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Abstract

This article presents a simple “model-free” method for inferring deltas and gammas

from implicit volatility patterns.  An illustration indicates that Black-Scholes deltas

and gammas are substantially biased in the presence of the sort of smirks and smiles

evident in stock index options.
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Post-'87 implicit volatility patterns in stock index options indicate substantial deviation from the

Black-Scholes assumption of a lognormal distribution.  Out-of-the-money put options trade at high

implicit volatilities relative to at-the-money options, which are in turn higher than those from in-the-

money puts and out-of-the-money calls.  Figure 1 shows the typical volatility “smirk” pattern, using

21-day S&P 500 futures options on June 24, 2005.  And while the overall level of volatilities has

varied substantially since 1987, with shocks such as the mini-crashes in 1989, 1997 and 1998 having

considerable impact, the relatively high pricing of out-of-the-money puts has been a persistent

feature of post-‘87 options prices.  This volatility pattern indicates the market perceives negative

skewness in stock returns.  Investors are willing to pay substantially for the downside risk protection

offered by out-of-the-money put options.

[Figure 1 about here]

Given that the Black-Scholes assumption of constant implicit volatilities across all strike prices is

egregiously violated, what are the appropriate deltas and gammas an option market maker should

use when hedging option positions?  A parametric approach would take alternate negatively skewed

distributions, such as the Bates (1991) jump-diffusion model with negative-mean jumps or a

stochastic volatility model with negative correlations between price and volatility shocks.  Such

multiparameter models can be fitted to observed option prices, and the deltas, gammas and other

derivatives can be computed given the parameter estimates.  A difficulty is that inferring parameters

from such models can be computationally expensive – especially for American options with no

closed-form solutions.  
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1 Euler's theorem states that a homogeneous function satisfies

Rearranging yields the expression for the delta .  Similarly, since  and  are
homogeneous of degree zero,

Eliminating the cross-derivatives  yields the above expression for the gamma .

(1)

This article points out that for a broad class of option pricing models, the appropriate deltas and

gammas for hedging option positions can be inferred directly from the pattern of implicit volatilities

across different strike prices.  The key assumption is that the stochastic process of the underlying

asset price exhibits constant returns to scale, so that option prices are homogeneous of degree one

in the underlying asset price and the strike price.  This assumption first appeared in Merton's (1973)

derivation of option pricing properties, and is satisfied by most European and American option

pricing models.  Examples include the Black-Scholes assumption of geometric Brownian motion,

Merton's (1976) jump-diffusion process, and most stock and stock index option models with

stochastic volatility or stochastic interest rates.  The assumption rules out “level illusion:” whether

the S&P 500 index is at 500 or 1000 is irrelevant for the distribution of stock market returns.  

Conditional upon homogeneity, Euler's theorem indicates that an option's delta can be inferred

directly from the option's sensitivity to the strike price:

where O is the option price, S is the underlying asset price or futures price, and .

Similarly, the option's gamma can be computed as1



5

(2)

(3)

For the Chicago Mercantile Exchange settlement prices for American options on S&P 500 futures,

expressions (1) and (2) can be implemented directly to compute appropriate deltas and gammas.

Option settlement prices are determined synchronously with each other and with the futures

settlement price, so that  and  can be computed numerically off observed option settlement

prices:

For example, the deltas and gammas associated with July 2005 put options on June 24, 2005 have

the values shown in Table 1.

[Table 1 about here]

More generally, one may be trying to assess appropriate deltas and gammas using badly

synchronized intradaily or closing price data.  Since intradaily option prices fluctuate considerably

with the underlying asset price but intradaily implicit volatility patterns are more stable, it is

convenient to express option derivatives in terms of the slope and convexity of the volatility function

across different strike prices.  Define OBS as the European or American option pricing variant of the

Black-Scholes model used in computing implicit volatilities :  .  By the chain rule,
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(4)

(5)

(6)

(7)

Plugging these into (1) and (2) above and exploiting the fact that (1) and (2) also hold for the Black-

Scholes option prices OBS yields the following expressions for delta and gamma:

where  and  are the Black-Scholes delta and gamma computed at that option's implicit

volatility.

Evaluating (6) and (7) requires computing the various partial derivatives of the “Black-Scholes”

formula, and computing the slope and convexity of the implicit volatility function .  The

former can be done analytically if a European option pricing formula is used when computing

implicit volatilities, and numerically if an American option pricing formula is used.  It actually does

not matter which formula is used when computing derivatives, provided that it is the same as used

for computing implicit volatilities.  Black's (1976) European futures option pricing model is
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2The applications in this article use the Barone-Adesi and Whaley (1987) American futures
option pricing model, and associated numerical derivatives

(8)

(9)

perfectly acceptable even for American options, and has the advantage of providing analytic

derivatives with respect to X and .  Any errors in  and  from a failure to take an early-

exercise premium into account are corrected by the slope and convexity of the estimated implicit

volatility function.  In essence, the implicit volatilities are merely serving as monotonic proxies for

the associated option prices.2

The slope and convexity of the implicit volatility function  can be evaluated numerically for

the above settlement price data.  More typically, however, it will be necessary to estimate a

smoothed volatility function from noisy intradaily implicit volatilities.  Many methods are viable;

the simplest is probably the regression-based approach of Shimko (1993).  The implicit volatilities

are regressed on the strike price and strike price squared, 

and the desired first and second derivatives can be estimated using the estimated coefficients:

For example, the regression-based estimate of the volatility function using implicit volatilities from

the above settlement data is , and is the line

graphed in Figure 1.  Alternatively, the volatility function can be estimated in terms of the
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3For instance, the appropriate delta becomes where 

depends only on y given the homogeneity of  in S and X.

moneyness variable  rather than X, and used in conjunction with appropriately modified

versions of (6) and (7).3  Spines can also be used, to fit the volatility function more exactly.

Expressions (6) and (7) indicate that the Black-Scholes delta and gamma are biased estimates of the

true values if there is substantial slope to the volatility function across different strike prices – which

is, of course, the case for stock index options.  Since the volatility smirk is downward sloping for

low strike prices and the Black-Scholes “vega”  is positive, call and put deltas computed using

Black-Scholes implicit volatilities and hedge ratios understate the true deltas of low-strike options.

Figure 2 compares the Black-Scholes deltas with those computed using the regression-based

estimate of the volatility function, while Figure 3 compares the gammas.

[Figure 2 about here]

[Figure 3 about here]

Two caveats are in order regarding this method of computing deltas and gammas.  First, the method

is heavily dependent upon the assumption of homogeneity.  And although this property is desirable

to ensure returns are stationary, and is satisfied by many popular American and European option

pricing models, there do exist models that do not possess this property.  Examples include the

constant elasticity of variance model of Cox and Rubinstein (1985, pp.361-4), and implied binomial

trees models such as Dupire (1994), Derman and Kani (1994), and Rubinstein (1994). Alternate

methods of computing option derivatives are necessary for such models.  However, nonhomoge-
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4Nonhomogeneous models imply that the at-the-money option/asset price ratio 
depends upon the (nonstationary) underlying asset price S.  Consequently, the implicit volatility
computed from this ratio under such models must also be nonstationary.

neous models also imply that at-the-money implicit volatilities are nonstationary, contrary to the

mean reversion evident in plots of implicit volatilities over time.4 

Second, while the proposed methodology may be able to infer the deltas and gammas perceived by

the market, that does not mean the market is correct.  If options are mispriced, it is probable that the

implicit deltas and gammas are also erroneous.  Identifying mispriced options does of course require

an assessment of what are the correct prices – i.e., a proprietary model.  Even in this case, however,

the proposed method of computing implicit deltas and gammas may serve as an informative

diagnostic for comparison with those estimated using a proprietary model.
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Table 1

July '2005 put options on S&P 500 futures
Settlement prices: June 24, 2005

Implicit parameters

Strike
Price

Put
Price

Volatility
( )

Delta
())

Gamma

1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225

  1.05
  1.20
  1.40
  1.60
  1.85
  2.15
  2.60
  3.10
  3.70
  4.50
  5.50
  6.60
  8.00
  9.70
11.70
14.10
16.90
20.10
23.60
27.40
31.40

15.96%
15.48%
15.05%
14.54%
14.05%
13.57%
13.23%
12.83%
12.42%
12.09%
11.81%
11.42%
11.11%
10.83%
10.55%
10.34%
10.18%
10.09%
  9.97%
  9.87%
  9.67%

-0.032
-0.037
-0.042
-0.051
-0.070
-0.090
-0.104
-0.133
-0.172
-0.202
-0.241
-0.301
-0.360
-0.430
-0.510
-0.591
-0.661
-0.722
-0.773

0.0018
0.0000
0.0018
0.0018
0.0056
0.0019
0.0038
0.0076
0.0077
0.0039
0.0117
0.0118
0.0119
0.0160
0.0161
0.0162
0.0123
0.0124
0.0083

The underlying (Sept. 2005) futures settlement price was 1195.70.
Implicit volatilities were computed using the Barone-Adesi and
Whaley (1987) American option pricing formula for 21-day options,
with a 3.30% interest rate.
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Captions for figures

Figure 1.  The volatility “smirk.”  Implicit volatilities from 21-day put options on S&P 500

futures; June 24, 2005.

Figure 2.  Implicit deltas.  Put options on S&P 500 futures: June 24, 2005.

Figure 3.  Implicit gammas.  Put options on S&P 500 futures: June 24, 2005.
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