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Abstract

This paper examines the equilibrium when negative stock market jumps (crashes)
can occur, and investors have heterogeneous attitudes towards crash risk. The less
crash-averse insure the more crash-averse through the options markets that
dynamically complete the economy. The resulting equilibrium is compared with
various option pricing anomalies reported in the literature: the tendency of stock
index options to overpredict volatility and jump risk, the Jackwerth (2000) implicit
pricing kernel puzzle, and the stochastic evolution of option prices. The
specification of crash aversion is compatible with the static option pricing puzzles,
while heterogeneity partially explains the dynamic puzzles. Heterogeneity also
magnifies substantially the stock market impact of adverse news about fundamentals.
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The markets for stock index options play a vital role in providing a venue for redistributing and
pricing various types of equity risk of concern to investors. Investors who like equity but are
concerned with crash risk can purchase portfolio insurance, in the form of out-of-the-money put
options. Direct bets on (or hedges against) future stock market volatility are feasible; most simply
by buying or selling straddles, more exactly by the option-based bet on future realized variance
proposed by Britten-Jones and Neuberger (2000) and analyzed further by Jiang and Tian (2005).
By creating a market for these risks, the options markets should in principle permit the dispersion
of these risks across all investors, until all investors are indifferent at the margin to taking on more
or less of these risks given the equilibrium pricing of these risks. This idealized risk-pooling
underlies our theoretical construction of representative-agent models, and our pricing of risks from
aggregate data sources; for instance, estimating the consumption CAPM based on aggregate

consumption data.

How well do the stock index option markets operate? Evidence from the observed order
flow through the options markets and from option returns suggests that our idealized models of the
trading of crash and volatility risks may be far from realistic. First, most investors do not routinely
use options to manage risks associated with equity investments. Although stock index options are
among the most actively traded options, the stock positions hedged by exchange-traded options on
the S&P index or futures represented at most 2.6% of the S&P 500 market capitalization in 1998.*
Furthermore, there appears to be a fundamental dichotomy between buyers and sellers. A broad
array of individual and institutional investors buy index options as part of their overall risk
management strategies, while a relatively concentrated group of option market makers and

proprietary traders predominantly write them and delta-hedge their positions.? This may reflect

This is computed based upon the open interest in 1998 for CBOE options on the S&P 100
and S&P 500 indexes, and for CME options on S&P 500 futures. It represents an upper limit in
assuming every option corresponds one-for-one to an underlying stock position. Strategies
involving multiple options (vertical spreads, collars, straddles, etc.) would substantially reduce the
estimate of the stock positions being protected.

“See Pan and Poteshman (2005, Table 1) for a breakdown of option order flow at the CBOE.
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market frictions; individual investors can easily buy stock index options, but face hurdles at the

broker level to writing naked calls or puts.

Second, empirical evidence on option returns suggests that stock index options markets are
operating inefficiently. Such evidence is in essence based on substantial divergences between the
“risk-neutral” distributions compatible with observed post-’87 option prices, and the conditional
distributions estimated from time series analyses of the underlying stock index. Perhaps most
important has been the substantial disparity between implicit standard deviations (1SD’s) inferred
from at-the-money options, and the subsequent realized volatility over the lifetime of the option.
As illustrated below in Figure 1, ISD’s have generally been higher than realized volatility.
Furthermore, regressing realized volatility upon ISD’s almost invariably indicates that ISD’s are

informative but biased predictors of future volatility, with bias increasing in the ISD level.

While the level of at-the-money ISD’s is puzzling, the shape of the volatility surface across
strike prices and maturities also appears at odds with estimates of conditional distributions. Itis now
widely recognized that the “volatility smirk” implies substantial negative skewness in risk-neutral
distributions, and various correspondingly skewed models have been proposed: implied binomial
trees, stochastic volatility models with “leverage” effects, and jump-diffusions. And although these
models can roughly match observed option prices, the associated implicit parameters do not appear
especially consistent with the absence of substantial negative skewness in post-’87 stock index
returns. To paraphrase Samuelson, the option markets have predicted nine out of the past five
market corrections. A further puzzle is that implicit jump risk assessments are strongly counter-
cyclical. As shown below in Figure 2, implicit jump risk over 1988-98 was highest immediately

after substantial market drops, and was low during the bull market of 1992-96.

It is of course possible that the pronounced divergence between objective and risk-neutral
measures represents risk premia on the underlying risks. The fundamental theorem of asset pricing
states that provided there exist no outright arbitrage opportunities, it is possible to construct a
“representative agent” whose preferences are compatible with any observed divergences between

the two distributions. However, Jackwerth (2000) and Rosenberg and Engle (2002) have pointed
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out that the preferences necessary to reconcile the two distributions appear rather oddly shaped, with
sections that are locally risk-loving rather than risk-averse. Furthermore, the post-’87 Sharpe ratios
from writing put options or straddles seem extraordinarily high — two to six times that of investing
directly in the stock market. These speculative opportunities appear to have been present in the

stock index options markets for almost 20 years.

I believe the stock index options markets are functioning more as insurance markets, rather
than as genuine two-sided markets for trading financial risks. The view of options markets as an
insurance market for crash risk may be able to explain some of the option pricing anomalies —
especially if there exist barriers to entry. If crash risk is concentrated among option market makers,
calibrations based upon the risk-taking capacity of all investors can be misleading.®> Speculative
opportunities such as writing more straddles become unappealing when the market makers are
already overly involved in the business. Furthermore, the dynamic response of option prices to
market drops resembles the price cycles observed in insurance markets: an increase in the price of

crash insurance caused by the contraction in market makers’ capital following losses.*

This paper represents an initial attempt to model the dynamic interaction between option
buyers and sellers. A two-agent dynamic general equilibrium model is constructed in which
relatively crash-tolerant option market makers insure crash-averse investors. Heterogeneity in
attitudes towards crash risk is modeled via heterogeneous state-dependent utility functions — an
approach roughly equivalent to heterogeneous beliefs about the frequency of crashes. Crashes can
occur in the model, given occasional adverse jumps in news about fundamentals. Derivatives are
consequently not redundant in the model and serve the important function of dynamically
completing the market. Given complete markets, equilibrium can be derived using an equivalent
central planner’s problem, and the corresponding dynamic trading strategies and market equilibria

are identified. Those equilibria are compared to styled facts from options markets.

*Basak and Cuoco (1998) make a similar point regarding calibrations of the consumption
CAPM when most investors don’t hold stock.

*Froot (2001, Figure 3) illustrates the strong, temporary impacts of Hurricane Andrew in
1992 and the Northbridge earthquake in 1994 upon the price of catastrophe insurance.
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There have been previous papers exploring heterogeneous-agent dynamic equilibria, some
of which have explored implications for option pricing. These papers diverge on the types of
investor heterogeneity, the sources of risk, and the choice between production and exchange
economies. Back (1993) and Basak (2000) focus on heterogeneous beliefs. Grossman and Zhou
(1996) explore the general-equilibrium implications of heterogeneous preferences (in particular, the
existence of portfolio insurers) in a terminal exchange economy, given only one source of risk
(diffusive equity risk). Options are redundant in this framework, but the paper does look at the
implications for option pricing. Weinbaum (2001) has a somewhat similar model, in which power
utility investors differ in risk aversion. Bardhan and Chao (1996) examine the general issue of
market equilibrium in exchange economies with intermediate consumption, with heterogeneous
agents under jump-diffusions with discrete jump outcomes. Dieckmann and Gallmeyer (2005) use
a special case of the Bardhan and Chao structure to explore the general-equilibrium implications of

heterogeneous risk aversion.

This paper assumes a terminal exchange economy, and sufficient sources of risk that options
are not redundant. Perhaps the major divergence from the above papers is this paper’s focus on
options markets. Whereas Bardhan and Chao (1996) and Dieckmann and Gallmeyer (2005) assume
there are sufficient financial assets to dynamically complete the market, this paper focuses on the
plausible hypothesis that options are the relevant market-completing financial assets. The paper
develops some tricks for computing competitive equilibria using the short-dated options with
overlapping maturities that we actually observe. Finally, the hypothesized source of heterogeneity

— divergent attitudes towards crash risk — is plausible for motivating trading in options markets.

The objective of the paper is not to develop a better option pricing model. That can be done
better with “reduced-form” option pricing models tailored to that objective; e.g., multi-factor option
pricing models such as the Bates (2000) affine model or Santa-Clara and Yan (2005) quadratic
model. Furthermore, this paper ignores stochastic volatility, which is assuredly relevant when
building option pricing models. Rather, the objective of this paper is to build a relatively simple
model of the role of options markets in financial intermediation of crash risk, in order to examine

the theoretical implications for prices and dynamic equilibria. Key issues include: what
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fundamentally determines the price of crash risk? Can we explain the sharp shifts we observe in the
price of crash risk? The ultimate objective is to explore the impact of plausible market frictions,
such as assuming that only option market makers can write options, but that issue is not explored

in this paper.

Section 1 of the paper recapitulates specific various stylized facts from empirical options research
that influence the model construction. Section 2 introduces the basic framework, and identifies a
benchmark homogeneous-agent equilibrium. Section 3 explores the implications of heterogeneity

in agents. Section 4 concludes.

1. Empirical option pricing anomalies and stylized facts

Three categories of discrepancies between objective and risk-neutral measures will be kept in mind
in the theoretical section of the paper: volatility, higher moments, and the implicit pricing kernel
that in principle reconciles the objective and risk-neutral probability measures. Furthermore, each

category can be decomposed further into average discrepancies, and conditional discrepancies.

The unconditional volatility puzzle is that implicit standard deviations (ISD’s) from stock
index options have been higher on average over 1988-98 than realized volatility over the options’
lifetimes. For instance, ISD’s from 30-day at-the-money put and call options on S&P 500 futures
have been 2% higher on average than the subsequent annualized daily volatility over the lifetime
of the options.> This discrepancy has generated substantial post-"87 profits on average from writing
at-the-money puts or straddles, with Sharpe ratios roughly double that of investing in the stock
market. See, e.g., Fleming (1998) or Jackwerth (2000).

The conditional volatility puzzle is that regressing realized volatility upon ISD’s generally
yields slopes that are significantly positive, but significantly less than one. For instance, the
regressions using the 30-day ISD’s and realized volatilities mentioned above yield volatility and

variance results

The puzzle is slightly exacerbated by the fact that at-the-money I1SD’s are in principle
downwardly biased predictors of the (risk-neutral) volatility over the lifetime of the options.



40%-

30%

20%

realized volatility

10%

0% 10% 20% 30% 40%
ISD
Figurel. 1SD’sand realized volatility, 1988-98. 1SD’s are from 30-

day S& P 500 futures options. Realized volatility is annualized, from
daily log-differenced futures prices over the lifetime of the options.
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with heteroskedasticity-consistent standard errorsin parentheses.® Since intercepts are small, the
regressionsimply that 1SD’ sare especially poor forecastsof realized volatility when high. Straddle-
trading strategies conditioned onthe I SD level achieved Sharperatiosa most triplethat of investing
directly in the stock market over 1988-98.

®Jiang and Tian (2005) find similar results from regressions using the “model-free” implicit
variance measure of Britten-Jones and Neuberger (2000).
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The skewness puzzle is that the levels of skewness implicit in stock index options are

generally much larger in magnitude than those estimated from stock index returns— whether from

unconditional returns(Jackwerth, 2000) or conditional upon atime seriesmodel that capturessalient

featuresof time-varying distributions (Rosenbergand Engle, 2002). Furthermore, implicit skewness

fallsoff only dightly for longer maturities of stock index optionsof, e.g., 3-6 months.” By contrast,

the distribution of log-differenced stock indexes or stock index futures converges rapidly towards

near-normality as one progresses from daily to weekly to monthly holding periods.

Tablel

Implicit jump parameters, and (risk-neutral) cumulants at 1- and 6-month horizons, 1988-
98 estimates.

Average jump size: -6.6%

Jump standard deviation: 11.0%

Jump intensity: A, = 8141V, + 01V,

1-month cumulants

~
1l

, = 176e-4 + 2053 ¥, + .0795V,,
, = -1.01e-5 - 0371 V,, - 0012V,
. = 247e-6 +10.54e-3V,, + .06e-3V,,

NN
1l 1l

6-month cumulants

~
I

, = .0058 + 130807, + 3802V,
, =-.0012 - 8112 ¥,, - .0336V,,
, = 0007 + .7556 V,, + .0083V,,

Average factor realizations. Avg(V,) = .0092; 4vg(V,) = .0143.

NN
| 1l

Conditional variance = K, ; skewness = K3/K23/2; excess kurtosis = K, /K, .

’In options research, implicit skewness is roughly measured by the shape of the volatility
“smirk,” or pattern of 1SD’s across different strike prices (“moneyness’). The skewness/maturity
interaction can be seen by examined by the volatility smirk at different horizons conditional upon
rescaling moneyness proportionately to the standard deviation appropriate at different horizons. See,
e.g., Bates (2000, Figure4). Tompkins(2001) providesacomprehensive survey of volatility surface

patterns, including the maturity effects.
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Figure 2. Implicit factor estimatesfrom S& P 500 futures options, 1988-98.

V1 affects al cumulants, at all maturities. V2 affects conditional variance but has little
impact on higher cumulants. Unitsarein instantaneous variance per year conditional on no
jumps (left scale), or in implicit jump frequency (right scale). See Bates (2000) for
estimation details.

A further puzzle is the evolution of distributions implicit in option prices. Figure 2
summarizes that evolution using updated estimates of the Bates (2000) 2-factor stochastic
volatility/jump-diffusion model with time-varying jump risk. The affine structure of that model
permitsafactor representation of implicit cumulantsintermsof two underlying statevariables. The
first factor (V1) affects variance directly and al so determines the jump intensity, thereby affecting
cumulantsat all maturities. Thesecond factor (V2) influencesinstantaneousvariance (with roughly
half the variance loading of V1; see Table 1 above), but has relatively little impact on higher

cumulants.
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The graph indicates that the sharp market declines over 1988-98 (in January 1988, October
1989, August 1990, November 1997, and August 1998) were accompanied by sharp increasesin
implicit jump risk. The puzzles here are the abruptness of the shifts (Bates (2000) rejects the
hypothesisthat implicit jump risk follows an affine diffusion), and the magnitudes of implicit jump
risk achieved following the market declines. Since affine models assume the risk-neutral and
objective jump intensities are proportional, these models imply objective crash risk is highest
immediately following crashes. And while assessing the frequency of rare events is perforce
difficult, Bates (2000) finds no evidence that the occasionally high implicit jump intensities over

1988-93 could in fact predict subsequent stock return jumps.

Finally, there is the implicit pricing kernel puzzle discussed in Jackwerth (2000) and
Rosenberg and Engle (2002). The sharp discrepancy between the negatively skewed risk-neutral
distribution and roughly lognormal objectivedistribution at monthly horizons causestherisk-neutral
mode to be to the right of the estimated objective mode, even though the risk-neutral mean is
perforce to the left of the objective mean. If the level of the stock index is viewed as a reasonably
good proxy for overall wealth of the representative agent, this discrepancy in distributionsimplies
marginal utility of wealth islocally increasing in areas—implying utility functionsthat are locally

convex in areas, rather than globally concave.®

Itispossiblethat astandard representative agent/pricing kernel model can explaintheabove
puzzles. Coval and Shumway (2001) and Bakshi and Kapadia (2003) attribute the substantial
speculative opportunitiesfromwriting stock index optionsto avolatility risk premium. Pan (2002),
by contrast, finds a substantial risk premium on time-varying jump risk is a promising candidate.
Therisk premium raisesimplicit jump risk, volatility, and skewness relative to the values from the

objective distribution, while the time variation in jump risk can explain the conditional volatility

8Jackwerth’ sresultsaredisputed by Ait-Sahaliaand Lo (2000), who find no anomalieswhen
comparing average option prices from 1993 with the unconditional return distribution estimated
from overlapping data from 1989-93. The difference in results perhaps highlights the importance
of using conditional rather than unconditional distributions, asin Rosenberg and Engle (2002). For
instance, both conditional variance and implicit standard deviations are time-varying; and a
substantial divergence between the two can produce anomalous implicit utility functionsevenina
lognormal environment.
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bias. Bates (2000) finds that this model can also match the maturity profile of implicit skewness

better than models with constant implicit jump risk.

The challenges for these explanations are devising theoretical models of compensation for
risk consistent with the magnitude of the speculative opportunities. The stochastic evolution of
implicit jump risksfrom option pricesalso appearsdifficult to explain. The apparent magnitudeand
evolution of the crash risk premium are the two central styled factsthat | will attempt to match, in
the models below.

2. A jump-diffusion economy

| consider a simple continuous-time endowment economy over [0, 7], with a single terminal
dividend payment D, at time T. News about this dividend (or, equivalently, about the terminal
value of the investment) arrives as a univariate Markov jump-diffusion of the form

dinD = w,dt + 0,dZ + y,dN (3)

where Zisastandard Wiener process,

N is a Poisson counter with constant intensity A, and

Y, <0 isadeterministic jump size or announcement effect, assumed negative.
= E,D, is the current signal about the terminal payoff and follows a martingale, implying
~Yhay - A(e" - 1).

7}

Financial assets are claims on terminal outcomes. Given the simple specification of news
arrival, any three non-redundant assets sufficeto dynamically spanthiseconomy; e.g., bonds, stocks,
and asinglelong-maturity stock index option. However, it isanalytically more convenient to work
with the following three fundamental assets:

1) arisklessnumeraire bond in zero net supply that delivers one unit of terminal consumption
in al terminal states of nature;

2) an equity claimin unitary supply that pays aterminal dividend D, at time T, and is priced
at S, at timet relative to the riskless asset; and
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3) ajump insurance contract in zero net supply that costs an instantaneous and endogenously
determined insurance rate A, per period, and pays off 1 additional unit of the numeraire
asset conditional on each jump. The terminal payoff of one insurance contract held to
maturity is N, - fOTA,*dt.

Other assets such as options are redundant given these fundamental assets, and are priced by no
arbitrage given equilibrium prices for the latter two assets. Equivalently, the jump insurance
contract can be synthesized from the short-maturity options markets with overlapping maturities that
we actually observe. The equivalence between optionsand jump insurance contracts is discussed

below in section 3.4.2.

Agents are assumed to have crash-averse utility functions over terminal outcomes of the form

1-R

YN, T T

UW,N,f) = E[e for R>0 (4)

where W is terminal wealth, N is the number of jumps over [0, T, and Y > 0 is a parameter of
crash aversion. As this state-dependent generalization of power utility has not previously appeared

explicitly in the finance literature, some motivation is necessary.

First, this specification makes explicit in utility terms what is implicit in the affine pricing
kernels routinely used in the affine asset pricing literature. A typical affine approach for the pricing
kernel n, specifies a linear structure in the underlying sources of risk:

dnn = dt + o,dZ + vy, dN (5)

see, e.g., Ho, Perraudin, and Sgrensen (1996). Affine models place state-dependent restrictions on
the functional forms of the coefficients o,, and vy, ; they must generate covariances between dinn
and any state variable innovations that are linear in those state variables. However, the magnitudes
of the coefficients are unrestricted; and those magnitudes determine the risk premia on the
underlying shocks. The absence of such restrictions is equivalent to introducing state dependency

into the utility function of the representative agent, in a exponentially affine form similar to (4).
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A related justification isrevealed preference — the derivation of utility functions consistent
with observed risk premia. Thepricesof al risksinatraditional representative-agent power utility
specification depend upon the risk aversion parameter R, constraining the ability of such models
to simultaneously match the equity premium and the crash risk premium. Theabove utility function
can bederived asthe entropy-minimizing pricing kernel that generates specific instantaneous equity
and jump risk premia, when returns are generated by an i.i.d jJump-diffusion process. Conversely,
theability of the above utility specification to generate equity and crash risk premiawill be apparent
below.

Perhapsthe most intuitivejustification isthat the crash aversion parameter Y can beviewed
autility-based proxy for subjective beliefsabout crashrisk. Investorswith crash-averse preferences
(Y >0) are equivaent to investors with state-independent preferences and a subjective belief that

the jump intensity is Ae *:

] - 3 € (AT ) B W) |V jumps]

Eyle™ruwy)|

(6)
= )“T(e “VE;S [u(WT) | A =AeY].
Thisreflectsthe general proposition that preferences and beliefs are indistinguishable in aterminal
exchange economy. It should be recognized, however, that thisinterpretation involvesvery strong
subjective beliefs, in that investors do not update their subjective jump intensities Ae ¥ based on
learning over time, or based on trading with other investorsin the heterogeneous-agent equilibrium

derived below.®

A final justification is provided by Liu, Pan, and Wang (2004), who derive the utility
specification (4) from robust control methods given uncertainty aversion to the estimate of thejump
intensity. It isaso worth noting that (4) is a utility specification with convenient properties. It
retains the homogeneity of standard power utility, and the myopic investment strategy property of
thelog utility subcase (R = 1).

°As illustrated in Basak (2000), models with heterogeneous subjective beliefs can be
substantially harder to solve than the utility-based approach used here.
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Theaboveisamodel of “external” crash aversion: investors are averse to bad news shocks.
Anaternate “internal” crash aversion model could be constructed assuming investors aversion to

crashes depends on the degree to which their own investments are directly affected:

N,

UW,) = u(W,)expl-y Y. v, (7

where vy, isthe jump in log wealth conditiona upon ajump occurring, and conditiona upon the
investor’s portfolio allocation. The major advantage to the external crash aversion in (4) is its
analytic tractability. Whileit is possible to work out homogeneous-agent equilibriausing internal
crash aversion, deriving heterogeneous-agent equilibriaistrickier. Thedifferencein specifications
echoes the analytic advantages of external over internal habit formation models discussed in
Campbell, Lo and MacKinlay (1997, p. 327-8).

2.1 Equilibrium in a homogeneous-agent economy

The fundamental equations for pricing equity and crash insurance are

n, = Eng
S, - En;D;
M, (8)
A=A Neeael av-1
P

where n,/n, is a nonnegative pricing kernel. The first two equations are standard; see, e.g.,
Grossman and Zhou (1996). Thelastisderived in Bates (1988, 1991).% If all agentshaveidentical
crash-averse preferences of theform givenin (4) above, the pricing kernel can be derived from the

terminal marginal utility:

A crash insurance contract with instantaneous cost A, dr that pays off 1 unit of the
numeraire conditional upon ajump occurringin (¢, ¢+ dt] ispriced at

T]t)\.:dt = Et[nt+dt1|dN=1] = Adtn,. gl

yielding the above expression.
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Ny = Up(Wr Np) |y, - p,

(9)
DT_R e

The following lemmais useful for computing relevant conditional expectations.

Lemma: If d, = In D, followsthejump-diffusionin (3) aboveand N, istheunderlying jump counter
with intensity A, then

Eteq)dT+¢NT = exp{q)dt+ YN, + (T-0Pp, + 1/2@20‘21 + A(eqw"”" - 1)]} (10)
Proof: For © = T - ¢, thereis a probability w, = e 2*(At)"/n! of observing n = Ny - N, jumps

over (¢, T1. Conditiona upon njumps, Ad

nD,/D, ~ N[p,T + y,n, 6,1],and

E e<I>dT+¢NT _ e<1>d,+¢Nt

t

E, exp[®Ad + yn]

= ¢ P YNE exp[®Ad|,_, + n(®y,+ V)] (11)
= eq)d'+¢N'exp[(¢>ud + 1/2¢>20‘21,)‘|: + A‘c(eq)y"w - 1)}

The last line follows from the independence of the Wiener and jump components, and from the

moment generating functions for Wiener and jump processes. |

Using the lemma, equations (8), and p, = ~%0% - A(e" - 1) yields the following asset
pricing equations:

A* = Ae’ Rl (12)

— - + YR2 2 ro
nt _ Dt_ReYN' e(T t)[-Rp,; + 2R0y + (A" - 1)] (13)

S, = D,exp{(T - )| -Ro2 + (A" - 1) (™ - 1)} (14)
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The last equation implies that the price of equity relative to the riskless numeraire follows
roughly the same i.i.d. jJump-diffusion process as the underlying news about terminal value, with

identical instantaneous volatility and jump magnitudes:

ds/S = pdt + 0,dZ + k(dN - Adr) (15)

for k = e -1 < 0. Theinstantaneous equity premium
L =Ror+ (A-A9)k
) ) (16)
=~ R(oz+ Ayy) + (mAy)Y
reflects required compensation for two types of risk. First isthe required compensation for stock
market variance from diffusion and jump components, roughly scaled by the coefficient of relative
risk aversion. Second, thecrashaversionparameter Y > 0 increasestherequired excessreturnwhen

stock market jumps are negative.

Crash aversion also directly affectsthe price of crash insurancerelative to the actual arrival

rate of crashes:
log(A*/A) = -Ry,; + Y. (17)

Finally, derivatives are priced as if equity followed the risk-neutral martingale

ds/S = o,dzZ* + k(dN*- A*di) (18)

where N* isajump counter with constant intensity A*. The resulting (forward) option prices are

identical to the deterministic-jump special caseof Bates(1991), giventhe geometricjump-diffusion.

2.2 Consistency with empirical anomalies

Thehomogeneous crash aversion model can explain someof the stylized factsfrom section 1. First,
unconditional bias in implied volatilities is explained by the potentially substantial divergence
between the risk-neutral instantaneous variance of, + A" yﬁ implicit in option prices, and the actual
instantaneous variance of, + Ayf, of log-differenced asset prices. Second, the difference between

A™ and A is consistent with the observation in Bates (2000, pp. 220-1) and Jackwerth (2000, pp.
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446-7) of too few observed jumps over 1988-98 relative to the number predicted by stock index
options. The extra parameter Y permits greater divergence in A* from A than is feasible under

standard parameterizations of power utility.

To illustrate this, consider the following calibration: a stock market volatility o, = 15%
annually conditional upon no jumps, and adverse newsof y, = -10% that arrives on average once
every four years (A = .25). From equations (16) and (17), the equity premium and crash insurance

premium are

Q

p = .025R + .025Y
In(A*/A) = .10 R + Y
For R=1andY =1, theequity premiumis5%/year, whilethejumprisk A* implicitin option prices

(19)

is three times that of the true jump risk. Thus, the crash aversion parameter Y is roughly as
important asrelative risk aversion for the equity premium, but substantially more important for the
crash premium. Achieving the observed substantial disparity between A* and A usingrisk aversion
alone (Y =0) would requirelevelsof Rthat most would find unpalatable, and which would imply
an implausibly high equity premium.

Sincereturnsarei.i.d. under both the actual and risk-neutral distribution, the homogeneous-
agent model isnot capabl e of capturing the dynamic anomaliesdiscussed in section 1. Thestandard
results from regressing realized on implicit variance cannot be replicated here, because neither is
time-varying in thismodel. Were there atime-varying volatility component in the news process,
however, the difference between A* and A would affect the intercept from such regressions but
could not explain why the slope estimate is less than 1. Second, the model cannot match the
observed tendency of A, to jump contemporaneously with substantial market drops. Finally, the
i.i.d. return structure implies that implicit distributions should rapidly converge towards
lognormality at longer maturities, which does not accord with the maturity profile of the volatility

smirk.

Furthermore, Jackwerth’s (2000) anomaly cannot be replicated under homogeneous crash

aversion. Asdiscussedin Rosenberg and Engle(2002), Jackwerth’ simplicit pricing kernel involves
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the projection of the actual pricing kernel upon asset payoffs. E.g., stock index options with
terminal payoff 7{(S,) have aninitial price
_ Byn, 7S]
Mo

= E | V(S,)

Eo[nt |St] (20)
EO [T]t]
E,[V(S) MS,)],

where M(S,) hasthe usual properties of pricing kernels: it is nonnegative, and E,[ M(S,)] = 1.

It is shown in the appendix that for crash-averse preferences, this projection takes the form

R p(StMeY)

MS) = x(@) S,
AT

(21)

where x(7) isafunction of timeand p(S, | A) isthe probability density function of S, conditional
upon ajump intensity of A over (0,t). Implicit relativerisk aversionisgiven by -0InM(S)/d1nsS.
For Y =0, one observes the strictly decreasing pricing kernel and constant relative risk aversion
associated with power utility. For Y >0, it is proven in the appendix that In M(S,) is a strictly
decreasing function of In S, that isillustrated below in Figure 3. Thus, this pricing kernel cannot
replicate the negative implicit risk aversion (positive slope) estimated by Jackwerth (2000) and
Rosenberg and Engle (2002) for somevaluesof S,. However, crash-averse preferencescanreplicate
the higher implicit risk aversion (steeper negative slope) for low In S, valuesthat was estimated by
those authors and by Ait-Sahalia and Lo (2000).

Jackwerth (2000, p.446) conjectures that the negative risk aversion estimate may be
attributable to investors overestimating the crash risk relative to the observed ex post crash
frequency. Withinthismodel, such overestimationisequivalent to apositivevalueof Y, and cannot
generate the required divergences between objective and risk-neutral distributions. In equilibrium

the equity premium (16) is also positively affected by Y, shifting the mode of the objective
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distribution sufficiently to the right to preclude observing Jackwerth’s anomaly. Of course, there
could still be an anomalous disparity between the risk-neutral distribution and the estimate of the

objective distribution.

Jackwerth’s exploration of whether the divergence between the risk-neutral and estimated
objective distributionsis implausibly profitable is a separate issue. Within this framework, crash
aversion can generate investment opportunities with high Sharpe ratios. For instance, the

instantaneous Sharpe ratio on writing crash insurance is

Atdt - E[l|nq] (A -A)dr

[Var[1] ;-] Adt(1 - Adf) (22)
My
A

which can be substantially larger than theinstantaneous Sharperatio p / \/m on equity given
investors aversion to thistype of risk. The put selling strategies examined in Jackwerth implicitly
involveaportfoliothat isinstantaneously long equity and short crashinsurance. Sinceadding ahigh
Sharpe ratio investment to a market investment must raise instantaneous Sharpe ratios, this model
is consistent with the substantial profitability of option-writing strategies reported in Jackwerth
(2000) and elsewhere.

In M(S,)
2
1.5
1
0.5
03 02 -01 Wa In(S, /5o)

Figure 3. Log of theimplicit pricing kernel
conditional upon realized returns. Calibration:
t=112,0,=.15R=Y =1, y,= -.10, A = .25.
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3. Equilibrium in a heter ogeneous-agent economy

As this model is dynamically complete, equilibrium in the heterogeneous-agent case can be
identified by examining an equivalent central planner’ s problem in weighted utility functions. The
solution to that problem is Pareto-optimal, and can be attained by a competitive equilibrium for
traded assets in which al investors willingly hold market-clearing optimal portfolios given
equilibrium asset price evolution. Section 3.1 below outlines the central planner’ s problem, while
Section 3.2 discusses the resulting asset market equilibrium. Section 3.3 identifies the supporting
individual wealth evolutionsand associated portfolio allocations, and confirmsthe optimality of the
equilibrium. Section 3.4 discusses the implications for option prices, while Section 3.5 compares

the equilibrium with the stylized facts discussed above in Section 1.

3.1 The central planner’s problem

For analytictractability, | will assumeall investors have commonrisk aversion R, but differincrash
aversion Y. Under common beliefs about state probabilities, the central planner’s problem of
maximizing aweighted average of expected state-dependent utilities is equivalent to constructing
arepresentative state-dependent utility function in terminal wealth (Constantinides 1982, Lemma
2):

1-R
UWy, Ny ©) = max Y, o, f(N,) YlT—R , R>0
Wyt ¥ (23)

subject to W, = E Wyps Wyp 2 OVY
Y

for fixedweights ® = {w,} that depend upon theinitial wealth allocation in afashion determined
below in Section 3.3. Since the individual margina utility functions U, (Wy,, Np; Y) = +o at
W, = 0 andthehorizonisfinite, theindividual no-bankruptcy constraints W, > 0 arenon-binding
and can be ignored. Optimizing the Lagrangian

1-R

/4
max }: (oYfY(NT) %

+ T]T
Wydny ¥ R

Wr - }; WYT} (24)

yields aterminal state-dependent wealth allocation
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L [0, fTNI'YR
wy(Np, T @) = W, = 3 [y STV )] R (25)
Y

and a Lagrangian multiplier

R
Nr = WT_R{ZY: [wa Y(NT)]}}

Wik F(Nps @)

(26)

where f isaCES-weighted average of individual crash aversionfunctions fY’s. TheLagrangian
multiplier n, = U, (W;, N;; w) isthe shadow value of terminal wealth, and therefore determines
the pricing kernel when evaluated at W, = D,. From the first-order conditions to (24), all
individual terminal marginal utilities of wealth are directly proportional to the multiplier:
Nr

Y

Uy(Wyp, Np; ) = (27)

3.2 Asset market equilibrium
As in equations (8) above, the pricing kernel n,./m, can be used to price all assets. That asset

market equilibrium depends critically upon expectations of average crash aversion. Define

g, ;1) = E,[fN,+ n) | '

A (T-9pq _ n_ 28
Yy e [:' T 5y + n) (28)

as the conditional expectation of }’(NT) given jump intensity A’ over (¢, T] for future jumps

n = N, - N,. Itisshown inthe appendix that the resulting asset pricing equations are

n, = 70D RN, 1, Ae *Y) (29)
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et g(Nﬁ £ e(l—R)vd)
gV, 1, e ™) (30)

= """ m(v,, 1)

Ol

~

g(Nt+ 1,t, Ae_RY")

A*(N, 6 = Ae NV (31)
t g(Nt7 A A-e_Rﬁ{d)
where K, = -Rp., + ‘/2R20§ + A(e‘RY,,— 1) and xg = —Roz + A(e_RY"— 1)(ey"— 1).
The equilibrium equity price follows ajump-diffusion of the form
S _ W, Hdt + 6,dZ + KN, 5)(@N - Ad
i BN, O)dt + 0,dZ + k(N,,t) (AN - Adf) (32)
where
ds d
I‘L(Nt’t) = _Et|:? _rl:|
(33)
= Ro; + [A - AN, D]k, 0)
and
N +1,¢t
Lo k@, gy = et "t LD -~

m(N,, t)

for m(N, t) defined above in equation (30). Therisk-neutral price process follows amartingal e of
the form

9 _ 5 dz + kN, H[dN" - A'd
?—Gd +k( tat)[ T My t] (35)
for N, arisk-neutral jump counter withinstantaneousjumpintensity A*(N,", #), thefunctional form

of which is given above in equation (31).

Several featuresof the equilibrium areworth emphasizing. First, conditional upon nojumps

the asset price follows a diffusion similar to the news arrival process D, —i.e., with identical and
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constant instantaneous volatility o,. Thisproperty reflectsthe assumption of common relativerisk
aversion R, and would not holdingeneral under alternate utility specificationsor heterogeneousrisk

aversion.™ A further implication discussed bel ow isthat all investorsholdidentical equity positions.

Second, the equilibrium price process and crash insurance premium depend critically upon
the heterogeneity of agents. Thisissimplest toillustrateinthe R = 1 case, for which equilibrium
values can be expressed directly in terms of the weighted distribution of individual crash aversions.
Define pseudo-probabilities

w,exp[YN, + Ae "(T-1)(e? - 1)]

Ty, =
' Y w,exp[YN, + Ae (T-f)(e?-1)] (36)
Y

asthe weight assigned to investors of type Y at timet, and define cross-sectional average E ¢(*),
variance Var.4(*), and covariance with respect to those weights. It isshown in the appendix that

the asset market equilibrium takes the form

In(A;/3) = -y, + InEgle’] a
= =y, + EglY| + YaVar4[Y]
ll’l(St /Dt) Pe¥-1 Nar, Y
e {InEgle® ™| @ =A@ -ne e -]} /- -
= ~Yhoy + |Ae “EgleY) - A](e“—l)
In(1+k) = v,[1 + Ae (T - Covglt; e ). (39)

To afirst-order approximation, jump insurance premia in (37) and equity prices in (38)
replicate the homogeneous-agent equilibriaof (12) and (14) at R = 1, using average valuesfor Y
and e ¥, respectively. However, heterogeneity introduces second- and higher-order effects, aswell,
depending uponthe dispersion of agents. In particular, thesizeof log equity jumps In(1+ k,) in(34)
and (39) can be substantially magnified relative to the adverse news shock vy, about terminal value

"Dieckmann and Gallmeyer (2005) find that heterogeneous risk aversion increases stock
market volatility relative to the underlying sources of risk.
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when there is substantial heterogeneity in agents.

Figure 4 below illustrates these impactsin the case of only two types of agents, conditional
upon the initial wealth distribution and its impact on social weights w (given below in equation
(42)) and conditional upon asmall adverse newsshock y, = -.03. Thecalibration doesinvolve
substantial heterogeneity; crash-averse preferenceswith Y = 1 are equivalent to subjective beliefs
regarding jump frequenciesthat are e ¥ = 2.7 times higher than those of the crash-tolerant agents
with Y = 0.

When both types of agents are well represented, in the central areas of wealth distribution,

Figure4: Impact of initial relative wealth share w, = W,(0) / W(0) upon initial equilibrium
guantities. Two agents, with crash aversion Y =0, 1, respectively. Calibration: ¢ = .20,
A=25,vy,=-03,R=1,T=50,¢=0.

Logjumpsize In(1 +k,) Crash premium A; /A
2.75
0.2 0.4 0.6 0.8 1
-0.025 05
~0.05 2.25
-0.075
2
-0.1
1.75
-0.125
_0.15 1.5
-0.175 1.25
0.2 0.4 0.6 0.8 1
Equity premium p, = Ro? + (A - A))k,
0.08
0.07
0.06
0.05

0.2 0.4 0.6 0.8 1
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there is a substantial impact of small announcements upon jumps in log equity prices. The
divergence of preferences implies substantial trading of crash insurance, and substantial wealth
redistribution and shiftsintheinvestment opportunity set conditional uponajump. Theresultisthat
a modest 3% drop in the terminal value signal can induce a 3% to 18% drop in the log price of
equity. Crashes redistribute wealth, making the “average’ investor more crask-averse and
exacerbating the impact of adverse news shocks. Asindicated in Table 2 below, thismagnification
isalso present for alternate values of the risk aversion parameter R.

The crash insurance rate A, is always between the Ae “®%4 value of the crash-tolerant
investors (Y =0), and the Ae” ®' value of the crash-averse investors, Its value depends
monotonically upon the relative weights of the two types of investors, and is biased upward relative
to thewealth-weighted average by the variancetermin equation (37). Theequity premium p varies

somewhat with the magnitude of crash risk, in a non-monotonic fashion.

Table2. Averagelogjump size In(1+ k,) conditional upon initial wealth allocation
w, = W,(0)/W(0) and risk aversion R. Cdlibration: o =.20, A =.25, y,=-.03, T=50.

In(1+k,) given: R
w, 5 1 2 4 8
0 -.030 -.030 -.030 -.030 -.030
.0001 -.030 -.030 -.030 -.030 -.030
.001 -.032 -.032 -.030 -.030 -.030
01 -.052 -.045 -.036 -.031 -.030
1 -.157 -.136 -.090 -.044 -.034
2 -.189 -.178 -.135 -.061 -.038
3 -.187 -.189 -.163 -.079 -.043
4 -171 -.183 =177 -.097 -.048
5 -.149 -.166 -.178 -114 -.053
6 -.125 -.144 -.169 -.128 -.059
7 -.101 -.118 -.149 -.135 -.066
8 -.076 -.090 -.119 -.129 -.072
9 -.053 -.060 -.079 -.096 -.065
.99 -.032 -.033 -.035 -.035 -.033
.999 -.030 -.030 -.030 -.030 -.030
1 -.030 -.030 -.030 -.030 -.030
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A final observation isthat the asset market equilibrium depends upon the number of jumps
N,, andisconsequently nonstationary. Thisisanamost unavoidablefeature of equilibrium models
with afixed number of heterogeneousagents. Heterogeneity impliesagentshavedifferent portfolio
allocations, implying their rel ative weal th wei ghtsand theresul ting asset market equilibrium depend
upon the nonstationary outcome of asset price evolution.”” In thismodel, the number of jumps N,
and timet are proxies for wealth distribution. Crashes redistribute wealth towards the more crash-
averse, making the representative agent more crash-averse. An absence of crashes hasthe opposite

effect through the payment of crash insurance premia.

3.3 Supporting wealth evolution and portfolio choice
Aninvestor’s wealth at any timet can be viewed as the value (or cost) of a contingent claim that

pays off the investor’s share of terminal wealth .. = D, conditional upon the number of jumps:

W,(t) = E, %D‘T w, (N, T, @)

t

1/R_YN/R

2T Yy € (1-R)y,
E,| [Ny @) I/R_YN/R | Ae (40)
wy e

Y
=S - a-Ry
E[f(V;; @) | Ae" 7P|

S, wY(Nt, t, w),

see equation (A.16) in the appendix for details. The quantity w,(N,, ¢; w) isthe current share of
current total wealth W(#) = S,, and appropriately sumsto 1 acrossall investors. Theweights w of
the social utility function areimplicitly identified up to an arbitrary factor of proportionality by the
initial wealth distribution:

Wyl,.o = Wy(0,0; ®)
(41)

1/R YN /R < 1-2 (1-R)y
KE)wy e T f(INs o) * | Ae d

12See Dumas (1989) and Wang (1996) for examples of the predominantly nonstationary
impact of heterogeneity in adiffusion context. Aninteresting exceptionisChan and Kogan (2002),
who show that external habit formation preferences caninduce stationarity in an exchange economy
with heterogeneous agents.
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fork = EO[}’(NT; ) | Ae(l'R)Y"]. Inthe R =1 case the mapping between w and theinitial wealth

distribution is explicit, and takes the form

Wyl,o = K@y e D, (42)

Theinvestment strategy that dynamically replicatesthe evolution of W, (f) canbeidentified
using positions in equity and crash insurance that mimic the diffusion- and jump-contingent
evolution:

OWy(S,,N,, 1)

[AW, - N,AS], -,
= S(1+E)wy(N, +1,£,®) - wy(N,, 1, @)].

(43)

Oy

where k, = k(N,, f) isthe percentagejump sizein the equity price given abovein equations (34) and
(39). Thus, eachinvestor holds X, = W,(f)/ S, shares of equity (i.e., is 100% invested in equity),
and holds arelative crash insurance position of

0,0 _
20

qy(?) = (I+k) (44)

wy(N,+1,1;, @) )
wy(NV,, t; ®) ’

Thewealth-weighted aggregate crash insurance positions EY wy(N,, t; ®) q,(f) appropriately sum
to 0.

Figure5below graphstheindividual crashinsurancedemands (g,, g,) givencrashaversions
Y =0 and 1, respectively, conditional upon the initial wealth allocation w, = W,(0) / W(0) and its
impact upon equilibrium (A, k,). Theaggregate demand for crash insurance w, ¢, isalso graphed,
using the same calibration asin Figure 4 above. At w, =0, crash-tolerant investors (¥ = 0) seta
relatively low market-clearing price A; = Ae "¢ and sdll little insurance. Crash-averse investors
(Y = 1) insureheavily individually, but areanegligiblefraction of themarket. Asw, increases, A
does as well (see Figure 4 above) and the crash insurance positions of both investors decline.
Aggregate crash insurance volumes are heaviest in the central regionswhere both types of investors

arewell represented. As w,; approaches 1, the high price of crash insurance induces crash-tolerant
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investors to sell insurance that will cost them 60% of their wealth conditional upon a crash.

1.5
Crash-averse investors' g,
1
0.5
Total demand w, q,
0.2 0.4 0.6 0.8 1 w,
-0.5 Crash-tolerant investors' g,

Figure5. Equilibrium crash insurance positions and
aggregate demand for crash insurance, as a function of
w, = W,(0)/W(0). Cdibrationisthe sameasin Figure 4.

3.3.1 Optimality

The individual’s investment strategy yields a terminal wealth W, and an associated terminal
marginal utility of wealth U, (W, N,;Y) that (from equation (27)) is proportiona to the
Lagrangian multiplier n, that pricesall assets. Therefore, no investor has an incentive to perturb
his investment strategy given equilibrium asset prices and price processes. Furthermore, as noted
above, the markets for equity and crash insurance clear, so the markets are in equilibrium. Since
al individua state-dependent marginal utilities are proportional at expiration, the market is
effectively complete. All investors agree on the price of all Arrow-Debreu securities, so their

introduction would not affect the equilibrium.

3.3.2 Comparison with myopic investment strategies

The equilibrium asset price evolution in Section 3.2 involves considerabl e and stochastic evolution
over time of the instantaneous investment opportunity set. Since Merton (1973), hedging against
such shifts has been identified as the key distinction between static and dynamic asset market

equilibria.  As there are conflicting results even in a diffusion setting as to the quantitative
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importance of such hedging,*® and asthere hasbeen little exploration of theissuein ajump-diffusion
context, a comparison with the myopic investment strategies characteristic of static equilibriamay
be useful. Furthermore, myopic strategies are optimal when investors have unitary risk aversion

(R =1), orwhenreturnsarei.i.d. —e.g., in the case of investor homogeneity.

Themyopic portfolio allocation is defined asthe position that maximizesterminal expected

utility
JW,N,t)=max E, e " — (45)
conditional upon assuming instantaneous investment opportunities will remain unchanged at the

current level over theinvestor’ slifetime. Those opportunitiesare summarized by theinstantaneous

cost of crash insurance A*, and the price process

dS/S = pdt + 6dZ + k(dN - Adb).

No assumptions are made at this stage regarding the values of (u, &, A*).

It is shown in the appendix that the myopic investor will choose constant portfolio proportions

eme = L+ g - i

R
47)
r\ 1 (

where x = §,X/W isthe portfolio sharein equity, and

q = Q/W isthe number of insurance contracts as a fraction of overall wealth.
If investors are homogeneous, the market-clearing conditions (x ™2, g ™°P¢) = (1, 0) yield the
equilibrium and time-invariant (i, A*) given abovein equations(12) and (16). The above myopic

portfolio weightsare a'so optimal under time-varying (i,, &,, A;) when R =1, but not for general

3Campbell and Viceira (1999) and Campbell, Chacko, Rodriguez and Viceira (2004) find
substantial hedging against stochastic shiftsin expected returns, while Chacko and Viceira (2005)
find little hedging against stochastic volatility. Thetwo approachesdivergein the specification and
calibration of shiftsin the investment opportunity set.
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The myopic portfolio allocation equations (47) indicate that equity and crash insurance are
complements when jumps are negative (k <0). An increase in the price of crash insurance A*
lowers the demand for both equity and crash insurance, while an increase in the expected excess
return p on equity raises both. The equations also indicate that myopic crash insurance positions
but not equity positionsaredirectly affected by theinvestor’ sidiosyncratic crash aversion parameter
Y. Furthermore, at the equilibrium equity premium (33), myopic investors duplicate the optimal
investment strategy of holding 100% in equity, and divergefromthat optimumonly intheir holdings

of crash insurance.

Table3comparestheoptimal and myopic crashinsurancestrategiesat theequilibriumvalues
for (k,, A, ) resulting from variousinitial wealth allocations and risk aversion. The two strategies
are broadly similar across different asset market equilibria, and are identical either when risk
aversion R = 1, or when a preponderance of one type of individua (W,(f) / W(¢) =~ Oor 1) yieldsa

homogeneous-agent equilibrium with atime-invariant investment opportunity set.

The table indicates that a myopic strategy can be a poor approximation to the optimal
strategy in other cases. The divergence is most pronounced for the large positions achieved under
low levels of risk aversion (R =%%), but is also present for larger R values. For instance, when
crash-tolerant and crash-averse investors are equally represented (W, /W = %) and R= 2, a3%
adverse news shock will induce a 17.8% stock market crash (from Table 2). The crash-averse buy
crash insurance contracts from the crash-tolerant that pay off 36.5% of current wealth conditional
on acrash. The myopic positions (g,””", ;") = (-16.9%, 26.4%) in Table 3 substantially

understate the magnitude of those optimal insurance positions.
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Table 3. Optimal and myopic crash insurance positions, at equilibrium asset prices determined by
idiosyncratic crash aversions ¥ =0, 1, initial wealth allocation w, = W,(0) /W(0), and common risk
aversion R. Equilibrium valuesfor In(1 + £,) and parameter values arein Table 2 above. Entriesindicate
the payoff of insurance positions conditional on acrash, as afraction of investor’s wealth.

Crashaverson Y =0; R= Crashaversion Y=1;R=

w;
0.5 1 2 4 8 0.5 1 2 4 8

Optimal positions g

0.0 .000 .000 .000 .000 .000 6.200 1.667 .630 276 129
.0001 .000 .000 .000 .000 .000 1.852 1.667 .652 276 129
.001 -002 -002 -.001 .000 .000 1773 1.660 .793 277 129

.01 -017 -016 -011 -003 -.001 1648 1598 1134 299 131
A -128 -128 -119 -062 -.017 1148 1152 1.069 557 152
2 -215  -214 -205 -140 -.045 .858 .856 .822 .559 79
3 -285 -282 -270 -204 -.080 .666 .657 .629 AT7 187
4 -347  -339 -321 -255 -115 520 .509 482 .382 173
5 -402 -391 -365 -.293 -.145 402 391 .365 293 145
.6 -452 -440 -405 -322 -.166 301 .293 270 214 JA11
Ve -499  -485 -444 -341  -177 214 .208 190 146 .076
8 -542 -529 -482 -352 -175 136 132 J21 .088 .044
9 -584 -572 -518 -345 -153 .065 .064 .058 .038 .017
.99 -629 -609 -497 -241 -118 .006 .006 .005 .002 .001
.999 -651 -613 -418 -217 -114 .001 .001 .000 .000 .000
1.0 -83% -613 -382 -215 -114 .000 .000 .000 .000 .000

myopic

Myopic positions g

0.0 .000 .000 .000 .000 .000 6.200 1.667 .630 276 129
.0001 .000 .000 .000 .000 .000 6.195 1.667 .629 276 129
.001 -004 -002 -.001 .000 .000 6.153 1.660 .628 275 129

01 -041 -016 -007 -002 -.001 5764 1.598 .615 272 128
d -284 -128 -056 -.028 -.010 3362 1152 .500 .236 117
2 -429 -214 -091 -051 -.021 2.122 .856 418 201 104
3 -522 -282 -117 -066 -.032 1.440 .657 .358 178 .091
4 -592  -339 -142 -073 -041 1.012 .509 .309 164 .080
5 -648 -391 -169 -077 -.048 717 391 .264 154 071
.6 -695 -440 -199 -080 -.053 501 .293 220 147 .066
4 -737 -485 -234 -087 -.055 334 .208 73 137 .062
8 -774  -529 -275 -103 -.058 201 132 122 117 .058
9 -808 -572 -324 -142 -072 .092 .064 .065 .075 .043
.99 -83% -609 -376 -209 -.110 .008 .006 .007 .006 .004
.999 -83% -613 -381 -214 -114 .001 .001 .001 .001 .000

1.0 -839 -613 -382 -215 -114 .000 .000 .000 .000 .000
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3.4 Option markets
3.4.1 Option prices
At time O, European call options of maturity ¢ are priced at expected terminal value weighted by
the pricing kernel:

M max(S, - X, 0)

Mo

E, [max(S, - X, 0)].

c(Sy, ,X) = E,

(48)

Conditional upon N, jumpsover (0, ¢], n, and S, have ajoint lognormal distribution that reflects
their common dependency on D, given abovein equations (29) and (30). Consequently, itisshown
in the appendix that the risk-neutral distribution for S, is a weighted mixture of lognormals,

implying European call option prices are aweighted average of Black-Scholes-Merton prices:

oASps 5X) = Y wy ¢ 5(S), X, by,r=0)
N

* byt (49)
= Y wy|Sye N,y ~ XN(dyy)
N
where A’ = Ae *Y4,
« _ eMA Y gV, 5 )
WN = y
N! 2(0,0;A")
b, = -A'(e"-1) + {nyd + In [m(N,t)/m(0,0)]}/t,
dy = [In(S,/X) + byt + Y%so5t]/ 04/t and
dyy = dyy - ot
Put prices can be computed from call prices using put-call parity:
p(S(), t, X) = C(Soa Z, X) + X - SO‘ (50)

Since jumps are a'ways negative, the distribution of log-differenced equity prices implicit
in option prices is aways negatively skewed. The maturity profile of implicit skewness is quite
sensitive to the initial distribution of wealth, given the nonmonotonic dependency of In(1 + £,) on
wealth distribution shown above in Table 2 and Figure 4. For small values of w,, asecond jump
will belarger than thefirst. Theincreasing probability of multiplejumpsat longer maturities causes
implicit skewnessto fall slower than the 1/4/# rate of i.i.d. returns, implying slower flattening out

of theimplicit volatility smirk. For larger valuesof w, thesize of sequential jump sizesisreversed,
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Figure 6. Annualized risk-neutral skewness
Skew[t]x/t, as afunction of t.

and implicit skewness can fall faster than the 1//¢ rate of i.i.d. returns; see Figure 6.

However, model-specific estimatesfrom option pricessuch asin Table 1 aboveindicate that
implicit Skew[f] (rather than Skew[£] x /¢) isroughly flat across option maturitiest. Thisstylized
fact appearscommon to abroad array of futuresoptions, asindicated inthe Tompkins (2000) survey
of volatility smiles and smirks.** Thus, although Bates (2000) argues that stochastic implicit jump
intensities A,* are needed to match the volatility smirk at longer maturities, it does not appear that
the stochastic variation of (A;, k,) inthis model generates the correct maturity profile of implicit

skewness.

3.4.2 Option replication and dynamic completion of the markets
Options can be dynamically replicated using positions in equity and crash insurance. Instanta-
neously, each call optionhasaprice c(S,, N,, t) , and can beviewed asaninstantaneous bundle of ¢,

units of equity risk, and [Ac - ¢cAS],, ., > 0 unitsof crashinsurance.

“Tompkins examinesimplicit volatility patternsfrom various countries' futures optionson
currency, stock index, bonds and interest rates, with the moneyness dimension appropriately scaled
by maturity-specific volatility estimates from at-the-money options. He finds some maturity
variationinimplicit volatility patterns, but not much by comparison with the strong inverse pattern
predicted by i.i.d. returns.
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This equival ence between options and crash insurance indicates how investorsreplicate the
optimal positions of section 3.3 dynamically using the call and/or put options actually available.
Crash-averse investors choose an equity/options bundle with unitary delta overall and positive
gamma (e.g., hold 1¥2 stocks and buy one at-the-money put option with adelta of -%%), while crash-
tolerant investors take offsetting positions that also possess unitary delta (e.g., hold ¥ stock, and
write 1 put option). Equity and option positions are adjusted in amutually acceptable and offsetting
fashion over time, conditional upon the arrival of news. As options expire, new options become
available and investors are always able to maintain their desired levels of crash insurance. All
investors recognize that the price of crash insuranceimplicit in option priceswill evolve over time,
conditional onwhether crashesdo or do not occur, and take that into account when establishing their

positions.

A further implication is that the crash-tolerant investors who write options actively delta-
hedgetheir exposure, whichisconsistent with the observed practiceof option market makers. AsA;/ A
increases (e.g., because of wealth transfers to the crash-averse from crashes) , the market makers
respond to the more favorabl e prices by writing more options asaproportion of their wealth.™> They
simultaneously adjust their equity positionsto maintain their overall target deltaof 1. Thisstrategy
is equivalent to market makers putting their personal wealth in an index fund, and fully delta-
hedging every index option they write.

3.5 Consistency with empirical option pricing anomalies

The heterogeneous-agent model explains unconditional deviations between risk-neutral and
objective distributions analogously to the homogeneous-agent model. The divergencein the jump
intensity A; implicitin optionsand thetruejump frequency A can reconciletheaveragedivergence
between risk-neutral and objective variance, and between the predicted and observed frequency of
jumps over 1988-98. The heterogeneous-agent model can also be somewhat more consistent with
the maturity profile of implicit skewnessthan the homogeneous-agent model, although still appears

inadequate relative to observed patterns.

As indicated above in Figure 4, the total volume (open interest) in crash insurance and
therefore in options can either rise or fall as the wealth distribution varies.
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The advantage of the heterogeneous-agent model is that it can explain some of the
conditional divergencesaswell. Firgt, thestochasticevolutionof A, isqualitatively consistent with
the evolution of jump intensity proxy V1 shown abovein Figure 2. A, depends directly upon the
relativeweal th distribution, whichinturnfollowsapurejump processgiven abovein (41) fortheR = 1
case. Consequently, market jumpscausesharpincreasesin A;", whilean absence of jumpsgenerates

geometric decay in A, towards the lower level of crash-tolerant investors.

Figure 7 below illustrates the resulting evolution of instantaneous risk-neutral variance
(Ra* + A/ yf) conditional on the five major shocks over 1988-98, and conditional on starting with
w, =.latend-1987. Thisbehavior isqualitatively similar to the actual impact of jumps on overall
variance and on jump risk shown above in Figure 2. However, the absence of major shocks over
1992-96 and the resulting wealth accumulation by crash-tolerant investors/option market makers
implies that the shocks of 1997 and 1998 should not have had the major impact that was in fact

observed.

It is possible the heterogeneous model can explain the resultsfrom ISD regressionsaswell.

The analysisis complicated by the fact that instantaneous objective and risk-neutral variance are

0.06
0.0575
0.055
0.0525
0.05
0.0475
0.045

0.0425

2 4 6 8 10
Figure7. Simulated instantaneousrisk-neutral variance
Ra? + A y? conditional upon jump timing matching that
observed over 1988-98. Calibration: w, (0) = 10%; i.e.,
crash-averse investors own 10% of total wealth at end-
1987.
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nonstationary, with a nonlinear cointegrating relationship from their common dependency on the
nonstationary variable N, :

Var[dInS] = [0® + Ay’]dt

Var,[dInS] = [0* + A*(N,,0) yf]dt (1)
fory, = In[1+k@®,,H] and A, >A. Itisnot immediately clear whether regressing realized on
implied volatility is meaningful under nonlinear cointegration. However, the fact that implicit
variance doescontaininformationfor objectivevariance but isbiased upwards suggeststhat running
thissort of regression on post-’ 87 datawould yield the usual informative-but-biased resultsreported
above in equation (2), with estimated slope coefficients lessthan 1 in sample.

It doesnot appear that the heterogeneous-agent model can explaintheimplicit pricing kernel

puzzle. Using the same projection asin (20) above, the projected pricing kernel is

Ey[n,|S,] & Dn-0 Wy P(S|N)
ot - kS,

M) = ere
' Tlo p(St)
) (52)
e MDY wy m(N, DR glN, 1, e 7Ra)
WN = WN = - .
N! Yoo wy mN, DR g(N, 1, ke TR)

As illustrated in Figure 8, this implicit pricing kernel appears to be a strictly decreasing

InE,[n, | As,]

0.6
0.4

0.2

-0.3 -0.2 -0.1 0.1 0.2 0.3

As

Figure 8. Log of theimplicit pricing kernel
conditional upon realized asset returns.
Calibration: w; =.3,¢=1/12.
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function of S, —in contrast to the locally positive sections estimated in Jackwerth (2000) and
Rosenberg and Engle (2002). However, the above implicit kernel can replicate those studies' high
implicitrisk aversionfor large negativereturns, asindicated by theslopeof thelinein Figure8for As
in the -10% to -20% ranges.

4. Summary and conclusions

This paper has proposed a modified utility specification, labeled “crash aversion,” to explain the
observed tendency of post-' 87 stock index optionsto overpredict realized volatility and jump risk.
Furthermore, the paper has devel oped a complete-markets methodol ogy that permitsidentification
of asset market equilibriaand associated investment strategiesin the presence of jumpsand investor
heterogeneity. The assumption of heterogeneity appears to have stronger consequences than
observed with diffusion models. Jumps can cause substantial reallocation of wealth, and the
resulting shifts in the investment opportunity set can be substantial. Small announcement effects
regarding the terminal value of the market can have substantially magnified instantaneous price

impacts when investors are heterogeneous.

The model has been successful in explaining some of the stylized facts from stock index
options markets. The specification of crash aversion is compatible with the tendency of option
pricesto overpredict volatility and jump risk, while heterogeneity of agents offers an explanation
of the stochastic evolution of implicit jump risk and implicit volatilities. Inthismodel, thetwo are
higher immediately after market drops not because of higher objective risk of future jumps (as
predicted by affine models), but because crash-related wealth redistribution hasincreased average
crash aversion. Crash aversion is aso consistent with the implicit pricing kernel approach’s
assessment of high implicit risk aversion at low wealth levels, athough the approach cannot
replicate the locally risk-loving behavior reported in Jackwerth (2000) and Rosenberg and Engle
(2002).

Whilemotivated by empirical option priceregularities, the model inthe paper isnot suitable
for direct estimation. First, jumpriskisnot theonly risk spanned in the optionsmarkets. Stochastic
variations in conditional volatility occur more frequently, and are also important to option market

makers. Second, the nonstationary equilibrium derived here and characteristic of most
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heterogeneous-agent model s hindersestimation. The purpose of the paper isto provideatheoretical
framework for exploring the trading of jump risk through the options markets, as an initial model
of the option market making process. A more plausible model that might also resolve the
nonstationarity issue would be to include profit-taking by market makers, to limit their sizein the

market.

Theframework inthispaper can be expanded invariousways. For simplicity, thispaper has
focused on deterministic jumps and an “external” crash aversion specification insensitive to the
impact of crashes upon individual wealth. Extending the model to random jumps and/or “internal”
crashaversionshould berelatively straightforward, although feedback effectsinthelatter casecould
require additional restrictionsto achieve an equilibrium. A particularly interesting extension could
beto exploretheimplicationsof portfolio constraints on positionsin optionsand/or jump insurance.
Selling crash insurance requires writing calls or puts— a strategy that individual investors cannot
easily pursue. Further research will examinetheimpact of such constraintsupon equilibriain equity

and options markets.



38

Appendix
Section A.1 of the appendix prices assets when agents are heterogeneous. Section A.2 derives the
myopicinvestment strategies. Section A.3 derivesthe objective and risk-neutral probability density
functions under heterogeneity. Section A.4 derives properties of the implicit pricing kernel under

homogeneous and heterogeneous agents.

A.1 Asset market equilibrium in a heter ogeneous-agent economy (Section 3.2)

Lemma: If thelog-dividend d, = In D, followsthejump-diffusion givenaboveinequation (3) and

h(N,) isan arbitrary function, then
+ Vim20l + ™ _ m
Et[D]:” h(NT) | A.:| _ Dtme(T—t)[mlld Y 20,1 Ale d D] Et[h(Nt +n) | Ae Yd] (Al)

where n= N, - N, and E,[+ | A]denotes expectations conditional upon ajump intensity A over
@ T].

Proof: Define Ad = In(D;/D,) and t = T-¢. Then
E,|Df" WNy)| = D" E[e™™ h(y) |
_ DtmEt[eM(Ad|n=0 + nyy) h(Nt + n)]

m _T[mu, + l/zmzoj] mny,
=D, e E|e h(N,+ n)

(A.2)
_ pym Tl eIy e‘kf(kemyd)n
D"e EO — h(N, + n)
-D[mp, + am 2, em’y - m
= Dtme(T Ol + Ym0y + M(e™ - D] Et[h(Nt+n)| Ae Y"}.
The asset pricing equations (29)-(31) follow directly from the lemma:
n, = Eng
- E|D;* 7(vy)|
(A.3)

- D* MR FN) |Ae ™

DNy e )
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N,

E[D}* 7v,))|

E|D;* 7av)]

-0 ELTQ) [he
E[ 7, re ™

- 8N 1 Ae(l'R)“)
g(Nt, t, Ae 'RY")

(A.4)

=Dt

= D,e

)" nt |jump
N,

(D, ") *E| FNy) [he ™4, N, 1]
D*E|FN,) [he ™4, N, |
Ry, g(Nt+ 1,t Ae _RY")
g(Nt, t Ae _RY"’)

>
o
1l

(A.5)

= e

forx, = -Rp, + %aR?0® + A(e ™ - 1) andx = (W, + %02 - RG* + Ae X4 - 1). Given

By = ~Ys05 - Ae" - 1),k can bewrittenas kg, = -Ro? + Ae T - 1) (" - 1).

In the special case R = 1 and for arbitrary A’,
g, t,A") = E|fWN) | A
YNy 4,4

= Y wyexplYN, + A'(T-9le 7 -1)].
Y

Define A’ = Ae XY and A" = Ae" Y, and define pseudo-probabilities
_ wyexp[YN, + A'(T-H(e’ -1)]
e = Y w,exp[YN, + A(T-f)(e? - 1 (A.7)
. Oy p[YN, e’ - 1)]

Using (A.6) for g, the equity pricing equation (A.4) becomes
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Y wyexpYN, + A"(T-de 7 - 1)]

i _ eKS(T—t) Y
D, Y wyexp|YN, + A'(T-He? - 1)
Y

(A.8)
=Ty q explA -A )T -1 - 1)]
Y

for the cross-sectional expectation E () defined with regard to probabilities (A.7), and for
D= (A -A)T-1) = Ae¥(e ™ -1)(T - ). From(A.5), thejump risk premium hasasimilar

representation:
Y opexplY(V,+1) + A'(T-1)e 7 -1)]
Ry, Y

Y wyexp|YN, + A'(T-He? - 1)|

Y

-R
=€ de nYteY
Y

= e_RY"ECS(e Y),

(A.9)

The approximation for the log jump size follows from the following approximations:
g, A")

gN,,t;A")
olng(N,, 1, A")

OA'
m(N, +1,1)
m(N,, t)

dlnm(N; ©)

Ry, + v (A.11)

t
*Ing(N; ;")
+
ON, 0A'

Inm(N,,f) = In

(A.10)
A" - )

u

In(1+k) = Ry, + In

Q

Q

Ry, )

For R = 1, the partial derivatives of Ing are
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Olng(N,, ;1) ; @y Yexp[TN, + A'(T-De ¥ - 1)]

oN, i E wYexp[YNt + )»'(T—t)(eY- 1)}
Y
= Eq(Y)
olng(N,, ;") _ ; wy(T—t)(eY_ l)exp[YNt + )\,'(T_t)(eY_ 1)]
oA’ E OJYeXp[YNt + A-,(T—t)(eY— 1)]
Y

= (T-DEle?-1)

while the cross-derivativeis

021 N, A
ngW,, 5A') =(T_t){; mdle’-1) - 2w, ¥Y nn(m)}

ON,0A'
=(T-9 CovCS(Y,e Y).

Consequently (from (A.11)),
In(1+k) = Ry, + (A" - A')T -1 Covgg(¥;e”)

b

14

Ry, + AeY(e ™ — 1)(T - 1) Cov(Y,e?).

Section 3.3, equation (40)

A
[
b

E|D;* Fvy)

1-R -

D t
D

YN,/R - 1-1 (1-R)y
e’ T f(NT) R | Ae a

Et[](NT) | Ae _RYd]

RN

- 1-R
eKS(T—t) Et[f(NT) Me( )Yd]

Substitutingin S, = D, -
E| 77 [he™

from (A.4) yields (40).

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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A.2 Myopic portfolio choice (Section 3.3.2)
The myopic portfolio alocation strategy (x,q) in equity and crash insurance maximizes the
Hamilton-Jacobi-Bellman equation

0 = max E, dJ(W,,N,,1)
{x, q}
= max E,J, + WJ,[x(p - Ak) - A*q] + W, x20? (A.17)

{x,q} +A{J(W(1+xk+q),Nt+1,t) —J]

under the assumption of constant (u, o, A, A, k), and subject to the terminal boundary condition

1-R
YN, Wr -1

JW., N., T) = A.18
Wy, Np, T) = e 1-R ( )
The first-order conditions to (A.17) with respect to g and x are
- A'JW[W(1+xk+q),N+1,1‘] _ A,J_;’
Jy(W,N, ) Jy
(A.19)
I AR R (A V)
Ty o2

Given theterminal utility specification, it is straightforward to show that the value function J is of

theform

1-R YN,
w, YN, € 2,(T - 1)

JW,N,t) = g(T-t¢ e ! A.20
( 1Yy ) g1( ) 1-R 1-R ( )
with an associated marginal utility function
- YN,
Jy(W,N,,1) = g(T-0 W, e, (A.21)

Since (-WJ,,,/J,) = R and Jy/J,, = e (1 +xk +¢)®, this marginal utility function yields
constant portfolio proportions that satisfy
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xmyopick + qmyopic — (A:Y]E -1

xmerie = L fy 4 g - ai

Ro?

(A.22)

under a constant investment opportunity set. Furthermore, the value function and these portfolio
proportions satisfies the Hamilton-Jacobi-Bellman equation for some functions g, and g, that

appropriately convergetolas ¢~ T.

If R=1, myopic investment strategies are optimal even if investment opportunities

(M,»0,, A, k,) are stochastic. Defining © = T - ¢, the objective function becomes

JW, N, =max E, e TInW,

AT n
max Y £ D YO0 g | N+ jumps]

¢ (A.23)
= eMightEe-D oy Et* [ln W, | )ueY]

= eYN'e“(eY'l){ant + fT max E," [(dln W) | Aey]}
s=t

where E,” is a modified expectation conditional upon a jump intensity Ae’ over (¢, T].
Consequently, the marginal utility
YNte).(T—t)(eY—l)

/4

t

Jy(W,N,, 1) = £ (A.24)

isagain of theform (A.21) above, and optimal portfolio proportionsaregivenby (A.22) withR = 1.

A.3 Objective and risk-neutral distributions

Stock prices and pricing kernels are jump-dependent multiples of the dividend signal, which isin
turn adraw from jump-dependent mixture of lognormals. From (30), gross stock returns are
St —Kgt & m[Nta t]

— =e
S, D, m[0,0]

(A.25)

for kg = (, + %02) - Ro® + Ae ®(e¥ - 1). Thedensity functionfor Ad = In[D,/D,] is
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e —At()t t)N

o (A.26)

p,(Ad) {% wyn(Ad | pyt + Ny, Oof) for wy =
N=

for n(z | m, 6®) equal to the normal density function with mean mand variance o?. Consequently,

log-differenced stock prices As = In[S,/S,] are also drawn from a mixture of normals:

p(As) = Y wy n(As | R - %0)t+ he V(e - 1)t + Ny, + In[m(N, £)/m(0, 0)], oﬁt:
N=0
- (A.27)
=) wy n(As | Hoys Of,t) .

N=0

Define 1(As = z) asthe deltafunction that takes on infinite value when As = z, zero value
elsewhere, andintegratesto 1. Theobjectivedensity function p(z) = E[1(A§ = z)], whiletherisk-

neutral density function is
p'@ = Ey[1(As =2)]

A 1(A§ =2)

= E
0110

(A.28)
Eo[ntl(AE =2z) | Njumps]

_ N "N
Z_;) .

Ny

For any two normally distributed variables ¥ and y and any arbitrary function A( y),
Ele*h(y)] = Ele*|E[h(y")] (A-29)

where y* is adso normally distributed with mean E(y) + Cov(x,y) and variance Var(y).
Conditional upon n jumps, Inn, and As are both normally distributed with covariance —Rof,.

Conseguently, (A.28) can be re-written as

. > w, Em |Njumps)E[I(A§*=z)|Njumps]
P'@ =Y S .

N=0 no

L Bl | N jumps) nAs |y - Ro}, o)

=0 1]0

(A.30)

N
RS )
= E wy n(As | uy - R0y, 0y)
N=0
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Sincen, = Eyn, = EN wy Eo[n, | N jumps], the weights w, sumto 1. Furthermore, since

n =e “Tp R exp[—R(AJ|Nt=0 +N, 'Yd)]g(N,, t,Ae _RY"), (A.31)

it is straightforward to show that

. wye _RY"Ng(N, t,Ae _RY")

Wy -
E wye _RY"Ng(N, t,he _RY")
N=0

(A.32)

_e MY g1
N 2(0,0; ")

for A’ = Ae X4,

A.4 Implicit pricing kernels (equations (21) and (52))

Using equations (13) and (14), the projection of the pricing kernel upon the asset price in the
homogeneous-agent caseis

Eoln, |S,]

MS)
Mo

E\D,%e™x(0) | S|

(A.33)

S*E, e 1) | S,

t
t

(0 SFE|e™ | 5]

where x,(#) and k, () capture time-dependent terms irrelevant to implicit risk aversion. The

distribution of 5, = InS, isan N,-dependent mixture of normals:

e—At(At)Nt

(s, | N)) = py(s) = N, + N, 2, o*f) with probability Wy, =
A

(A.34)

Consequently, the conditional expectationin (A.33) can be evaluated using Bayes' ruleto evaluate
the conditional probabilities

Prob[N,=n|S,] = M,

20 w (s, | ) (A.35)
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yielding an implicit pricing kernel

M(S t) -

|
o
—
Nad
%]
=
3
|
=

Y w,p(s,|n) (A.36)

|
A~
Na
“L%

where p(s, | A) denotes the unconditional density of s, given ajump intensity of A over (0, 1.
Taking partials with respect to s, and using the fact that p,(s,|n) = -p(s,|n) L;"“) yields

Gy

(after some tedious calculations) an implicit risk aversion value
Aln M(S,) Ry Ya Cov, (e'", 77)
- = +
0s, oxt  Eg (YA

(A.37)

where E;, andCov, = are defined with regard to the probabilitiesin (A.35). Since e’ and n are
both increasing functions of n, the covariance term is positive. Consequently, the implicit risk

aversion is everywhere positive given y,<0.

The heterogeneous-agent case is similar. From (29) and (30), the Lagrange multiplier is
S R
(T-1) o-R . -R
n, = ™7, (E‘t) gN,, ;e "4

= ¢ REITD St_R m(N,, H¥ g(Nt, t,Ae _RY").

(A.38)

This is of the same form as (A.33), with m(N,, t)Rg(Nt, *) replacing ™ Consequently, the
implicit pricing kernel becomes



a7

3w p(s,|m) m(n, Off gl 1, Ae F¥)
Kl(t) St—R n=0

M) .
,12-1: w,p(s,| n)
] (A.39)
Y w," p(s,|m)
k() 8, 22
nZ_% w, p(s,| n)

w_m(n, Mgn, t; Le _RY")

for wn** =

5__;) w,m(n, % g(n, t; Ae a)
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