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Abstract

This paper devel ops distribution-specific theoretical constraints on relative prices of out-of-the-money
European call and put optionsthat are also valid for American options on futures. The constraints can
be used to identify which distributional hypotheses can and cannot explain observed moneyness
biases. An application to S& P 500 futures options over 1983-1993 illustrates the inability of standard
distributional hypothesesto explain observed moneyness biases -- especially those observed following
the stock market crash of 1987. Some distribution-specific extensions to exotic option pricing are
also discussed.

*The Wharton School, University of Pennsylvania and National Bureau of Economic Research.



Option pricing model s such as Black and Scholes (1973) premised upon the underlying asset price following geometric
Brownian motion have been found to exhibit serious specification error when fitted to market data. A "moneyness’
or "striking price" biasis ubiquitous. model prices as a (monotone) function of the strike price are typically "tilted"
relative to observed options prices, so that the residuals for low strike prices tend to be opposite in sign from the
residualsfor high strike prices. Such biases have been found in American call and put options on stocks traded on the
Chicago Board Options Exchange;* in American calls and puts on S& P 500 futures traded on the Chicago Mercantile
Exchange;? in American foreign currency call options traded on the Philadel phia Stock Exchange;® and in European
Swiss franc-denominated call options on the dollar traded in Geneva.* The biases are not in the same direction for all
markets, nor are they constant over time. The biases have been especially egregious in stock and stock index options

since the stock market crash of 1987.

Observed moneyness biases and considerable time series evidence against the hypothesis that |og-differenced
asset prices are homoskedastic and normally distributed have spurred the devel opment of option pricing models for
alternative stochastic processes. The constant elasticity of variance (CEV) option pricing model of Cox and Ross
(1976) and Cox and Rubinstein (1985) relaxed the constant volatility assumption and allowed the instantaneous
conditiond volatility of asset returns to depend deterministically upon the level of the asset price. Special casesinclude
both arithmetic and geometric Brownian motion. The recent “implied binomial tree” mod&lapafe (1994),
Derman and Kani (1994), and Rubinstein (1994) can be viewed as flexible generalizations of the CEV model. The
stochastic volatility option pricing models of Hull and White (1987), Scott (1987), and Wiggins (1987) permitted more
general patterns of evolution for conditional volatility, parallelling the development of time series models such as
ARCH and GARCH that were concerned with the same issue. The temoghat asset returns are leptokurtic,

particularly for short holding periods, motivated Merton's (1976) model for pricing optiopsnprdiffusion

'See Black (1975), MacBeth and Merville (1980), and Rubinstein (1985) for calls on CBOE stocks; see also the
criticisms by Geske and Roll (1984) and Whaley (1982). See Blomeyer and Johnson (1988) for puts on CBOE
stocks.

*See Whaley (1986) and Bates (1991).

3See Bodurtha and Courtadon (1987).

*See Chesney and Scott (1989).
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processes.> Finaly, the recognition that options involve future payoffs has spurred examination of the impact of

stochastic discount rates.

Which of these alternative factors and associated option pricing models can generate the moneyness biases
observed empirically? This question has motivated "horse race" papers such as Rubinstein (1985) and Shastri and
Wethyavivorn (1987), and is arelevant criterion not just of option pricing models but of time series models as well.
The central thesis of this paper is that most postulated processes can be ruled out a priori asinconsistent with observed
moneyness biases. Those biases congtitute prima facie evidence that the distributions implicit in option prices are
markedly skewed relative to the benchmark lognormal distribution implied by geometric Brownian motion.® By
contrast, the above option pricing models under the parameter values typically used generate implicit distributions that
are essentially symmetric. Parameter values that are potentially consistent with observed moneyness biases are seldom
studied, and in fact are often ruled out to increase tractability. For instance, although Merton's (1976) jump-diffusion
model allowed jumps to have non-zero mean, empirical tests by Ball and Torous (1983, 1985) assumed mean-zero
jumps -- precisely the parameterization incapable of eliminating observed moneyness biases. Stochastic volatility
models typically focus on the special case in which volatility evolvesindependently of the asset price -- a case equally

incapable of explaining moneyness biases.

The theoretical foundations for this central thesisrest on a method of measuring the moneyness bias that offers
valuable insights into which option pricing models can and cannot explain observed biases. The method is based upon
comparing the prices of out-of-the-money (OTM) callsand puts. Intuitively, snce OTM calls pay out only if the asset
price rises above the call’s exercise price, while OTM puts pay off only if the asset price falls below the put's exercise
price, call and put prices directly reflect the characteristics of the upper and lower tails of the distribution. Comparing

the two for OTM options is consequently a direct gauge of the relative thicknesses of the tails, and consequently a

*McCulloch (1985,1987), motivated by the same concern, derives an option pricing model under the assumption
that log-differenced asset prices are drawn from a stable Paretian distribution.

%This point is also made in Jarrow and Rudd (1982).
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mesasure of implicit skewness. More precisely, relative prices of OTM options will reflect the skewness of the "risk-
neutra" distribution generated from any given distributiona hypothesis, and can therefore be used as a direct and easy

diagnostic of that underlying hypothesis.

Section | of the paper quantifies the relationship between distributional hypotheses and the relative prices of
European out-of-the-money calls and putsfor the mgjor families of option pricing modelslisted above. For the constant
elasticity of variance processes, OTM call and put prices are roughly equal under arithmetic Brownian motion and
diverge increasingly as one moves through intermediate CEV processes towards geometric Brownian motion. For the
last process, an "x% rule" holds: call optionsx% out-of-the-money are priced exactly x% higher than the corresponding
OTM puts. This "x% rule" also holds for the benchmark models in the other classes of option pricing models:
stochastic volatility modelsin which volatility evolves independently of the asset price, jump-diffusion models with
mean-zero jumps, and stochastic interest rates/dividend yields that follow Ornstein-Uhlenbeck processes. Equivalently,
theimplicit volatility patterns are perfectly symmetric functions of the log of the strike price under these benchmark

models.

Section 11 extends the results to American options. Although the above results for European options will hold
only approximately for American options in general, most of the results will hold exactly in the case of American
options on futures. Furthermore, distribution-specific theoretical relationships between the immediate-exercise critical
values for American calls and puts on futures can be derived. These results follow from the key insight that the put
valuation problem is a distribution-specific transformation of variables of the call valuation problem for American
options on futures. Based on these results, the "skewness premium” metric is defined as the percentage deviation of
OTM call pricesfrom the prices of puts correspondingly out-of-the-money. Section I11 applies the metric to American
options on S& P 500 futures options traded on the Chicago Mercantile Exchange over 1983-1993, illustrating the

substantial and persistent negative implicit skewness present since the crash of 1987.
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Many of the results in the first two sections have been reported previousy,” without proof. This article
provides the proofs, and some extensions. These proofs are of interest not only for confirming the validity of previous
claims, but also for the insights they provide, and for potential generalizations to other contingent claims. For instance,
the key insight that the put valuation problem is a distribution-specific transformation of variables of the call valuation
problem for European options in general and for American options on futuresislargely unprecedented in the option

pricing literature. Some applications to exotic option pricing are given in the concluding Section V.

"Bates (1991) applies the skewness premium to S&P 500 futures options over 1985-87, while Bates (1996) applies
it to foreign currency futures options over 1984-92.



I. Asymmetry and European Option Pricing
A. Assumptions and Notation
Throughout this paper, the following standard assumptions will typically be maintained:

Al) Marketsarefrictionless: there are no transactions costs or differential taxes, trading can take place
continuously, there are no restrictions on borrowing or selling short.

A2) Thereexistsa"risk-neutral" probability measure under which options can be priced at their expected
discounted future payoff.

A3) Theinstantaneous risk-free interest rate r is known and constant.

A4) The"cogt of carry" to maintaining a position in the underlying asset is a constant proportion b of the
asset price.

Standard specifications of the "risk-neutral™ probability measure will be examined below. Specific extensions of the

results to stochastic interest rates and cost of carry will aso be examined.

The following notation will be used:
S (or S) = the current price on the underlying asset;
F.wr (or F) = the forward price on the asset for delivery T periods from now;,
T = the time to maturity of the option;
X = the strike price of the option;
c(€2) [C(L))] = European [American] call option price conditional upon current information €;
p(Qy) [P(Q,)] = European [American] put option price conditional upon current information Q..

When the cost of carry is constant, the forward and spot prices are related by

Foor = § C D
Without loss of generality, option prices will be specified in terms of the forward price rather than the spot price. Call
optionswill be referred to as out-of-the-money (OTM) if the strike price X exceeds the forward price (X > F), and in-
the-money (ITM) if thereverseistrue. OTM put optionswill be those for which X < F, while ITM puts are those for

which X > F.
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In general, only a subset of the information set £2 will be highlighted: the current underlying forward asset
price F and other state variables, the time to maturity T, and the strike price X. For instance, American call options will
have priceswrittenasC, = C(Q2) = C(F, T; X). Model-specific parameters will be included in the list of arguments

when option pricing formulas depend in interesting fashions upon those parameters.

[.B Symmetric and log-symmetric processes

When interest rates are constant, European call and put prices are given by

c@Q) = e TE [ max(S.; - X 0) | Q]

= e TE IS, - X | §>X Q] Prob[§,>X | Q] @
pPQ) = e TE [ max(X - §,;,0) | Q]
= eME[X- 8§ | S+<XiQ]lProb’[§,:<X | Q], 3

where E* is the expectation under the risk-neutral probability measure. The risk-neutral expected future spot price

under nonstochastic interest rates is the forward price on the asset: E*(S,1 Q) = Fi.r = S€”.

A key insight from (2) and (3) is that calls and puts as functions of the exercise price X are symmetric
contingent claims. Call prices reflect conditions in the upper tail of the risk-neutral distribution, whereas put prices
reflect conditions in the lower tail. If the strike prices of the put and call are spaced symmetrically around the mean
E*(S.11Q) = Fy.r SYmmetries or asymmetriesin the risk-neutral distribution will be directly reflected in the relative
prices of these out-of-the-money (OTM) cals and puts. Since different distributional hypotheses typically imply
different risk-neutral distributions of S, +, options data can be used to distinguish amongst those hypotheses. The mgjor
theoretica contribution of this paper isto prove theoretical propositions that quantify the relationship between OTM
calsand putsfor different distributional hypotheses, thereby providing ametric for easily judging which hypotheses

are consistent with observed option prices.
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Figure 1. Determination of European call and put prices

The simplest relationship between out-of-the-money calls and puts is for those distributions that generate

symmetric risk-neutral distributionsfor S, .

Proposition 1 (symmetric processes): If the terminal risk-neutral distribution of S, is symmetric around its mean
F = S €, and the strike prices of the call and put are spaced symmetrically around F, then European call and put

prices as functions of the spot price, time to maturity, and strike price are related by

c(F, T; F+x) = p(F, T; F-x) for |x| <F. (4

Proof: Obviousfrom Figure 1. |

Proposition 1 says that a call option with strike price 5% above the forward price (x = 0.05F) will be priced

identically to a put with strike price 5% below the forward price, if the distribution is symmetric. One historically
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important example of a symmetric distribution is Bachelier's (1900) Brownian motion process with zero drift and no

absorbing barrier, generalized by Cox and Ross (1976) to processes of the form

dS = uSdt + odz . 5

While admittedly invalid given limited liability,? Bachelier option prices are indistinguishable when bankruptcy is
unlikely from those generated by the Cox and Ross (1976) model with p = 0 and absorbing barrier at S=0.
Consequently, Proposition 1 holds virtually exactly for processes of the form (5) when bankruptcy risk is negligible,

and serves as a useful bound in other cases.

It is important to realize that (4) is unrelated to the European put-call relationship

c(F, ; X) = p(F, ; X) + e"(F -X) , (6)

which is an arbitrage-based relationship between puts and calldenitical strike prices, and holds regardless of
distribution. Proposition 1 is a statement about calls and puts with different strike prices, aodléddsymmetric

terminal risk-neutral distributions. If the distribution is asymmetric, prices of calls and puts symmetrically out of the
money relative to the forward price will diverye. For the major distributions studied hitherto, that divergence takes
systematic forms. The positively skewed log-normal distribution used in the Black-Scholes model has a positive

divergence between out-of-the-money (OTM) calls and puts:

c(F, T; F+x) > p(F, T; F-x) for 0 <x < F. (7)

The degree of divergence can be quantified for geometrically spaced strike prices.

8Smith (1976) and Cox and Ross (1976) discuss this issue.

Using put-call parity, one can interpret Proposition 1 as a statement about the relative prices of out-of-the-money
and in-the-money calls when the distribution is symmetric:

oS, T: F+x) = ¢S, T: Fx) + e (Fx-F) = ¢S, T: F-x) -xe'" .
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Proposition 2 (Black-Scholes): If the underlying asset price follows geometric Brownian motion, then European call

and put prices are related by

c(F, T; Fk) = kp(F, T; F/k) for any k > 0. (8)

Proof: The Black-Scholes formulas are

cB(F, T; X) = e [ FN(d,) - XN(d,)] )
BS . _ -rT _ _ _
p=(F, T; X) = e"" [XN(-d,) - FN(-d,)] (10)
where
d, In(F/X) + Y%02T Cd, - d - o/T |
o/T (11)
and N() is the cumulative normal. Plugging X, = Fkinto (9) and X, = F/kinto (10) yields (8). |

Proposition 2 states that given geometric Brownian motion, if the call and put options have strike prices 5%
out-of-the-money relative to the forward price (and geometrically symmetric), then the call should be priced 5% higher
than the put. If the asset price followed arithmetic Brownian motion, then from Proposition 1 the call and put options

would have about the same price.”

Proposition 2 aso holds for the benchmark stochastic volatility and jump-diffusion models, which can be

written as mean-preserving randomizations of the Black-Scholes formula*

'Assuming bankruptcy risk is not substantial, and using the approximation 1/k = 1/(1+x) ~ 1-x.

"I am indebted to an anonymous referee for this simplification of the original proof.
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Corollary #1 (stochastic volatility) If the risk-neutral representation of the underlying asset priceis of the form

dS/S = bdt + o,dZ
do, = p(o, t)dt + v(o, t)dZ,

Cov(d9S do) = pdt (12
then (8) holdsif pg, = 0.
Proof: Under the independent-volatility assumptions of Hull and White (1987), option prices are

ctW(F, T; Fk) = f“’ cBS(F, T; Fk, V) f(V) dV
0

k f: pES(F, T: Fik V) f(V) dV

k ptW(F, T; FIK) , (13)

where V isthe realized average variance per unit time and f(V) isitsrisk-neutral density. [ |

The corollary does not hold if the correlation p, between volatility shocks and price shocksis non-zero. As
noted by Hull and White (1987), apositive p,, biases OTM call option prices upward and ITM call options downward
rdativeto Black-Scholes prices, whereas p,, < Oinducesthereversebiases. Theimplicationinthisfraneworkisthat c(F, T; Fk)
2 kp(F, T; F/k)depending on whether p,, 2 0. Figure 2 illustrates the impact of varying p_ for the square root

variance process used inter alia by Hull and White (1988) and Heston (1993).
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Figure 2. Relative prices of 4% OTM European call and put options on a stochastic
volatility process, as a function of the correlation Psp between price and volatility shocks.
Risk-neutral process:

dS/S = 0,dz
do? = 6In2(.152 - o7)dt + .150,dZ,

(half-life to volatility shocks of 2 months); o, = .15; Xca“/F =104 = F/ Xput.

Corollary #2 (jump-diffusions) If the risk-neutral representation of the underlying asset price is a jump-diffusion

asin Merton (1976),

ds/sS = (b - A’k)dt + odZ + k'dg® (14)
where
A* istherisk-adjusted jump frequency,
g* isa Poisson counter with intensity A*, and

In(1+k*) ~ N[In(1+K’) - %82 82,

then Proposition 2 holdsif k"= 0and A* is constant.
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c Merton(F’ T, X)
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BS|
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The mean-zero jump assumption implies call option prices of the form

Fenln(l+R*)f)uR*T’ T: X, 0.2 n

2
F,T;x,ozﬂf] W,

N2
T
efA*T ()\,* -I-)n

n! (15)

with asimilar expression for puts. Since (8) constrains Black-Scholes call and put prices conditional on the number

of jumps n, it also holds for the weighted sum across dl n.

Positive (negative) K" raises (lowers) the skewness of the distribution relative to the lognormal, increasing

(decreasing) OTM call option prices relative to OTM put option prices. Figure 3 illustrates the impact of varying K’
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Figure 3. Relative prices of 4% OTM European call and put options on a jump-diffusion
process, as a function of the mean jump size K~ under constant overall volality. Parameter
values (equation (14)): b = O,
0 + A{[In(1+Kk") - %8%]% + 8%} = .15 per year.

A" = 1 jump/year,

0 =.02; overall variance
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upon the deviation of calls from puts when the average variance 62 + A*{ [In(1+k") - ¥26%]% + 82} per unittime

is held constant.'?

Corallary #3 (Ornstein-Uhlenbeck interest rates/dividend yields) If the underlying asset price has a risk-neutral

representation of the form

d¥S = (r -r*)dt + o(H)dz

dr = [at) - BH)ridt + o,(t)dz,

dr™ = [a’(t) - B®rldt + o,)dz, (16)

where r* isthe foreign interest rate (for foreign currency options) or stock dividend yield (for stock options), then
Proposition 2 holds regardless of the correlations between innovations in asset prices, interest rates, and dividend

yields.

Proof: Ornstein-Uhlenbeck interest rate processes with time-dependent parameters imply modified Black-Scholes

foreign currency option prices of the form™

c(F, T; X) = B(r, T)[FN(d,) - XN(d,)] 17

where
B(r, T) isthe price of adiscount bond with time T to maturity;

B*(r*, T) isthe price of aforeign discount bond with time T to maturity;

F = SB*/B isthe forward price on the asset;

dy = [IN(FX) + %V, T/ Vo T;

d2 = d1 - ,/Vang;and

It should be noted that K’ is the mean jump size under the risk-neutral distribution, and will typically differ
from the actual mean jump size K. A calibration of the bias is in Bates (1991).

BExamples of option pricing models directly or closely related to this specification include Merton (1973),
Grabbe (1983), Rabinovitch (1989), Hilliard, Madura and Tucker (1991), and Amin and Jarrow (1991).
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.
Voo T = fo Var (dF/F),
where Var (dF/F )is a deterministic function of time under processes of the form (16). Consequently, Proposition

2 applies directly. |

Corollary #4 (volatility smile) The Black-Scholesimplicit volatility patternsinferred from observed European option
prices will be symmetric in moneyness In(X/F ) for distributional hypotheses satisfying equation (8); e.g., Black-
Scholes, stochastic volatility models with zero correlation between asset and volatility shocks, jump-diffusions with

mean-zero jumps, and Ornstein-Uhlenbeck stochastic interest rates.

Proof: Since Black-Scholes option prices satisfy (8), any other model satisfying (8) must have identical implicit
volatilitiesfor callsand putswith strike pricessuch that In(X_/F) = Ink = —In(Xp/F) for k>0. By put-cal parity,

European calls and puts of identical strike prices and maturities must have identical implicit volatilities. |

The Black-Scholes and Ornstein-Uhlenbeck stochastic interest rate modelsimply identical implicit volatilities
for al strike prices of agiven maturity. The benchmark stochastic volatility and jump-diffusion models are leptokurtic,
and imply U-shaped implicit volatility patterns or “volatility smiles” that are perfectly symmetritniX/F )
Conversely, implicit volatility patterns will be a “tilted” U-shape for non-benchmark stochastic volatility and jump-
diffusion models. Implicit volatilities from ITM calls/OTM puts will be higher than those from correspondingly OTM
calls/ITM puts for stochastic volatility models wigh, < O  and jump-diffusions with  * <0, and lower when the

relevant parameters are positive.

[.C. CEV processes
Both arithmetic and geometric Brownian motions are special cases of the broader ctassaf elasticity of

variance (CEV) diffusions, with risk-neutral representation of the form

dS = bSdt + oSPdz (18)
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where 2(p - 1) is the elasticity of the instantaneous conditional variance of asset returns with respect to the asset
price. Setting p=0 yields arithmetic Brownian motion, while p=1 yields geometric Brownian motion. This
generalization of simpler models by Cox and Ross (1976) and Cox and Rubinstein (1985) was motivated by Black's
(1976) observation that volatility appeared to be inversely related to stock prices -- a phenomenon Black suggested
could be partly but not entirely attributed to financial and/or operating leverage. Financial leverage effects discussed
in Christie (1982) imply p is between O and 1, depending upon the debt/equity ratio. For such intermediate values

of p, there is a relationship between OTM calls and puts intermediate between those of Propositions 1 and 2.

Lemma: A European call with CEV parameter p<1 corresponds to a European put with CEV parameter
p* = 2-p > 1, cost of carry b* = -b, and a modified volatility parameter:

” o (19)
c(F, T; Fk o, p, b) = kp(F, T; F/k, oF2**), p* b"),

where the arguments are the forward price, the time to maturity, the strike price, the volatility parameter, the CEV

parameter, and the cost of carry, respectively.

Proof: See appendix.

Proposition 3 (CEV processes): If the risk-neutral asset price follows the constant elasticity of variance process

(18), then call and put prices are related by

o(F, T; Fk, ok®® p,b) - kp(F, T; F/k o, p, b) for k > 0 and any p, @0)

and satisfy the following inequalities:
c(F, T; F+x,0,p,b) < p(F, T; F-x o, p, b) for 0<x<F only if p<O 1)
@)

c(F, T; F+x, 0,p, b) > p(F, T; F-X%, o, p, b) for 0<x<F, p>0
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o(F, T; Fk, 0, p, b) < kp(F, T: F/k, 6, p, b) for k>1, p<1 23)

oF, T: Fk, 0, p, b) > k p(F, T: FIk, o, p, b) for k>1, p>1, 24)

with inequalities reversed for x <0 and k < 1 (in-the-money opftions).

Proof: Expression (20) is proved in Appendix I for p <1 via manipulation of the CEV option pricing formula. That
it also holds for p>1 follows from the lemma. (23) and (24) follow from (20), since option prices are increasing
functions of the volatility parameter . (22) also follows from (20) for p > 1 (since F/(1+x) > F(1-x) and p(-) is
increasing in the strike price), and has been confirmed numerically for 0<p<1. Computation also indicates that
p <0 is a necessary but not a sufficient condition for OTM calls to be cheaper than OTM puts. An additional
condition that ensures the inequality in (21) is that the probability of hitting the absorbing barrier at S=0 be small."

Figure 4 illustrates the impact on relative option prices of varying p. |

Other more explicit models of financial leverage include Geske's (1979) compound option model and
Rubinstein's (1983) displaced diffusion model. Geske's model recognizes that debt implies that the underlying stock
is itself a call option on the value of a firm. If the firm's value follows geometric Brownian motion, as in Geske
(1979), then equity options are similar to a CEV model with 0<p <1 and satisfy (22) and (23). Rubinstein (1983)
models the firm as a portfolio of geometric Brownian motion investments and riskless assets, where the latter may
be negative. Rubinstein's model is similar to a CEV model with 0<p <1 when the firm is a net debtor, and also
satisfies (22) and (23). When the firm is a net holder of riskless assets, the displaced diffusion option model is

similar to a CEV model with p > 1, and satisfies (24)."

“For p <0 the volatility of asset price increments rises as the asset price falls, which tends to induce negative
skewness. This can, however, be more than offset by the absorbing barrier at S=0, which truncates the lower tail
of the distribution.

The above assertions for the compound and displaced diffusion option pricing models are based upon
computation of the respective option pricing formulas.
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Equations (23) and (24) can of course be translated into the corresponding implicit volatility patterns across
different strike prices. An elasticity parameter p > 1 induces more positive skewness than the lognormal, and implies

higher implicit volatilities for OTM calls/ITM puts with In(X/F) > O than for ITM calls/OTM puts with

IN(X/F) < 0. An elasticity parameter p <1 has the opposite effect.

Equations (21) and (22) have no simple parallels in implicit volatility patterns, and are important diagnostics
of whether leverage models can or cannot explain empirically observed moneyness biases. Thus, Rubinstein’s
(1985) and Sheikh’s (1991) claim that volatility patterns in stock and stock index options are at times consistent with
leverage models is based essentially upon option prices satisfying (23). Whether they also satisfy (22) was not tested.
Daily estimates of implicit CEV parameters by MacBeth and Merville (1980) and Emmanuel and MacBeth (1982)

often lay well outside the [0, 1] range required by standard leverage models.

II. Asymmetry and American Option Pricing
The relationships derived above for European out-of-the-money relative call and put prices will not hold for

American OTM call and put prices in general. The problem is that the "early-exercise premium" markup of
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American over European option prices is affected primarily by the cash flows of the underlying asset, and only
secondarily by the skewness of the risk-neutral distribution. For example, an American option on a non-dividend
paying stock will never be exercised early regardless of what the underlying distribution is, whereas it will be optimal
to exercise an American put early if the asset price falls low enough. Since in this case American call prices equal
European call prices while American put prices exceed European put prices, any distribution-specific relationship
between prices of European calls and puts on non-dividend paying stocks cannot also hold exactly for the
corresponding American prices. The relationships may hold approximately, however, for out-of-the-money

American options with negligible early exercise premiums.

The influence of the cash flows of the underlying asset upon the markup of American over European prices
is captured in the cost of carry parameter b. Significantly positive values of b (e.g., the b = r case of a non-dividend
paying stock) imply ceferis paribus a large markup for puts and small markup for calls, while significant negative
values imply the reverse. An illustration of this is in Shastri and Tandon (1986), who examine the difference
between American and European call and put prices under geometric Brownian motion for foreign currency options,

for which the cost of carry b = r - r* can be positive or negative.

In the case of options on futures, the fact that the cost of carry equals zero creates a knife-edge case in which
the markup for American over European call options parallels the markup for corresponding put prices. With zero
cost of carry, the risk-neutral process used in pricing options becomes a martingale, and the early-exercise decision
for calls and for puts is as symmetric or log-symmetric as the terminal (European) valuation problem. Consequently,
Propositions 1-3 for European options with arbitrary cost of carry will also hold for American options on futures.
Furthermore, relationships between the optimal early-exercise policies of American calls and puts can be derived

under the various distributional hypotheses.
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Proposition 4: For American options on futures when interest rates are nonstochastic:

1) If the risk-neutral futures price follows arithmetic Brownian motion with no absorbing barrier then

C(F, T; F+x) = P(F, T; F-x) for |x|<F and any T, (25)

and the critical, maturity-dependent futures price/exercise price differentials above (below) which the call

(pur) will be exercised immediately are symmetric:

N . (26)
(F_X)C = _(F_x)p'
2) If the risk-neutral distribution of the futures price can be represented by
a) geometric Brownian motion,
b) a stochastic volatility process with independent evolution of volatility, or
¢) a "log-symmetric" jump-diffusion with K" =0,
then
c(F, T; Fk) = kp(F, T; F/k) fork>0andany T, (27)

and the critical, maturity- and state-dependent futures price/exercise price ratios above (below) which the
call (put) will be exercised immediately are geometrically symmetric:

* . (28)
(FIX), = L(FIX), .

Furthermore, implicit volatility patterns inferred using an American futures option pricing variant of Black-
Scholes will be perfectly symmetric functions of moneyness In(X/F).

3) If the risk-neutral futures price follows a CEV process, then

29
C(F, T: Fk, ok p. b) - kP(F, T: F/k o, p, b) for k>0and0<p<2 &)
and the following inequalities are satisfied:
: : : (30)
C(F, T; F+x,0,p,b) < P(F, T, F-% o, p, b) for O<x<F only if p<O
(31)

C(F, T; F+x, 0,p,b) > P(F, T, F-x, 0, p, b) for 0<x<F, 0<p<2
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C(F, T: Fk, 0, p, b) < k P(F, T: FIk, 0, p, b) for k>1, 0<p<1 (32)

o(F, T: Fk, 0, p, b) > kp(F, T: F/k, o, p, b) for k>1, 1<p<2, (33)

with inequalities reversed for x <0 and k < 1 (in-the-money options).

Proof: The key insight underlying the proofs for arithmetic and geometric Brownian motion, stochastic volatility,
and jump-diffusions is that the American put valuation problem for these distributions is the same under a
distribution-specific transformation of variables as the American call valuation problem; see the appendix for details.
That the results for European CEV options also apply to American options on futures has been confirmed
numerically over the parameter range O<p <2 and in regions of p <0 where bankruptcy risk is negligible.'® The
appendix also shows that the CEV lemma (19) also holds for American options on futures:
. 34
C(F, T; Fk o, p, b) = kP(F, T; F/k, oF& ), p*, b"),

where p* =2-p > 1l and b* = -b = 0. |

One corollary of Proposition 4 is that for these distributions, at-the-money American calls and puts on futures
should be priced identically. This is an interesting theoretical result given that there are no arbitrage-based
restrictions equating prices of at-the-money American calls and puts similar to those for European options -- only
rather weak inequality constraints discussed in Stoll and Whaley (1986) limiting how far they can deviate. The

results do depend upon the assumption of nonstochastic interest rates, however. It does not appear that the results

'®American CEV option prices were calculated using a variant of the Cox-Rubinstein (1985) binomial option
pricing methodology. Option prices were expressed in terms of the transformed state variable

Z = (F-1/(1-p),

which follows a process with state-dependent drift but with constant conditional volatility, thereby permitting
recursive option evaluation using a grid of evenly spaced Z-values. Option prices could be calculated only for p
between 0 and 2. Boundary conditions precluded option evaluation outside this range, except when a low probability
of hitting the boundary permitted truncation of the Z domain away from the boundary. Hull and White (1990) and
Nelson and Ramaswamy (1990) discuss this transformation.
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for European option prices under Ornstein-Uhlenbeck interest rate processes can be generalized to American futures

options, except under excessively stringent conditions.

The above propositions can be used to construct a measure of asymmetry which, by analogy with the term

premium, I call the "skewness premium."

Definition: The x% skewness premium is defined as the percentage deviation of x% out-of-the-money calls from

x% out-of-the-money puts:

SK(x) c(F,T; X))/ p(F, T; X,) - 1  for European options in general

SKx) = CF, T;X)/ P(F, T; X,) -1 for American futures options.
where F is the forward price on the underlying asset. when options are European, or the underlying futures price
for American futures options.!” Two variants of the skewness premium are defined, depending on whether the strikes

are symmetrically or geometrically symmetrically spaced around the forward price:

SK1(x): X,=F(1-x) < F < X, =F(l+x), x>0,

SK2(x): X, = FA1+x) < F < X, = F(1+x), x>0.

The skewness premiums are functions most importantly of the moneyness parameter x. From Propositions
1-4, the skewness premiums have the following properties for x > 0 regardless of the maturity of the options:

1) SK1(x) < 0 for CEV processes only if p < 0;

2) SK1(x) = O for arithmetic Brownian motion processes with no absorbing barrier;

3) 0 < SK1(x) for CEV processes with O < p ;

'7Although there are relatively few markets in which European options are traded, there are circumstances in
which European option pricing formulas are useful. For example, American call options on non-dividend paying
stocks are priced identically to European calls. For such options, one could measure the skewness of the underlying
distribution by comparing OTM call prices with the OTM European put prices imputed via put-call parity from the
in-the-money call prices.
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4) SK2(x) < x for CEV processes with p < 1;
5) SK2(x) = x for
a) geometric Brownian motion processes,
b) stochastic volatility processes with independent evolution of volatility (p,,=0)
¢) jump-diffusions with a "log-symmetric" risk-neutral representation (K™ =0)
6) SK2(x) > x for CEV process with p > 1.
For the non-benchmark jump-diffusion processes, numerical methods'® indicate the following:
7) SK2(x) Z x for jump-diffusions with log-normal jumps depending on whether k' 2 0.
Based upon results for European options, it is conjectured that a similar result holds for American futures options
on stochastic volatility processes when volatility does not evolve independently of the asset price:

8) SK2(x) 2 x for stochastic volatility processes depending on whether p,, 2 0.

Results 1 through 8 are summarized in Figure 5.

SK2 is strictly less than SK1 for nonzero x given the higher put strike price X = F/I(1+X) =
F(1 - x)/(1-x?); see Figure 4. However, the two skewness premium measures will be approximately equal for
small x, implying results 1-8 will apply approximately to both measures. Consequently, for European options with
arbitrary cost of carry and for American options on futures, calls x% out-of-the-money should be priced roughly
between 0% and x % higher than puts x% out-of-the-money for the standard distributional hypotheses (categories 2
to 5) regardless of the maturity of the options. For in-the-money options (x <0), the propositions are reversed. Calls

x% in-the-money should cost 0% - x% less than puts x% in-the-money under standard distributional hypotheses.

"®Methods for pricing American options on jump-diffusion processes are discussed in Bates (1988, 1991).
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Figure 5. Skewness Premiums for Alternate Distributions and Parameter Values.

III. Options on S&P 500 futures, 1983-1993

To illustrate observed skewness premiums and the magnitude of post-1987 moneyness biases, transactions
data for call and put options on S&P 500 futures and for the underlying futures contracts were obtained from the
Chicago Mercantile Exchange from the options' inception on January 28, 1983 through December 31, 1993. A

subset of the data was used, based on the criteria of Bates (1991,1996)."

Since options exist only for specific exercise prices, the skewness premium measure of skewness cannot be
implemented directly. For each OTM call with exercise price x% above the futures price, there will not necessarily
exist a corresponding OTM put with exercise price exactly x% below the futures price. Alternatively, there may
be many puts roughly x% out-of-the-money. However, theoretical distributions and no-arbitrage conditions imply
that options prices are continuous, monotone, and convex functions of the exercise price. Options prices for desired
exercise prices were therefore interpolated from a constrained cubic spline fitted through the ratio of options prices

to futures prices, as a function of the exercise price/futures price ratio X/F. Kuhn-Tucker constraints on the cubic

Only those maturities meeting the following criteria were selected:
1) March, June, September, and December delivery dates;
3) 1-4 month (28-118 day) maturities;
4) At least 4 call strikes and 4 put strikes traded per maturity;
5) At least 20 call transactions and 20 put transactions per maturity.
Only actual transactions (no bids or asks) with relatively recent underlying futures transactions were used.
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spline coefficients ensured that each spline was convex, was monotone with slope (in absolute value) between 0 and

1, and exceeded the immediate-exercise values.?

Skewness premiums from January 31, 1983 to December 31, 1993 were generated as the percentage
difference between interpolated call and put prices using options 2% in-the-money, at-the-money and 2%, 4% and

6% out-of-the-money:
Kx) = [Cx) - P/ PX)

with estimated standard error o5 = (C/P)[(6,/C )2+ (6,/P )2]* computed from the spline estimations under
the assumption that the interpolation error for calls is uncorrelated with the error for puts. Deep in-the-money
skewness premiums are not reported. The major trading was in out-of-the-money options, and deep ITM calls and

puts were rarely trading concurrently.?!

For testing the skewness premium relative to benchmark hypotheses, two test statistics were constructed:

1.7, = Q) - P for X,,/F = 14x, X, /F = 1-x (test of symmetry)
2. T, = Q) - (1+x) PR for X /F = 14+x = 1/(X,,, /) (test of x% rule).

. . ~2 ~2 ~2 ~2 .
with associated standard errors [Ga(X) + 6p(X)]™ and [65(X) + (1+X)?Gp(X)] *respectively. The former
tests for positive or negative skewness; the latter tests for more or less skewness than those distributions (such as

the lognormal) satisfying the x% rule.

“Details of the estimation of constrained cubic splines and interpolation error are available from the author on
request.

?'There were only 576 days out of 2258 in which 4% ITM calls and puts were traded simultaneously.
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Figure 6. Percentage Deviation of ATM Call from ATM Put Prices, 1983-93.

The resulting skewness premiums and associated standard errors for options at-the-money and 4 %
out-of-the-money are shown in Figures 6 and 7, while Table I summarizes the overall results. As noted above, a
corollary of Proposition 4 is that at-the money American futures options should be priced identically for all
distributions considered, yielding a skewness premium of 0%. Figure 6 and Table I confirm that deviations from
this theoretical value are small, and are well within the rather large no-arbitrage bounds of Stoll and Whaley (1986).%
However, the deviations from 0% are statistically significant at the 2% level for 15% of the 2,198 days for which

the 0% skewness premium could be measured.

2For at-the-money options, Stoll and Whaley's bound can be written as |[C - P| < F(L-e "), or
K| = |CIF-PIF| | (PIF) < (1-e"M)/(PIF).

Using the American ~ European option price approximation (P~p), the at-the-money Black option approximation
p/F = e "T0y/T/27, and the approximation €T - 1 = rT yields an approximate bound of (r/0)y/2n T, where
o is the implicit volatility for an at-the-money option. For r = 5% and o = 10%, the arbitrage-based bounds on
the at-the-money skewness premium for one-month options are roughly +24%.
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Figure 7. Percentage Deviation of 4% OTM Call from 4% OTM Put Prices, 1983-93.

The 4% skewness premiums shown in Figure 7 indicates that the 1983-1993 period can be essentially divided
into four separate regimes. Over 1983-1984 and after the crash of 1987, OTM puts have been substantially more
expensive than OTM calls, leading to substantially negative skewness premiums. Over 1985, by contrast, skewness
premiums were predominantly positive, while the behavior over 1986-1987 was more mixed and has been discussed
in Bates (1991). Interestingly, the post-crash moneyness biases were initially on the same order of magnitude as the
those observed in the first two years the options were traded. The 1991-1993 decline in implicit volatilities shown

in Figure 8 was accompanied by increasingly negative skewness premiums.

The behavior of skewness premiums for 2% and 6% OTM options was essentially identical and are
consequently not shown. As a rule of thumb, the 2% (6%) OTM premiums are typically about %2 (1%2) times the
4% OTM premiums. As one would expect, ITM premiums behave in reverse fashion to the OTM premiums. It

should be clear from Figure 7 and Table I that observed skewness premiums for S&P 500 futures options typically
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Figure 8. Implicit volatilities for ATM options, and the difference in implicit volatilities
between 4% OTM and ATM options. Volatilities were inferred from interpolated option
prices of 1-4 month maturities using Barone-Adesi and Whaley’s (1987) American option
pricing formula. ATM implicit volatilities are the average from ATM calls and puts.

fall well outside the narrow [0%, x%] range implied by benchmark distributional hypotheses -- and that these

deviations are too large to be attributed to interpolation error.

IV. Conclusions and Extensions

This paper has presented a "skewness premium" metric for readily identifying moneyness biases in options
prices, and for judging which distributional hypotheses are and are not consistent with those biases. It was shown
that the major distributional hypotheses considered hitherto -- geometric Brownian motion, standard CEV processes
and other leverage models, standard symmetric stochastic volatility and jump-diffusion processes -- imply that call
options x% out-of-the-money should be priced only 0% - x% more than put options x% out-of-the-money. An
application to American options on S&P 500 futures revealed the biases to be substantially, significantly, and

persistently outside (and typically below) this [0%, x%] range, especially during the early trading years (1983-1984)
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and in the post-crash period (1988-1993). Negatively skewed distributions that are potentially consistent with the
magnitude of the post-crash biases include stochastic volatility processes with a large negative correlation between
volatility and market shocks, and jump-diffusion processes with negative-mean jumps. The skewness premium
cannot identify which process and which parameter values would best fit observed option prices, but does provide

an easily implementable preliminary diagnostic for narrowing the field.

The focus in this paper has been on using American and European option prices to infer the correct
distribution. The key observation that the put valuation problem is a distribution-specific transformation of the call
valuation problem is, however, more general than these particular contracts. This transformation of variables
property is intrinsic to the partial differential equations used in pricing all derivatives, including exotics. Any other
pairs of derivative contracts possessing a comparable call/put-type isomorphic mapping between boundary conditions
will satisfy the same distribution-specific pricing relationships derived above for calls and puts. Knowing these

relationships can be useful in pricing exotic options.

An obvious example is Bermudan call and put options on futures that can be exercised only on specific dates,
and which satisfy the same pricing relationships as their European and American counterparts. A less obvious pair
is cash-or-nothing binary put options that pay off X if and only if the asset price finishes below X, and asset-or-
nothing binary calls that deliver the underlying asset if and only if the asset price finishes above X. An x% rule
pricing relationship holds between the two under benchmark distributional hypotheses, yielding an asset-or-nothing

binary call option pricing formula®

c"N(F, T, X) = e"TF Prob" (S; < F2X) (33)

Bt is straightforward to show that the terminal boundary conditions for the above asset-or-nothing calls and cash-
or-nothing puts satisfy the the same mapping ¢*°N(y, 0; 1) = yp “N(y %, 0; 1) as standard European calls and
puts. Consequently, C"N(F, T; Fk) = kp“™(F, T; F/k) = ke "T(F/K) Prob [S; < F/K] under “log-
symmetric” distri-butions, where Prob “(+)is the risk-neutral distribution function. Using k = X/F yields (35).
The standard geometric Brownian motion formula ¢*N = e "TF N(d,) for d; = [In(F/X) + %0°T] / o/T
is a special case.
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that is valid under the “log-symmetric” distributions: geometric Brownian motion, stochastic volatility processes
with uncorrelated asset and volatility shocks, and jump-diffusions with mean-zero jumps. A third example is Carr,
Ellis and Gupta’s (1996) ingenious use of Proposition 2 to show that down-and-in barrier calls on futures triggered
by hitting barrier H < X are priced proportionately to ordinary European puts on futures under geometric Brownian
motion:**

COHI(F, T; X, H) - %p(F, T: H2/X). (36)
The relationship also holds for Hull and White (1987)-type stochastic volatility processes, but not apparently for

jump-diffusions.

*Under geometric Brownian motion and using Proposition 2, a down-and-in call on futures with strike X > H
isworth c(F, = H, T-t; X) = X/Hp[H, T-t; H/(X/H)] if the futures price hits the triggering barrier at
H at time 7. Buying X/H puts with strike price H?% X and switching to calls upon hitting the barrier is therefore a
self-financing replicating strategy. The puts expire out-of-the-money if the barrier is never hit, as does the down-
and-in call.
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Appendix: Properties of Homogeneous Option Prices

Option prices under geometric Brownian motion, standard stochastic volatility specifications, and Merton

(1976)-style jump diffusions are homogeneous of degree 1 in the futures price F and the strike price X:

O(F, T; X) = xo(f, T: 1)
X (A.1)

= XO(y, T; 1)

where y is the standardized state variable F/X and O(y, T; 1) = O(F, T; X) / X is the standardized option price.
1

Similarly, CEV option prices are homogeneous of degree one in F, X, and 0 1 for p=l:

O(F, T; X,0,p,b) = XO

f (0 A
) I ; 1a ) ) b 2
X X1 P ] (A-2)

= XO(y, T; 1, o', p, b)

where 0’ = o/X1P,

Standardized European call and put prices satisfy the terminal boundary conditions

c(y, 0;1) = max(y - 1, 0) (A.3)

p(y, 0;1) = max(1 -y, 0),

A4

since the futures price equals the spot price at maturity. Standardized American call and put prices on futures must
also satisfy the early-exercise boundary conditions

Cy,(T), T;1) = y(M -1 >0 (A.5)

C (M, T D) = 1

P(y,(T), T; 1) = 1 - y,(T) > 0 (A.6)

P,(M T 1) = -1
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where yc* (y; ) is the critical maturity-dependent early-exercise ratio /X above (below) which the call (put) is
exercised immediately. For stochastic volatility models, there are also smooth-pasting conditions relative to the

additional state variable, and the critical early-exercise ratios depend also upon the level of volatility.

I. Properties of CEV option prices
1. p<1 versus p>1 (expressions (19) and (34)):
Define the CEV differential operator

(A.7)

Do’,p,b = _i " i[o./ebT(lfp)]ZyZp 82
oT 2 ayZ

Standardized CEV option prices satisfy the partial differential equation D°"*P°QO(y, T; 1, o', p, b) = rO.

Define h(y, T; 1, o/, p*, b*) = yc(y', T; 1, o/, p, b) where p* = 2-p and b* = -b. Since h, = yc, and
h,, = y’c,, substitution confirms that D% P " h = rh given D" *Pc(y, T; 1) = rc. Furthermore, h satisfies

(A.4) given c(y, T; 1) satisfies (A.3). Therefore, & is the standardized put price for parameters p* and b*:

Py, T Lo, p b)) = h(y, TiL o, p b)) - yayiTiL o, pb) &P
Exploiting the homogeneity of p and ¢, (A.8) can be rewritten as
YPL T3y % o'y Y4, p bY) < oL Ty, o'yhY, p, b) @
or
yp(L T,y %o p,bY) = (1, Ty o p b (19
where 0”7 = 0y'* = oy"*". Multiplying both sides by F yields
(A.11)

y p(F, T; Fly, 6"F¥? p", b*) = ¢(F, T; Fy, 6"F%? p, b)

and redefining o = 6”F'* yields (19). |
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A similar relationship and proof applies to American CEV options on futures (b = b* = 0). It is
straightforward to confirm that H(y, T; I, o/, p*, 0) =y C(y"’, T; 1, 0", p, 0) and Yk = 1/y¥ satisty conditions (A.4)
and (A.6) for standardized American put options on futures if C(y, T; 1) and y* satisfy conditions (A.3) and (A.5)

for standardized American calls on futures. [ |

2. Relationships between OTM calls/ITM puts

Proposition:
(A.12)

oy, T; 1, 0,p,b) = p(1, T;y, 0,p, b) for p<il.
Proof: Cox and Rubinstein's (1985) European CEV call option pricing formula for p<1 is
T . . (A.13)
oF, T; X) = e [anz1 gin, F)G(n+A, x) - XY o,y gn+A, )G, x)
where A = 1/[2(1-p)], 6 = 2Ab/[0*(e"™*-1)], f = OF"*, x = 6X"*, b is the cost of carry, and I'(), g(*), and G() are
the gamma function, gamma density function, and complementary gamma distribution function, respectively:

gn, 2) = e;(znr)‘l, G(n, 2) f “g(n, x)dx. @14

Using put-call parity,

Y, ;1) - p(L Tiy) = ey, T D) -c(L T;y) -eT(y-1)
~ = (A.15)
- eirT[yanl g(n, By G(n+A, 6) - Zn:l gin+A, 0y¥*)G(n, 0)

-0 8)G(n+A, ByY ) - yY ., gn+A, 8)G(n, BY") - (y-1)

Grouping terms pre-multiplied by y, and using the equalities G(n, x) = J* ; g(j, x) and

J

Gn-1+4, x) + };_, 8(j+4, x) = 1 yields after some manipulation the equalities
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oy, ;1) -p(LT;y) = e ™Yo, [yan 6yYgn+a, 6) - g(n, 6)g(n+A, Oy¥*)]

o L A2y (DA [y (VA
e Te o Y y® UMy - ]
I'(n) '(n+A)

= 0. [

Corollary #1 (Proposition 3 for p < 1):

c(F, T; Fk, ok'® p, b) = kp(F, T; F/k, o, p, b) for p<1 and any k>0.

Proof: From (A.12),
Fkck? T;1, oFPL p,b) = Fkp(L T; k% oFP?tp, b

which by homogeneity is equivalent to (A.17).

Corollary #2 (Proposition 3 for p>1):

c(F, T; Fk, ok!® p, b) = kp(F, T; F/k, o, p, b) for p>1 and any k>0.

Proof: For p > 1, define p* = 2-p < 1 and b* = -b. Then,

(A.16)

(A.17)

(A.18)

(A.19)

c(F, T; Fk, k' fa, p, b)= kp(F, T; F/k, (k! P6)F2X ) o* b*) from (19)

= o(F, T; Fk, k} P [k} PgF21 )], p", b*) from (20)

= o(F, T; Fk, oF237°) p* b")

= kp(F, T; F/k, [oF2LPI]F21P) o b) from (19)

= kp(F, T; FIk, o, p, b).

II. American option prices under geometric Brownian motion
Define the differential operator for standardized options under geometric Brownian motion,

2
~9 1/zozyza— :
aT ayz

(A.20)
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Define H(y, T; I) = y C(y’, T; 1) Since H; = yC,, and H,, = y”’C,,, direct substitution confirms that Dh = rh

given DC(y, T; 1) = rC. Furthermore, H and y;=1/y* satisfy (A.4)and (A.6) given C(y, T; 1) and y*
satisfy (A.3) and (A.5). Therefore, H is the standardized put price:

A.21
Py, ;) = Hy T;1) = yCy' T, ). 20

Multiplying both sides by Fy' and exploiting homogeneity yields Proposition 4.2a. |

III. Stochastic volatility with independent evolution of volatility

Same proof as above using the stochastic volatility differential generator

* 2 2 (A.22)
D - _Jd . E'(do) o . 1/202y23_ . 1/2Var(d0)a_

oT dt  do % dt  do2’

and the transformation of variables H(y, o, T) =y C(y’, o, T; 1) and yf(o,T) = 1/y)o, T). An additional "smooth-

pasting" condition Hc(y;(o, T), 0, T) = O is met by H and y}(o, T) given C (Y, (0, T), o, T) = 0.

IV. Jump-diffusions with mean-zero jumps

In the jump-diffusion models given above, C(y, T; 1) solves the general jump-diffusion equation

A.23
-Vp o+ Y%o?y?V, o+ ME'[W(ye', T;1)-V] = rV 4.23)
for V = C subject to call-specific boundary conditions (A.3) and (A.5). J is a random normal variable distributed
N(y*-126%, &%) under the risk-neutral distribution. Mean-zero jumps implies y* = 0.

Define H(y, T) =y C(y"', T; 1). H; = yC,and H,, = y°C,

yy SO
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-H; + %0%y?H  + AE'[H(ye’, T; 1) - H]
= -yC; + %o’y 'C, + A'E'[ye’C(y e, T; 1) - yC] (A.24)

- y{-C; + %o’y 2C, + VE'[C(y e, T; 1) - C]}

yrC(y4 T;1) = rH,

where the second equality follows from the property E [e’g(-J)] = E“g(J) for J ~ N(-%282, &%) and
arbitrary g(*). Since H(y, T) solves (A.23), and H and y;* = 1/y* solve put-specific boundary conditions given C(T)

and y* satisfy the call-specific boundary conditions, P(y, T; I) = H(y, T). Prop. 4.2c then follows. |

V. American option prices under Brownian motion with no absorbing barrier (Proposition 4.1)
It is straightforward to verify that under simple Brownian motion with no absorbing barrier at F=0, prices

of American options on futures depend on the difference between the futures price and the exercise price:

OF, T: X) = O(F-X T;0), (429
where x = F - X and O equals C or P. The relevant partial differential equation is
-0, + %020, = rO (4.26)
which for calls (O = C) is solved subject to the terminal condition
(A.27)

C(x, 0; 0) = max, 0)

and early-exercise smooth-pasting conditions
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Cx T 0) - x>0 (A.28)

C(x., T, 0)

(2]

Il
[EY

where XC* is the critical futures price/strike price differential above which the call is always exercised early.

Define H(x, T) = C(-x, T; 0), which satisfies (A.26). H(x, T) and x = -x* satisfy the terminal and early-

exercise boundary conditions for American puts, so P(x, T; 0) = H(x, 7). Proposition 4.1 then follows. [ |
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Table I

Skewness premium SK = (C-P)/P for options symmetrically and geometrically symmetrically in-, at-, and out-
of-the-money -- summary statistics and hypothesis tests. Skewness premiums interpolated using symmetric strike
prices are used in testing for positive/negative implicit skewness. Skewness premiums interpolated using
geometrically symmetric strike prices are used in testing for greater/less implicit skewness than those distributions
(such as the lognormal) that satisfy the x% rule. Period: January 31, 1983 - December 31, 1993 (2,258 days).

Symmetric strikes: 2% 2% 4% 6%
Xu/F=1+x, IT™M ATM OT™M OT™M OT™M
Xu/F=1-x options® | options options options | options
Number of observations 1,503 2,198 2,256 2,208 1,822
Mean 2.9% -0.6% -7.4% -16.4% -25.2%
Standard deviation 4.5% 1.6% 10.0% 22.5% 34.3%
Distribution of (C-P)/P
Less than 0 35% 70% 68 % 68 % 70%
Greater than 0 65 % 30% 32% 32% 30%
Frequency of rejection at 1% significance
of H: C=P
versus H: C < P 17% 12% 61% 63% 63%
versus H: C > P 49% 3% 22% 25% 22%
Geometrically symmetric strikes 2% 2% 4% 6%
Xeu/F =1+ x = FIX,,) IT™M ATM OT™M OT™M OT™M
options® | options options options | options
Number of observations 1,495 2,198 2,256 2,211 1,834
Mean 2.3% -0.6% -7.5% -18.8% | -30.7%
Standard deviation 4.5% 1.5% 9.1% 20.9% 30.7%
Distribution of (C-P)/P
less than x% 19%* 70% 83% 85% 87 %
greater than x% 81%* 30% 17% 15% 13%

Frequency of rejection at 1% significance
of Hy: (C-P)/P = x%
versus H,: (C-P)/P < x% 6%* 12% 71% 75% 76%
versus H;: (C-P)/P > x% 59%* 3% 6% 7% 6%

*For in-the-money options, x = -2%.



