ) represents the mean of the mean (meta-analytic) effect sizes across 

statistically independent individual first order meta-analyses. 

2. If the variance (or standard deviation) of observed effect sizes is reported only up to two 

decimal places, second order meta-analysis results may be less accurate. Therefore we urge meta-

analysts report the variance of the corrected correlations (when individual correction methods are 

used) or the variance of the observed correlations (when artifact distribution methods are used) to 

more than two decimal places or make it publicly available (e.g., digital object identifier) wherever 

possible so that later second order meta-analyses can be conducted more precisely. Hurtz and 

Donovan (2000) and Salgado (1997, 1998) are some excellent examples of this sort. More 

importantly, we urge the meta-analysts to report the variance (or standard deviation) of observed 

effect sizes to begin with. Unfortunately, we have often found that many meta-analyses published in 

top tier journals do not report the variance (or standard deviation) of observed effect sizes (see 

Carlson & Ji, 2011 for how to effectively report and cite first order meta-analytic results).   
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3. Japan was also initially included but Oh (2009) found that in Japan, unlike the other East 

Asian countries, the personality measures used were not designed to measure Big Five personality 

traits. Hence Japan was excluded to avoid confounding due to the differences across countries in 

personality measures (Spector, 2001, p. 23). 

4. In fact, we compared Hurtz and Donovan (2000) and Salgado (1998), both of which 

examined the criterion-related validity of self-report Big Five personality measures for predicting 

supervisor ratings of job performance in North America and Europe, respectively. Overall, our 

second order meta-analysis results clearly suggest that the operational validities of the Big Five 

personality measures (except for Agreeableness) are generalizable between North America and 

Europe; cross-regional differences are unlikely to moderate validity for most Big Five personality 

traits. It is interesting that Agreeableness does have a close to zero relationship with job 

performance in Europe, but not in North America. It is noted that we considered using Barrick and 

Mount (1991) instead of Hurtz and Donovan (2000), but unfortunately, Barrick and Mount (1991) 

did not report the observed variance (and SD) across validities, a necessary input to the second 

order meta-analysis, so we had to use Hurtz and Donovan (2000) instead. It is also noted that 

Salgado (1998) is an update of Salgado (1997) with larger numbers of validation studies. Detailed 

results are displayed in the Appendix section. 
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Summary of Three Approaches to Second Order Meta-Analysis  
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 2
irS  is the variance of the 

observed correlations (r) in the 
ith meta-analysis, ir̂  is the 
estimate of the mean effect size 

 2
icrS  is the weighted variance of the 

disattenuated (corrected) correlations (rc) 
in the ith meta-analysis, iρ̂  is the mean 
disattenuated correlation in that meta-

2
irS  is the variance of the observed 

correlations (r) within a given meta-
analysis, iρ̂  is the mean disattenuated 
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in that meta-analysis, ki is the 
number of primary studies 
included in the ith meta-
analysis, and the w is the 
weight applied to the ith meta-
analysis. 

analysis, ki is the number of primary 
studies included in the ith meta-analysis, 
and the wi* is the weight applied to ith 
meta-analysis. 

correlation in that meta-analysis, ir  is 
the meta-analytic (bare bones) 
correlation in that meta-analysis, ki is 
the number of primary studies included 
in the ith meta-analysis, the wi** is the 
weight applied to the ith meta-analysis. 

ProportionVar  2
ˆ

2 /)(
ˆ re SSE
ir

  2
ˆ

2 /)(
ˆ ρρ

SSE
i

e  2
ˆ

2 /)(
ˆ ρρ

SSE
i

e  

 This is the proportion of the 
variance across the first order 
bare bones meta-analytic means 
that is due to second order 
sampling error. 

 This is the proportion of the variance 
across the first order psychometric meta-
analytic means that is due to second order 
sampling error. 

This is the proportion of the variance 
across the first order psychometric 
meta-analytic means that is due to 
second order sampling error. 

Note. 1 – ProportionVar = Reliability of the first order meta-analytic correlations.  
 



Second Order Meta-Analysis 49 
 

Table 2  
Second Order Meta-Analysis of Operational Validities of Big Five Personality Measures across East Asian Countries (Oh, 2009) 
 

Predictor (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Country k ir  2
rS  iρ̂  2

ˆi
eS
ρ

 ρ̂  )( 2
ˆi

eSE
ρ

 2
ρ̂S  2

ρσ  ProVar ρρr  
riρ̂  

Conscientiousness 
          

 
  Korea 14 .13 .00501 .19 .00072 .21 .00124 .00107 .00000 1.00 .00 .21 
  Taiwan 3 .26 .01331 .36 .00853 

 
(.035) (.033) (.000) 

  
.21 

  China 3 .17 .02325 .23 .01490 
      

.21 
  Singapore 4 .15 .00126 .21 .00061 

      
.21 

Emotional Stability 
          

 
  Korea 14 .08 .00677 .11 .00098 .17 .00221 .00647 .00427 .34 .66 .13 
  Taiwan 2 -.03 .01584 -.04 .01524 

 
(.047) (.080) (.065) 

  
.03 

  China 3 .17 .01074 .23 .00688 
      

.21 
  Singapore 4 .19 .00355 .26 .00171 

      
.23 

Agreeableness 
           

 
  Korea 13 .04 .00468 .05 .00066 .10 .00144 .00500 .00357 .29 .71 .07 
  Taiwan 3 .21 .00706 .30 .00453 

 
(.038) (.071) (.060) 

  
.24 

  China 3 .14 .01708 .20 .01095 
      

.17 
  Singapore 3 .10 .00163 .13 .00104 

      
.12 

Extraversion 
           

 
  Korea 14 .06 .00491 .09 .00074 .17 .00173 .01066 .00893 .16 .84 .10 
  Taiwan 3 .14 .01160 .19 .00743 

 
(.042) (.103) (.095) 

  
.19 

  China 3 .21 .03720 .30 .02385 
      

.28 
  Singapore 4 .22 .00262 .31 .00126 

      
.28 

Openness 
           

 
  Korea 14 .01 .00881 .02 .00119 .10 .00229 .01087 .00858 .21 .79 .04 
  Taiwan 2 .24 .00460 .34 .00442 

 
(.048) (.104) (.093) 

  
.29 

  China 3 .15 .08494 .21 .05445 
      

.19 
  Singapore 3 .10 .00235 .13 .00151 

      
.13 

Note. Columns (1) though (4) are input values (italicized) available from first order meta-analyses. (1) Number of samples; (2) Sample size 
weighted mean observed validity; (3) Sample size weighted observed variance across observed validities; (4) First order meta-analytic mean 
validity estimates; (5) Second order sampling error variance for each first order meta-analytic validity estimate (see discussion of Eq. 7d); (6) 



Second Order Meta-Analysis 50 
 

Second order, grand mean validity estimates (Eq. 7b); (7) Expected (average) second order sampling error variance (Eq. 7d) and standard error (in 
parentheses); (8) Observed variance and SD (in parentheses) across first order mean operational validity estimates (Eqs. 7a, 7b, and 7c); (9) 
Estimated true variance and SD (in parentheses) across first order mean operational validity estimates after expected second order sampling error 
variance is subtracted out from the observed variance (Eq. 7); negative values are set to zero; (10) The proportion (percentage if multiplied by 100) 
of the observed variance across first order mean operational validity estimates that is due to second order sampling error variance; values greater 
than 1 are set to zero; (11) The reliability of the first order meta-analytic validity vectors; these values are computed as 1 minus the values in 
Column 10; (12) Regressed first order validity estimates based on the reliability of the original validity vectors shown in Column 11.  
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Table 3  
Second Order Meta-Analysis of True Score Correlations of Facet Measures of Conscientiousness with Performance across 
Performance Criteria (Dudley et al., 2006) 
 

Predictor (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Criterion k ir  2
rS  iρ̂  2

ˆi
eS
ρ

 ρ̂  )( 2
ˆi

eSE
ρ

 2
ρ̂S  2

ρσ  ProVar ρρr  
riρ̂  

Achievement 
           

 
  Global Performance 26 .10 .01080 .20 .00166 .19 .00281 .00739 .00458 .38 .62 .20 
  Task Performance 26 .13 .01350 .25 .00192 

 
(.053) (.086) (.068) 

  
.23 

  Job Dedication 15 .20 .03260 .39 .00826 
      

.31 
  Interp’l Facilitation 18 .06 .01240 .11 .00232 

      
.14 

  CWB (r) 13 .00 .01390 .00 .00962 
      

.07 
Dependability 

           
 

  Global Performance 15 .13 .01400 .25 .00345 .29 .00492 .00803 .00311 .61 .39 .27 
  Task Performance 11 .09 .02290 .17 .00743 

 
(.070) (.090) (.056) 

  
.24 

  Job Dedication 7 .23 .01120 .46 .00640 
      

.36 
  Interp’l Facilitation 4 .11 .00590 .23 .00645 

      
.27 

  CWB (r) 16 .21 .02170 .34 .00356 
      

.31 
Order 

           
 

  Global Performance 26 .05 .01140 .10 .00175 .09 .00298 .00302 .00004 .99 .01 .09 
  Task Performance 26 .08 .02010 .16 .00309 

 
(.055) (.055) (.007) 

  
.09 

  Job Dedication 13 .05 .01160 .10 .00357 
      

.09 
  Interp’l Facilitation 18 -.01 .01640 -.02 .00364 

      
.09 

  CWB (r) 13 .04 .01830 .07 .00431 
      

.09 
Cautiousness 

           
 

  Global Performance 22 -.01 .01680 -.01 .00076 .04 .00203 .00322 .00119 .63 .37 .02 
  Task Performance 18 .06 .00890 .11 .00166 

 
(.045) (.057) (.035) 

  
.07 

  Job Dedication 6 .04 .01110 .08 .00740 
      

.05 
  Interp’l Facilitation 12 .00 .00880 .00 .00660 

      
.03 

  CWB (r)  14 .06 .01570 .11 .00377 
      

.07 
Note. CWB = counterproductive work behavior. True score correlations for CWB are reverse coded (r). See notes to Table 2 for definitions of 
columns (1) through (12).  
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Table 4  
Second Order Meta-Analysis of True Score Correlations of Team Information Sharing with Performance across Dimensions of 
Virtuality (Mesmer-Magnus et al., 2011) 
 

Moderator (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Moderator Class k ir  2
rS  iρ̂  2

ˆi
eS
ρ

 ρ̂  )( 2
ˆi

eSE
ρ

 2
ρ̂S  2

ρσ  ProVar ρρr  
riρ̂  

Use of Virtual Tools 
          

 
  None (Face to Face) 42 .34 .03240 .36 .00086 .37 .00193 .00174 .00000 1.00 .00 .37 
  Hybrid 8 .42 .02560 .46 .00384 

 
(.044) (.042) (.000) 

  
.37 

  Full (Fully Virtual) 6 .28 .03610 .31 .00738 
      

.37 
Informational Value 

          
 

  Low 3 .33 .00250 .34 .00088 .36 .00110 .00102 .00000 1.00 .00 .36 
  Moderate 9 .42 .03240 .46 .00432 

 
(.033) (.032) (.000) 

  
.36 

  High 44 .34 .02890 .36 .00074 
      

.36 
Synchronicity 

           
 

  Moderate (Lagged) 8 .42 .02890 .46 .00433 .38 .00134 .00130 .00000 1.00 .00 .38 
  High (Real Time) 46 .34 .03240 .36 .00079 

 
(.037) (.036) (.000) 

  
.38 

Note. Use of Virtual Tools indicates the proportion of team interaction that occurs via virtual tools - None (i.e., teams using only face to face 
interaction tools), Hybrid (i.e., teams using both face to face and virtual interaction tools), and Full (e.g., fully virtual teams only using virtual 
interaction tools); Informational value refers to the extent to which virtual tools transmit data that is valuable for team effectiveness; and 
Synchronicity indicates the extent to which team interactions occur in real time (e.g., phone and teleconferences) versus incurring a time lag (e.g., 
email) (Mesmer-Magnus et al., 2011). See notes to Table 2 for definitions of columns (1) through (12). 
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Appendix 
Second Order Meta-Analysis of Operational Validities of Big Five Personality Measures between North America (Hurtz & Donovan, 

2000) and Europe (Salgado, 1998) 
 

Predictor (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Region k ir  2
rS  iρ̂  2

ˆi
eS
ρ

 ρ̂  )( 2
ˆi

eSE
ρ

 2
ρ̂S  2

ρσ  ProVar ρρr  
riρ̂  

Conscientiousness 
          

 
  North America 45 .14 .01610 .20 .00073 .16 .00068 .00159 .00091 .43 .57 .18 
  Europe 35 .09 .01260 .12 .00064 

 
(.026) (.040) (.030) 

  
.14 

Emotional Stability 
          

 
  North America 37 .09 .00840 .13 .00047 .14 .00046 .00002 .00000 1.00 .00 .14 
  Europe 49 .10 .01120 .14 .00045 

 
(.021) (.005) (.000) 

  
.14 

Agreeableness 
           

 
  North America 40 .07 .01080 .11 .00067 .03 .00032 .00181 .00150 .17 .83 .10 
  Europe 37 .01 .00770 .01 .00021 

 
(.018) (.043) (.039) 

  
.01 

Extraversion 
           

 
  North America 39 .06 .01110 .09 .00064 .09 .00067 .00000 .00000 1.00 .00 .09 
  Europe 45 .07 .01900 .09 .00070 

 
(.026) (.000) (.000) 

  
.09 

Openness 
           

 
  North America 35 .04 .00930 .06 .00060 .05 .00053 .00002 .00000 1.00 .00 .05 
  Europe 28 .04 .00850 .05 .00047 

 
(.023) (.005) (.000) 

  
.05 

Note. Columns (1) though (4) are input values (italicized) available from first order meta-analyses. (1) Number of samples; (2) Sample size 
weighted mean observed correlations; (3) Sample size weighted observed variance across observed correlations; (4) First order meta-analytic mean 
true-score correlation estimates; (5) Second order sampling error variance for each first order meta-analytic true score correlation estimate (see 
discussion of Eq. 7d); (6) Second order, grand mean true score correlation estimates (Eq. 7b); (7) Expected (average) second order sampling error 
variance (Eq. 7d) and standard error (in parentheses); (8) Observed variance and SD (in parentheses) across first order mean true score correlation 
estimates (Eqs. 7a, 7b, and 7c); (9) Estimated true variance and SD (in parentheses) across first order mean true score correlation estimates after 
expected second order sampling error variance is subtracted out from the observed variance (Eq. 7); negative values are set to zero; (10) The 
proportion (percentage if multiplied by 100) of the observed variance across first order mean true score correlation estimates that is due to second 
order sampling error variance; values greater than 1 are set to zero; (11) The reliability of the first order meta-analytic true score correlation 
vectors; these values are computed as 1 minus the values in Column 10; (12) Regressed first order true score correlation estimates based on the 
reliability of the original true score correlation vectors shown in Column 11. 


