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Abstract

This paper derives the appropriate characterization of asset market equilibrium when
asset prices follow jump-diffusion processes, and develops the general methodology for
pricing options on such assets.  Specific restrictions on distributions and preferences are
imposed, yielding a tractable option pricing model that is valid even when jump risk is
systematic and non-diversifiable.  The dynamic hedging strategies justifying the option
pricing model are described.  Comparisons are made throughout the paper to the
analogous problem of pricing options under stochastic volatility.
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     It is a truism that asset pricing models in general require restrictions on preferences and on technologies

or distributions in order to derive characterizations of equilibrium.  The option pricing methodology

developed by Black and Scholes (1973) is unique in that distributional assumptions alone suffice to

generate well-specified option pricing formulas involving mostly observable variables and parameters.

The key distributional assumption is that the price of the asset on which the option is written follows a

diffusion, the instantaneous variance of which depends at most upon the asset price and time.  An

additional distributional assumption of perhaps secondary importance for the short option maturities

typically considered is that the instantaneous risk-free rate is nonstochastic and constant.  Under these plus

other "frictionless market" assumptions, the option’s payoff can be replicated by a continuously-adjusted

hedge portfolio composed of the underlying asset and short-term bonds.  Preclusion of riskless arbitrage

opportunities then yields a fairly simple partial differential equation, which when solved gives an option

price that does not depend upon attitudes towards risk.

     The simple preference-free option pricing formula generated by the Black-Scholes methodology

depends critically upon the distributional restriction on the volatility of the underlying asset.  The result

of that restriction is that the systematic risk of the the option is a function of the systematic risk of the

underlying asset only; and the implicit price of that risk embodied in the market price and expected excess

return of the underlying asset obviates the need to price that risk by imposing other restrictions.

     The plausibility of that distributional restriction has been challenged, in two directions.  First, the

covariance nonstationarity of stock and foreign currency returns is too pronounced to be explained by the

limited covariance nonstationarity of constant elasticity of variance models.  The variance itself would

appear to be a relevant additional state variable and source of risk affecting option prices.  Second, the
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recent stock market crash is evidence that diffusions can be an inadequate characterization of asset price

movements; processes allowing for jumps would appear to be more appropriate.

     Unfortunately, stochastic volatility and jump risk option pricing models introduce forms of risk

embodied in option prices that are not directly priced by any instrument currently traded in financial

markets.  The result is that the Black-Scholes arbitrage-based methodology cannot be used; one must again

impose preference- and technology-based restrictions in order to price those forms of risk, and

consequently to price options.  This paper uses a Cox, Ingersoll, and Ross (1985a) general equilibrium

framework, generalized to jump-diffusion processes, to examine how options will be priced under jump

risk.  Comparisons are made throughout the paper to the analogous problem of pricing options under

stochastic volatility.

     The paper is structured as follows.  Section 1 sets up the framework and derives characterizations of

general asset market equilibrium under jump-diffusion processes.  Section 2 derives the resulting

restrictions on options, and specifies an associated system of "risk-neutral" jump-diffusions that can be

used to evaluate option prices given any option-specific boundary conditions.  Section 3 examines what

restrictions on preferences and distributions are useful in simplifying the calculation of option prices.  By

assuming time-separable power or log utility functions for the representative consumer/investor, and by

imposing distributional restrictions on the stochastic evolution of wealth and of the underlying asset price,

a Merton (1976)-type option pricing formula is derived for jump-diffusion with random jump amplitudes

that is valid even when jump risk is systematic and nondiversifiable.  Section 4 discusses arbitrage-based

justifications of option pricing models for stochastic volatility and jump risk.  The section cautions that

while one can construct an arbitrage strategy justifying given option pricing formulas (by adding other



E0 m
4

0
e &D t U(Ct , Yt )dt

dPi / Pi ' ["i & 8EY(ki ) ]dt % gi (Y )dZ % ki (Y ) dq

Y0 K × 1

U(C, C) Uc(0, C) ' 4

"i (Y )

Zt (N% K ) × 1

gi (Y ) 1 × (N% K )

qt 8 Prob(dq ' 1) ' 8dt

-3-

For a closely related discussion of discount bond pricing under jump-diffusion processes, see Ahn1

and Thompson (1987).

(1)

(2)

options to the replicating portfolio for each additional source of risk), one cannot derive option pricing

models from such arbitrage strategies without implicit restrictions on preferences and on technologies.

1.  The Economy

     The economy is assumed identical to the one described by Cox, Ingersoll, and Ross (1985a), except that

the production processes are augmented by a jump process.   There are a large number of infinitely-lived1

consumers, with identical preferences, endowments, and information sets.  Each consumer seeks to

maximize a lifetime expected utility function of the form

subject to initial wealth W  and initial underlying state of the economy , where Y is a  vector.0

 is assumed strictly concave in the consumption flow C, with .

     There are N investment opportunities available to every investor.  The return on each investment

follows a state-dependent jump-diffusion with random jumps:

where

            is the state-dependent instantaneous expected return on the process,

 is an  vector of independent standard Wiener processes,

is a  state-dependent vector reflecting the sensitivity of returns to the various
shocks,

 is a Poisson counter with intensity  (i.e., ), and 
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Independent or semi-independent Poisson shocks (e.g., Merton's (1976) firm-specific jump risk2

model) could be represented by adding additional independent Poisson counters , and zeroing
out specific jump amplitudes.  This would complicate but not alter fundamentally the analysis below.

(3)

(4)

 is the random percentage jump amplitude conditional on the Poisson-distributed event
occurring.

The state-dependent distribution of  is bounded below by -1 because of limited liability, and has mean 

conditional on state Y.  Further restrictions on the distribution will be imposed below as needed.

     The instantaneous return  can be viewed either as the percentage change in an asset price

(Merton (1971)), or as the return from putting a unit of a consumption/investment good into a stochastic

constant returns to scale production process (Cox et al. (1985a)).  Expression (2) gives the stochastic

evolution of the asset price (or of a continuously-reinvested unit of the good) as continuous for the most

part but subject to discrete, random jumps at random times.  The other investment opportunities are

analogous, and can be compactly summarized as

where  is an  diagonal matrix with ith diagonal element ; k and  are vectors; and

G is an  matrix with , the covariance matrix per unit time conditional on no jumps,

assumed to be positive definite.  The underlying variables Y are assumed to evolve similarly:

where  is the state-dependent drift in Y,   is a  matrix giving the state-dependent

sensitivities of the underlying state variables to the various shocks, and  is a vector of random

increments to the state variables conditional on the Poisson-distributed event occurring.  The Poisson shock

is assumed to affect all investment opportunities and underlying state variables simultaneously, and is

therefore systematic, and nondiversifiable risk.2
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(5)

(6)

(7)

(8)

(9)

     In addition to the investment opportunities given by (3), consumers are assumed to have free access to

a market for interpersonal, riskless instantaneous borrowing and lending, and free access to markets for

contingent claims.  The return on the former is given by the endogenously determined spot interest rate r ;t

the return on a non-dividend paying contingent claim can be written as

The state-dependent  matrix h and random percentage jump  will be determined below using

the jump-diffusion version of Ito's lemma.  The required expected return  will be determined endoge-

nously.  Without loss of generality, it is assumed at present that there is only one contingent claim.

     At each instant, each consumer chooses a consumption flow and an investment strategy to maximize

expected utility over the consumer's remaining lifetime given state of the economy .

Defining  as the vector of shares of wealth invested in the N production activities at time , 

as the share of wealth invested in contingent claims, and  as the share of wealth invested in

risk-free lending, the consumer's problem can be stated as

and given initial state , where
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See Cox et al (1985a) and the references therein for a more formal treatment.3

For further discussion of this term, see Merton (1971).4

(10)

(11)

(12)

(13)

     Under some regularity conditions that are beyond the scope of this paper,  the consumer's optimal3

consumption and investment strategies are given implicitly by the feedback strategy

  

and the indirect utility function

that satisfy the Bellman equation

, the differential generator for jump-diffusions associated with control v, is given by

where  and , given by (7) - (9), are functions of the control v.  The differential generator is

identical to the one given by Cox et al for diffusions, except for the addition of the final, jump-related term

in brackets.4

     Under the assumption that negative investments in the production processes are not possible, necessary

first-order conditions for the consumption and investment strategies that maximize 

 are
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(14)

(15)

(16)

(17)

where   is the marginal indirect utility of wealth conditional on the

Poisson-distributed event occurring.  As a function of the random variables , and ,  is itself

random.

     Since all consumers are identical, the equilibrium in the economy must be characterized by no trades

between consumers.  Therefore, expected returns on lending and on contingent claims must be such that

where a* and b* are the optimal shares of wealth invested in production processes and in contingent

claims, respectively.  These conditions, along with (13), given the fundamental characterization of

equilibrium when jumps are present.

Theorem 1:  The equilibrium expected return on any investment satisfies

where the equilibrium spot interest rate r satisfies

and
 is the coefficient of relative risk aversion,

  is the random percentage change in the asset price conditional on a jump,

 is the random percentage
change in marginal utility of optimally invested wealth conditional on a jump taking
place , and
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(18)

is the covariance per unit time with optimally invested wealth conditional on no
jumps.

Expression (16) holds for investments in production processes , for investments in

contingent claims , and for any portfolio of investments (e.g., the market portfolio:

).

Theorem 1 gives the appropriate form of the capital asset pricing model for jump-diffusions.  Excess

returns on any investment are generated by the security’s content of the various forms of systematic risk:

    1) market risk conditional on no jumps, priced at relative risk aversion R(W, Y);

    2) technological risk (i.e., risk of shifts in the investment opportunity set) conditional on no jumps,
priced at  and

3) jump risk, which includes both market and technological risk.

To a first-order approximation, jump risk can be decomposed into market and technological risk and priced

accordingly:

from a first order Taylor expansion of .  The accuracy of this decomposition will of course depend

upon the joint distribution of  and  and the global curvature of  .
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The theorem follows directly from the expansion5

using a similar expansion for , and rearranging terms.

(19)

(20)

2.  Option Evaluation

     Theorem I specifies a relationship between the expected return on any asset and its content of systematic

risk.  In particular, the theorem restricts the expected return and systematic risk of an option on any

underlying asset when the asset’s price follows a jump-diffusion with random jump amplitudes:

Options, as derivative securities, have prices that can be written in the general format .

One can use Ito’s lemma to rewrite the option’s systematic risk in terms of variances and covariances of

underlying state variables.  A version of Theorem 1 relevant for options (and for derivative securities in

general (then follows).

Theorem 1’  The equilibrium expected return on an option satisfies5

where

Ito’s lemma also restricts the expected drift in the price of the option:
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(21)

(22)

(23)

(24)

where

, the dot product of 1) the matrix of second partial derivatives of F with regard to 

and 2) the covariance matrix per unit time conditional on no jumps of , is the collection of

second-order terms from Ito's lemma.

     Expression (20), in conjunction with restriction (16) on ß and on , yields after

some manipulation the fundamental valuation equation for options under jump-diffusions.

Theorem 2:  The price of any option  satisfies the partial differential equation

where  is given by

and  is the transpose of  .

     The valuation equation (23) holds for any option, European or American.  Evaluating a particular option

involves solving (23) subject to terminal boundary value conditions for European options (terminal value
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(25)

(26)

(27)

plus early-exercise boundary conditions for American options), and conditional on the current state of the

economy 

Cox et al (1985a) show that for diffusions, there is an associated system of risk-neutral diffusions, the use

of which greatly facilitates evaluation of contingent claims.  The same is true for jump-diffusions.

Theorem 3:  Options are priced as if investors were risk-neutral and  followed the jump-

diffusion process

where jumps occur with frequency

is given by (24) above, 

 denotes the expectations operator conditional on state Y relative to the true joint probability
density function of  (denoted  ), and

 denotes the expectations operator conditional on state  relative to the marginal utility-
weighted joint p.d.f. of :

     Proof of the theorem follows directly from taking  (where is the

differential generator relative to system (25)), comparing with Theorem 2, and confirming

that .  The instantaneous drifts of S and W using the modified p.d.f. are  and

, consistent with the interpretation of (25) as "risk-neutral" jump-diffusions.  Note that

the drift of Y under the modified p.d.f. is , not .
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I.e., the representative utility function  and the stochastic evolution of  must be6

known, so that  etc. can be determined.

E.g., the "hopscotch" method of Gourlay and McKee (1977) used by Wiggins (1987) and Melino7

and Turnbull (1988) for stochastic volatility models.

(28)

     Theorem 3 in principle gives an implementable method of evaluating any option.  A European option

with strike price X will, for instance, have the value

where the distribution of  is given implicitly by system (25).  Subject to

considerable informational requirements,  the option price can be solved numerically via backward6

induction from the terminal date using risk-neutral probabilities (25).  The binomial approach of Cox,

Ross, and Rubinstein (1979) or multi-state variable variants thereof  can calculate the diffusion part of the7

recursive option evaluation.  The jump-contingent modified expected change in the option price can be

evaluated via trapezoidal integration over -weighted possible realizations of , , and .  In

practice, option evaluation under the full-order system (25) would be exorbitant computationally, and

simplifications are necessary.



Ft % rSFS % ½F2
S S 2 FSS ' rF

8

FS S

-13-

(29)

3.  Reduced-Order Option Pricing Models:  Black-Scholes, Stochastic Volatility, and Jump Risk

     The greatest simplification possible in (25) is of course the Black-Scholes model, which imposes three

distributional restrictions:

        1) No jumps in any processes:   = 0;

        2) the underlying asset's price volatility  is not a function of other underlying state variables Y;

        3) The riskfree rate is nonstochastic and constant.

The third assumption, while counterfactual, is generally viewed as a plausible approximation.  Shifts in

the discount rate may not matter much for the value of an option with only three or six months to maturity.

     These three assumptions imply that the option price depends only on the state variable S and that, using

only the first line of (25), one can write the associated option valuation equation (23) as

since none of the parameters depends upon omitted state variables.  Solving (29) subject to option-specific

boundary conditions, one can appeal to the no-arbitrage opportunities condition to validate the solution as

the true option price, as is discussed below.  The Black-Scholes formula depends neither on the preferences

of the representative consumer nor on the distribution of the wealth process.  Restricting wealth to

following state-dependent geometric Brownian motion is not necessary.

     The simplicity of the Black-Scholes model and of the related constant elasticity of variance models

reflects the fact that the assumptions ensure that the option contains only one form of systematic risk, the

price of which is summarized in the price and expected excess return of a traded asset --namely, the

underlying asset.  Recent challenges to the Black-Scholes model typically involve forms of risk that are

not directly priced by the market:  volatility risk and jump risk.  Consequently, for these models, it is
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An analogous approach for pricing options on futures under interest rate risk is to be found in8

Ramaswamy and Sundaresan (1985).  They assume no risk premium on interest rate risk, invoking the
local expectations hypothesis.

necessary to derive prices for these forms of risk from restrictions on preferences and on distributions.  In

stochastic volatility models, that "price" is given by the risk premium , where Y proxies

volatility.  For jump risk models, the price of risk is reflected in the modified jump frequency

parameter  and the modified jump amplitude distribution .

     Two different forms of restriction are typically imposed in order to price options under stochastic

volatility.  The first approach, used inter alia by Hull and White (1987), Johnson and Shanno (1987), and

Scott (1987), is to assume that volatility on a given asset is uncorrelated with aggregate consumption and

volatility risk is therefore nonsystematic and diversifiable.  Under this assumption, , and the option

price can be written  and solved using (29) and the true diffusion for volatility, without need for

restrictions on preferences.  The evidence of Christie (1982) and others that volatilities of different stocks

tend to move together casts doubt, however, on the underlying assumption that volatility risk is

nonsystematic.8

     The second approach, taken by Wiggins (1987), Nelson (1987), and Melino and Turnbull (1988), is to

impose restrictions on preferences and on distributions to get a volatility risk premium  of a specific

form.  Log utility is almost invariably assumed; there is also an implicit assumption that wealth follows

state-dependent geometric Brownian motion, so that option prices do not depend on wealth.  Under these

assumptions, , and distributional restrictions are necessary as to how volatility
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The three papers cited above all assume that , with mean reversion in the9

drift term.  Wiggins (1987) suggests either 
i) assuming constant market variance, implying that  is proportional to , or 
ii) assuming market volatility is proportional to , implying  is proportional to .

Wiggins claims the results are not sensitive to the choice of specification.  Nelson (1987), examining the
S&P 500 as a proxy for the market portfolio, uses the latter specification.  Melino and Turnbull (1988),
looking at foreign exchange options, use the former specification.

covaries with the market.  Different authors make different restrictions,  but the end result is an option9

price  derived from (29) and the -modified stochastic differential equation for .

     The same choice of restrictions arises for jump risk, since jump risk is also not priced directly by any

financial instrument.  Merton (1976) assumed that jump risk was firm-specific and diversifiable.  The

implication is price zero for jump risk, with the true jump parameters being used in pricing options:

 .  Given the recent stock market crash, however, viewing jump risk

as nonsystematic is clearly untenable.  The alternative is again to restrict preferences and distributions.

The result of a particularly useful set of restrictions is given below.

Theorem 4:  Under either of two sets of assumptions,

   A1a) The representative consumer has power utility 

   A1b) There are no jumps in the underlying state variables Y,

or

 A2) The representative consumer has log utility (R=1) 

and the additional distributional restrictions

  A3) The underlying asset price follows a jump-diffusion of type (2) with constant volatility  and
random state-independent percentage jump amplitude ,

  A4) Wealth follows a similar jump-diffusion process, of type (6), with state-independent random
percentage jump amplitude  but with possibly state-dependent volatility ,
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(31)

(32)

(33)

(34)

(35)

     A5) (One plus) the percentage jump amplitudes in the underlying asset price and wealth have a joint
log-normal distribution:

     A6) The instantaneous riskfree rate is (approximately) nonstochastic and constant

then

option prices depend only on the underlying asset price and time ( ), and are evaluated using a

risk-neutral jump-diffusion with log-normal random jumps:

   where

   and

For example, the value of a European call with strike price X and time T to maturity is

where  is the probability of n jumps in the lifetime of the option, and , the

discounted expected value (using the modified p.d.f.) of the option conditional on n jumps, uses the Black-

Scholes formula:
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If the jumps  in underlying production processes are log-normally distributed,10

then  is approximately but not exactly log-normally distributed.

(36)

     The proof is straightforward.  The restriction on preferences A1a&b) or A2), along with the process A4)

for wealth, imply that the separable indirect utility function given by Cox et al (1985b) for diffusions also

holds for jump-diffusions:

with the familiar result from Cox et al that contingent claims prices and the riskfree interest rate may

depend on the underlying state variables Y but will not depend on wealth.  Assumption A3), combined with

A1b) or A2), ensures that the option price will not depend on Y, since no parameter of the modified 

process depends on Y (or on ).  Stochastic volatility is ruled out by assumption; the marginal utility-

modified jump parameters are the true, state-independent parameters adjusted by ,

which does not depend on Y or W; and the effect of Y on discounting risk is ruled out by A6).  Assumption

A5) is a convenient approximation  that implies  is log-normally distributed.  Using (27) and the10

convenient properties of products of log-normal variables, the result is that one plus the "risk-neutral" jump

amplitude is also log-normally distributed, with mean .  Merton’s (1976)

formula for European call options on jump-diffusions with log-normal jumps can then be applied directly,

using appropriately modified parameters.

     Expressions (32) and (33) clarify the issue of "diversifiable" jump risk discussed in Merton (1976).

Even if the jumps in the underlying asset price are independent of  (i.e., ), the fact that the jumps

occur at the same time implies that jump risk on the asset is nondiversifiable and systematic, with a price

reflected in the modified jump frequency .  Only if the jumps are truly firm-specific and
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For example, suppose the S&P 500 is a good proxy for the market portfolio, and an infrequent11

jump with mean 0 ( ) and standard deviation  is expected.  The jump distribution implicit
in option prices for risk aversion R = 2 has a mean of .  A negative
mean of this size does not induce much bias in option prices.

do not affect aggregate wealth  as is assumed in Merton (1976), can one use the true distribution

of  in pricing options.

     A second result from (32) and (33) is that, insofar as jumps in the underlying asset price are positively

correlated with jumps in the market (as one would expect for S&P 500 futures, for instance), the effect is

to bias downwards the mean expected jump  implicit in option prices.  If the true mean jump 

were zero, the implicit mean jump  would be negative, leading to negative asymmetries relative to

Black-Scholes option prices (overvalued in-the-money, undervalued out-of-the money calls relative to at-

the-money calls) of the sort found in recent years in stock options.  It is unlikely, however, that this effect

alone suffices to explain the strong moneyness bias in S&P 500 futures options prices in 1987.   It seems11

more likely that a crash was expected:  .
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See, e.g., Ingersoll (1987), ch. 17.12

When the underlyin987) for a careful examination of the conditions under which the no-arbitrage13

justification for option pricingg asset is a futures contract, the strategy is to hold futures contract
(at no cost) and F(S,t) bonds.

See Dybvig and Huang (1987) for a careful examination of the conditions under which the no-14

arbitrage justification for option pricing models holds.

, a  vector, is a subset of .  As noted above, stochastic volatility15

models typically assume only one relevant state variable:   and W irrelevant because of log utility

(37)

4. Arbitrage-Based Justifications of Option Pricing Models

     The no-arbitrage justification for the Black-Scholes option pricing formula is based upon synthesizing

an option by means of a dynamic trading strategy in the underlying asset and riskfree bonds.   The self-12

financing trading strategy involves holding at each instant of time F (S, t) shares of the underlying assetS

and [F(S, t) - S F (S, t)] in riskfree bonds,  where F(S, t) is the theoretical option price that solves thet S
13

partial differential equation

subject to the terminal value conditions of the option (and subject to additional early-exercise conditions

if the option is American).  By construction, the trading strategy pays off identically to the actual option

(if the Black-Scholes assumptions are correct), so any deviation between the initial cost  of the

trading strategy and the price   of the actual option would allow a riskfree arbitrage opportunity.  Hence,14

the theoretical option price F(S, 0) must equal the market price for the option.

     A similar no-arbitrage justification holds for stochastic volatility or interest risk models.  Assuming

negligible transactions costs in options markets and relatively few relevant state variables 

relative to the number of actively traded options,  the theoretical option prices given by the no-jump15
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and state-dependent geometric Brownian motion.  Interest risk models (e.g., Ramaswamy and Sundaresan
(1985), Ahn and Thompson (1987)) typically assume , and W irrelevant.

For replicating options on futures contracts,  and  are the same but one holds 16

in bonds.

(38)

version of Theorem 3 ( ) must be the actual option prices.  For if not, one can again

synthesize an option via a self-financing dynamic trading strategy based on the theoretical prices, using

the underlying asset,  other options, and riskfree bonds.  Taking as

the  theoretical option prices, the replicating strategy for the option with price  is to hold at each

instant

 shares of the underlying asset,

 units of the  other options, and

in riskfree bonds,16

where  and  are given implicitly by

By construction, the trading strategy again replicates the terminal payoffs of the actual option with initial

price .  Therefore, a deviation of  from  would allow a riskless arbitrage opportunity,

which cannot exist in equilibrium.

There are some important differences between the stochastic volatility synthetic option and that of Black

and Scholes.  The informational requirements are much greater for the former:  one must know the

preferences of the representative investor, and the nature of the stochastic evolution of W and Y* in order

to calculate the theoretical option prices used in constructing the hedge.  Correspondingly, one cannot use
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(39)

the no-arbitrage condition to derive option prices under stochastic volatility, but can only use the condition

to justify formulas obtained from preference- and technology-based restrictions.  The two problems are

related.  In the Black-Scholes model, the only relevant risk is impounded in the price and expected return

of the underlying asset, which is traded.  The problem for stochastic volatility models, as noted by Wiggins

(1987), is that there is no corresponding traded asset with value based solely on volatility -- no -based

asset" such as one that pays off  at time T.  Extra options can hedge -risk, and can therefore replicate

another option, as shown above.  But since option prices also reflect other sources of risk, one cannot

extract the value of a -based asset and the price of options without other restrictions.

     The case of options on jump-diffusions with stochastic jump amplitudes adds additional complexities

to the above considerations.  A perfectly replicating synthetic option cannot be constructed in general, since

a finite number of other assets will not typically span the space of jump-contingent possible outcomes.  To

illustrate this, consider replicating an option as above using an arbitrarily large number of other options,

where theoretical option prices are .  (In principle, Y* could equal Y, since

all underlying state variables that affect jump-contingent marginal utility of wealth are relevant.)  Taking

any self-financing portfolio  in stocks, options and bonds that satisfies (38)

above for  and , the stochastic evolution of the value P of this portfolio relative to the theoretical

price F is described by

where

 and
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The Jones (1984) ’derivation" of a Merton-type formula involved setting17

 constant, implicitly imposing the restrictions of
Theorem 4 on preferences and on the stochastic evolution of W and Y.

are the random changes conditional on a jump occurring.  Since  and  are nonlinear functions of

the random jump sizes, it will not in general be possible to choose  such that .  Therefore,

even choosing ,  will differ from  in some

realizations -- i.e., the portfolio will not replicate the terminal boundary conditions of the option in all

states of nature.

     One approach, used by Jones (1984) and Bates (1988), is to restrict the jump-contingent outcomes to

a finite number:  e.g., to 1, in which case  options, the underlying asset, and short-term bonds are

needed in the portfolio to replicate perfectly another option ( options for the diffusion

risks, and 1 for the jump risk).  The further restrictions on preferences and distributions of Theorem 4,

which imply option prices of the form , considerably simplify the replicating portfolio to only the

underlying asset, one other option, and bonds.  Only under these restrictions, however, is it precisely

correct (as asserted in Jones (1984)) that deterministic jump risk in the underlying asset price can be

hedged by adding one option per jump.  Furthermore, as noted in the stochastic volatility case, the

existence of a perfectly replicating strategy can be used to justify option pricing formulas but cannot be

used to derive them.   The problem is similar to but more pronounced than the case of stochastic volatility:17

there are no jump-contingent Arrow-Debreu securities traded that could be used to evaluate options.

     Restricting jump amplitudes to a finite number of possible realizations is somewhat unsatisfactory and,

fortunately, not necessary.  While there is not a perfectly replicating portfolio when jump amplitudes are
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(40)

(41)

(42)

random, it is possible to come close.  Imposing the restrictions of Theorem 4, the problem is to closely

replicate  for all realizations of , using a portfolio that jumps 

.  Since option prices are smooth, convex functions of S, it is

not difficult to closely mimic the distribution of  using a finite and, in fact, rather small number of

options in the replicating portfolio.  Possible criteria for choosing  and  include

or  

subject to the constraint (on  and ) that , and the constraint (on bond holdings) that P = F.

Under the latter criterion,  can reflect the preferences of the representative investor or of an investor

actually considering the arbitrage.  Either specification gives  and  as the solution to

where m is the Lagrangian multiplier on the constraint .  E* replaces E in (42) when the second

criterion is used, and the expected products can be calculated for a given option pricing model using

trapezoidal integration over the domain of .

     Figures 1 and 2 illustrate the result of replicating deep in-the-money and out-of-the-money European

options on S&P 500 futures, using futures contracts and near-the-money options of identical maturity.  One

plus the true percentage jump size is assumed distributed log-normally, with .  It is assumed that
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Or, equivalently, that .18

The "delta-gamma-neutral" portfolio insurance approach chooses  and  to replicate both19

the slope ("delta:" ) and the curvature ("gamma:" ) of the desired option, in order to
reduce portfolio adjustments over small- to medium-sized movements in S.  Given that the jump
distribution has greatest mass near zero for the parameters chosen, the strategy given by (40) or (41) is
closely related to such a strategy.  A minor caveat is that deltas and gammas calculated by portfolio insurers
using Black-Scholes will be only approximately correct when the true process is a jump-diffusion.

the S&P 500 is the market portfolio,  so that the "risk-neutral" jump size used in determining 18

under the second criterion has mean .  Using one option in the replicating

portfolio results essentially in a "delta-gamma-neutral" strategy that does well for small jumps, less well

for large ones.   Using three near-the-money options plus the underlying asset, the option is almost19

perfectly replicated under either criterion.

5. Conclusion

     To recapitulate, this paper has

      1) Derived the appropriate characterization of asset market equilibrium when asset prices follow
jump-diffusion processes,

     2) Derived the resulting restrictions on option prices, and developed a system of "risk-neutral"
diffusions that can be used to evaluate options for given restrictions of preferences and
technologies,

     3) Developed a tractable option pricing model valid even when jump risk is systematic, and

    4) Described the appropriate hedging strategy justifying the option pricing formula, while cautioning
that the existence of such strategies cannot be used to derive the formulas without imposing
additional, implicit restrictions.

Other option pricing models, such as for volatility risk when volatility follows a jump-diffusion, could also

be handled within this framework -- at the cost of additional complexity.
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Figure 2


