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Nonlinearity of Range Corrections in Meta-Analysis: Test of an
Improved Procedure

Kenneth S. Law, Frank L. Schmidt, and John E. Hunter

The authors evaluated an improved procedure for range-restriction corrections in meta-analysis.
When population correlations were approximately normally distributed, the new nonlinear range-
correction procedure improved the accuracy of the Schmidt-Hunter (S-H) interactive method in
estimating both the mean (Me) and standard deviation (SDf) of population correlations, making it
the most accurate of the procedures examined. In the homogeneous case (SDP = 0), the nonlinear
range correction again improves accuracy of estimates ofSDf. In this important case, Taylor Series
Approximation (TSA) 1 is considerably less accurate than the S-H interactive and the TSA2 proce-
dures, and N. S. Raju, M. J. Burke, J. Normand, and G. M. Langlois's (1991) procedure yields
the least accurate estimates of SDP. Finally, the authors found that the nonlinear range-correction
procedure produces improvements in the accuracy of the interactive method even under extreme
violations of the normality assumption.

During the past decade, many meta-analyses have been pub-
lished in a variety of areas (Hunter & Schmidt, 1990b), with
most analyses being conducted on correlation coefficients. Be-
cause such meta-analyses form the basis of conclusions about
cumulative knowledge, the question of the accuracy of meta-
analytic procedures in estimating the true mean and variance
of population correlations is important. Studies have been con-
ducted to examine the accuracy of different meta-analysis pro-
cedures (see e.g., Raju & Burke, 1983). Because data on reli-
ability and range restriction are only sporadically available in
individual studies, these computer simulation studies focus on
meta-analysis methods that use distributions of artifacts
(Hunter & Schmidt, 1990b, chap. 4). Such meta-analysis meth-
ods do not correct each correlation individually for the effects of
artifacts but, rather, correct distributions of correlations using
distributions of artifacts that are characteristic of the research
literature in question. For these methods, the nonlinearity of
range-restriction effects has caused all existing estimation pro-
cedures to suffer some degree of error. Past computer simulation
studies (see e.g., Callender & Osburn, 1980; Mendoza & Rein-
hardt, 1991; Raju & Burke, 1983) have generally concluded that
although the artifact-distribution-based meta-analysis proce-
dures studied were fairly accurate, they slightly overestimate the
variance of true population correlations. Raju and Burke
(1983) concluded that "there is still room for improvement in
methods to assess validity generalization" (p. 392). In this study,
a refinement is proposed in the Schmidt-Hunter meta-analysis
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procedure with artifact distributions, and the resulting method
is tested for accuracy in a simulation study. The refinement is a
nonlinear range-restriction correction performed on the resid-
ual distribution to estimate the true population distribution of
correlations (Hunter & Schmidt, 1990b, pp. 209-211). This
method derives estimates of both the mean and the standard
deviation of the distribution of true population correlations
from the residual distribution.

There are two parts to meta-analysis: correcting for the un-
systematic effects of sampling error and correcting for the sys-
tematic effects of other artifacts. Assume for the moment that
correction for sampling error has been made; that is, the distri-
bution of sample correlations has been analyzed to estimate the
distribution of attenuated study population correlations. In this
distribution, the actual study correlations have been attenuated
in various degrees, depending on the extent of error of measure-
ment, the extent of range restriction, and so on. Various meth-
ods of meta-analysis use different strategies for correcting for
the effects of those artifacts.

The original Schmidt-Hunter strategies—the interactive
(Schmidt, Gast-Rosenberg, & Hunter, 1980) and noninteractive
(Schmidt, Hunter, Pearlman, & Shane, 1979) methods—start
from a special case: homogeneous artifact values. If all studies
had been conducted with the level of each artifact at a constant
value, then the distribution of actual (true score) correlations
could be found by correcting each point in the resulting distri-
bution of study population correlations using the uniform arti-
fact values. The Schmidt-Hunter methods handle the case of
heterogeneous artifact values in two steps: (a) they transform
the correlation distribution yielded by heterogeneous artifacts
into the distribution that results from homogeneous artifacts
(this step yields the residual distribution), and (b) they correct
the estimated homogeneous artifact distribution (residual dis-
tribution) using a linear correction procedure. In the multipli-
cative method of Callender and Osburn (1980), both of these
steps are carried out simultaneously. The multiplicative method
does not produce a separate estimate of the residual standard
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deviation; indeed, the concept of a residual distribution is not
denned in the multiplicative method. Therefore, the nonlinear
range-correction procedure examined in this article cannot be
applied to the multiplicative method (because the procedure is
applied to the residual distribution). As a consequence of their
deviation (using the Taylor Series Approximations 1 [TSA1]
and 2 [TSA2]), the TSA methods of Raju and Burke (1983)
contain a built-in approximation to our (integral transform)
correction for the nonlinearity of the range-restriction correc-
tion. Thus application of our nonlinear refinement would rep-
resent a double correction for this effect. Because of this built-
in approximate correction, we expected Raju and Burke's TSA
methods to be closest in accuracy to the interactive procedure
with the nonlinear range-correction procedure added. In pass-
ing, we note that the TSA2 formula used in this study was cor-
rected for the slight error in the earlier formula, as discussed by
Raju, Burke, Normand, and Langlois (1991, p. 436). Raju et al.
noted that correction of this error increases the accuracy of the
variance estimates.

Raju et al. (1991) recently introduced a new approach for
meta-analysis designed initially for cases in which artifact infor-
mation is available for each correlation and each correlation
is corrected individually. However, they stated that their new
method is also very accurate for use with artifact-distribution-
based meta-analysis, and therefore, we include an evaluation of
that usage of their method in the present study. We refer to this
method as the RBNL91 method to distinguish it from their two
previous methods (TSA 1 and TSA2). Raju et al. compared their
new method only to TSA 1; in this study we compared the accu-
racy of the RBNL91 method to all of the previously existing
methods. Our comparisons are made under conditions that
Raju et al. called Condition 4, the situation in which artifact
values are not available for each individual correlation and ar-
tifact distributions are used to make the meta-analysis correc-
tions. Because in the present study there is no sampling error
(i.e., all Ns are infinite), application of the RBNL91 method is
very straightforward for Condition 4: Using the mean artifact
values for each artifact, one simply corrects each observed (at-
tenuated) population correlation. The estimated mean true cor-
relation is then the mean of the corrected correlations, and the
estimated standard deviation of the true correlations is the stan-
dard deviation of the corrected correlations (Raju et al., 1991).

On an a priori basis, it appears that the RBNL91 method
might not be as accurate as some of the other methods. Consider
the mean correlation. Because the range-restriction correction
formula is concave, the mean corrected correlation must under-
estimate the mean true correlation. The greater the variance of
the correlations to be corrected, the greater the error of estima-
tion. Correcting the mean attenuated correlation for range re-
striction using the mean u value should consistently be more
accurate than correcting the individual correlations using the
mean u value, (u = s/S, where 5 = the restricted standard devi-
ation and S = the unrestricted standard deviation.)

Second, consider the estimated variance of true correlations.
The RBNL91 method makes no correction for variance in cor-
relations due to variation in artifact values. Thus it attributes
all of the variance in the corrected correlations (beyond sam-
pling error variance, which was not present here) to variance
in the true correlations. This would be expected to lead to a

consistent overestimation of the standard deviation of true cor-
relations. This overestimation should be most obvious in the
case in which there is no real variance in true correlations (SDP

= .00), because in that case the relative error in attributing arti-
fact variance to true variance would not be obscured by actual
variance in the true correlations.

In most research domains, there is considerable variation in
each artifact (i.e., variation in reliability, variation in extent of
range restriction, and so on). This heterogeneity in artifact val-
ues transforms the actual population correlations into attenu-
ated study-population correlations. Suppose, instead, that every
study had been done so that each artifact value was at the same
level: the level corresponding to the mean artifact value for the
heterogeneous domain of that artifact (e.g., mean dependent
variable reliability). The artifact distributions would then be
homogeneous across studies. The resulting hypothetical distri-
bution of attenuated study-population correlations has been
called the residual distribution. Using different procedures, the
Schmidt-Hunter interactive and noninteractive methods esti-
mate the mean and variance of the residual distribution given
the mean and variance of the unrefined distribution (the distri-
bution of correlations corrected only for sampling error). In the
present article, we do not propose changes in this aspect of these
methods; that is, the method that we propose and test does not
change the way the residual distribution is computed. Instead,
it proposes a change in the way the residual distribution is used
to estimate the mean and standard deviation of the distribution
of true population correlations.

The second step is to correct the estimated residual distribu-
tion using the mean artifact values. This step is identical in the
interactive and noninteractive methods. For linear factors such
as attenuation due to random error, artificial dichotomization
(Hunter & Schmidt, 1990a), or imperfect construct validity, the
attenuation is, mathematically, multiplication by a constant;
and correction (disattenuation) is multiplication by the recipro-
cal of that constant. But the attenuation produced by range re-
striction is not linear, and that fact has caused accuracy prob-
lems for all methods of meta-analysis. In the original Schmidt-
Hunter methods, correction for range restriction is accom-
plished by using a linear approximation. Attenuation is esti-
mated by the ratio of the mean attenuated correlation to the
mean unattenuated correlation, and that ratio is the mean at-
tenuation factor for range restriction. Correction is then accom-
plished by multiplying the mean and the standard deviation of
the residual distribution by the reciprocal of that ratio. The
standard deviation can be more accurately estimated by using a
ratio modified by Taylor's series, such as that of Raju and Burke
(1983). (See Hunter & Schmidt, 1990b, pp. 130-132, for a dis-
cussion of such use in meta-analysis of individually corrected
correlations.) In the present article, we propose a more direct
procedure that is mathematically known as an integral
transform.

In the new procedure, correction is not applied only to the
mean and the standard deviation; rather, each point in the re-
sidual distribution is corrected for range restriction with the ex-
act nonlinear range-restriction correction procedure. Each
point is also corrected for mean criterion unreliability. As a re-
sult, the standard deviation of this corrected distribution esti-
mates the standard deviation of true validities (SDP) and the



AN IMPROVEMENT 427

mean of this distribution estimates p, called mean true validity
in validity generalization studies. Outside the validity general-
ization area, corrections are also made for mean unreliability in
the independent variable measure. The resulting standard devi-
ation (SDP) then estimates the standard deviation of true score
correlations, and the ~p value estimates the mean true score cor-
relation. The formal mathematics of the nonlinear correction
procedure are presented in the Appendix.

If the residual distribution were known exactly, then the new
procedure would be perfectly accurate. Any error in the new
procedure must stem from error in the estimation of the resid-
ual distribution. There are two potential sources of such error.
First, the interactive and noninteractive methods do not per-
fectly transform the mean and standard deviation from the cor-
relation distribution corrected only for sampling error, and this
fact creates some error in the estimated mean and standard de-
viation of the residual distribution. Second, the exact shape of
the distribution of actual (true score) correlations is not known,
and therefore the exact shape of the residual distribution is not
known. The nonlinear range-correction procedure described in
this article uses the normal distribution as an approximation.
This is roughly equivalent to assuming a normal distribution
for the true score correlations (although because of the nonlin-
earity of range restriction, a normal, true score correlation dis-
tribution does not attenuate to a perfectly normal residual dis-
tribution). If the true score correlations vary because of the
effects of a large number of small moderator variables, then the
normal distribution will be a good approximation (see below).
In this study, we tested for the effects of violating the normality
assumption by incorporating some strongly nonnormal distri-
butions into our Monte Carlo design.

Thomas's (1990) mixture-decomposition procedure for
meta-analysis cannot logically be used if there is any variation
across studies in reliability levels (for independent or dependent
variable measures), range-restriction levels, or other artifacts
that systematically affect the size of observed correlations
(Schmidt, Ones, & Hunter, 1992). Thus it could not be com-
pared in this study with the two Schmidt-Hunter procedures,
the Callender-Osburn multiplicative procedure, the two Raju-
Burke TSA procedures, and the Raju et al. (1991) procedure.
Thomas's mixture-decomposition procedure is based on analy-
ses of only observed correlations (correlations uncorrected for
measurement error, range restriction, or other statistical arti-
facts that systematically affect the size of the observed corre-
lations). The method makes no corrections for the effects of
these artifacts, either initially or at a later stage in the analysis.
Because of this, Thomas's method treats variation in corre-
lations that is due to these artifacts as if it were real variance in
the underlying population correlations. This can result (a) in the
identification of multiple population-correlation values that do
not, in fact, exist and (b) in overestimation of the variance of
population correlations (as a result of a; Schmidt et al., 1992).

Law (1992) used computer simulation to examine the accu-
racy of Thomas's procedure under the conditions for which it
was designed, that is, conditions in which there is no variability
across studies in measurement error, range restriction, or other
systematic artifacts. Even under these restricted conditions
(highly unlikely in real data sets), the procedure frequently en-

countered problems in correctly identifying the underlying pop-
ulation correlations.

Method

In both the noninteractive procedure and the interactive procedure
of the Schmidt-Hunter model, the residual distribution is denned as the
distribution of population correlations that would have been observed
if reliability and range-restriction levels were uniform across studies at
their mean values and sample sizes in every study were infinite. Both
procedures produce an estimated mean and an estimated standard de-
viation for the residual distribution (e.g., see Schmidt et al., 1980). We
do not propose any changes in the way these estimates are calculated.
To find the distribution of population true score correlations from this
attenuated distribution, each value in the residual distribution should
be corrected using the mean reliability and mean range-restriction val-
ues. However, the original Schmidt-Hunter model assumes that the dis-
tribution of true population correlations is equal to the residual distri-
bution multiplied by a constant factor. This factor is estimated as the
ratio of the mean corrected population correlation to the mean ob-
served correlation. That is, both the mean and the standard deviation of
the residual standard deviation are multiplied by this constant, yielding
the estimated mean and standard deviation of the population true score
correlations. This procedure is only approximate, because the desired
correction is not a constant factor for all values of the correlation in the
residual distribution. For the unreliability corrections, the appropriate
correction factor is a constant, namely, [E(ryy')E(rxlc')]~t times each cor-
relation value in the residual distribution. However, for the range-re-
striction correction, the correction is not linear and, hence, the correc-
tion factor is not constant throughout the range of correlations. Spe-
cifically, the (nonlinear) range-restriction correction is larger for smaller
correlations and smaller for larger correlations. Thus, the greater the
variability of the correlation is in the residual distribution, the greater
the effect of the nonlinearity of the correction. The refinement in this
study focuses on the nonlinear range-restriction correction effect. One
possible way of taking this nonlinear range-restriction correction effect
into consideration is to first assume that the residual distribution is ap-
proximately normal (see discussion below). Then, using the estimated
mean and standard deviation of the residual distribution, one chooses
an appropriate sample of points from this normal distribution and cor-
rects these values individually and separately. The frequency-weighted
mean and variance of the corrected points are then used to estimate the
mean and variance of the population correlations. Thus, estimates of
both the mean and the variance can be different when this procedure is
used versus when it is not.

How many points in the distribution should be used? A number that
is too small may not be representative of the whole distribution; a num-
ber that is too large will require unnecessary computer time. To reduce
the error in the normal distribution to a low level, we chose to use 30
equally spaced points above and below the mean. These points, plus the
mean, yield 61 values to be corrected. Researchers who desire to do so
could increase or decrease the number of points. Within broad limits,
variations in the number of points used will have negligible effects on
the results.

Our method assumes that the distribution of population correlations
in the residual distribution is normal. The assumption of normality is
commonly made in social science research under circumstances in
which it cannot be known with certainty to be correct or in which it is
only an approximation. Cohen (1983) noted that "there is abundant
evidence throughout applied psychometrics and statistics that the fail-
ure of the normality assumption, unless extreme, bears only marginally
on the validity of the conclusions drawn" (p. 252). The rationale for the
normality assumption here is that, in real data, residual variation is
likely to be caused by either a number of essentially uncorrelated, un-
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corrected artifacts; by a large number of small and essentially indepen-
dent moderators; or by some combination of both. Distributions that
are the product of a large number of essentially uncorrelated causes
tend toward normality (Hunter & Schmidt, 1990b). This logic provides
a rationale for the normality assumption. Moreover, in this study the
effects of violating this assumption on the accuracy of the resulting esti-
mates is examined through computer simulation studies. Specifically, if
the distribution of true score correlations is markedly nonnormal, then
the residual distribution will also be markedly nonnormal. The first
such case that we examined is the case in which the distribution of pop-
ulation true score correlations is rectangular (ranging with equal fre-
quency from .01 to .99). The second case is that in which the population
distribution is dichotomous; that is, when there are only two values for
the unattenuated population correlation. The third case examined is
one in which the distribution of population true scores is (positively)
skewed. Finally, we also examined the homogeneous case, in which the
population correlation has a point distribution; that is, when SDP = .00.
These analyses allowed us to determine whether error was introduced
into meta-analysis estimates by violation of the normality assumption.

The Monte Carlo methods used by Callender and Osburn (1980) and
by Raju and Burke (1983) in their studies were, with some modification,
used here; readers are referred to the original articles for detailed de-
scriptions of these simulation methods. As in those studies, the simula-
tions were conducted using infinite sample sizes, because the concern
was with the accuracy of corrections for artifacts other than sampling
error. That is, sampling error was excluded from the simulation study
to allow sharper focus on the accuracy of corrections for other artifacts.
The different meta-analysis methods have used the same formula for
sampling error variance. Accuracy of the sampling error corrections
is not at issue in meta-analysis; it has been examined elsewhere (e.g.,
Callender & Osburn, 1988) and has been found to be quite high.

Five of the six analyses examined here have positive nonzero values
for SDf, the standard deviation of population true score correlations. In
light of the cumulative evidence against situational specificity for apti-
tude and ability tests in employment selection (Schmidt, Hunter, Pearl-
man, & Hirsch, 1985; Schmidt et al., 1993), the case in which SD, = 0
(the homogeneous case) is realistic in that area, and we examined that
case in the present study. However, when SDP = 0, the expected estimate
of the residual distribution standard deviation is 0. Hence, there should
be only one value in the residual distribution and, therefore, there
should be no difference between the nonlinear and linear range-restric-
tion corrections. Thus results for the case in which SDP - 0 should be
the same for the two procedures. However, this is true only if the proce-
dures always estimate the residual standard deviation as 0 when SDP =
0. If, despite the refinement, the procedures continue to have a positive
bias, then the estimate of residual standard deviation will be a small
positive number, and the nonlinear procedure will be slightly more ac-
curate than the linear procedure, even though SDP = 0. Finally, the
homogeneous case represents examination of yet another violation of
the normality assumption; namely, the case in which the distribution of
population correlations is a point distribution.

Analysis 1

In the first analysis, we used the wide and approximately normal dis-
tribution of 23 population correlations that were presented by Callender
and Osburn (1980, Table 3) and were also used by Raju and Burke
(1983, Table 4). Both of these previous studies used random sampling
without replacement. For example, in Raju and Burke's (1983) article,
each observed correlation was produced by a random draw without re-
placement from the distribution of 23 population correlations and from
each of the three artifact distributions (criterion reliability, predictor
reliability, and range restriction). One value was drawn from each of the
four distributions, and an observed correlation was then calculated

from the randomly selected population correlation, by using the ran-
domly drawn values for predictor and criterion reliability and range
restriction. The process was repeated until all of the 100 values in each
distribution were drawn; thus, sampling was done without replacement.
However, we used a different procedure that should be more accurate:
We applied the meta-analysis procedures to all possible combinations
of population correlations and artifact levels.

In reality, most studies are conducted independently. Thus the arti-
fact values in one study are not influenced by those in another. This
is mirrored in all current methods of meta-analysis based on artifact
distributions: All assume independence of artifacts. The sampling-with-
out-replacement Monte Carlo strategy used by Callender and Osburn
(1980) and by Raju and Burke (1983) violates the independence as-
sumption. Thus, the Monte Carlo results in these two studies are not
exactly accurate. We eliminated that source of error and also eliminated
any influence of random error by doing all computations across the
entire population of actual correlations as attenuated by all possible
combinations of artifacts, with each combination weighted by exactly
the weight specified in the corresponding distribution. Our Monte Carlo
estimates are thus subject only to rounding error. We used double-
precision arithmetic to reduce rounding error to about the eighth digit
overall.

There were 23 values for the population correlation, 13 levels of cri-
terion reliability, 8 levels of range restriction, and 7 levels of predictor
reliability. (The three artifact distributions used are given in Raju &
Burke, 1983, and in Schmidt etal., 1980.) Thus, each meta-analysis was
performed on a total of 16,744 unique observed correlations. Each of
these correlations was weighted by its appropriate frequency, which is
determined as the product of the relative frequencies of the particular
population correlation, the particular level of criterion reliability, the
particular level of range restriction, and the particular level of predictor
reliability. This weighting procedure is consistent with the usual as-
sumption of artifact independence (Callender & Osburn, 1980; Hunter
& Schmidt, 1990b, chap. 3; Raju & Burke, 1983).

Eight meta-analysis methods were then applied to these observed
population correlations: the two Schmidt-Hunter procedures with lin-
ear and nonlinear range correction (four methods), the Callender and
Osburn multiplicative procedure (Callender & Osburn, 1980), the two
Taylor Series procedures (Raju & Burke, 1983), and the RBNL91
method. Except for the difference in sampling procedures described
here, Analysis 1 corresponds to Case 3 in both Callender and Osburn
and Raju and Burke. Because the distribution of population true score
correlations is approximately normal, the residual distribution will also
be approximately normal. Hence, this analysis provides a test of the
accuracy of the new procedure when the normality assumption is met.

Analysis 2

In Analysis 2, the distribution of unattenuated population corre-
lations was rectangular, providing a test of the accuracy of the new pro-
cedure when the normality assumption is seriously violated. A rectan-
gular distribution of population true score correlations results in a flat
and nearly rectangular residual correlation distribution. Analysis 2 is
identical to Case 2 of Callender and Osburn (1980) and Raju and Burke
(1983). In each meta-analysis, the artifactual effects were fixed. Three
values of criterion reliability, predictor reliability, and range restriction
were selected from the hypothetical distribution of artifacts used in
those studies. The values selected were 1.0, .80, and .50 for predictor
reliability; 1.0, .30, and .60 for criterion reliability; and 1.0, .411, and
.603 for range-restriction ratio (the ratio of the restricted to the un-
restricted standard deviation of the independent variable). These nine
values were completely crossed, resulting in 27 different combinations.
Each combination of the three artifacts was then applied to 100 popu-
lation correlations, which were generated by starting with a population



AN IMPROVEMENT 429

correlation of .01 and incrementing by .01 up to the final value of .99.
The mean population true score correlation was therefore .4950, and
the true standard deviation was .2886. On each of the 27 sets of 100
observed correlations, meta-analyses were performed using each of the
meta-analysis procedures listed above except for the RBNL91 method,
which was not meaningful in this context. As noted earlier, the RBNL91
method corrects each correlation for the effects of a particular artifact
by using the average value for the artifact. In this analysis, the value for
each artifact was a constant within any given meta-analysis. Thus, it was
known in advance that the method would have perfect accuracy.

Analysis 3

Analysis 3 was also designed to examine the effects on accuracy of
violation of the normality assumption. In cases in which a single, two-
valued moderator is operating, the distribution of unattenuated (true
score) population correlations will be a dichotomous, two-point distri-
bution. This markedly nonnormal distribution will lead to a very non-
normal (bimodal) distribution of residual correlations. Three dichoto-
mous distributions of true score population correlations were exam-
ined: pi = .50 and p2 = .00; pi = .40 and p2 = •10; and PI = .30 and p2 =
.20. In each dichotomy, the two values of p had equal (50%) frequencies.
The artifacts were the same as those in Analysis 2; for each of these 27
artifact combinations (shown in Table 2) an observed correlation was
created twice—once for pt once for p2—and the resulting correlations
were meta-analyzed by using each of the eight meta-analysis procedures
described above.

Analysis 4

Analyses 1 through 3 were all based on symmetrical distributions of
true score population correlations. The purpose of Analysis 4 was to
determine whether a violation of the normality assumption that took
the form of a (nonsymmetrical) skewed distribution of true score popu-
lation correlations would induce error in the nonlinear range-correction
procedure. The skewed distribution of the true score population corre-
lation that we used was as follows: For population correlations of .60,
.50, .40, and .30, relative frequencies were 10, 20, 30, and 40, respec-
tively; mean p = .40, Sp

2 = .01000, SDf = .10000. Again, the artifacts
were the same as those in Analysis 2; for each of these 27 artifact com-
binations (shown in Table 2) an observed correlation was created for
each of the four values in this population correlation distribution. The
resulting correlations, weighted by relative frequency, were then meta-
analyzed by using each of the eight meta-analysis procedures.

Analysis 5
The fifth analysis was conducted to address a different concern. The

original, approximately normal distribution of 23 population corre-
lations in Callender and Osburn's (1980) study was quite wide, perhaps
too wide to approximate any realistic distribution of population corre-
lations: It ranged from .06 to .94. Such a large dispersion of population
correlations would probably be unlikely in real data from studies on any
research question. Therefore, Analysis 1 was rerun with the following,
narrower distribution of population correlations: For population corre-
lations of .40, .45, .50, .55, and .60, the relative frequencies were .10,
.20, .40, .20, and .10; mean, = .50,5P

2 = .00300, SDf = .05477. Except
for the use of this new distribution of population correlations, Analysis
5 was conducted in the same manner as Analysis 1. But because there
were only five different values for the population correlation in Analysis
5 (vs. 23 in Analysis 1), the total number of population correlation-
artifact combinations was much smaller: 5 levels of population correla-
tion X 13 levels of criterion reliability X 8 levels of range restriction X 7
levels of predictor reliability = 3,640 combinations (vs. 16,744 combi-
nations in Analysis 1).

Analysis 6

The sixth and final analysis was conducted to determine how accu-
rately the various procedures were when SDP = 0; that is, in the homo-
geneous case. Another purpose of this analysis was to determine
whether the violation of the normality assumption represented by a
point distribution of the population true score correlation would cause
inaccuracy in the nonlinear range-correction procedure.

In this analysis, the true correlation is always .50 and thus the stan-
dard deviation of true correlations is always 0. We considered two levels
of variation in each of the three artifacts examined in this article: a high
level of variation and a low level of variation. For each artifact, the high
level of variation has exactly twice the standard deviation of the low
level. The specific values for the artifacts are as follows: for criterion
reliability (rm), low variabilities are .40, .60, and .80, and high variabili-
ties are .20, .60, and 1.00; for predictor reliability (r^), low variabilities
are .70, .80, and .90, and high variabilities are .60, .80, and 1.00; for

range restriction (u = -r), low variabilities are .51, .67, and .83, and high

variabilities are .35, .67, and .99. There are two levels of variation on
each of three artifacts; hence, there are eight artifact combinations in
all, each one containing 27 observed correlations. All eight methods of
meta-analysis were applied to each of the eight combinations.

Results and Discussion

Analysis I

Results for Analysis 1 are shown in Table 1. Estimates of the
mean correlation were identical for the two Schmidt-Hunter

Table 1
Analysis 1: Estimated Means and Standard Deviations of
Population True Correlations When the Population Rhos Are
Quite Variable and Approximately Normally Distributed and
Reliability and Range-Restriction Values Are Variable

Procedure Estimate Error % error

Mf estimates (actual Mf = .5000)

S-H int. & nonint. linear
S-H int. nonlinear
S-H nonint. nonlinear
C-O multiplicative
TSA1
TSA2
RBNL91

.5079

.5000

.5017

.5069

.5032

.5079

.49563

.0079

.0000

.0017

.0069

.0032

.0079
-.0044

1.6
0.0
0.3
1.4
0.6
1.6

-0.8

SD, estimates (actual SDf = . 1754)

S-H int. linear
S-H nonint. linear
S-H int. nonlinear
S-H nonint. nonlinear
C-O multiplicative
TSA1
TSA2
RBNL91

.1988

.1733

.1799

.1572

.1972

.1811

.1820

.20358

.0234
-.0021

.0045
-.0182

.0218

.0057

.0066

.0282

13.3
-1.2

2.6
-10.4

12.4
3.3
3.8

16.1

Note. S-H int. = Schmidt, Oast-Rosenberg, & Hunter (1980) interac-
tive procedure; S-H nonint. = Schmidt, Hunter, Pearlman, & Shane
(1979) noninteractive procedure; C-O mult. = Callender & Osburn
(1980) multiplicative procedure; TSA1 and TSA2 = Taylor Series Ap-
proximations 1 and 2 (Raju & Burke, 1983); RBNL91 = Raju, Burke,
Normand, & Langlois (1991) procedure.
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methods used with the linear range correction. Introduction of
the nonlinear range correction improved the estimates of the
mean correlation for both the interactive and noninteractive
procedures. For the noninteractive, the error declined from
.0079 (a 1.6% error) to .0017 (a .3% error); for the interactive,
the figure was .0079 (1.6% error), declining to .0000 error. Al-
though all procedures gave fairly accurate estimates of the mean
population correlation, the Schmidt-Hunter procedures (inter-
active and noninteractive) with nonlinear range restriction gave,
on average, the most accurate estimates; errors here were within
rounding error for three decimal places. The least accurate pro-
cedures were the Schmidt-Hunter procedures with linear range
corrections and the TSA2 procedure; however, even for these
procedures the percentage error was only 1.6%, resulting in a
final rounded estimate of .51 instead of the correct value of .50.
As predicted, the RBNL91 method underestimated the mean
correlation—unlike the other procedures—but this effect was
negligible.

Turning to the estimates of the true standard deviation of
population correlations, one can see that, for the interactive
procedure, introduction of the nonlinear range correction again
improved accuracy. Error declined from .0234 (a 13.3% error)
with the linear correction to .0045 (a 2.6% error) with the non-
linear correction. However, for the noninteractive procedure,
error increased from-.0021 (a 1.2% error) to-.0182 (a 10.4%
error) when the nonlinear correction was introduced.

These results indicate that the nonlinear range-correction
procedure substantially improves accuracy for the interactive
procedure when the normality assumption is met and the vari-
ance of population true score correlations is substantial. Proce-
dures other than the noninteractive procedure overestimate the
standard deviation on average, and of these, the interactive non-
linear procedure was most accurate, followed by the two Raju
and Burke (1983) TSA procedures, which are only marginally
less accurate in this analysis than the interactive nonlinear pro-
cedure. The RBNL91 method yields the least accurate esti-
mates of the standard deviation of population true score
correlations.

Although all the other procedures overestimate the true vari-
ance of population correlations, the noninteractive procedure
yields slight underestimates of the standard deviation. This is
because the noninteractive procedure, unlike other procedures,
assumes that the effects (not the artifact values, but the effects
of the artifacts on the correlation) of the predictor and criterion
unreliability and range restriction are all independent (Schmidt
et al., 1980), resulting in a slight overestimation of artifactual
variances; a slight underestimation of residual variance; and,
therefore, a slight underestimation of the variance (and stan-
dard deviation) of population correlations.

Analysis 2

The results for Analysis 2 are shown in Table 2. We first note
that the mean and standard deviation estimates for the
Schmidt-Hunter linear range-restriction-correction procedure,
the Callender-Osburn multiplicative procedure, and the SA
procedures are identical to the values in Raju and Burke's
(1983) study, confirming the accuracy of the simulation pro-
gram. In this data set, there was no variation across studies in

any meta-analysis in criterion reliabilities, predictor reliabili-
ties, or range-restriction values. Because of this, the Schmidt-
Hunter interactive and noninteractive procedures yielded iden-
tical results, and so separate columns are not shown for these
two procedures. The same is true for TSA1 and TSA2. Table 2
shows that the nonlinear range-restriction-correction proce-
dure was more accurate than the original linear range-restric-
tion-correction procedure. The average error in estimating the
mean population correlation was .0196 (4% error) for the linear
procedure, but only .0013 (.3% error) for the nonlinear proce-
dure; .0013 is within rounding error to the third decimal place.
In estimating the standard deviation of the mean population
correlation, SD,, the average errors were .0333 (11.5% error)
and .0029 (1 % error) for the linear and nonlinear methods, re-
spectively. Thus, even in the presence of a gross violation of the
normality assumption (a rectangular distribution of population
unattenuated ps), the nonlinear range correction was more ac-
curate than the traditional linear procedure.

In comparison with the Callender-Osburn and Raju-Burke
TSA procedures, the nonlinear procedure was more accurate
in estimating the mean correlation (0.3% error vs. 4.0% error
for both the other procedures). For estimating the true standard
deviation of population correlations, the nonlinear range-re-
striction procedure was most accurate, followed by the TSA
models, which in turn were more accurate than the remaining
two procedures. Error in the mean estimate of true standard
deviation for the nonlinear procedure averaged .0029 (a 1.0%
error) in comparison with .0082 (2.8% error) for the TSA
models and 11.5% error for the remaining two procedures.

The results in Table 2 can be used to illustrate a point that
should be borne in mind generally: The different meta-analysis
procedures yield somewhat different figures primarily because
they differ in how they handle the range-restriction artifact. In
meta-analyses in which range restriction is not a factor (i.e.,
none of the studies in the meta-analysis suffers from range re-
striction), all procedures yield results identical to within
rounding error. In the nine cases in Table 2 in which there was
no range restriction (i.e., u = 1.00), all procedures yielded the
same estimate of the mean population correlation: .4950, the
correct value. Furthermore, all procedures except those with
the nonlinear range adjustment yielded the same estimate of
the standard deviation of the population correlation: .2886, the
correct value. The nonlinear range adjustment causes the esti-
mate to be .2860, which is low by .0026, a 0.9% error.

Conversely, in Analysis 2 one can see that when there is range
restriction, all procedures produce some degree of error in esti-
mating both the mean and the standard deviation of population
correlations. These errors are greatest when range restriction is
most severe (u = .4110) and the reliability of the independent and
dependent variable measures is high. The most extreme example
of this can be seen in the third row of Table 2, where rxx = ryy =
1.00 and u = .4110. Under these circumstances, all procedures
except the Schmidt-Hunter nonlinear procedure substantially
overestimated the mean correlation, and all procedures overesti-
mated the standard deviation, although the TSA procedures and
the Schmidt-Hunter nonlinear procedure were less inaccurate
than the other two procedures. Because Analysis 2 is character-
ized by population correlations from .01 to .99 (all with equal
frequency), the problems created by the nonlinearity of the
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Table 2
Analysis 2: Estimated Mean and Standard Deviation of True Population Correlations With Wide and Rectangular Distribution
of Population Rhos and Fixed Reliability and Range-Restriction Values

^estimate"-" SDf estimate1"

rxx

1.00
.00
.00
.00
.00
.00
.00
.00
.00
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

M
Mean error
% error

ryy

1.00
1.00
1.00
0.60
0.60
0.60
0.30
0.30
0.30
1.00
1.00
1.00
0.60
0.60
0.60
0.30
0.30
0.30
1.00
1.00
1.00
0.60
0.60
0.60
0.30
0.30
0.30

u

1.0000
.6030
.4110
1.0000
.6030
.4110
1.0000
.6030
.4110
1.0000
.6030
.4110
1.0000
.6030
.4110
1.0000
.6030
.4110
1.0000
.6030
.4110
1.0000
.6030
.4110
1.0000
.6030
.4110

S-HC

linear

.4950

.5525

.5881

.4950

.5237

.5355

.4950

.5079

.5124

.4950

.5366

.5567

.4950

.5170

.5253

.4950

.5051

.5085

.4950

.5180

.5269

.4950

.5079

.5124

.4950

.5012

.5032

.5146

.0196
4.0%

S-HC

nonlinear

.4950

.4996

.4991

.4950

.497 '1

.4983

.4950

.4957

.4960

.4950

.4984

.4999

.4950

.4965

.4973

.4950

.4955

.4957

.4950

.4966

.4974

.4950

.4957

.4960

.4950

.4952

.4953

.4963
-.0013
-0.26%

C-O
mult.

.4950

.5525

.5881

.4950

.5237

.5355

.4950

.5079

.5124

.4950

.5366

.5567

.4950

.5170

.5253

.4950

.5051

.5085

.4950

.5180

.5269

.4950

.5079

.5124

.4950

.5012

.5032

.5146

.0196
4.0%

TSA1
&TSA2

.4950

.5525

.5881

.4950

.5237

.5355

.4950

.5079

.5124

.4950

.5366

.5567

.4950

.5170

.5253

.4950

.5051

.5085

.4950

.5180

.5269

.4950

.5079

.5124

.4950

.5012

.5032

.5146

.0196
4.0%

S-HC

linear

.2886

.3890

.4710

.2886

.3348

.3558

.2886

.3085

.3158

.2886

.3579

.3976

.2886

.3233

.3376

.2886

.3041

.3095

.2886

.3251

.3403

.2886

.3085

.3158

.2886

.2980

.3012

.3219

.0333
11.5%

S-HC

nonlinear

.2860

.3085

.3471

.2860

.2902

.2961

.2860

.2857

.2865

.2860

.2970

.3122

.2860

.2878

.2909

.2860

.2853

.2858

.2860

.2879

.2916

.2860

.2857

.2865

.2860

.2853

.2853

.2915

.0029
1.0%

C-O
mult.

.2886

.3890

.4710

.2886

.3348

.3558

.2886

.3085

.3158

.2886

.3579

.3976

.2886

.3233

.3376

.2886

.3041

.3095

.2886

.3251

.3403

.2886

.3085

.3158

.2886

.2980

.3012

.3219

.0333
11.5%

TSA1
&TSA2

.2886

.3134

.3356

.2886

.2997

.3050

.2886

.2934

.2951

.2886

.3055

.3156

.2886

.2970

.3003

.2886

.2924

.2936

.2886

.2973

.3012

.2886

.2934

.2951

.2886

.2909

.2915

.2968

.0082
2.8%

Note. Actual Mf = .4950; actual SDP = .2886. S-H linear and nonlinear = Schmidt, Gast-Rosenberg, & Hunter (1980) linear and nonlinear
procedure, respectively; C-O mult. = Callender & Osburn (1980) multiplicative procedure; TSA1 and TSA2 = Taylor Series Approximations 1 and
2 (Raju & Burke, 1983).
1 Mf estimates of the multiplicative model, the two SA procedures, and the two Schmidt-Hunter linear procedures are all identical. b In these data,
two TSA procedures gave the same mean and standard deviation estimates. c In these data, the Schmidt-Hunter interactive and noninteractive
procedures yielded identical estimates.

range-restriction correction are at their maximum. It can be seen
in Table 2 that, in every case, addition of the nonlinear range-
correction procedure to the Schmidt-Hunter procedure reduces
the inaccuracies caused by this problem.

Analysis 3

The results for Analysis 3, the dichotomous case, are shown
in Table 3. Estimates of the mean correlation were identical for
the two Schmidt-Hunter methods used with the linear range
correction. For both the noninteractive and interactive proce-
dures, introduction of nonlinear range correction improved es-
timates of the mean correlation marginally in the first two di-
chotomies, despite the severe violation of the normality as-
sumption. In the third dichotomy (pt = .30; p2 = .20), accuracy
declined for the interactive procedure, but only by a trivial
.0003. Thus, this gross violation of normality causes no prob-
lems in estimating the mean correlation. In all three dichoto-

mies, all procedures provided fairly accurate estimates of the
mean correlation. In the first dichotomy (.50 vs. .00), the
Schmidt-Hunter noninteractive procedure with nonlinear
range correction yielded the most accurate estimate (0.5% er-
ror), and the TSA1 procedure yielded the least accurate esti-
mate (2.2% error). In the second dichotomy, the same proce-
dure was again most accurate (0.1% error), and TSA 1 was again
least accurate (3.1% error). In the third dichotomy, the accuracy
was equal for the noninteractive nonlinear procedure and for
the interactive and noninteractive linear procedures (0.04% er-
ror). The interactive nonlinear procedure had a larger, but still
tiny, error (0.2%). The other procedures had larger errors. How-
ever, with the exception of the RBNL91 method in the first di-
chotomy and TSA1 in the second and third dichotomies, all
procedures yielded estimates that when rounded two places
would be the correct value of .25.

We now turn to the estimates of the true standard deviation
of population true score correlations (bottom half of Table 3).
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Table 3
Analysis 3: Estimated Mean and Standard Deviation of True Population Correlations
With Dichotomous Distributions of Population Rhos

Meta-analysis procedure

Actual value
in dichotomy

S-H
int.

linear3

S-H
nonint.
linear8

S-H
int.

nonlinear

S-H
nonint. C-O

nonlinear mult. TSA1 TSA2 RBNL91

Mf estimates (actual Mf = .2500)"

p, = .50, P2 = .00
S2f = .06250
% error

P, = .40,P2 = .10
S2P = .02250
% error

P, = .30,p2 = .20
S2f = .02500
% error

.2549

.0049
2.0
.2515
.0015
0.6
.2499
-.0001
-0.04

.2549

.0049
2.0
.2515
.0015
0.6
.2499
-.0001
-0.04

.2482
-.0018
-0.7
.2490
-.0010
-0.4
.2496
-.0004
-0.2

.2488
-.0012
-0.5
.2497
-.0003
-0.1
.2499
-.0001
-0.04

.2544

.0044
1.8
.2510
.0010
0.4
.2510
.0010
0.4

.2455
-.0055
-2.2
.2423
-.0077
-3.1
.2423
-.0077
-3.1

.2549

.0049
2.0
.2515
.0015
0.6
.2515
.0015
0.6

.2443
-.0057
-2.3
.2467
-.0033
-1.3
.2481
-.0019
-0.7

SDP estimates (actual SDf varies)'

P] = .50, P2 = .00
SDP = .25000
% error

P, = .40,p2 = .10
SDf = .15000
% error

p, = .30,p2 = .20
SDf = .05000
% error

.27885

.02886
11.5
.16670
.01670
11.1
.05577
.00577
11.5

.26454

.01454
5.8
.14216
-.00784
-5.2
.00000
-.05000
100

.26556

.01556
6.2
.16115
.01115
7.4
.05441
.00441
8.8

.25249

.00249
1.0
.13773
-.01227
-8.2
.00000
-.05000
100

.25324

.00324
1.3
.15186
.01855
1.2
.05276
.00276
5.5

.26603

.01603
6.4
.16084
.01084
7.2
.06058
.01058
21.1

.27528

.02528
10.1
.16559
.01559
10.4
.05925
.00925
18.5

.28357

.03357
13.4
.19305
.04305
28.7
.12456
.07456
149.1

Note. S-H int. = Schmidt, Gast-Rosenberg, & Hunter (1980) interactive procedure; S-H nonint. = Schmidt, Hunter, Pearlman, & Shane (1979)
noninteractive procedure; C-O mult. = Callender & Osburn (1980) multiplicative procedure; TSA1 and TSA2 = Taylor Series Approximations 1
and 2 (Raju & Burke, 1983); RBNL91 = Raju, Burke, Normand, & Langlois (1991) procedure.
• The Schmidt-Hunter interactive and noninteractive procedures yielded the same Mf estimates when the linear range-restriction correction was
used. b Values in boldface are the errors in estimating Mp.

 c Actual values of SDP are given in the left column. Errors in estimating SDC are given
in boldface; negative values indicate underestimates.

For the interactive procedure, introduction of the nonlinear
range correction increased accuracy in all three dichotomies. In
the first dichotomy, error decreased from .02886 (11.5% error)
to .01556 (6.2% error). In the second dichotomy, error de-
creased from .01670 (11.1% error) to .01115 (7.4% error). In
the third dichotomy, error decreased from .00577 (11.5% error)
to .00441 (8.8% error). The percentage reductions in error re-
sulting from the nonlinear range correction in the three dichot-
omies were, respectively, 46.1%, 33.2%, and 23.5%. Thus, on a
percentage basis, the nonlinear range-correction procedure sub-
stantially increased accuracy for the interactive procedure, de-
spite the presence of a gross violation of the normality assump-
tion. The same was true for the noninteractive procedure only
for the first dichotomy, where error fell from .01454 (5.8% er-
ror) to .00249 (1% error). In the second dichotomy, the nonin-
teractive procedure underestimated standard deviation more
with the nonlinear range correction (error of—.01227; 8.2% er-
ror) than with the linear procedure (error of-.00784; 5.2% er-
ror). Thus the nonlinear range correction decreased accuracy
slightly. In the third dichotomy, the noninteractive procedure
estimated standard deviation at .0000 for both range-correction
procedures (error of-.0500; 100% error).

In the first dichotomy, the most accurate estimates of the
standard deviation of population true score correlations were

given by the noninteractive procedure with nonlinear range cor-
rection (error of .00249; 1% error) and by the Callender-Os-
burn multiplicative procedure (error of .00324; 1.3% error).
The least accurate was the RBNL91 procedure (error of .03357;
13.4% error). In the second dichotomy, the most accurate pro-
cedure was the multiplicative procedure (error of .01855; 1.2%
error), and the least accurate was again the RBNL91 method
(error of .04305; 28.7% error). In the third dichotomy, the
multiplicative procedure was again the most accurate (error of
.00276; 5.5% error), and the RBNL91 method was again the
least accurate, with the error being quite large: .07456, a 149%
error. The noninteractive procedure yielded estimates of stan-
dard deviations of population true score correlations of 0 in
both linear and nonlinear form (true value = .0500), for a 100%
error. The tendency of the noninteractive procedure to provide
underestimates of the variance of population correlations was
discussed earlier. In four of the six cases in Table 3 (bottom
half), the noninteractive procedure yielded underestimates of
standard deviation; it was the only procedure that did so.

In general, Table 3 shows that the Callender-Osburn multi-
plicative procedure provides the most accurate estimates of
standard deviation when the population true score correlation
is dichotomous; that is, when there is a single, two-valued mod-
erator. At first glance, this would appear to indicate a decision
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rule that one should use the multiplicative procedure with such
data sets. However, there is a problem. If one knows that there
is a dichotomous moderator, then the overall meta-analysis is
inappropriate; one should instead conduct two separate meta-
analyses, one for each value of the moderator. For that purpose,
the multiplicative procedure is not necessarily more accurate
than other procedures. The other possibility is one in which the
researcher is not aware of the dichotomous moderator (which
would usually not be visible in the observed correlations be-
cause of the obscuring eifects of sampling error and other arti-
facts). Being unaware of the existence of the dichotomous mod-
erator, the researcher could not apply a decision rule to use the
multiplicative procedure in such cases. This leaves only the un-
usual case in which the researcher strongly suspects that there is
a dichotomous moderator but the studies do not provide the
information needed to classify the studies into the two modera-
tor categories. In such a case, the multiplicative procedure
would be the procedure of choice. But a case such as this would
be rare. Also, the resulting overall meta-analysis would not be
very informative scientifically. What is needed is two separate
meta-analyses—one for each level of the dichotomous modera-
tor—so that the effect of the moderator can be revealed.

Analysis 4

Table 4 shows the results obtained when the normality as-
sumption is violated because of a skewed distribution of popu-
lation true score correlations. Despite the skewedness, the non-
linear range-restriction correction reduces error in the estima-
tion of the mean correlation for the interactive procedure from
.00190 (0.48% error) to -.0001 (0.03% error). The interactive
method with the nonlinear range correction yielded the most
accurate estimate of the mean population correlation. For the
noninteractive procedure, the reduction in error was smaller:
from .00190 (0.48% error) to .00095 (0.24% error). All proce-
dures again estimated the mean population correlation fairly

accurately, with the largest error being only 0.55% (for Raju et
al.'s[ 1991] method).

Turning to the estimates on the standard deviation of popula-
tion correlations (bottom part of Table 4), one can see that for
the interactive procedure, the nonlinear range-correction pro-
cedure again increased accuracy for the skewed population cor-
relation distribution. Error decreased from .00930 (9.3% error)
to .00257 (2.6% error). This was not true for the noninteractive
procedure; error for that procedure actually increased slightly,
as was the case in some earlier analyses. By considering all eight
procedures, one can see that the interactive procedure with the
nonlinear range correction yielded the most accurate estimate
of the standard deviation of the true correlation; the error was
only .00257, a 2.6% error. The least accurate estimates of stan-
dard deviation were produced by the RBNL91 method, the two
TSA methods, and the noninteractive nonlinear procedure. Un-
der conditions of a skewed population correlation distribution,
these procedures are apparently substantially inaccurate (errors
of 30% or more).

The major purpose of Analysis 4 was to determine whether
skewedness in the distribution of population true score corre-
lations would prevent the nonlinear range-correction procedure
(with its assumption of normality) from improving accuracy
over the older, linear range-correction procedure. These results
indicate that for the interactive procedure skewedness does not
have this effect. As in Analyses 2 and 3, the correction increases
accuracy despite the violation of the normality assumption.

Analysis 5

Analysis 1 showed that with a wide and approximately nor-
mal distribution of population true correlations, the nonlinear
range-correction procedure provides an improvement in accu-
racy for the interactive procedure. The results for Analysis 5,
with the narrower, approximately normal distribution of popu-
lation correlations are shown in Table 5. Error in estimating the

Table 4
Analysis 4: Estimated Mean and Standard Deviation of True Population Correlation
With Skewed Distribution of Population Correlations

Meta-analysis procedure

Estimate

M,
Error
% error

SDf
Error
% error

S-H
int.

linear"

.40190

.00190
0.48
.10930
.00930
9.3

S-H
nonint.
linear"

.40190

.00190
0.48
.07440
-.02560
-25.6

S-H
int.

nonlinear

.39990
-.00010
-0.03
.10257
.00257
2.6

S-H
nonint.

nonlinear

.40095

.00095
0.24
.06995
-.03005
-30.1

c-o
mult.

.40140

.00140
0.35
.10892
.00892
8.9

TSA1

.39821
-.00179
-0.45
.10318
.00318
31.8

TSA2

.40190

.00190
0.47
.10322
.00322
32.2

RBNL91

.39781
-.00219
-0.55
.13388
.03388
33.9

Note. Actual Mp = .40; actual SDP = .10000. S-H int. = Schmidt, Gast-Rosenberg, & Hunter (1980)
interactive procedure; S-H nonint. = Schmidt, Hunter, Pearlman, & Shane (1979) noninteractive proce-
dure; C-O mult. = Callender & Osburn (1980) multiplicative procedure; TSA1 and TSA2 = Taylor Series
Approximations 1 and 2 (Raju & Burke, 1983); RBNL91 = Raju, Burke, Normand, & Langlois (1991)
procedure.
" The Schmidt-Hunter interactive and noninteractive procedures yielded the same Mp estimate when the
linear range-restriction correction was used.
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Table 5
Analysis 5: Estimated Mean and Variance of Population Correlations With Narrower
Dispersion of Population Rhos and With Variable Reliability and Range-Restriction Values

Meta-analysis procedure

Estimate

S-H
int.

linear1

S-H
nonint.
linear"

S-H
int.

nonlinear

S-H
nonint.

nonlinear

Mf estimates (actual Mp =

Mf
Error
% error

.5006

.0006
.12%

.5006

.0006
.12%

.4998
-.0002
-.04%

.5006

.0006
.12%

C-O
mult.

.5000)

.4996
-.0004
-.08%

TSA1

.4960
-.0040
-.80%

TSA2

.5006

.0006
.12%

RBNL91

.4965
-.0035

-.7%

SDf estimates (actual SDP = .05477)

SDf .06008 .00000 .05495 .00000
Error .00531 -.05477 .00018 -.05477
% error 9.7% -100% .32% 100%

.06935 .05431 .05206

.01458 -.00046 -.00271
26.7% -.84%

.12016

.06539
119.4%

Note. S-H int. = Schmidt, Gast-Rosenberg, & Hunter (1980) interactive procedure; S-H nonint. =
Schmidt, Hunter, Pearlman, & Shane (1979) noninteractive procedure; C-O mult. = Callender & Osburn
(1980) multiplicative procedure; TSA1 and TSA2 = Taylor Series Approximations 1 and 2 (Raju & Burke,
1983); RBNL91 = Raju, Burke, Normand, & Langlois( 1991) procedure.
" The Schmidt-Hunter interactive and noninteractive procedures yielded the same estimates of mean true
population correlations when linear range-restriction correction was used.

mean correlation was decreased for the interactive procedure
from 0.12% (.0006) to 0.04% (-.0002) by the nonlinear range-
correction procedure. However, for the noninteractive proce-
dure, there was no decrease in error; it remained constant at
0.12% (.0006). The most accurate estimates of the mean popu-
lation correlation were produced by the interactive procedure
with the nonlinear range correction (error = —.0002, a 0.04%
error), followed by the multiplicative procedure (error =
-.0004, a 0.08% error). All estimates were quite accurate. Even
the procedure with the largest error (TSA 1) yielded the correct
value of .50 when rounded to the usual two decimal places.

Turning to estimates of the standard deviation of true score
population correlations, we see that for the interactive proce-
dure, introduction of the nonlinear range-correction procedure
improved accuracy; the error of estimation declined from
.00531 (a 9.7% error) to .00018 (a 0.32% error), for a 97% re-
duction in error. The noninteractive procedure, on the other
hand, estimated this small standard deviation (SDP = .05477)
at zero for both range-correction procedures (error of .05477; a
100% error). The most accurate estimate of the standard devia-
tion was yielded by the interactive procedure with the nonlinear
range correction (0.32% error), followed by the TSA1 proce-
dure, which underestimated standard deviation by —.00046, a
.84% error. For this distribution of population correlations, the
multiplicative procedure yielded a noticeably less accurate esti-
mate of the standard deviation, with an error of .01458 (a 26.7%
error). However, the least accurate procedure was the RBNL91
method, with an error of .06539 (a 119% error).

Analysis 5 (Table 5) is probably more realistic than Analysis
1, and, as a result, should be given more weight. Also, consider-
ing errors of the same absolute size, errors in estimating the pop-
ulation standard deviation are more serious than are errors in
estimating the population mean. For example, in Analysis 5, an
error of .01458 in estimating the mean is a 2.9% error; however,

an error of .01458 in estimating the standard deviation is a
26.7% error. Therefore, the best overall interpretation of our
results is that, for real data in which the standard deviation is
greater than zero and is modest in size and in which population
correlations are approximately normal, the most accurate pro-
cedures are likely to be the interactive with nonlinear range cor-
rection and the two TSA procedures. In the cases examined in
which the distribution of population correlations was approxi-
mately normal (Analyses 1 and 5), incorporating the nonlinear
range-correction procedure into the interactive procedure in-
creased its accuracy in estimating standard deviation, as pre-
dicted by Hunter and Schmidt (1990b, pp. 209-211).

Analysis 6

The results for the homogeneous case (SDf = 0) are shown in
Table 6. In this situation, the assumption that the population
correlations are normally distributed is violated; the distribu-
tion is a point distribution at p = .50. For the noninteractive
procedure, the nonlinear range correction produced no changes
at all in any of the cells (domains) in Table 6, whether in esti-
mating mean or standard deviation of population true corre-
lations. Thus, the normality violation did not cause the nonlin-
ear correction to lead to decreased accuracy. For the interactive
procedure, introduction of the nonlinear correction led to small
increases in accuracy of estimation of standard deviation of the
true score population correlation, despite violation of the nor-
mality assumption. Estimates of the mean correlation were
made slightly less accurate by introduction of the nonlinear cor-
rection in five of the eight domains. However, this decrease in
accuracy was trivial, never exceeding 0.027%. Thus we con-
clude that, despite the violation of the normality assumption,
the nonlinear range correction does not encounter accuracy
problems in the homogeneous case.
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Table 6
Analysis 6: Results for the Homogeneous Case

Meta-analysis
procedure

Varr^:
Varr,,,,:
Varw:

Low
Low
Low

High
Low
Low

Low
High
Low

Low
Low
High

High
High
Low

High
Low
High

Low
High
High

High
High
High

% error in estimates of Mf (actual Mf = .5000 in all cases)

S-H int. linear
S-H nonint. linear
S-H int. nonlinear
S-H nonint. nonlinear
C-O mult.
TSA1
TSA2
RBNL91

-0.071
-0.071
-0.072
-0.071
-0.276
-1.161
-0.071
-0.613

0.011
0.011
0.011
0.011

-0.193
-1.476

0.011
-0.619

0.578
0.578
0.578
0.578
0.381

-3.963
0.578

-0.661

-0.967
-0.967
-0.994
-0.967
-1.881
-2.047
-0.967
-2.408

0.670
0.670
0.670
0.670
0.474

-4.260
0.670

-0.666

-0.901
-0.901
-0.927
-0.901
-1.810
-2.374
-0.901
-2.429

-0.441
-0.441
-0.460
-0.441
-1.317
-4.936
-0.441
-2.592

-0.367
-0.367
-0.383
-0.367
-2.239
-5.246
-0.367
-2.610

% error in estimates of SDf (actual SDP = 0.0 in all cases)

S-H int. linear
S-H nonint. linear
S-H int. nonlinear
S-H nonint. nonlinear
C-O mult.
TSA1
TSA2
RBNL91

.005

.000

.004

.000

.041

.017

.007

.113

.000

.000

.000

.000

.044

.021

.012

.121

.000

.000

.000

.000

.055

.066

.000

.176

.027

.000

.025

.000

.072

.027

.022

.185

.000

.000

.000

.000

.058

.069

.014

.182

.027

.000

.025

.000

.073

.030

.024

.190

.023

.000

.022

.000

.072

.073

.029

.226

.022

.000

.020

.000

.073

.075

.035

.231

Note. S-H int. = Schmidt, Gast-Rosenberg, & Hunter (1980) interactive procedure; S-H nonint. = Schmidt, Hunter, Pearlman, & Shane (1979)
noninteractive procedure; C-O mult. = Callender & Osburn (1980) multiplicative procedure; TSA1 and TSA2 = Taylor Series Approximations 1
and 2 (Raju & Burke, 1983); RBNL91 = Raju, Burke, Normand, & Langlois (1991) procedure; Var = variance.

The top part of Table 6 shows the percentage errors in esti-
mating the mean true correlation of .50. For five of the eight
methods shown, the error is always below 1 %; these are the two
interactive methods, the two noninteractive methods, and the
TSA2 method. For these methods, the mean true correlation
estimates were identical to four digits in all eight domains. The
multiplicative method was a bit less accurate in the cells (do-
mains) having high variance of range-restriction values, but its
error was over 2% for only one of the eight combinations.

The method that showed the largest errors for the high-arti-
fact-variance domains was TSA1. The (corrected) TSA2
method was consistently more accurate than TSA1 and was
much more accurate for the high-artifact-variance domains.
This was equally true for all of the traditional methods; all were
noticeably superior to TSA1.

In the article introducing their new method (RBNL91), Raju
et al. (1991) compared their new method only to TSA1. They
concluded that the new method was superior to TSA1 in most
of the domains that they considered. The top part of Table 6
does, in fact, show the RBNL method to be superior to TSA 1 in
estimating the mean correlation in six of eight of the homoge-
neous domains. In the low-low-high and high-low-high do-
mains, the method was just as inaccurate as TSA1 (trivially
worse). In the other domains, the RBNL91 method was sub-
stantially more accurate than TSA 1.

However, the fact that the RBNL91 method is more accurate
than TSA1 means little in view of the fact that TSA1 was less
accurate in the homogeneous domains than were the other tra-
ditional methods. When the RBNL91 method is compared with
the TSA2 method, the RBNL91 method is less accurate in
seven of eight domains and is essentially equal in the high-high-

low domain (though in opposite directions), in which the error
for both methods was below 1%. The same is true for all of the
traditional methods: All of the traditional methods are at least
as accurate as the RBNL91 method in all domains, and all but
the multiplicative method are more than twice as accurate in six
out of the eight domains. The Callender-Osburn multiplicative
estimator is twice as accurate as the RBNL91 method in five of
the eight domains.

The bottom half of Table 6 shows the estimated standard de-
viations for each method applied to each of the eight homoge-
neous domains. Because the true standard deviation is zero in
all eight homogeneous domains, a percentage of error is not de-
fined. Therefore, the error measure that we used is the numeri-
cal deviation from the true value of zero. Because the true value
of the standard deviation of the population true correlation is
zero, the estimated standard deviation for any estimator is also
the amount of error for that estimator.

As noted earlier, the noninteractive method is known to
slightly overestimate the variance due to (corrected) artifacts if
range restriction is present. In the homogeneous case without
sampling error, the result is that the estimate of residual vari-
ance is always a very small negative number and, hence, the
noninteractive method correctly estimates the standard devia-
tion of true correlations to be zero in all eight domains. This
holds both with and without the nonlinear range-correction
procedure.

Three of the other traditional estimators are extremely accu-
rate in all domains: the two interactive estimators and TSA2.
The new range-restriction procedure improves the interactive
method in all domains in which there is any room for improve-
ment. The interactive nonlinear estimator is more accurate
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than TSA2 in five of the eight domains, although the differences
are very small.

The multiplicative model consistently underestimates the
variation due to range restriction. The domains in our study
were designed to have the high level of range restriction found
empirically for general cognitive ability tests used to predict job
performance. Thus, the mean in each domain is u = .67. This
makes the multiplicative model the least accurate, on average,
of the traditional estimators for these domains.

The TSA1 estimator is no more accurate than the multiplica-
tive estimator in four of the eight domains. In the other four
domains it noticeably improves on the multiplicative estimator.
On the other hand, TSA 1 is noticeably poorer than all of the
other traditional estimators, including TSA2 and the interactive
estimator.

The RBNL91 method is considerably less accurate than any
of the other estimators. It is never less than 6 times less accurate
than the improved interactive estimator. The errors made by
the RBNL91 estimator are large enough to lead to considerable
inaccuracy in some domains. Consider the high-high-high case
in Table 6. Whereas the true correlations are actually uniformly
.50, the RBNL91 estimator would generate an 80% credibility
interval from .20 to .80. The 95% credibility interval would be
from .03 to .90. That is, the RBNL91 method would incorrectly
suggest that the correlation varies from essentially 0 to nearly
1.00. (The applications of the RBNL91 method considered in
this study all relied solely on distributions of artifacts. In the
future, we intend to examine the accuracy of this method when
artifact information is known individually for some of the
correlations.)

By comparison, the improved interactive estimator produces
a 95% credibility interval from .46 to .54, an interval width that
is almost 12 times narrower. In this domain, that means it is
almost 12 times more accurate than the RBNL91 estimator.
Furthermore, there is no research domain in which .54 is con-
sidered qualitatively different from .46. But in every research
domain, .90 would be regarded as qualitatively different from
.03.

In estimating the mean correlation, TSA 1, with errors as high
as 5%, was noticeably less accurate than any other estimator.
The RBNL91 method was about twice as accurate as TSA 1 but
was still noticeably less accurate than the other, traditional
methods. The multiplicative estimator was about twice as accu-
rate as the RBNL91 estimator, though still slightly poorer than
the other, traditional estimators. The two interactive estimators,
the two noninteractive estimators, and TSA2 were all accurate
to within less than 1% for estimating the mean correlation in all
eight homogeneous domains studied here.

In estimating the true standard deviation, the RBNL91
method was much less accurate than any other estimator; in
some cases, it was less accurate by a factor of 10 or more. The
RBNL91 method generated qualitatively unacceptable errors
in estimating the credibility interval for domains with high arti-
fact variation. The multiplicative estimator did more poorly
than the other traditional estimators in these domains, as would
be predicted from the high mean level of range restriction in
these domains. TSA 1 was almost as inaccurate as the multipli-
cative estimator and was noticeably poorer than TSA2 in all
domains. The interactive and noninteractive estimators were

even more accurate than TSA2, although the difference was not
large enough to be important in the eight homogeneous do-
mains studied here.

A technical comment appears appropriate at this point. In
Tables 3, 5, and 6, some of the estimates of standard deviations
for population true correlations for the noninteractive proce-
dure were zero (as are several in Table 6 for the interactive pro-
cedure). These typically result from small negative estimates of
residual variance, which are set to zero before the calculation
of standard deviation. One reviewer was concerned that these
estimates of the accuracy of the procedures might be biased;
however, this is not the case. It is important to remember that
the purpose of this study was to evaluate the accuracy of these
procedures. An essential property of these methods is that the
residual variance estimate is set to zero when the observed esti-
mate is negative. This is similar to the case in Cronbach's gen-
eralizability theory (Cronbach, Gleser, Nanda, & Rajaratnam,
1972; see discussion in Hunter & Schmidt, 1990b, p. 413). Thus
the zero values of the standard deviation estimates in Tables 3,
5, and 6 are not biased estimates of the accuracy of the proce-
dures in question. They are the actual values produced by those
methods. For cases in which SDf = 0, the estimates of the stan-
dard deviation that are zero represent perfect accuracy; how-
ever, when SDf >0, such estimates are in error (to one degree or
another). Thus, the zero values for standard deviations in Table
6 represent perfect accuracy, whereas the zero values in Tables
3 and 5 (all from the noninteractive method) represent errors of
estimation.

Conclusions

In summary, the findings of Analyses 2, 3, and 6 indicate that
violations of the normality assumption underlying the nonlin-
ear range-correction procedure do not cause that procedure to
be inaccurate in estimating mean population true correlations
or their standard deviations. Even under conditions of gross vi-
olation of normality, the nonlinear range-correction procedure
still produced increased accuracy for the interactive procedure
(and often for the noninteractive procedure as well). In Analysis
1, in which the normality assumption was approximately met
and the variance of population correlations was large, the new
nonlinear range-correction procedure yielded definite improve-
ments over the older nonlinear procedure for the interactive
method in accuracy of estimates of both mean and standard
deviation. In Analysis 5, in which the normality assumption
was also approximately met but in which the population corre-
lations were much less variable (and hence more realistic), the
new nonlinear range-restriction correction again yielded im-
provements in accuracy in estimating mean and standard devi-
ation for the interactive procedure. Thus, we conclude that
these findings indicate that the nonlinear range-correction pro-
cedure generally yields an improvement in accuracy for the in-
teractive method, as has been predicted by Hunter & Schmidt
(1990b, pp. 209-211).

Accuracy can also be compared for all existing procedures.
The results of Analysis 1 indicate that when the variance of pop-
ulation correlations is large and the distribution is approxi-
mately normal, the interactive procedure with the nonlinear
range correlation is the most accurate; however, the two TSA
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procedures have very similar levels of accuracy. The results of
Analysis 5 indicate that when population correlations are ap-
proximately normal but less variable, the most accurate proce-
dures are again apt to be the interactive with nonlinear range
correction and the two TSA procedures of Raju and Burke
(1983). However, the results of Analysis 4 indicate that when the
distribution is skewed, the two TSA methods become consider-
ably less accurate for estimating standard deviation, with per-
centage of error figures of 30% or more. The same is true for the
RBNL91 method and the noninteractive method. Under these
circumstances, the interactive procedure with the nonlinear
correction showed only 2.6% error in estimating standard
deviations.

The results of Analysis 6 indicate that in the homogeneous
case (in which SDP = 0), the interactive procedure with the non-
linear range correction and TSA2 are the most accurate proce-
dures. The TSA 1 procedure is considerably less accurate in the
homogeneous case. This finding is important because there has
been a lot of evidence supporting the homogeneous model for
aptitude and ability tests in employment selection (Schmidt et
al., 1985, 1993). In the homogeneous case, the RBNL91
method yielded the least accurate estimates of the standard de-
viation of the population true correlation.

Considering the results of all six analyses, we conclude that
the most accurate procedure overall appears to be the interac-
tive procedure with the nonlinear correction. However, in most
analyses, the TSA2 procedure was similar in accuracy; the ma-
jor exception is the case in which the population correlations
have a skewed distribution. It is difficult to estimate how fre-
quently this occurs in real data (i.e., sets of studies used in a
meta-analysis), and therefore, it is difficult to know how much
of a problem skewedness is for the TSA2 procedure.

In all cases, errors in estimating the mean population true
score correlation are small for all procedures, both on an abso-
lute and on a percentage basis. Errors in estimating the standard
deviation of population true score correlations are usually small
in absolute value for all procedures but can be large when ex-
pressed as percentage errors of estimation for some procedures
under some circumstances. Most procedures that we examined
are quite accurate by the usual standards of social science, and
most are accurate enough for research use with real data in
most applications. Nevertheless, the quest for improved accu-
racy is part of the scientific enterprise. Scientists—including so-
cial scientists—should be concerned about accuracy and, other
things being equal, should choose the more accurate procedures
even when the difference is not large.
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Appendix

Mathematics of the Nonlinear Range-Correction Refinement

Uniform Artifacts

Suppose that each artifact is uniform across studies; that is, the level
of range restriction is the same across all studies and the reliability of
the independent and dependent variables is the same across all studies.
If each artifact were uniform, then all study population correlations
would be attenuated by exactly the same formula A(p), where A is a
function of p. That is, each attenuated study population correlation (p0)
would be related to the true study population correlation (p) by the same
attenuation function a:

Po = A(p). (Al)

Each attenuated study population correlation could be corrected by us-
ing the same correction function. That is, if Cis the inverse function for
A, then

The moments of the true and attenuated study correlations would be
related by integral equations (assuming a continuous distribution of p;
otherwise by the corresponding sums). If the frequency density function
for true study population correlations is/(p), then the

nth moment of p0 = I [A(p)]"f(p)dp. (A3)

If the frequency density function for the observed attenuated study pop-
ulation correlations is/(p0), then the

nth moment of p = j [C(Po)]"f(Po)dPo. (A4)

In particular, it is this last equation that would be used to transform
the distribution of imperfect study population correlations to the distri-
bution of study population correlations for perfectly done studies. If a
bare-bones meta-analysis were done in a domain with uniform artifacts,
then the mean and standard deviation from the meta-analysis would be
estimates of the mean and standard deviation of attenuated corre-
lations, that is, the mean and standard deviation of p0. If the form of the
distribution of p0 were known, then this last equation could be used to
compute the mean and standard deviation of p.

In our refinement, we use the normal distribution as an approxima-
tion for the distribution of p0. One source of error for the models using
the refinement is the fact that not one of the distributions for this study
is actually normal and several are severely nonnormal. The results in
our study indicate that little error is introduced by the assumption of a
normal distribution.

Consider the computation of the true study population correlations if
all studies were subject to range restriction with constant level u. Then
the correction formula for all study population correlations would be

C(PO) = • (A5)

where V = l/u. Denote the mean and standard deviation of attenuated
correlations by n and a. Denote the normal density function for mean
M and standard deviation a by/ Then the mean true study population
correlation would be

mean(p) = J C(pa)f(Po)dp0. (A6)

In our computer programs (available on request), we computed this

integral equation numerically. To do this, we considered 61 values of the
standard normal deviate centered about 0; that is, values of z: -3.00,
-2.90,..., -0.10, 0.00, 0.10, . . . , and 3.00. For each value, we com-
puted the corresponding probability: .0004, .0006, . . . , .0397, .0399,
.0397,..., and .0004. The value for p0 is computed for each value of z
by the usual reverse-standard-score formula:

M. (A7)

Denote the (th created value for p0 by rt and denote the corresponding
probability by pt. The corresponding j'th value for true correlations is
thus

c, = Or,). (A8)

Then the first and second moments of the true correlation are computed
in the usual way:

mean p = 2 OP/, (A9)

mean square p = 2 cfpt. (A 10)

Nonuniform Artifacts

In most domains, each artifact varies from study to study. For exam-
ple, if different studies use different measures of the independent vari-
able, then some studies will have higher independent-variable reliability
than other studies. In this case, the true and attenuated correlations are
not related by a single attenuation formula, and the integral equations
of the previous section do not apply.

The heart of both the interactive and noninteractive methods of meta-
analysis is to transform the results of the bare-bones meta-analysis to
results for a hypothetical domain with uniform artifact values. That is,
the attenuated study population correlations with nonuniform artifacts
have a mean and variance that are estimated from the bare-bones meta-
analysis. Denote these as mean (p0) and var (p0).

On the other hand, if the artifacts were uniform across the domain,
with each artifact value uniformly equal to the mean value for that arti-
fact, then the mean and variance would have had different values; these
values were referred to by Schmidt and Hunter (1977) as the residual
mean and residual variance. Denote these values as resmean (p0) and
resvar (p0). If these values were known for the domain, then the integral
equations of the previous section could be used to compute the mean
and variance of the true study correlations.

The interactive and noninteractive models are two different methods
of estimating the residual mean and residual variance from the mean
and variance produced by the bare-bones meta-analysis. In both meth-
ods, the current practice is to use the mean from the meta-analysis as
the estimate for the residual mean. Thus, for the mean correlation, the
estimated residual mean is actually the mean observed correlation. On
the other hand, the residual variance is smaller than the variance pro-
duced by the bare-bones meta-analysis by an amount called the vari-
ance due to artifact variation. It is this residual variance that is used to
compute the moments of the true correlations by the formula of the
preceding section.

Received March 25, 1991
Revision received September 29, 1993

Accepted September 29, 1993 •


