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Today most conclusions about cumulative knowledge in psychology are based on meta-
analysis. We first present an examination of the important statistical differences between
fixed-effects (FE) and random-effects (RE) models in meta-analysis and between two
different RE procedures, due to Hedges and Vevea, and to Hunter and Schmidt. The
implications of these differences for the appropriate interpretation of published meta-
analyses are explored by applying the two RE procedures to 68 meta-analyses from five
large meta-analytic studies previously published in Psychological Bulletin. Under the
assumption that the goal of research is generalizable knowledge, results indicated that the
published FE confidence intervals (CIs) around mean effect sizes were on average 52%
narrower than their actual width, with similar results being produced by the two RE
procedures. These nominal 95% FE CIs were found to be on average 56% CIs. Because
most meta-analyses in the literature use FE models, these findings suggest that the
precision ofmeta-analysis findings in the literature has often been substantially overstated,
with important consequences for research and practice.

1. Introduction

In psychology, medicine, and the social sciences, conclusions about cumulative

knowledge today are typically based on the results ofmeta-analyses.One indication of this

is the large number of meta-analyses appearing in research journals in psychology
and related areas, including journals that formerly published only individual empirical

studies. Another indication is that textbooks summarizing knowledge within fields

increasingly cite meta-analyses rather than a selection of primary studies, as was the case

until recently (Hunter & Schmidt, 1996; Myers, 1991). Because conclusions about
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cumulative knowledge are dependent on the meta-analysis methods used, it is important

to examine carefully the implications of different statistical approaches to meta-analysis.

An important distinction within meta-analysis methods is that between fixed-effects

(FE) and random-effects (RE)models. Thedifferencesbetween these twomodelshavebeen

discussed by Becker and Schram (1994), Field (2003), Hedges and Vevea (1998), Hunter

and Schmidt (2000), the National Research Council (1992), Overton (1998), Raudenbush
(1994), Shadish andHaddock (1994), and Schulze (2004). The basic distinction here is that

FEmodels assumea priori that exactly the samepopulation value (for example, rwhen r is

the statistic used and dwhend is the statistic used) underlies all studies in themeta-analysis

(i.e. SDr ¼ 0 or SDd ¼ 0), while RE models allow for the possibility that population

parameters (r or d values) vary from study to study.

The RE model is the more general one: the FE model is a special case of the RE model

in which SDd ¼ 0. Application of an RE model can result in an estimated SDd (or SDr) of

zero, a finding indicating that an FE model would be appropriate for that set of studies.
The application of an RE model can detect the fact that SDd ¼ 0; however, the

application of an FE model cannot estimate SDd if SDd . 0. The RE model allows for any

possible value of SDd, while the FE model allows only the assumed value of zero. These

differences in assumptions lead to different formulas for the standard error of the mean

d or mean r which then lead to differences in the widths of estimated confidence

intervals (CIs). In this paper we first present a discussion of the general statistical

differences between FE and RE models and a discussion of the considerations

surrounding their use. Next, we present a tabulation of their frequency of use in
Psychological Bulletin, the premier US psychology review journal. We then discuss

some technical questions in the estimation of RE models. Finally, we present reanalyses

of data from five FE meta-analysis studies (68 meta-analyses in all) previously published

in Psychological Bulletin, illustrating via empirical data that results and conclusions in

psychological research – in particular, conclusions about the certainty of findings –

depend importantly on which model is used. To our knowledge, no such demonstration

based on reanalysis of archival data has appeared in the literature.

2. Differences between the two models

In psychology, the statistic averaged across studies is usually the correlation coefficient

(r) or the standardized difference between means (the d statistic). The computed
standard error (SE) of the mean d or r is a function of sampling error in the mean. There

are two sources of sampling error: simple sampling error, estimated by the sampling

error variance formula for d or r; and sampling error variance created by variation across

studies in the underlying population values (i.e. S2d or S
2
r). FE models consider only the

first source of sampling error and do not take into account the second source (Field,

2001, 2003, 2005; Hedges & Vevea, 1998; Hunter & Schmidt, 2000; Overton, 1998;

Raudenbush, 1994; Schulze, 2004). Hence the estimate of sampling error variance for

the meta-analysis mean is accurate in the FE model only when S2d ¼ 0 or S2r ¼ 0.
Otherwise, FE models underestimate sampling error variance and hence underestimate

the SE of the mean d or r, leading to CIs that are too narrow (and also to inflated Type I

error rates; Field, 2001, 2003, 2005; Hedges & Vevea, 1998; Hunter & Schmidt, 2000;

National Research Council, 1992; Raudenbush, 1994; Schulze, 2004).

The most commonly used FE procedure is that of Hedges and Olkin (1985). In this

procedure, the simple samplingerror variance (V ei) is first computed for each study and the
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inverses of these values (1=V ei ) are the weights (wi) used to compute the mean d value:

d̂ ¼ d ¼
P

widiP
wi

: ð1Þ

The sampling error variance of this mean (S2ed
) – or rather, its square root, SEd – is used to

compute the CI in the usual manner; if a significance test is applied to the mean, it is also

based on this SE. If the statistic used is r, Hedges and Olkin (1985) first transform the

correlations using Fisher’s z transformation; the calculations are carried out in Fisher’s z

metric, and then themeanand the endpoints of theCIs are back-transformed to the rmetric

(Hedges & Olkin, 1985, p. 120.) The FE procedure of Rosenthal and Rubin (Rosenthal,
1991, 1993; Rosenthal & Rubin, 1982a, 1982b) differs in only minor ways (Field, 2005).

If the study effect sizes are in the d metric, the simple sampling error variance for a

single study is estimated as

V ei ¼
N1 þ N2

N1N2
þ d 2

2ðN1 þ N2Þ ; ð2Þ

where N1 and N2 are the sample sizes in the two groups (e.g. experimental and control

groups) being compared and d is the standardized mean difference between the two

groups (see Hedges & Olkin, 1985, equation 5–14, p. 86; Hunter & Schmidt, 2004,

equation 7.23a, p. 284). The d statistic is usually corrected for its slight positive bias due

to small sample size (see Hedges & Olkin, 1985, p. 81; Hunter & Schmidt, 2004, pp. 284–

285). (When r is the statistic used, it is corrected for its slight negative bias before being

transformed into Fisher’s z metric.)
The reader can most clearly grasp the mechanics of the FE method in the special case

in which the sampling error variance is constant across the studies in the meta-analysis.

In this special case, the average of these values across studies is

Ve ¼
P

V ei

k
: ð3Þ

The sampling error variance of the mean and the standard error are given by

S2ed
¼ Ve

k
ð4Þ

and

SE
d
¼

ffiffiffiffiffi
Ve

k

r
: ð5Þ

When sampling error varies across studies, the equation for sampling error variance

becomes

S2e
d
¼ 1P

wi

; ð6Þ

where the wi are 1=V ei . The SE is used with the mean d to compute the CI in the usual

manner (Hedges & Olkin, 1985; Hedges & Vevea, 1998).

In the RE model, by contrast, the sampling error variance of the mean and that of the

standard error are (again, assuming equal V ei across studies)

S2ed
¼ Ve

k
þ S2d

k
ð7Þ
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and

SEd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve þ S2d

k

r
: ð8Þ

The second term on the right-hand side of equation (7) reflects the effect of variance

across studies in population parameters on the sampling error variance of the mean

observed d. This term does not appear in the formula used by the FE model because the

FE model assumes S2d (or SDd) to be zero; that is, the FE model assumes that the

population parameters (ri or di) underlying each study are equal. As seen here,

procedures for estimating sampling error variance for FE models are quite simple. These

procedures are more complex for RE models and are presented later in this paper.
The methods described in Hunter, Schmidt, and Jackson (1982), Hunter and Schmidt

(1990, 2004), Callender and Osburn (1980), and Raju and Burke (1983) are RE models

(Hedges & Olkin, 1985, Ch. 9, p. 242; National Research Council, 1992, pp. 94–95).

These methods have been extensively applied to substantive questions in the published

literature (e.g. see Hunter & Schmidt, 1990, 2004; Schmidt, 1992). (These methods take

into account artefacts in addition to sampling error, such as measurement error.) The

methods described in articles by Hedges (1983, 1988), Hedges and Olkin (1985, Ch. 9),

Raudenbush (1994), Raudenbush and Bryk (1985), and Rubin (1980, 1981) are also RE
methods. These latter methods have been used less frequently in meta-analysis. For

example, although Psychological Bulletin, the major review journal in psychology, has

published 199 meta-analyses as of January 2006, we could locate only 13 meta-analyses

published in that journal that employed these methods. (See discussion in later section.)

Schulze (2004, p. 35) noted that the FE model has been more commonly used than

the RE model, and Cooper (1997, p. 179) stated that, ‘In practice, most meta-analysts

opt for the fixed effects assumption because it is analytically easier to manage’.

The National Research Council (1992, p. 52) stated that many users of meta-analysis
prefer FE models because of ‘their conceptual and computational simplicity’.

An important question is whether the FE assumption of constant population

parameter values can accurately reflect reality. Many would argue that for theoretical or

substantive reasons there is always some variation in population parameter values

across studies (National Research Council, 1992; Schulze, 2004). That is, they would

argue that there are always at least some real (i.e. substantive, not methodological)

moderator variables (interactions) that create differences in values of di or ri across
studies. However, evidence has been reported indicating that some study domains
appear to be homogeneous at the level of substantive population parameters (Hunter &

Schmidt, 2000; Schmidt et al., 1993). That is, population parameters do not vary once

the effects of sampling error, measurement error, and range variation are controlled for.

However, such homogeneity can be revealed only by using RE models to estimate the

level of heterogeneity. FE models do not allow for such calibration because they assume

homogeneity a priori.

Even if there are no substantive moderators causing variation in population

parameters, methodological variations across studies can cause variation in study
population di or ri values; that is, values corresponding to N ¼ 1 can be affected by

methodological variations other than sampling error. For example, if the amount of

measurement error (degree of unreliability) in the measures used varies across studies,

then this variation creates variation in study population parameters; studies with more

measurement error will have smaller study population values of di or ri, and vice versa
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(Hedges & Olkin, 1985, pp. 135–138; Hunter & Schmidt, 2004, Ch. 3). So even if there is

no substantive variation in population parameters, variations across studies in such

methodological factors as error of measurement, range variation, or dichotomization of

continuous variables (Hunter & Schmidt, 1990, 2004; Osburn & Callender, 1992) will

create variation in study population parameters. In the absence of corrections for such

artefacts such variation will typically exist, causing the assumption of homogeneous
study population effect sizes or correlations to be false and the CIs based on the FE

model to be too narrow.

Hedges andVevea (1998) andOverton (1998) pointed out that the choice of an FE or RE

model depends on the type of inference that is the goal of the meta-analyst. If the goal is to

draw conclusions that are limited to the set of studies at hand and themeta-analyst does not

desire to generalize beyond his/her particular set of studies, the FEmodel can be usedwhen

population parameters vary as well as when they do not. Hedges and Vevea refer to this as

conditional inference. The usual goal of research, however, is generalizable knowledge
(Toulmin, 1961), which requires generalization beyond the current set of studies to other

similar studies that have been or might be conducted. Hedges and Vevea refer to this as

unconditional inference. Within this broader objective, the FE model is appropriate only

whenpopulationparameters do not vary.Whenpopulationparameters vary, anREmodel is

required for unconditional inference (Field, 2003, 2005; Hedges & Vevea, 1998;

Raudenbush, 1994). The discussion in this paper assumes that the objective in meta-

analysis is to make inferences about a wider population of studies; that is, to draw

conclusions that can be generalized beyond the specific set of studies included in the meta-
analysis. If this is not the case and the researcher’s purpose is only to reach conclusions

limited to the specific set of studies in the meta-analysis, the FE model does not

underestimate the SE and the resultingCIs arenot toonarrow.This follows from the fact that

in this case there is no sampling error in the sampling of study population parameters,

because the set of studies at hand is not viewed as a sample of a larger number of studies that

might exist or could be conducted (Hedges & Vevea, 1998; Hunter & Schmidt, 2000;

Overton, 1998; Raudenbush, 1994). In this case, generalization of conclusions is only to a

hypothetical set of studies that is identical to the study set athandexcept for simple sampling
error; that is, to a set of studies with exactly the same study population parameter values,

study for study, anddifferingonly in the samplingof subjects (usually people)within studies.

Schulze (2004, pp. 38, 195) stated that it is difficult for ameta-analyst to decidewhether

his/her purpose is this limited generalization and also difficult for a reader of the meta-

analysis to evaluate such a decision and that this creates difficulties in interpretingFE results

when S2d . 0 or S2r . 0. More importantly, it is has been pointed out that such conclusions

are of limited scientific value (Hedges & Vevea, 1998; Hunter & Schmidt, 2000; National

Research Council, 1992; Overton, 1998; Schulze, 2004). The goal of science is cumulative
knowledge, andcumulativeknowledge isgeneralizable knowledge (Bechtel, 1988; Phillips,

1987; Toulmin, 1961). Researchers are interested in general principles, not in describing a

particular set of studies. Hence, it would appear that the FE model would rarely be

appropriate for most research purposes. The National Research Council (1992) stated that

FE models ‘tend to understate actual uncertainty’ (p. 147) in research findings and

recommended ‘an increase in theuseof randomeffectsmodels inpreference to the current

default of fixed effects models’ (p. 2; see also pp. 185–187 of that report). Others have also

cautioned that when the goal is generalizable knowledge, use of FE models can lead to
inflated Type I error rates and erroneously narrow confidence intervals (e.g. Field, 2003;

Hedges, 1994; Hedges & Vevea, 1998; Hunter & Schmidt, 2000; Overton, 1998;

Raudenbush, 1994; Rosenthal, 1991).
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Hedges and Vevea (1998, pp. 487–488) stated that although there is no statistical

(sampling) foundation or justification for generalizing FE findings beyond the specific

studies in the meta-analysis, there can be, by analogy with the practices of some primary

researchers using analysis of variance (ANOVA) in experiments, an extra-statistical or

judgement-based basis for such wider generalization. They proposed that just as primary

researchers using FE ANOVA designs in experiments sometimes generalize their
conclusions beyond the specific fixed levels of treatment included in their experiments,

so also could meta-analysts using FEmodels, based on the subjective judgement that new

studieswill be ‘sufficiently similar’ to those in themeta-analysis. In ANOVA, an FEdesign is

one in which all levels of the treatment that are of interest are included in the design,

while an REmodel is one inwhich only a sample of treatment levels of interest is included

in the study. It was by analogy with this distinction in ANOVA that Hedges and Olkin

(1985, p. 149) originally labelled the two different models in meta-analysis as FE and RE

models (Hedges & Vevea, 1998). Hence in FE meta-analysis models, the studies included
in the meta-analysis are assumed to constitute the entire universe of relevant studies,

whereas in RE models the studies are taken to be a sample of all possible studies that

might be conducted or might exist on the subject. However, the National Research

Council report (1992, pp. 46 and 139) indicates that there are problemswith this analogy:

The manner in which the terms ‘fixed effects’ and ‘random effects’ are used in the meta-

analysis literature is somewhat different from the classical definitions used in other

techniques of statistics such as analysis of variance, where ‘fixed effects’ is the term required

to deny the concept of a distribution of the true effects, d1 : : : dk, and ‘random effects’

supposes that the di are sampled from a population and therefore have a distribution.

(National Research Council, 1992, p. 46)

An example might help to clarify the meaning of this National Research Council

statement. A studyof the effects of a drug on patientsmight include the dosages 0, 10, and

20mg. In FE ANOVA, treatments (dosages) are fixed at these levels and these levels are

considered the only ones of interest. In the FE ANOVA the idea that there is a naturally

occurring distribution of dosages or potential dosages is explicitly denied. This is different
from the FE model in meta-analysis in two ways. First, in meta-analysis, the researcher

does not specify (or fix) the parameter values (rior di) in the individual studies included in
the meta-analysis; instead, these values are accepted as they happen to be sampled in the

set of studies at hand. That is, they are observed and not manipulated. The second

difference results from the first: because the researcher does not fix the parameter values

included in the studies but accepts them as they happen to have occurred, there appears

to be no basis or rationale for postulating or assuming that these parameter values do not

have a distribution across studies, which is the key assumption of the FEmodel in ANOVA.
This is the reason why the National Research Council (1992) report rejected the analogy

between FE models in ANOVA and FE models in meta-analysis. However, even had the

National Research Council accepted this analogy at the conceptual level, this would still

have left open the question of whether the broader generalizations sometimes made by

researchers from FE ANOVA-based experiments are justified. The fact that experimenters

sometimesmake such generalizations cannot be viewed as a justification (Schulze, 2004).

As Hedges and Vevea (1998) pointed out, this practice has no statistical foundation and is

based only on subjective judgement. The National Research Council (1992) report
concluded that unless populationparameters actually donot vary, FEmodelswill yieldCIs

that are too narrow (and inflated Type I error rates) when there is any generalization to

studies beyond the specific ones included in themeta-analysis. This is also the conclusion
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of Field (2001, 2003, 2005), Hunter and Schmidt (2000), Overton (1998), Schulze (2004),

and others.

Potential conceptual problems are also associatedwith the use of theREmodel. In that

model, the studies in the meta-analysis are viewed as a random sample from a larger

universe of studies that exist or could be conducted. Hedges and Vevea pointed out that

this larger universe is often poorly defined and ambiguous in nature. However, Schulze
(2004, pp. 40–41) noted that this is not a problem specific to meta-analysis or RE models

inmeta-analysis, but one that characterizes virtually all samples used in research. Rarely in

research is the target population of samples fully enumerated and delimited; in fact, data

sets used frequently consist of something close to convenience samples (i.e. a set of

samples for which it was possible to obtain data). Viewed in this light this problem

appears less serious. Another potential problem with RE models is the fact that in the

estimation of the between-study parameter variance (S2d or S
2
r), the number of data points

is the number of studies. Hence, if the number of studies is small, estimation of this
quantity can have less than sterling accuracy (Hedges & Vevea, 1998; Hunter & Schmidt,

1990, 2004; Raudenbush, 1994). One implication is that results produced by RE models

should be considered only approximate when the number of studies is small. In the

reanalysis reported later in this paper, we include data only for meta-analyses with 10 or

more studies.

To the extent that empirical results and conclusions differ depending on whether

FE or RE models are used, it is important, as Overton (1998) pointed out, to examine

these differences and determine the extent to which conclusions about cumulative
knowledge depend on assumptions underlying the two models. Overton (1998, p. 357)

suggested that data should be analysed using both models to reveal the extent to which

findings are dependent on the specific assumptions of the FE and RE models.

3. Use of FE and RE models in psychological literature

At present most meta-analyses in the psychological literature appear to be based on FE
methods (Cooper, 1997, p. 179; Schulze, 2004, pp. 35, 82–83). The National Research

Council (1992, p. 146) stated that the use of FE models is ‘the rule rather than the

exception’. To provide some empirical calibration, we tabulated the frequency of use of FE

and RE models in Psychological Bulletin, from the first appearance of a meta-analysis in

1978 to the January 2006 journal issue; the results are shown in Table 1. During this period

199 meta-analysis studies were published. Because it does not address the question of

sampling error, the Glass procedure for meta-analysis (Glass, McGaw, & Smith, 1981)

cannot be classified as an FE or RE procedure. The 10% of studies using this approach are
concentrated in the first half of this period; after 1994, no studies used this procedure.

Another 6% of meta-analysis studies also used procedures that were too rudimentary to be

classified as FE or REmethods.Of the 169meta-analysis studies that could be classified, 129

(76%) usedonly FEmethods.Of the 129 FEmeta-analysis studies, 91 (71%) employed the FE

procedures of Hedges and colleagues (e.g. Hedges & Olkin, 1985), 24 (19%) used the

Rosenthal and Rubin FE procedure, and 14 (11%) used combinations or did not provide

enough information to allow classification.

Of the 32 meta-analysis studies that used RE models, 8 (25%) used the RE procedures
of Hedges and colleagues (e.g. Hedges & Olkin, 1985; Hedges & Vevea, 1998), 19 (59%)

used the Hunter–Schmidt RE procedure (Hunter et al., 1982; Hunter & Schmidt, 1990,

2004), and 5 (16%) used other RE procedures. Of the eight meta-analysis studies that

used both FE and RE models, seven (88%) used Hedges and colleagues’ procedures
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(e.g. Hedges & Olkin, 1985; Hedges & Vevea, 1998), and one (13%) used another
method. None used the Rubin (1980, 1981) RE model.

Table 1 also shows for each year the percentage of meta-analysis studies that used the

FEmodel. This column is basedon the 169 studies that could be classified as FE, RE, or both,

with the latter being considered RE studies. It can be seen that since about 2003 there has

been some increase in the number of RE-based meta-analysis studies. Additional insight is

Table 1. Classification of meta-analysis articles in Psychological Bulletin, 1977–2006

Methods

Year Glassian FE RE Both (mixed) Misc. Percentage of FEa Sum Cumulative sum

1977 0 0
1978 1 1 1
1979 1 1 2
1980 0 2
1981 1 3 1 100 5 7
1982 3 1 100 4 11
1983 2 2 100 4 15
1984 1 2 1 1 67 5 20
1985 6 2 75 8 28
1986 4 6 1 86 11 39
1987 2 3 1 75 6 45
1988 1 5 1 83 7 52
1989 1 5 100 6 58
1990 2 5 2 71 9 67
1991 1 7 1 88 9 76
1992 9 100 9 85
1993 5 1 83 6 91
1994 1 6 100 7 98
1995 8 1 89 9 107
1996 8 2 2 80 12 119
1997 5 100 5 124
1998 6 2 75 8 132
1999 8 100 8 140
2000 8 1 1 1 89 11 151
2001 2 2 50 4 155
2002 9 2 100 11 166
2003 6 3 3 1 67 13 179
2004 3 6 1 33 10 189
2005 1 3 2 1 25 7 196
2006 2 1 0 3 199
Total 19 129 32 8 11 76 199
% 10 65 16 4 6 100

Note. 2006 data include only the first issue or 132(1); Glassian: Glass and colleagues procedure, 19
(100%); FE: Hedges and colleagues procedure, 91 (71%), Rosenthal and colleagues procedure, 24 (19%),
and other procedures, 14 (11%); RE: Hunter and Schmidt procedure, 19 (59%), Hedges and colleagues
procedure, 8 (25%), and other procedures, 5 (16%); Both: Hedges and colleagues procedure, 7 (88%),
and other, 1(13%); Misc.: unclassifiable meta-analysis procedures.
aComputed based on studies classified as FE, RE, and both. Studies classified as ‘both’ were counted as
RE studies.
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provided by Figure 1, which is also based on the 169 meta-analysis studies that used the

FEmodel, the REmodel, or both,with the latter again considered to beRE studies. (Manyof

the studies that used both models relied only on the FE results in their interpretations.)

Figure 1 suggests that the proportion of studies using the FE model exclusively appears to

bedecliningwith time.This trend is likely due to the effectof theNationalResearchCouncil

(1992) report and to publications by Becker and Schram (1994), Hedges and Vevea (1998),
Hunter and Schmidt (2000), Overton (1998), and Raudenbush (1994), among others. We

view this trend as positive, but the fact still remains that over three quarters of classifiable

meta-analyses published in Psychological Bulletin employed only the FE model.

4. Estimation in RE models

Procedures for estimation of sampling error variance are more complex in RE

models than FE models (Schulze, 2004). In our reanalyses of published FE meta-analyses,

we present results for both the Hedges–Vevea (HV) RE procedure and the Hunter–

Schmidt (HS) RE procedure. Estimation procedures differ somewhat for these two RE
procedures (cf. Field, 2005), although they generally yield similar results (and were

found to do so in our analyses). Estimation procedures are simpler for the HS approach

(Schmidt, Hunter, & Raju, 1988), so we present those procedures first.

4.1. The Hunter–Schmidt RE procedure
Again our presentation is in terms of the d statistic but procedures are similar and

analogous for r (the correlation coefficient) and other indices of effect size. Here we

Figure 1. Proportion of FE-based meta-analysis articles in Psychological Bulletin, 1981–2005. Computed

based on studies classified as FE, RE, and both (k ¼ 169) from Table 1. Studies using both FE and RE

models were counted as RE studies.
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present only the basics of the HS RE method; a more technically detailed description can

be found in (for example) Field (2005). In the HS RE procedure, the sampling error

variance of the mean d is estimated as the variance of the observed ds across studies

divided by k, the number of studies:

S2ed
¼ Ve

k
þ S2d

k
¼ S2d

k
: ð9Þ

The square root of equation (9) is the SE that is used in computing CIs:

SEd ¼ SDdffiffiffi
k

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve þ S2d

k

r
: ð10Þ

In this model, Ve is conceptualized as the sample size weighted mean of the V ei values.

The equation for S2d is

S2d ¼
P

N iðdi 2 d Þ2P
N i

; ð11Þ

where

d¼
P

N idiP
N i

: ð12Þ

The rationale for this procedure can be seen in the fact that S2d ¼ S2e þ S2d; that is, the
expected value of S2d is the sum of simple sampling error variance and the variance of the

study population parameters (Field, 2005; Hedges, 1989; Hunter et al., 1982; Hunter &

Schmidt, 1990, 2004; Schmidt & Hunter, 1977).1 Hence S2d estimates the average RE

sampling error variance for the set of studies, and this quantity divided by k is the

sampling error variance of the mean. Osburn and Callender (1992) showed that this

equationholds bothwhen S2d . 0 and S2d ¼ 0 (i.e.when the assumption underlying the FE

model holds). The study weights in the HS RE model are (total) study sample sizes, Ni,

used because theseweights closely approximate the inverse of the simple sampling error
variances, 1=V ei (Hunter & Schmidt, 2004), and are less affected by sampling error

variance (Brannick, 2006). Hedges (1983, p. 392) stated that in the heterogeneous case

(S2d . 0), weighting by sample size ‘will give a simple unbiased estimator [of the mean]

that is slightly less efficient than the optimal weighted estimator’. Osburn and Callender

(1992) showed via simulation that weighting by sample size produces accurate SE

estimates both when S2d ¼ 0 and S2d . 0, as long as multiple outlier sample sizes are not

present. (In the presence of very large outlier sample sizes, weighting by sample size can

cause underestimation of the SE.) Also using simulation, Schulze (2004) found that for
heterogeneous population data sets, the HS RE procedure weighting by sample size

produced accurate (more accurate than other procedures evaluated) estimates of CIs

(Table 8.13, p. 156); estimates for the mean correlation were also acceptably accurate

(with a small median negative bias of 0.0022; Table 8.4, p. 134; see pp. 188–190 for a

summary). Brannick reported similar results. Further details can be found in Osburn and

1 The focus here is on the d statistic, but the general principle also applies to the correlation coefficient. In the case of the
correlation coefficient, there is a non-zero covariance between population correlations and sampling errors. Hedges (1989)
examined this issue and concluded that this covariance is very small and has only trivial effects on conclusions reached using
this additive model. A similar conclusion applies to the d statistic.
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Callender (1992) and Schmidt et al. (1988).We note here that in the HS REmethod,when

the ds are corrected for measurement error, the procedure is analogous except that S2d is

now the variance (S2dc
) of the corrected ds (see Hunter and Schmidt, 2004, pp. 206–207

for details). We do not address such corrections in this paper.

4.2. The Hedges–Vevea RE procedure
The Hedges and Vevea (1998) RE procedure estimates the two components of RE

sampling error variance separately. The simple sampling error variance component is

estimated exactly as it is in the FE model. That is, equation (6), reproduced below, is

used to compute this component:

S2ed
¼ 1P

wi

where the wi are 1=V ei .

The second component, ŝ2
d (symbolized as t̂2 by Hedges and Vevea), is estimated as

follows:

ŝ2
d ¼

Q2ðk21Þ
c

; if Q $ k2 1;

0; if Q , k2 1;

8<: ð13Þ

where Q represents the x2 overall homogeneity test2 and c is a function of the study

weights and is given in equation (11) from Hedges and Vevea (1998):

c ¼
X

wi 2

PðwiÞ2P
wi

; ð14Þ

where the study weights wi are the FE study weights as defined in our equation (6).

The estimated mean value is then

d̂ ¼ d ¼
P

wi diP
wi

: ð15Þ

The sampling error variance is:

S2ed
¼ 1P

wi

ð16Þ

where the wi are 1=ðV ei þ ŝ2
dÞ.

When the effect size statistic is the correlation, this RE procedure first converts rs to

the Fisher z transformation, conducts the calculations in that metric, and then back-

transforms the resulting means and CIs into the r metric (Hedges & Olkin, 1985) (as is

done in the FE procedure). See Hedges and Vevea (1998), Field (2005), and Hall and

Brannick (2002) for a complete technical description of this RE procedure.

When Q 2 (k 2 1) yields a negative value, ŝ2
d in equation (13) is set to zero because,

by definition, a variance cannot be negative. Hedges and Vevea discuss in some detail

the positive bias that characterizes this estimate as a result of setting negative values to zero,

2 It should be noted that a value of mean d is needed initially to compute the Q statistic. In computing that initial mean d,
studies are weighted by w, not w*. That is, they are weighted by the inverse of the simple sampling error variance.
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and they tabulate this bias in their Table 2 for various conditions. This bias causes the SE to

be upwardly biased, causing the resultingCIs tobe toowide; that is, the probability content

of the CIs is larger than the nominal value (Hedges & Vevea, 1998, p. 496). Overton (1998,

pp. 371, 374) found this same bias for this procedure and also for an iterative procedure he

used to estimate S2r and S
2
d. Hedges andVevea (1998, p. 492) briefly discussed such iterative

procedures but rejected them in favour of the procedure described above because the
iterative procedures are more complex to use, typically requiring specialized computer

programs, and do not appear to be more accurate. Hedges and Vevea state that bias

becomes smaller as k (the number of studies) increases and is generally small when k is 20

ormore. However, Overton (1998) pointed out that the bias also depends on the actual size

of S2d (or S
2
r). For example, if this value is zero, then 50% of the estimates are expected to be

negative due to sampling error, creating a positive bias regardless of the number of studies.

If this value is small but not zero, then less than50%of the estimates of S2d are expected tobe

negative, and the positive bias is smaller. When S2d is large, the positive bias is negligible.
Overton (1998) stated that when S2d is small, the RE model overestimates sampling error

variance and produces CIs that are too wide. Some researchers have cited Overton’s

statement as a rationale for preferring the FE model to the RE model in their meta-analyses

(e.g. Bettencourt, Talley, Benjamin, & Valentine, 2006).

Because of its different mode of estimating the sampling error variance (described

above), the HS RE procedure does not have this upward bias. As shown earlier, in the HS

RE procedure, the two components of the RE sampling error variance are estimated

jointly rather than separately. Note that if S2d is in fact zero, the HS RE estimate of
sampling error variance has the same expected value as the FE estimate of sampling

error variance (Osburn & Callender, 1992; Schmidt et al., 1988). As shown by Hedges

and Vevea (1998), this is not the case for the HV RE procedure.

Because of the nature of the study weights used to produce the weighted mean d

value in the HV procedure, it is necessary to have a separate estimate of s2
d when using

this procedure (Field, 2005; Hedges & Vevea, 1998). As noted above, the weight applied

to each study is wi ¼ 1=ðV ei þ ŝ2
dÞ, where V ei is the simple sampling error variance for

that study. The HS procedure weights each study by its (total) sample size (Ni) and
therefore does not require a separate estimate of s2

d. The HS RE model does estimate s2
d

for other purposes (cf. Hunter & Schmidt, 2004), and this estimate does have a positive

bias, but this estimate is not used in computing weighted mean values, SEs, or CIs

(Schmidt et al., 1988; see also Schulze, 2004, p. 190). Within the context of large-sample

statistical theory, the HV study weights are statistically more appropriate for RE models

(Hedges, 1983; Hedges & Vevea, 1998; Raudenbush, 1994; Schulze, 2004), but even

within large-sample theory this advantage is slight (Hedges, 1983, p. 393). In addition,

the small theoretically expected advantage for these study weights is not realized with
the smaller study sizes that are typical, because of inaccuracies induced by sampling

error in the estimation of the s2
d component of the weights (e.g. see Brannick, 2006;

Raudenbush, 1994, p. 317; and Schulze, 2004, pp. 84 and 184). Because of this effect,

Schulze (2004, pp. 193–194), based on the results of his extensive Monte Carlo studies,

recommended weighting studies by sample size in the heterogeneous case (i.e. s2
d or

s2
r . 0), as well as the homogeneous case.

In a recent simulation study, Field reported that the HS RE model yielded generally

more accurate estimates of mean values than the HV RE model, but this research was
limited to correlations and it is possible that its findings may be explained by a positive

bias induced in estimates of mean r in the HV model by its use of the non-linear Fisher z

transformation of correlations (Donnor & Rosner, 1980; Field, 2001, 2005; Hotelling,
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1953; Hunter, Schmidt, &Coggin, 1996; Overton, 1998, p. 358; Schulze, 2004, pp. 75–79,

193–194). Hall and Brannick (2002) reported findings similar to those of Field (2005).

This bias becomes larger as S2r increases and can become substantial. In the Field (2001)

simulation study, this bias was as large as 0.20; in Field (2005), which employed a slightly

different simulationmethod, themaximum bias was 0.052. The bias reported by Hall and

Brannick (2002) was intermediate in value. In the units of the d statistic, these bases
would be slightly more than twice their value in the rmetric (Hunter & Schmidt, 2004).

Schulze (2004), also using the r statistic, reported this same finding in his Monte Carlo

studies and attributed it to use of the Fisher z transformation by the HV RE method. He

recommended against use of this transformation (Schulze, 2004, pp. 193–194). No

comparable transformation is used in theHVREmethodwhen the d statistic is used in the

meta-analysis. The meta-analyses that were re-analysed in the present study were limited

to those using the d statistic so that the results produced by the HVand HS RE procedures

would be more directly comparable and could be interpreted without the distracting
issue of the bias caused by the Fisher z transformation. However, as discussed later, the

general pattern of results can be expected to be the same for r as for d.

5. Method

We sought to reanalyse data from FE meta-analyses published in Psychological Bulletin.

We searched for studies that met the following criteria: (a) the FE model only was used;

(b) CIs were presented and interpreted; (c) data tables presented effect sizes, Ns, and

information needed to code the studies into the categories used in the meta-analysis; and

(d) the study used the d statistic. Surprisingly, few studies met requirement (c), limiting

our choice of meta-analysis studies. We found only four meta-analysis studies that met all

four of the criteria. We believe these meta-analysis studies are methodologically typical

of those that have appeared in Psychological Bulletin over the last 20 years, except for
the fact that they provided the data necessary to replicate (recompute) the meta-

analyses. That is, these studies are typical in their use of and interpretation of the FE

method. We believe that this – not substantive (topic area) typicality – is what is

important for our purposes, which are methodological in nature. Chronologically, these

studies were: (a) Hyde and Linn (1988), a study of gender differences in verbal ability;

(b) Hyde, Fennema, and Lamon (1990), a study of gender differences in mathematics

performance; (c) Bettencourt and Miller (1996), a study of gender differences in

aggression; and (d) Byrnes, Miller, and Schafer (1999), a study of gender differences in
risk taking. A reviewer requested the inclusion of at least one meta-analysis focusing on a

substantive area other than gender differences. After considerable search we located the

Bettencourt et al. (2006) study, a meta-analysis focusing on relations between

personality and aggressive behaviour under provoking and neutral conditions. This

study reported both FE and RE results (and so violated our condition (a) above), but the

authors based all their interpretations of results on only the FE results. We could find no

other studies that met requirement (b), (c), and (d). All five of these studies reported

multiple meta-analyses, with a total across studies of 68 separate meta-analyses with
k ¼ 10 or more. All employed the Hedges and Olkin (1985; Hedges & Vevea, 1998) FE

meta-analysis procedure; all reported (nominal) 95% CIs. Since all meta-analyses become

increasingly less accurate as k (the number of studies) becomes smaller (Hedges &

Vevea, 1998), we limited our reanalysis to meta-analyses based on 10 or more studies.
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5.1. Procedure
We wrote spreadsheet-based programs for the Hedges and Olkin FE and RE procedures

and calibrated these programs against the example analysis given in Hedges and Vevea

(1998; Table 1). Next, we re-analysed each of the 68 meta-analyses using the Hedges and

Olkin (1985) FE procedure (also described in Hedges & Vevea, 1998; see also Field,

2005) and confirmed that results obtained were identical or nearly identical to the
originally reported results. (In a few cases, we were unable to locate data for one or two

of the studies originally reported to be in the meta-analysis, resulting in slightly different

results. For example, authors might report that k ¼ 21 for a meta-analysis of verbal

ability but we could find only 20 studies of verbal ability in the data table presented.) In

four of the studies (Hyde & Linn, 1988; Hyde et al., 1990; Bettencourt & Miller, 1996;

Bettencourt et al., 2006), it was specified that the Hedges and Olkin (1985) adjustment

for the slight positive bias in the d statistic had been applied to the d statistics presented

in the data tables, and we used these adjusted values in our reanalysis. In the remaining
meta-analysis (Byrnes et al., 1999) it was not stated that this adjustment had been

applied, so we applied it before our reanalysis. (The results were almost identical with

and without this adjustment.) After the reanalysis using the HV FE method, we

reanalysed these same data sets using the Hunter–Schmidt RE model described

earlier (Field, 2005; Hunter & Schmidt, 2004; Schmidt et al., 1988) and the Hedges–

Vevea RE model (Field, 2005; Hedges & Vevea, 1998), also described earlier. Both

these procedures include an adjustment for the slight positive bias in d values, and these

adjustments were included (when needed). (Spreadsheet programs used are available
from the first author.) For the FE and the two RE procedures, we computed means and

95% CIs following the usual procedures for computing CIs. Our major focus was on CIs

because both Hedges and Olkin (1985) and Hunter and Schmidt (1990, 2004; see also

Hunter et al., 1982) recommend that CIs be presented in preference to statistical

significance tests. All CIs were computed based on the normal (z score) distribution,

because this distribution (rather than the t distribution) was used to compute CIs in the

original studies. For both RE models, we computed the percentage by which the FE

model underestimated the RE CI. We also computed the probability value (confidence
level) of the FE CI using the RE CI as the standard. For example, a nominal 95% FE CI

might actually be a 65% CI when evaluated against an RE model CI. These two indices

provide informative measures of the differences between estimates of precision for FE

and RE models.

6. Results

Results are presented in Tables 2–7. The table numbers within our tables indicate the

tables in the original studies from which the specific meta-analyses were taken. In each

of Tables 2–7, the first section gives the results of the FE analysis as reanalysed by us,

presenting mean ds and nominal 95% FE CIs. The middle section shows results for the

HS RE procedure, and the final section shows the results for the HV RE procedure.

For both RE procedures, mean ds and CIs are presented followed by three additional

columns of information. The column headed ‘Diff’ presents the amount by which the
FE model underestimated the actual CI. The next column gives the percentage by which

the FE model underestimated the actual CI. The next column gives the actual confidence

levels of the nominally 95% FE CIs, showing that the FE CIs typically do not reach

the 95% CI.
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Table 2 presents the results for the Hyde and Linn (1988) study. The FE model

underestimates the CI width in 9 of the 10 meta-analyses. The average percentage

underestimation is 55% according to the HS RE procedure and 65% according to the HVRE

procedure. Judged against the HS RECIs, the nominal 95% FECIswere on average 57%CIs.

Results were more discrepant for the HV RE procedure, which indicates that the nominal

95% FECIswere really on average only 33%CIs. Both comparisons, but especially thatwith
the HV procedure, indicate serious underestimation of CIs by the FE model.

Table 3 shows the reanalysis for the Hyde et al. (1990) meta-analysis. The general

pattern is the same as in the previous reanalysis. For the HS RE procedure, the average

percentage by which FE CIs underestimated actual CIs is 70%, which is again a serious

inaccuracy. The nominal 95% FE CIs are on average actually 40% CIs. The results for the

HV RE model are again more extreme: an average of 77% underestimation of the CIs and

an average 20% confidence level on average. Again, the two RE procedures agree in

indicating that the FE CIs are seriously in error.
The data from the Bettencourt and Miller (1996) meta-analysis were extensive

enough to require two tables. Results from this study are presented in Tables 4 and 5. In

Table 4, results for the HS RE procedure indicate that the FE CIs underestimate the actual

CI widths on average by 41%. For the HV RE procedure, the average underestimate is

39%. In comparison to the HS RE CIs, the nominal 95% FE CIs are on average 67% CIs;

the corresponding figure for the HV RE procedure is 68%. In these data, the results given

by the two RE models are nearly identical. And again, both RE procedures indicate that

the FE CIs are seriously in error: CI width is too narrow by about 40% and nominal 95%
CIs are really on average only 68% CIs.

The results shown in Table 5 for the remainder of the data from Bettencourt and

Miller (1996) are similar to the Table 4 results. Again, the results for the two RE models

are almost identical. Results for the HS RE procedure indicate that on average the FE CIs

underestimate the actual CI width by 43%; the corresponding figure for the HV RE

procedure is 44%. In comparison to the HS RE CIs, the nominal 95% FE CIs are on

average only 67% CIs; for the HV RE procedure, this figure is 61%. Again, the key fact is

that two different RE models both indicate that the FE CIs are quite inaccurate.
Table 6 presents the reanalysis for the Byrnes et al. (1999) meta-analysis. The overall

pattern of results is again very similar. Based on the HS RE model, the FE CIs

underestimated the real CIs by 54%. The nominal 95% FE CIs were on average only 61%

CIs. Results for the HV RE model were a little more extreme: 61% underestimation of the

CIs on average, and a 46% CI on average. Again, the two RE procedures agree in

indicating that the FE CIs are much narrower than the actual CIs and do not come close

to attaining the 95% coverage that a 95% CI should have.

The results for the 16 meta-analyses from Bettencourt et al. (2006) study are
presented in Table 7. The FE model underestimates the CI width for 15 of the 16 meta-

analyses. The average percentage underestimation is 38% according to both the HS and

HV RE procedures. Evaluated against the HS RE CIs, the nominal 95% CIs were on the

average 67% CIs. For the HV RE procedure, this figure was 69%. In this set of data, the

two RE procedures yielded very similar results. The discrepancies between the FE

procedure and the two RE procedures were again substantial, although less extreme

than in some of the previous tables.

To provide a summary picture of the results, we averaged the results across Tables
2–7. In comparison to the HS RE CIs, the FE CIs underestimated the width of the actual

CIs by 50% on average; for the HV RE procedure, this figure was 53%. Hence, on average

the two RE procedures produce similar verdicts on the FE CIs. The FE CIs are on average
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less than half as wide as the actual CIs. The average underestimation across the two RE

models is 52% (rounded). This is obviously a large discrepancy.

We also averaged the confidence levels of the FECIs across Tables 2–7.Using theHSRE

procedure as the standard, the nominal 95% FE CIs are on average only 60%CIs. Using the

HV RE procedure as the standard, the nominal FE CIs are really 51% CIs on average. The

difference here between the two RE procedures seems larger than for the percentage
underestimation figures, but the greater discrepancy is predicted by the properties of the

normal curve that is the basis for the CIs. That is, small differences in CI width between

the two RE procedures result in larger differences in percentage coverage (confidence

levels) because of normal curveproperties. On average across the twoREprocedures, the

nominal 95% FE CIs are estimated to be 56%CIs. Hence, on average FE CI coverage is only

about 59% of its nominal value (i.e. :56=:95 ¼ :59). Again, this is a major discrepancy.

While estimates of dwere typically quite similar for the HS and HV RE models, they

were sometimes substantially different. For example, in Table 2 for reading
comprehension, the means were .03 and .09, respectively. And in Table 3 for problem

solving, the means were .09 and .19, respectively. Other examples are apparent in the

tables. These differences are due to the difference in the study weights used to compute

the means. The HS model weights each study by its sample size (Ni), while in the HV

model, the study weights are wi ¼ 1=ðV ei þ ŝ2
dÞ. The larger ŝ2

d is, the more different

these two sets of study weights are. As ŝ2
d becomes larger, the HV weights become less

unequal across studies, while this does not happen for the HS weights.

In addition to the value of ŝ2
d, a correlation between Ni and the di statistic, r(Ni, di),

could cause the twoweighting approaches to produce different estimates of themean. In

our five meta-analyses, the average correlation between Ni and di ranged from 2 .10 to

þ .10, with a grandmean of2 .01. Thiswould suggest random variation around amean of

zero. This hypothesis was confirmed by the finding that the variation across studies in

these correlations was on average no larger than expected on the basis of sampling error

alone. Using the HS approach, we found that on average across the five meta-analyses all

variation in these rs was attributable to sampling error variance. Using the HVapproach,

we found that all the homogeneity tests (Q tests) except one were non-significant.
A frequently used measure of publication bias is a negative correlation between di and

Ni, assumed to result from failure to publish smallN studies with small (and therefore non-

significant) d values – i.e. a ‘file drawer problem’ (Rothstein, Sutton, & Borenstein, 2005).

The mean correlation of zero suggests the absence of publication bias in these data.

Although this should not be the case (see later discussion), most authors interpret CIs as

significance tests. If the CI does not include zero, r or d is declared statistically significant.

Hence, it is clear that erroneouslynarrowCIs lead to an inflatedType I error rate. Field (2003)

presents a computer simulation study that suggests that the Type I error rate is substantially
inflated when the FE model is used in meta-analysis. This Type I error problem is discussed

from an analytic perspective in Hedges and Vevea (1998), Hunter and Schmidt (2000), and

Overton (1998). However, for the reasons given earlier it is not ourmajor focus in this paper.

7. Discussion

This study is the first to use empirical data from the archival literature to compare the

results produced by fixed- and random-effects meta-analysis models. It is clear that

results differ substantially depending on whether the FE or RE model is used. Results

using the RE model indicate that meta-analysis findings are much less exact and precise
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than is indicated by the commonly used FE model. In comparison to these large

differences, the minor differences between the two RE procedures seem unimportant

and in any event are (usually) in the predicted direction. Also, the similarity of results for

the two RE models suggests that the positive bias in the HV RE procedure estimate of

sampling error variance, but not present in the HS RE procedure, is of limited

importance when viewed against the background of the far larger differences between
both RE procedures and the FE procedure.

As shown earlier, most meta-analysis studies that have appeared in Psychological

Bulletin have been based on the FE model (see Table 1 and Figure 1). If we accept the

proposition that thegoal of research is generalizableknowledge (andnotmerely knowledge

about the specific set of studies in themeta-analysis) and if we accept theNational Research

Council’s (1992) interpretation of FE andREmodels,we are led to conclude thatmost of the

meta-analysis results in the leading US psychology review journal may be substantially in

error in their statements of precision of findings. Although this paper does not explore this
question in anydetail,we are also led to conclude that Type I errorsmaybequite frequent in

the meta-analysis literature in some research areas when researchers use FE methods and

interpret CIs as significant tests. Theproblemmay seempotentially less serious ifwe accept

the proposition by Hedges and Vevea (1998) that, by analogy with generalized

interpretations sometimes made of FE ANOVA experimental data, there is an extra-

statistical basis for generalizing FE meta-analysis findings beyond the specific studies in the

meta-analysis. However, as Hedges and Vevea (1998) indicate, adoption of this notion

requires an ascertainment, based on an extra-statistical subjective judgement, that studies
not included in the meta-analysis are ‘sufficiently similar’ to those included to justify

generalization. However, we found that the question of such similarity was not explicitly

addressed inanyof the68meta-analyseswe reanalysednor in anyof the129FEmeta-analysis

studies in Psychological Bulletin; and it is not clear how it would or should be approached

(Schulze, 2004). In any event, we are still left with the difficulty that the National Research

Council report, written by a select group of statisticians appointed by the National Science

Foundation, has rejected this analogy and this interpretation of FE models. Even if this

analogywere accepted, the questionwould still remain ofwhether the broadgeneralization
of findings of FE ANOVA-based experiments that are sometimes made by primary

researchers (Hedges & Vevea, 1998) is justified. As noted earlier, the fact that they are

sometimesmade does not per se constitute a justification for making them (Schulze, 2004).

7.1. Implications for research, practice, and policy
The present findings have potentially important implications for researchers,
practitioners, and policy makers. The CI is often used in statistical inference, with the

decision being that an effect is real if the CI does not include zero. The narrower CIs of

the FE model are more likely to exclude zero when the more accurate CIs of the RE

model would include zero. For example, in Table 2 the RE CI for reading comprehension

includes zero while the FE CI does not. Thus, given common approaches to data

interpretation, the FE model leads to the conclusion that females have better reading

comprehension than males while the RE model does not. This sort of difference can

occur in any area of research. In light of what has been presented in this paper, it is likely
that the RE-based interpretation is correct and the FE-based interpretation is not.

Furthermore, even in cases in which neither the FE nor the RE CI includes zero, the level

of uncertainty about the mean value can play an important role in practical decisions.

If the CI (referred to in lay terms as the ‘error band’ and familiar to the public from its use
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in opinion polls) is narrow, as it is more likely to be with the FE model, researchers and

policy makers may be overly confident that they have accurate and ‘hard’ information to

act on. On the other hand, if these same users were exposed to the more accurate and

often much wider RE CIs they may rightfully be considerably more cautious in their

decision making. In fact, one reason why primary researchers have been reluctant to

substitute CIs for significance tests is probably that CIs are often wide and hence reveal
just how little information the individual primary study contains (Hunter & Schmidt,

2004). This consideration will likely become more important in the future as

the movement to educate researchers and others in the proper interpretation of CIs

becomes increasingly successful (American Psychological Association, 2001; Belia,

Fidler, Williams, & Cumming, 2005; Schmidt, 1996; Thompson, 2002, 2006). The goal of

this movement is to wean researchers and policy makers from naı̈ve dichotomous

thinking that looks only to see whether an effect or relation is statistically significant or

not to a focus on the magnitude of the estimate of the effect and the precision of that
estimate of magnitude. To the extent that this effort to reform data analysis and

interpretation procedures is successful, there will be a greatly increased emphasis in the

future on the width of CIs in data interpretation. The result will be increased importance

for accurate estimates of CIs.

7.2. Generalization of findings to the correlation coefficient
The findings and conclusion of this paper can safely be generalized to meta-analyses in

which the summary statistic is the (Pearson) correlation coefficient instead of the d-value

statistic. That is, as with the d-value statistic, the FE model will result in CIs that are too

narrowwhenevaluatedagainst themoreaccurateRECIs. Except for the fact that the simple

sampling error variance formula for the correlation coefficient is different, the RE

procedures for the correlation are identical to those for the d-value statistic. Therefore, the

cautions we express against the routine use of the FE model with d values also apply to
correlations. As discussed earlier, the only reasonwhywe did not use r-basedmeta-analyses

to compare the FEmodel to the two RE procedures is that the HVprocedures (both RE and

FE) conduct the analysis using the Fisher z transformationof r,while theHSprocedure does

not. This transformation has little effect on the accuracy ofmean estimates in the FEmodel

but leads to upward biases in estimates of mean r in the RE model. Hence, in most RE

applications, the HV RE model will indicate larger mean r estimates than the HS RE

procedure. In the present study we thought it wise to avoid the distraction that would be

created by this difference and so chose to focus on studies using the d-value statistic, which
is identical in both RE procedures. Of course, one could apply the HV RE procedure for rs

without the Fisher z transformation (or vice versa), but then one would be departing from

one of the procedures as presented by its originators and the analysis might be challenged

on that basis.However, it canbeconfidently stated that an applicationof the twoREmodels

as presented by their authorswould lead to conclusions about CIwidths very similar to the

present conclusions, because the statistical and mathematical principles are the same.

However, the larger differences in the mean r estimates might distract attention from this

key point.

7.3. Some important technical issues
The question can be raised at this point as to why the reported FE CIs are apparently

substantially too narrow if the x2 test of homogeneity (the Q test; Hedges & Olkin, Ch. 9;
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Hedges, 1992) has been used appropriately in FE meta-analyses. Hedges and Olkin

(1985) stated that the Q test should precede the use of the FE model. If this test is non-

significant, the hypothesis of homogeneity of study population parameters is accepted

and use of the FE model can be supported (implying that FE and RE procedures would

produce the same results). If this test is significant, the conclusion is that the variance of

study effect sizes is larger than can be explained by simple sampling error and therefore
the study population values of r or d are deemed variable, indicating the presence of

moderator variables or interactions. In such cases, Hedges and Olkin (1985) suggested

that the studies should be subdivided based on potential moderators into subsets that

have within-set homogeneous study population parameters, as indicated by non-

significant Q tests. However, a non-significant homogeneity test, whether before or after

subsetting the studies, does not provide reliable support for a conclusion

of homogeneity. Unless the number of studies is large, this x2 test typically has low

statistical power to detect variation in study population parameters, resulting in
frequent Type II errors (Hedges & Pigott, 2001; Mengersen, Tweedie, & Biggerstaff,

1995; Morris & DeShon, 2002; National Research Council, 1992, p. 52; Schulze, 2004,

p. 195). That is, the x2 is often non-significant in the presence of real variation in study

population parameters (Hedges & Olkin, 1985). As a result, FE models may be applied to

heterogeneous sets of studies, resulting in CIs that are substantially too narrow.

In addition, even if the Q test is significant (indicating heterogeneity of study

population values), published meta-analysis studies often nevertheless apply the FE

model, making it even more likely that the resulting CIs will be too narrow.We identified
38 meta-analysis studies published in Psychological Bulletin between 1980 and January

2006 that followed this practice. This is 29% of the 129 meta-analysis studies that used

FE methods. Four of the five meta-analysis studies which we reanalysed followed this

practice (one did not apply the Q statistic at all.) The 29% figure is an underestimate,

because in many studies authors responded to initially significant Q statistics by

subgrouping studies by potential moderators and computing new Q statistics. When

these were again significant, there was no further subgrouping of studies, and the FE

model was then used and interpreted despite the significant Q statistics. We did not
include these studies in our count of 38.

The percentage underestimation of the CI by the FE model should be greater when

the homogeneity test (Q) is statistically significant than when it is not. The Q test was

non-significant in 24% of the 68 meta-analyses. The correlation between the significant–

non-significant dichotomy and percentage underestimation of the CI was .75 for the HS

RE model and .78 for the HV RE model. We can also look at the relation between ŝ2
d and

percentage underestimation of the CI. The average correlation across the five meta-

analysis studies between ŝ2
d and percentage underestimation of the CI width by the FE

model is .66 for the HS RE model and .61 for the HV RE model. For the square root of ŝ2
d

(i.e. the estimated SD of the population parameters), these correlations are somewhat

higher, as would be expected: .71 and .65, respectively. These relationships are in the

expected direction and are substantial.

When between-study variance in population parameters is large, the value of

presenting the estimated mean effect size and the CI for the mean can be questioned, at

least for most theory-testing purposes. Hunter and Schmidt (2004) state that, for this

reason, in such cases their full procedure recommends presentation of credibility

intervals (CrIs), not confidence intervals (CIs). The CrI refers not to the mean (as the CI

does) but to the estimated distribution of the study population parameters. For example,

the 90% CrI includes the middle 90% of values in the estimated distribution of
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population values. Of course, it is important to search for moderators (interactions)

when the estimated between-study variance in population parameters is large. However,

searching for moderators does not guarantee an important reduction in the variance of

population parameters. In many cases in the literature, tests of potential moderators do

not lead to much reduction in between-study variance, even when the moderator means

are at least somewhat different. So, one is then left with the question of whether the CI
around the mean value provides much useful information. In such a case, the RE CI will

still be more accurate than the FE CI and will better reveal the true uncertainty in the

estimate of the mean. However, because the mean is limited in its ability to describe

the distribution, a CrI may be more informative in such cases. Nevertheless, the

most common procedure followed in meta-analyses in Psychological Bulletin (and

probably most other journals) is to present mean estimates and CIs around these means

(or significance tests of these means). Given these practices, the present paper

demonstrates empirically that when the FE model is used (by far the majority of cases;
see Table 1) the resulting CIs are substantially too narrow.

7.4. Choice of a model of meta-analysis
Are there any circumstances in which the choice of the FE model would be appropriate?

These circumstances would appear to be very limited. The FE model would be

appropriate if one had strong evidence that the primary studies to be included in the
meta-analysis were virtually identical, i.e. they are all literal or operational replications of

each other (Aronson, Ellsworth, Carlsmith, & Gonzales, 1990). That is, if the studies

drew their samples from the same population (e.g. college sophomores), tested exactly

the same hypotheses with exactly the same study design, treatment strength (if an

experimental study), measures, instructions, time limits, etc, then one might assume

a priori that the same population parameter was estimated in all the primary studies

(i.e. s2
d or s

2
r ¼ 0) and this could be a basis for choosing the FE model. Such a situation

would be expected to occur only rarely (Aronson et al., 1990). In any other situation, an
FE model would be inappropriate and the recommendation would be that any meta-

analysis conducted using the FE model should be reanalysed using an RE model. As

noted earlier, Overton has presented another rationale for choice of the FE model. He

argues that if one has reason to believe that S2d or S
2
r is small (near zero or zero), choice of

the FE model might be justified as a way of avoiding the upward bias in the SE estimate

(and hence the CI estimate) in the HV and related RE methods. The empirical results in

this study suggest that this bias is not large, and in any event does not occur in the HS RE

procedure (which was not examined by Overton, 1998). Hence the situations in which
choice of the FE model is defensible seem limited.

We can use the present database to provide a very tentative and preliminary estimate

of the frequency with which the FE model would be appropriate in the meta-analysis

literature. The FEmodel is appropriate whenever study population parameters have zero

or near-zero variance across studies. From an operational point of view, such situations

canbe identified in this paper as those inwhich the FE andRECIs are equal inwidth. In the

68meta-analyses represented in Tables 2–7, this occurs only twice, for a frequency of 3%.

That is, if we take these data as representative (and they may not be), then they suggest
that the FE meta-analysis model is appropriate in only 3% of meta-analyses and

inappropriate in 97%. This estimate, combined with the preponderance of the FE model

in US psychology’s premier review journal, suggests there is awidespreadmisconception

that the FE model is appropriate when it is not. In this sense, the present study is akin to
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recent studies demonstrating the existence of widespread misconceptions with respect

to other statistical issues. For example, Belia et al. (2005) showed that misconceptions

regarding the interpretation of confidence intervals are common among researchers, and

Oaks (1986; see also Schmidt, 1996) showed this to be the case with respect to statistical

significance tests. Improvements in data analysis practices in psychological research

require that all such misconceptions be addressed and corrected.

8. Limitations of this study

The major limitation of this study stems from the relatively small sample of FE meta-

analyses that it was possible to reanalyse using RE models. It is probably best to view this

reanalysis itself as an application of RE model; that is, the meta-analyses we reanalysed

can perhaps be viewed tentatively as a sample of all such meta-analyses that could

theoretically be reanalysed. As such, our sample of five studies could be

unrepresentative. However, our reanalysis included multiple meta-analyses from each

of the five published meta-analysis studies, widening the sample to 68 meta-analyses
with k ¼ 10 or more. On the other hand, these 68 meta-analyses cannot be assumed to

be fully independent. However, in light of the clear differences in the statistical

properties of FE and RE models, as presented earlier in this paper and elsewhere, and in

light of the rarity of the empirical research conditions under which the FE model is

appropriate, we believe it is unlikely that conclusions would be materially different with

a different or larger sample of FE meta-analyses. In this connection, the key question is

probably whether the meta-analyses examined are typical or representative

methodologically, not whether they are representative in terms of subject matter or
area of research. In this connection, the meta-analysis included in our study that was

from a substantive area other than gender differences yielded results similar to those

from some of the meta-analyses from the area of gender differences. Based on our

examination of the many meta-analyses published in Psychological Bulletin in

connection with the present research, we judge the meta-analyses we examined to be

quite typical methodologically. That is, they applied the standard Hedges and Olkin

(1985) FE method and did so in the typical manner. They seem to be (usefully) atypical

only in that they presented all data needed to replicate their meta-analyses – something
we found, to our disappointment, to be quite rare.

9. Conclusion

Meta-analysis is the major tool today in psychology, the social sciences, medicine, and

other areas (Hunter & Schmidt, 2004) for revealing the cumulative knowledge contained

in research literatures. It has revolutionized the basis for the production of knowledge

through research. Yet even today, 30 years after its introduction, important technical

issues remain in meta-analysis methods. This study sheds light on what appears to be not

only an important technical problem but also an important epistemological problem in

the psychological literature: the precision and certainty of meta-analysis findings may
have been systematically overstated in much of the research literature. Solving this

problem will probably not be easy, but it is important that it be addressed. Our

recommendation is that future meta-analyses use RE models and that the older FE meta-

analyses be reanalysed using RE models to provide accurate results and conclusions.

FE versus RE Models 125



References

American Psychological Association (2001). Publication manual of the American Psychological

Association (5th ed.). Washington, DC: American Psychological Association.

Aronson, E., Ellsworth, P., Carlsmith, J., & Gonzales, M. (1990). Methods of research in social

psychology (2nd ed.). New York: McGraw-Hill.

Bechtel, W. (1988). Philosophy of science: An overview for cognitive science. Hillsdale, NJ:

Erlbaum.

Becker, B. J., & Schram, C. M. (1994). Examining explanatory models through research synthesis.

In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 357–382).

New York: Russell Sage Foundation.

Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand confidence

intervals and standard error bars. Psychological Methods, 10, 389–396.

Bettencourt, B. A., & Miller, N. (1996). Gender differences in aggression as a function of

provocation: A meta-analysis. Psychological Bulletin, 119, 422–447.

Bettencourt, B. A., Talley, A., Benjamin, A. J., & Valentine, J. (2006). Personality and aggressive

behavior under provoking and neutral conditions: A meta-analytic review. Psychological

Bulletin, 132, 751–777.

Brannick, M. (2006). Comparison of sample size and inverse variance weights for the effect size

r. Paper presented at the 1st annual meeting of the Society for Research Synthesis

Methodology, Cambridge, UK.

Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk taking: A meta-

analysis. Psychological Bulletin, 125, 367–383.

Callender, J. C., & Osburn, H. G. (1980). Development and test of a new model for validity

generalization. Journal of Applied Psychology, 65, 543–558.

Cooper, H. (1997). Some finer points in meta-analysis. In M. Hunt (Ed.), How science takes stock:

The story of meta-analysis (pp. 169–181). New York: Russell Sage Foundation.

Donnor, A., & Rosner, B. (1980). On inferences concerning a common correlation coefficient.

Applied Statistics, 29, 69–76.

Field, A. P. (2001). Meta-analysis of correlation coefficients: A Monte Carlo comparison of fixed-

and random-effects methods. Psychological Methods, 6, 161–180.

Field, A. P. (2003). The problem in using fixed-effects models of meta-analysis on real world data.

Understanding Statistics, 2, 77–96.

Field, A. P. (2005). Is the meta-analysis of correlation coefficients accurate when population

correlations vary? Psychological Methods, 10, 444–467.

Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills,

CA: Sage.

Hall, S. M., & Brannick, M. T. (2002). Comparison of two random effects methods of meta-analysis.

Journal of Applied Psychology, 87, 377–389.

Hedges, L. V. (1983). A random effects model for effect sizes. Psychological Bulletin, 93, 388–395.

Hedges, L. V. (1988). The meta-analysis of test validity studies: Some new approaches. In H. Wainer

& H. Braun (Eds.), Test validity (pp. 191–212). Hillsdale, NJ: Erlbaum.

Hedges, L. V. (1989). An unbiased correction for sampling error in validity generalization studies.

Journal of Applied Psychology, 74, 469–477.

Hedges, L. V. (1992). Meta-analysis. Journal of Educational Statistics, 17, 279–296.

Hedges, L. V. (1994). Statistical considerations. In H. Cooper & L. V. Hedges (Eds.), The handbook

of research synthesis (pp. 29–38). New York: Russell Sage.

Hedges, L. V., & Pigott, T. D. (2001). The power of statistical tests in meta-analysis. Psychological

Methods, 6, 203–217.

Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis.

Psychological Methods, 3, 486–504.

Hotelling, H. (1953). New light on the correlation coefficient and its transforms. Journal of the

Royal Statistical Society, Series B, 15, 193–232.

126 Frank L. Schmidt et al.



Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in

research findings. Beverly Hills, CA: Sage.

Hunter, J. E., & Schmidt, F. L. (1996). Cumulative research knowledge and social policy

formulation: The critical role of meta-analysis. Psychology, Public Policy, and Law, 2, 324–347.

Hunter, J. E., & Schmidt, F. L. (2000). Fixed effects vs. random effects meta-analysis models:

Implications for cumulative research knowledge. International Journal of Selection and

Assessment, 8, 275–292.

Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in

research findings (2nd ed.). Thousand Oaks, CA: Sage.

Hunter, J. E., Schmidt, F. L., & Coggin, T. D. (1996). Meta-analysis of correlations: Bias in the

correlation coefficient and the Fisher z transformation. Unpublished manuscript, University

of Iowa.

Hunter, J. E., Schmidt, F. L., & Jackson, G. B. (1982).Meta-analysis: Cumulating research findings

across studies. Beverly Hills, CA: Sage.

Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance:

A meta-analysis. Psychological Bulletin, 107, 139–155.

Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis.

Psychological Bulletin, 104, 53–69.

Mengersen, K. L., Tweedie, R. L., & Biggerstaff, B. (1995). The impact of method choice on meta-

analysis. Australian Journal of Statistics, 37, 19–44.

Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with

repeated measures and independent-groups designs. Psychological Methods, 7, 105–125.

Myers, D. G. (1991). Union is strength: A consumer’s view of meta-analysis. Personality and Social

Psychology Bulletin, 17, 265–266.

National Research Council (1992). Combining information: Statistical issues and opportunities

for research. Washington, DC: National Academy of Sciences Press.

Oakes, M. L. (1986). Statistical inference: A commentary for the social and behavioral sciences.

New York: Wiley.

Osburn, H. G., & Callender, J. C. (1992). A note on the sampling variance of the mean uncorrected

correlation in meta-analysis and validity generalization. Journal of Applied Psychology, 77,

115–122.

Overton, R. C. (1998). A comparison of fixed effects and mixed (random effects) models for meta-

analysis tests of moderator variable effects. Psychological Methods, 3, 354–379.

Phillips, D. C. (1987). Philosophy, science, and social inquiry. Oxford: Pergamon Press.

Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization.

Journal of Applied Psychology, 68, 382–395.

Raudenbush, S. W. (1994). Random effects models. In H. Cooper & L. V. Hedges (Eds.),

The handbook of research synthesis. New York: Russell Sage Foundation.

Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. Journal of Educational

Statistics, 10, 75–98.

Rosenthal, R. (1991). Meta-analytic procedures for social research (2nd ed.). Newbury Park,

CA: Sage.

Rosenthal, R. (1993). Cumulating evidence. In G. Keren & C. Lewis (Eds.), A handbook for data

analysis in the behavioral sciences: Methodological issues. Hillsdale, NJ: Erlbaum.

Rosenthal, R., & Rubin, D. B. (1982a). Further meta-analytic procedures for assessing cognitive

gender differences. Journal of Educational Psychology, 74, 708–712.

Rosenthal, R., & Rubin, D. B. (1982b). Comparing effect sizes of independent studies.

Psychological Bulletin, 92, 500–504.

Rothstein, H. F., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis:

Prevention, assessment and adjustment. Chichester: Wiley.

Rubin, D. B. (1980). Using empirical Bayes techniques in the law school validity studies. Journal of

the American Statistical Association, 75(372), 801–827.

FE versus RE Models 127



Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of Educational

Statistics, 6, 337–400.

Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in psychology:

Implications for training of researchers. Psychological Methods, 1, 115–129.

Schmidt, F. L., & Hunter, J. E. (1977). Development of a general solution to the problem of validity

generalization. Journal of Applied Psychology, 62, 529–540.

Schmidt, F. L., Hunter, J. E., & Raju, N. S. (1988). Validity generalization and situational specificity: A

second look at the 75% rule and the Fisher z transformation. Journal of Applied Psychology,

73, 665–672.

Schmidt, F. L., Law, K., Hunter, J. E., Rothstein, H. R., Pearlman, K., & McDaniel, M. (1993).

Refinements in validity generalization methods: Implications for the situational specificity

hypothesis. Journal of Applied Psychology, 78, 3–13.

Schulze, R. (2004). Meta-analysis: A comparison of approaches. Toronto: Hogrefe & Huber.

Shadish, W. R., & Haddock, C. K. (1994). Combining estimates of effect size. In H. Cooper & L. V.

Hedges (Eds.), The handbook of research synthesis (pp. 261–281). New York: Russell Sage

Foundation.

Thompson, B. (2002). What future quantitative social science research could look like:

Confidence intervals for effect sizes. Educational Researcher, 31, 24–31.

Thompson, B. (2006). Foundations of behavioral statistics: An insight-based approach.

New York: Guilford.

Toulmin, S. S. (1961). Foresight and understanding: An enquiry into the aims of science.

New York: Harper.

Received 15 May 2007; revised version received 13 October 2007

128 Frank L. Schmidt et al.


