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“The Lion in Affrik and the Bear in Sarmatia are Fierce,
but Translated into a Contrary Heaven, are of less Strength and Courage.”

Jacob Ziegler; translated by Richard Eden (1555)

While models proposing time-varying volatility of asset returns have been around for thirty years,
it hasproven extraordinarily difficult to estimatethe parameters of the underlying volatility process,
andthecurrent volatility level conditional on past returns. 1t hasbeen especially difficult to estimate
the continuous-time stochastic volatility models that are best suited for pricing derivatives such as
optionsand bonds. Recent models suggest that asset pricesjump and that thejumpintensity isitself
time-varying, creating an additional latent state variable to be inferred from asset returns.

Estimating unobserved and time-varying volatility and jump risk from stock returnsis an example
of the general state space problem of inferring latent variables from observed data.  This problem
has two associated subproblems:

1) the estimation issue of identifying the parameters of the state space system; and

2) thefiltration issue of estimating current values of latent variables from past data, given the

parameter estimates.

For instance, the filtration issue of estimating the current level of underlying volatility is the key
issue in risk assessment approaches such as Value at Risk. The popular GARCH approach of
modeling latent volatility asadeterministic function of past data can be viewed as asimple method

of specifying and estimating a volatility filtration algorithm.*

Thisarticle proposes a new recursive maximum likelihood methodol ogy for semi-affine processes.
The key feature of these processes is that the joint characteristic function describing the joint
stochastic evolution of the (discrete-time) data and the latent variables is assumed exponentially
affine in the latent variable, but not necessarily in the observed data. Such processes include the
genera class of affine continuous-time jump-diffusions discussed in Duffie, Pan, and Singleton
(2000), the time-changed Lévy processes of Carr, Geman, Madan, and Y or (2003), and various

discrete-time stochastic volatility models such as the Gaussian AR(1) log variance process.

1See Nelson (1992), Nelson and Foster (1994), and Fleming and Kirby (2003) for filtration
interpretations of GARCH models.
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The major innovation isto work almost entirely in the transform space of characteristic functions,
rather than working with probability densities. While both approaches are in principle equivalent,
working with characteristic functions hasacouple of advantages. First, the approach ismore suited
to filtration issues, since conditional moments of the latent variable are more directly related to
characteristic functions than to probability densities. Second, the set of state space systems with
analytic transition densities is limited, whereas there is a broader set of systems for which the

corresponding conditional characteristic functions are analytic.

| useaversion of Bayes' rulefor updating the characteristic function of alatent variable conditional
upon observed data. Given thisand the semi-affinestructure, recursively updating the characteristic
functions of observations and latent variables conditional upon past observed data is relatively
straightforward. Conditional probability densities of the data needed for maximum likelihood

estimation can be evaluated numerically by Fourier inversion.

The approach can be viewed as an extension of the Kalman filtration methodology used with
Gaussian state space model s—which indeed areincluded in the class of affine processes. 1n Kalman
filtration, the multivariate normality of the data and latent variable(s) is exploited to update the
estimated mean £, and variance P, of the latent variable realization conditional on past data.
Given normality, the conditional distribution of the latent variable is fully summarized by those
moment estimates, while the associated moment generating function is of the simple form
G, (¥) = exp[%,, ¥ + 1/2Pt|t1|12] . My approach generalizestherecursiveupdating of G, (b) toother

affine processes that lack the analytic conveniences of multivariate normality.

A caveat is that the updating procedure does involve numerical approximation of G, (). The
overall estimation procedureisconsequently termed appr oximate maximumlikelihood (AML), with
potentially some loss of estimation efficiency relative to an exact maximum likelihood procedure.
However, estimation efficiency could be improved in this approach by using more accurate
approximations. Furthermore, the simple moment-based approximation procedure used hereis a
numerically stable filtration that performs well on simulated data, with regard to both parameter
estimation and latent variable filtration.
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This approach is of course only the latest in a considerable literature concerned with the problem
of estimating and filtering state space systems of observed data and stochastic latent variables.
Previous approaches include

1) analytically tractable specifications, such as Gaussian and regime-switching specifications;

2) GMM approaches based on analytic moment conditions; and

3) simulation-based approaches, such as Gallant and Tauchen’s (2002) Efficient Method of

Moments, or Jacquier, Polson and Rossi’ s (1994) Monte Carlo Markov Chain approach.

The major advantage of AML isthat it provides an integrated framework for parameter estimation
and latent variable filtration, of value for managing risk and pricing derivatives. Moment- and
simul ation-based approaches by contrast focus primarily upon parameter estimation, to which must
be appended an additional filtration procedure to estimate latent variable realizations. Gallant and
Tauchen (1998, 2002), for instance, propose identifying via“ reprojection” an appropriate rule for
inferring volatility from past returns, given an observabl e relationship between the two seriesin the
many simulations. Johannes, Polson, and Stroud (2002) append a particle filter to the MCMC
parameter estimates of Eraker, Johannes and Polson (2003). And whilefiltrationisanintegral part
of Gaussian and regime-switching models, it remains an open question as to whether these are

adequate approximations of the asset return/latent volatility state space system.?

The AML approach has two weaknesses. First, the approach is limited at present to semi-affine
processes, whether discrete- or continuous-time, whereas simulation-based methods are more
flexible. However, the affine class of processesis abroad and interesting one, and is extensively
used in pricing bonds and options. In particular, jumpsin returnsand/or in the state variable can be
accommodated. Furthermore, some recent interesting expanded-dataapproachesalso fit withinthe
affine structure; for instance, the intradaily “realized volatility” used by Andersen, Bollerdev,

Diebold, and Ebens (2001). Finally, some discrete-time non-affine processes become affine after

’Ruiz (1994) and Harvey, Ruiz, and Shephard (1994) apply the K alman filtration associated
with Gaussian modelsto latent volatility. Fridman and Harris (1998) essentially use a constrained
regime-switching model with a large number of states as an approximation to an underlying
stochastic volatility process.
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appropriate data transformations; e.g., the stochastic log variance model examined inter alia by
Harvey, Ruiz, and Shephard (1994) and Jacquier, Polson, and Rossi (1994).

Second, AML has a“curse of dimensionality” originating in its use of numerical integration. Itis
best suited for a single data source; two data sources necessitate bivariate integration, while using
higher-order datais probably infeasible. However, extensions to multiple latent variables appear

possible.

The parameter estimation efficiency of AML appearsexcellent for two processesfor whichwe have
performance benchmarks. For the discrete-time log variance process, AML is more efficient than
EMM and amost as efficient as MCMC, while AML and MCMC estimation efficiency are
comparablefor the continuous-time stochastic volatility/jump model with constant jJump intensity.
Furthermore, AML’s filtration efficiency also appears to be excellent. For continuous-time
stochasticvolatility processes, AML volatility filtrationissubstantially moreaccuratethan GARCH
when jumps are present, while leaving behind little information to be gleaned by EMM-style

reprojection.

Section 1 below derives the basic algorithm for arbitrary semi-affine processes, and discusses
alternativeapproaches. Section 2 runsdiagnostics, using datasimulated from continuous-timeaffine
stochastic volatility models with and without jumps. Section 3 provides estimates of some affine
continuous-time stochastic volatility/jump-diffusion models previously estimated by Andersen,
Benzoni and Lund (2002) and Chernov, Gallant, Ghysels, and Tauchen (2003). For direct
comparison with EMM-based estimates, | use the Andersen et al. data set of daily S& P 500 returns
over 1953-1996, which were graciously provided by Luca Benzoni. Section 4 discusses option

pricing implications, while Section 5 concludes.
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1. Recursive Evaluation of Likelihood Functionsfor Affine Processes
Let y, denote an (L x 1) vector of variables observed at discrete dates indexed by t. Let x,
represent an (M x 1) vector of latent state variables affecting the dynamics of y,. The following
assumptions are made:

1) z, = (»,, x,) isassumed to be Markov;

2) thelatent variables x, are assumed strictly stationary and strongly ergodic; and

3) the characteristic function of z,,, conditional upon observing z, isan exponentialy affine

function of the latent variables x,:

FGi®, iy |z,)

i(I),yHl + illjlxﬁl
E {e |z,

1
exp[CG®, iy; y,) + DGE®, iy; y,)'x,]. D

Equation (1) is the joint conditional characteristic function associated with the joint transition
density p(z,,,|z,). Asillustrated in the appendices, it can be derived from either discrete- or
continuous-time specifications of the stochastic evolution of z,. The conditional characteristic
function (1) can also be generalized to include dependencies of C(e) and D(e) upon other

exogenous variables, such as seasonalities or irregular time gaps from weekends and holidays.

Processes satisfying the above conditions will be called semi-affine processes; i.e, processes with
aconditional characteristic function that is exponentially linear in the latent variables x, but not
necessarily in the observed data y,. Processes for which the conditional characteristic functionis

also exponentialy affinein y,, and therefore of the form

F(i®, if|z,) = exp[C°G®, i}) + CG®, i¥)'y, + DD, ip)'x,] @

will be called fully affine processes. Fully affine processes have been extensively used as models
of stock and bond price evolution. Examplesinclude
1) the continuous-time affine jump-diffusions summarized in Duffie, Pan, and Singleton
(2000);
2) the time-changed L évy processes considered by Carr, Geman, Madan and Y or (2001) and
Huang and Wu (2004), inwhichtherate of information flow followsasquare-root diffusion;

3) All discrete-time Gaussian state-space models; and
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4) the discrete-time AR(1) specification for log variance x, = InV,, where y, is either the de-
meaned log absolute return (Ruiz, 1994) or the high-low range (Alizadeh, Brandt, and
Diebold, 2002).

| will focus on the most common case of one data source and one latent variable: L=M=1.
Generalizing to higher-dimensional data and/or multiple latent variables is theoretically
straightforward, but involves multidimensional integration for higher-dimensional y,. Itisaso
assumed that the univariate data y, observed at discrete time intervals have been made stationary
if necessary, asisstandard practiceintimeseriesanalysis. Infinancial applicationsthisisgenerally
doneviadifferencing, such asthelog-differenced asset prices used below. Alternative techniques

can also be used; e.g., detrending if the data are assumed stationary around atrend.

Whilewrittenin ageneral form, specifications (1) or (2) actually place substantial constraints upon
possible stochastic processes. Fully affine processes are closed under time aggregation; by iterated
expectations, the multiperiod joint transition densities p(z,,,|z,,n) for n> 1 have associated
conditional characteristic functionsthat are also exponentially fully affinein the state variables z, .
By contrast, semi-affine processes do not time-aggregate in general, unless also fully affine.
Consequently, while it is possible to derive (2) from continuous-time processes such as those in
Duffie, Pan, and Singleton (2000), it isnot possiblein general to derive processes satisfying (1) but
not (2) from a continuous-time foundation. However, there do exist discrete-time semi-affine
processesthat are not fully affine; for instance, z,,, multivariate normal with conditional moments

that depend linearly on x, but nonlinearly on y,.

The best-known discrete-time affine process is the Gaussian state-space system discussed in
Hamilton (1994, Ch. 13), for which the conditional density function p(z,,,|z,) is multivariate
normal. As described in Hamilton, a recursive structure exists in this case for updating the
conditional Gaussian densities of x, over time based upon observing y,. Given the Gaussian
structure, it suffices to update the mean and variance of the latent x,, which is done by Kalman
filtration.



7

More genera affine processestypically lack analytic expressionsfor conditional density functions.
Their popularity for bond and option pricing models lies in the ability to compute densities,
distributions, and option prices numerically from characteristic functions. In essence, the
characteristic functionisthe Fourier transform of the probability density function, whilethe density
functionistheinverse Fourier transform of the characteristic function. Each fully summarizeswhat

is known about a given random variable.

In order to conduct the equivalent of Kalman filtration using conditional characteristic functions,
we need the equivalent of Bayesian updating for characteristic functions. The following describes

the procedure for arbitrary random variables.

1.1 Bayesian updating of characteristic functions. the static case

Consider an arbitrary pair (y, x) of continuous random variables, with joint probability density

p(y, x). Let

E[eicby + iq:x]

= [[e'™ ¥ p(y, x) dy dx

FG®, iy) o

be their joint characteristic function. The marginal densities p(y) and p(x) have corresponding
univariate characteristic functions F(i®, 0) and F(0, i), respectively. It will prove convenient
below to label the characteristic function of the latent variable x separately:
G = Ele™"]
- [t @
= F(0, ip).
Similarly, G(y) = E[e¥*] is the moment generating function of x, while g({) = InG(¥) is its

cumulant generating function. Derivatives of these evaluated at ¢y = 0 provide the noncentral

moments and cumulants of X, respectively.
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The characteristic functions in (3) and (4) are the Fourier transforms of the probability densities.
Correspondingly, the probability densities can be evaluated astheinverse Fourier transforms of the

characteristic functions; for instance,

1 . -igx
p(x) = E‘[G(llli)e ¥ dy (5)
and
— 1 : : -iQy-iyx
p(y, x) = oy f f F(i®, i) e '@~V 4@ dy . (6)

The following key proposition indicates that characteristic functions for conditional distributions

can be evaluated from a partial inversion of F that involves only univariate integrations.

Proposition 1 (Bartlett, 1938). The characteristic function of x conditional upon observingyis

1 B o i
EIF(”I)’ if)e *rdd

G, ,iw|y) = ()

p(y)

where
1 . >
PO = - [FG®, 0)e"™dd (8)

isthe marginal density of .

Proof: By Bayes' law, the conditional characteristic function Gx| , can be written as

G, (] y) = [V plx|y) dx

1 - (9)
() f eV Py, ).

F(i®, ¢) istherefore the Fourier transform of G, y(o| »p(y):

FG®, i) = [e'[G,(i¥|y) p(»)]dy
= ffe"q’y”"”‘p(y, x)dx dy.

Consegquently, G, y(iq;| ) p(p) istheinverse Fourier transform of F(i®, ), yielding (7) above.
|

(10)
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1.2 Dynamic Bayesian updating of characteristic functions
While expressed in a static setting, Proposition 1 also appliesto conditional expectations, and the
sequential updating of the characteristic functions of dynamic latent variables x, conditional upon
the latest datum y,. The following notation will be used below for such filtration:

Y, = {y,.... y,} isthe data observed by the econometrician up through date t;

E[+|Y,] = E,(*) isthe expectational operator conditional upon observing data ¥ ;

F(i®, iy |z,) = E[e®Vm " ¥ ¥,» x,] isthe joint characteristic function (1) conditional
upon observing the Markov state variables z, (including the latent variable realization x,);

F(i®,iy|Y) - E [PV " ¥ Y,] is the joint characteristic function of next period’s
variables conditional upon observing only past data ¥,; and

G, (i) = E[ei“’x'|Ys] is the characteristic function of the latent variable x, at time t
conditional upon observing Y.
Given Proposition 1 and the semi-affine structure, the filtered characteristic function G, (i) can

be recursively updated as follows.

Step 0: Attime =0, initidize G, (iy) = G, (iV) at theunconditional characteristic function of
the latent variable. This can be computed from the conditional characteristic function associated
with the multiperiod transition density p(x, | ¥, x,; #), by taking thelimit ast goestoinfinity. For

fully affine processes, the multiperiod conditional characteristic function is of the affine form?

E[e"“”"lyo, xo} = exp[co(illl, 1 + iy, )y, + div, ’)xo}‘ )

Since x, is assumed strictly stationary and strongly ergodic, the limit ast goes to infinity does not

depend oninitial conditions ( y,, x,), and converges to the unconditional characteristic function:*

3Semi-affine processes will also generate multiperiod characteristic functions of the form
(11) if p(x,,,|x,) doesnot depend on y,. Such processeswill have c (i, #) = 0.

“See Karlin and Taylor (1981), pp. 220-1 and 241.



10
G, (i¥) = El™| for all
0|0(11]J) = Ele for all t
_ 1 E ith ,
P [e |7 xO] (12)

= }i_r}lwexp [c O(i y, t)] .

For continuous-time (fully affine) models, the time interval between observations is a free
parameter; solving (2) also provides an analytic solution for (11).> For discrete-time models, (11)

can be solved from (2) by repeated use of iterated expectations, yielding a series solution for

cO>ip, ).

Step 1: Given G,(¥) = Ele V| Y,], thejoint characteristic function of next period’s (y,,,, x,,;)
conditional on dataobserved through datet can be evaluated by iterated expectations, exploiting the

Markov assumption and the semi-affine structure of characteristic functions given in (1) above:
Efele™® ¥y, x) 1, |
E[e CG®, iy; y,) + DD, iYy; y,)x, | Yt] (13)

CE®, iy; y, . N
= BN G DD, iy; )]

F(i®, iy|Y)

Step 2: The density function of next period’s datum y,,; conditional upon data observed through

date t can be evaluated by Fourier inversion of its characteristic function:

1 po . -i®y,,
p(yt+l|Yt) = EI_MF(IQ, 0|Yt)e Y 1d¢. (14)

Step 3: Using Proposition 1, the conditional characteristic function of next period’s x,,, is

1 o . . -i®y,,
Ef_w F(i®,ip|Y)e ~"'dd

Crotptl¥) = (Y 1Y)
1+ t

Gyl D 0, i et g (15)
=) . . Clq),l 5 ; -i® »
2111: f_w t|t[ (lq)a lll’;yt)]e G2, iy; y,) Vee1

P(¥ulY)

*Anillustration is provided below in appendix A.2, equations (A.19) and (A.20).
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Step 4: Repeat steps 1-3 for subsequent values of t. Given underlying parameters 0, thelog likeli-
T
hood function for maximum likelihood estimation is In L(¥;|0) =Inp(y,|0) + Y, Inp(y,|¥,_,, 0)
t=2

G, (i) isthetime-t prior characteristic function of the latent variable x,, while Fi @, iy |Y,) in
equation (13) is the time-¢ prior joint characteristic function for (y,,,, x,,,). Step 3 is the
equivalent of Bayesian updating, and yields the posterior characteristic function of latent x,,, —
which is also the time- (¢ + 1) prior characteristic function for the next time step. The equivalent
stepsfor updating moment generating functionsand the associated conditional density functionsare

givenin Table 1.

Filtered estimates of next period’ s latent variable realization and the accompanying precision can

be computed from derivatives of the moment generating function G, ,,,(W) in (15):

A - /
Xel)t+1 = Gra1)1+1(0)

1 S . -i®y,, (16)
= ["F,i®,0|Y,)e " dd
21 p(y,.41Y,) f-w v !

P

t+1t+1 = Vart+1(xt+1)

1
t+1|t+1(0) xt+1|t+1

1 . -i®y,,
= o [TF (9, 0¥ )e D ~ £l

2np(y,.,1Y,)

(17)

1.3 Implementation

Therecursionin (13) - (15) indicatesthat for agiven prior characteristic function Gt|t(i ) of latent x,
and an observed datum y,., , it is possible to compute an updated posterior characteristic function
Gt (E0) that fully summarizes the filtered distribution of latent x,,,. To implement the
recursion, it is necessary to temporarily store the entire function G, (i) in somefashion. Thisis
an issue of approximating functions— asubject extensively treated in Press et a. (1992, Ch. 5) and
Judd (1998, Ch.6). Using atheoretic methods such as splines or Chebychev polynomidls, it is

possible to achieve arbitrarily precise approximations to Gt|t(i ).
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However, such atheoretic methods do not necessarily preserve the shape restrictions that make a
given atheoretic approximating function Gﬂ (i) alegitimate characteristic function. A simple
illustration of potential pitfalls arises with the symmetric Edgeworth distribution, with unitary

variance and an excess kurtosis of x,. The associated density and characteristic functions are

px) =1 + %(x4 -6x2 + 3)|n(x)

(18)

) a2 K

G(ip) = e ¥ (1 + 2—11]14)
where n(x) isthe standard normal density function. The Edgeworth distribution requires x, < 4 to
preclude negative probabilities. And yet it is not obvious from inspecting G(iy) that x, = 4 isa
critical value, and that using an approximating function equivalent to a numerical value of
K, = 4.005 would generate invalid densities. To avoid such potential problems, it appears safer to
use approximating characteristic functionsthat are generated directly from distributionswith known
properties. Astherecursionin (13) - (15) isjust Bayesian updating, any legitimate approximate prior
éqt(i‘l‘) from a known distribution will generate a legitimate posterior characteristic function
Gt (W)

The choice of approximating function also involvesatrade-off between accuracy and computational
speed. Evaluating Gt+1|t+1(D) at each complex-valued point D involves numerical integration.

More evaluations map the surface more accurately, but are also slower.

The analysis below therefore uses a simple moment-matching approximation similar in spirit to
Kaman filtration. An approximate ét+1| 1) from atwo-parameter distribution is used at each
time step. The parameter values at each step are determined by the conditional mean fmw and
which are evaluated as described in (16) and (17). The

choice of distribution depends upon the properties of the latent variable. If x,,, isunbounded, asin

variance P,,, ,,; of thelatent variable x,,

thediscrete-timelog variancemodel in Appendix B, the natural approximating characteristic function
is Gaussian:

1nGt+1|t+1(i¢) = ft+1|t+1(i¢) + 1/2Pt+1|t+1(il‘|")2’ (19)
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If x

.1 1S honnegative, as in the continuous time square-root variance process of Appendix A.2, a

gamma characteristic function is more appropriate:

lné”””l(ilp) = Vi In(1 - Kt+1i¢)
Kt+1 = Pt+1|t+1 /ft+1|t+1 (20)

_ a2
Vil = Xpa1)e+1 /Pt+1|t+1 :

In both cases, the initial unconditional distribution is a member of the family of conditional
distributions. Given the moment matching, these approximations can be viewed as second-order
Taylor approximations to the true log characteristic functions. Further details on computing these
momentsarein the appendices. Three numerical integrationsare required at each time step: onefor

the conditional density (14), and two for the moment conditions (16) and (17).

The approach isanal ogousto the Ka man filtration approach used by Ruiz (1994) and Harvey, Ruiz,
and Shephard (1994) of updating the conditional mean and variance of the latent state variabl e based
on the latest datum. The major difference isthat Kalman filtration uses strictly linear updating for
the conditional mean, whereas(16) and (17) abovegivetheoptimal nonlinear moment updating rules
conditional upon the distributional properties of observed y,,,, and conditional upon a correctly
specified prior characteristic function Gt| (iv). Approximation error enters in that the prior
characteristic function th(i y) is approximate rather than exact, which can distort the appropriate

relative weights of the datum and the prior when updating posterior moments.

There may well be better approximation methodologies that bring the approach closer to true
maximum likelihood estimation. However, the above moment-matching approach can be shown to
beanumerically stablefiltration, despite the complexity of the concatenated integrations. Filtration
errors die out as more data are observed. This follows from a vector autoregression representation
of thedataand therevisionsin conditional momentsderivedin appendix A.1. Inthefully affine case

(2), with joint conditional cumulant generating function of the form

InF(®, ¥|y, x) = CAD, ¥) + C'(@, ¥)y, + DD, ¥)x,, (21)

the inputs to the algorithm follow a stable VAR of the form



0
Yoo Co C3 Dy 0|y u,,,
foapa| = | Cp| * | G Dy 0| % + Vet (22)
2
P”'1|t+1 C‘l?‘ll Clﬁ)‘ll wa Dlﬁ Pt|f Wit ™ Venl
or
Zt+1 = A + B Zt + 8t+1 (23)
where

Et is the expectational operator using the approximate prior, conditional upon data ¥,;
u,, =y, -E, y,, isthe observed prediction error for y,,, of the approximate prior;

v,,, = (£, - E,)x,,, istherevisioninthelatent variable estimateusing the abovea gorithm

and approximate prior, given an additional datum y,,,;

A

w,,, = (£

~ 2 0 A .
1 Et)xt+1 - 2vt+1 (Cl.p + Clj:/ yt + Dq; xt|t)’
and all partial derivatives(C,ﬁ, D,, etc.) areevaluatedat @ = ¢ = 0. Since x, and y, are assumed
stationary, the block-triangular matrix B iswell-behaved: its eigenvalues have modulus less than

1l,and B” - 0 asn - .

The matrices A and B are determined analytically by the specification (21) of the affine process.
Approximation issues consequently affect only thesignals ,,, inferred fromobserving y,,,. Under
an exact prior (E, = E,), the signds (u,,,, v,.,» ,,;) would be serialy uncorrelated, and
independent of all lagged data ¥,. But even under an approximate prior, theimpact of inefficiently
processing the latest observation y,,, when computing the signals dies out geometrically over time.
In the absence of news (e.g., when projecting forward in time), the conditional moments converge

to the unconditional moments (I - B) ' 4, where I isthe identity matrix.
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iscomputed by Bayesian updating, it isstrictly positive.® Since
P,,) andthe

Since the posterior variance P, .,

the approximate Bayesian updating agorithm depends upon the prior moments (£

tt>

latest observation y,,,, al of which arestationary, thesignals ¢,,, arealso stationary, and the overall

t+1
system is well-behaved. The extent to which the use of an approximate prior leads to inefficient
signalsisof coursean important issue, which will be examined below for specific models. However,
the matrices A and B that determine the weighting of past signals when computing the mean and

variance of x,,, are not affected by approximation issues.

t+1
It may be possible to generate better approximations to the conditional characteristic functions
Gt| (i¥), by using multiparameter approximating distributions that match higher moments as well.
Noncentral moments of all orders also have a stable block-triangular VAR representation similar to

(22), so higher-moment filtrations will also be numerically stable.

1.4 Comparison with alter nate approaches

There have of course been many alternative approaches to the problem of estimating and filtering
dynamic state space systems. These approaches fall into two categories. those that assume the
Markov system z, isfully observable, andthosefor which z, = (,, x,) containslatent components x,
that must beestimated frompast realizations ¥,_, . Includedinthefirst category arethoseapproaches
that infer the current values of x, from other data sources: from bond prices for multifactor term
structure models, from option prices for latent volatility, or deterministically from past returnsin
GARCH models. In the discussion below, | will primarily focus on the approaches for estimating
affine models of stochastic volatility.

If z, isfully observableor inferrable, direct maximum likelihood estimation of the parameter vector 6

isinprinciplefeasible. In some cases, thelog transition densities In p(z, | z,_,, ) that enter into the

®In the special case of Kalman filtration, the variance revision w,,, - v2, isanonpositive
deterministic nonlinear function of the prior variance Py, whichinturn convergesto a steady-state

minimal value conditional upon asteady information flow; see Hamilton (1994, Ch. 13) or appendix
B below. For genera affine processes, variance revisions are stochastic and can be positive.
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log likelihood function can be analytic, asin the multifactor CIR model of Pearson and Sun (1994).”
Alternatively, thelog densitiesmay beevaluated numerically: by Fourier inversion of theconditional
characteristic function, by numerical finite-difference methods (Lo, 1988), by simulation methods
(e.g., Durham and Gallant, 2002), or by good approximation techniques (Ait-Sahalia, 2002). Some
(e.g., Pan, 2002) use GMM rather than maximum likelihood, based on conditional moment conditions
derived fromthe conditional characteristic function. Feuerverger and McDunnough (1981a,b) show
that a continuum of moment conditions derived directly from characteristic functions achieves the
efficiency of maximum likelihood estimation. Singleton (2001) and Carrasco, Chernov, Florensand
Ghysels (2003) explore how to implement this empirical characteristic function approach using a

finite number of moment conditions.

Thisarticle is concerned with the second category of state space systems — those that include latent
variables. Current approaches for estimating such systemsinclude
1) analytically tractable filtration approaches such as Gaussian and regime-switching models;
2) GMM approachesthat use moment conditions evaluated either analytically or by simulation
methods; and
3) theBayesian Monte Carlo Markov Chain approach of Jacquier, Polson, and Rossi (1994) and
Eraker, Johannes, and Polson (2003).

Filtration approaches typically rely on specific state space structures that permit recursive updating
of the conditional density functions p(y,|Y,_,, 0) of observed data used in maximum likelihood
estimation. Whilethere exist some affine processes that fall within these categories,® both Gaussian
and regime-switching model scan be poor descriptionsof the stochastic volatility processesexamined
below. Thejoint evolution of asset prices and volatility is not Gaussian, nor does volatility take on
only a finite number of discrete values. Nevertheless, some papers use such models as

approximationsfor volatility evolution and estimation. Harvey, Ruiz, and Shephard (1994) explore

"Pearson and Sun notethat if z, isinferred from observed data, an additional Jacobian term
for the data transformation is required in the log likelihood function.

8See, e.g., Jegadeesh and Pennacchi (1996) for a Kalman filtration examination of the
multifactor Vasicek bond pricing model.
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the Kalman filtration associated with Gaussian models, while Sandmann and Koopman (1998) add
a simulation-based correction for the deviations from Gaussian distributions. Fridman and Harris
(1998) essentially use a constrained regime-switching model with a large number of states as an

approximation to an underlying stochastic volatility process.

One magjor strand of the literature on GMM estimation of stochastic volatility processes without or
with jumps focuses on models for which moments of the form E[y,”y,”,; ] for m, n> 0 can be
evaluated analytically. Examples include Melino and Turnbull (1990), Andersen and Sgrensen
(1996), Ho, Perraudin, and Sagrensen (1996), Jiang and K night (2002) and Chacko and Viceira(2003).
This is relatively straightforward for models with affine conditional characteristic functions. As
illustrated in Jiang and Knight (2002), iterated expectations can be used to generate unconditional
characteristicfunctions F(i®) = E[exp(i®y,)] orjointcharacteristicfunctions F(i®,, ... , i®,) =
E[exp(i®, y, + ... + i®; y,_;)]. Unconditional moments and cross-moments of returns can then be
computed by taking derivatives. Alternatively, one can generate moment conditions by directly
comparing theoretical and empirical characteristic functions. Feuerverger (1990) shows that a
continuum of such moment conditions for different values of ®@’s is equivalent to maximum
likelihood estimation premised onthelimited-informationdensities p(y,|y,_;, ... , ¥, ;; 0) —aresult
cited in Jiang and Knight (2002) and Carrasco et a. (2003).

The second strand of GMM estimation eval uates theoretical moments numerically by Monte Carlo
methods, using the simulated method of moments approach of McFadden (1989) and Duffie and
Singleton (1993). Eliminating the requirement of analytic tractability greatly increases the range of
moment conditions that can be used. The currently popular Efficient Method of Moments (EMM)
methodology of Gallant and Tauchen (2002) uses first-order conditions from the estimation of an
auxiliary discrete-time semi-nonparametric time series model as the moment conditions to be

satisfied by the postulated continuous-time process.

The approximate maximum likelihood (AML) methodology is closest in spirit to the filtration
approachesthat evaluate p(y,|Y,_,, 0) recursively over time. Indeed, Fridman and Harris (1998)'s

discretization of possible variance readlizations within the range of £3 unconditional standard
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deviations can be viewed as a particular point-mass approximation methodology for the conditional
characteristic function:

Colik) = X m,, () explip x ] (24)

J
where m,,(j) = Problx, = x () y,]. Fridmanand Harrisusethe Bayesian state probability updating

of regime-switching models to recursively update the state probabilities T, OVer time.

The AML methodology has strengths and weaknesses rel ative to Fridman and Harris. AML can be
used with a broad class of discrete- or continuous-time affine models, whereas the Fridman and
Harris approach requires a discrete-time model with explicit conditional transition densities
plx,|x,_,; 6) forthelatent variable. Second, AML canaccommodate correl ations between observed
data and the latent variable evolution (e.g., correlated asset returns and volatility shocks), whereas
the regime-switching structure used by Fridman and Harrisrelies on conditional independence when

updating state probabilities. Both approaches generate filtered estimates X, ,, but the Fridman and

te
Harris approach can also readily generate smoothed estimates ft| - Finaly, the AML approach at
present lacks a systematic method of increasing the accuracy of Gt| , estimates, whereasitissimple

to increase the number of grid pointsin (24).

Themajor advantage of AML rel ative to moment- and simul ation-based approachesisthat it directly
providesfiltered estimates %, , for usein assessing risk or pricing derivatives. Most other methods
do not, and must append an additional filtration methodology. Melino and Turnbull (1990), for
instance, use an extended Kalman filter calibrated from their GMM parameter estimates. EMM
practitioners use reprojection. The MCMC approach of Eraker, Johannes, and Polson (2003)
provides smoothed but not filtered latent variable estimates, to which Johannes, Polson and Stroud

(2003) append a particle filter.

The other issueis, of course, how the various methods compare with regard to parameter estimation

efficiency. AML presumably suffers some loss of efficiency for poor-quality G

| @pproximations.

The performance of moment-based approaches depends upon moment selection. Ad hoc moment

selection can reduce the performance of GMM approaches, while EMM’s moment selection
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procedure asymptotically approaches the efficiency of maximum likelihood estimation. The latent-
variable empirical characteristic function approaches of Jiang and Knight (2002) and Carrasco et al.
(2003) can at best achieve the efficiency of a maximum likelihood procedure that uses the limited-
information densities p(y,|y,_;, - » ¥, 3 8). Giventhat L isin practicerelatively small, there may
be substantial efficiency losses relative to maximum likelihood estimation that uses the densities
p(y,]Y,_; 0). Conditional moment estimatesin (22) place considerableweight on thesignalsfrom

longer-lagged observations when the latent variable is persistent (i.e., when D, isnear 1).

It is not possible to state in general which approaches will work best for which models. However,
some guidance is provided by Andersen, Chung, and Sgrensen’s (1999) summary of the relative
estimation efficiency of various approaches for the benchmark log variance process. In Appendix
B, | develop the corresponding AML methodology, and append the results to those of Andersen et
a. TheJacquier, Polson and Rossi (1994) MCM C method competeswith Sandmann and Koopman's
(1998) approach for most efficient. The AML and Fridman and Harris (1998) approaches are almost
as efficient, followed by EMM, GMM, and the inefficient Kalman filtration approach of Harvey,
Ruiz, and Shephard (1994). And although Andersen et al. do not examine the latent-variable
empirical characteristic function approach, Jiang and Knight's (2002) moment conditions resemble

those of the GMM procedure and would probably perform comparably.

2. A Monte Carlo Examination of Parameter Estimation and Volatility Filtration
The above algorithm can be used with any discrete- or continuous-time model that generates a
discrete-timeexponentially affineconditional characteristic function of theform (1) above. Onesuch

process is the continuous-time affine stochastic volatility/jump process

{P'o +1, 7, - (A, +Ath)}]dt + \/Vt(p aw,, +y1 - pZdWZt) + (e™-1)dN,
av, (@ - B¥)dt + o/V,aw,

ds, /s,
(25)

where dS, /S, isthe instantaneous asset return,
V, isitsinstantaneous variance conditional upon no jumps,
w,, and W,, areindependent Wiener processes,

N, is aPoisson counter with intensity A, + A, ¥, for the incidence of jumps,
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Y, ~ N(y, 8%) isthe random Gaussian jump in the log asset price conditional upon ajump
occurring, and
k isthe expected percentage jump size: k = E(eyx - 1) —eVTHY

Thismodel generates an analytic, exponentially affine conditional characteristic function F for

observed discrete-time log-differenced asset prices y,,, = In(S,,,/S,) andvariancex,,, = V,,, that

t+1

isgiven in appendix A.2.

Variants of the model have been estimated on stock index returns by Andersen, Benzoni and Lund
(2002), Chernov, Gallant, Ghysels and Tauchen (2003), and Eraker, Johannes and Polson (2003).
All use simulation-based methods. Thefirst two papers (henceforth ABL and CGGT, respectively)
usethe SNP/EMM methodology of Gallant and Tauchen for daily stock index returnsover 1953-96
and 1953-99, respectively. The third paper (henceforth EJP) uses Bayesian MCMC methods for
daily S& P returns over 1980-99, aswell as NASDAQ returns over 1985-99. The latter two papers
also examinetheinteresting affine specification in which therearejumpsin latent variance that may

be correlated with stock market jumps.

2.1 Parameter estimates on simulated data

Totest theaccuracy of parameter estimation fromthe AML algorithmin section 1, 100 independent
sample paths of daily returns and latent variance were generated over horizons of 1,000 - 12,000
days(roughly 4 - 48 years) using aMonte Carlo procedure described in appendix A.6. Threemodels
were examined: a stochastic volatility (SV) process, a stochastic volatility/jump process (SVJ0)
with constant jumpintensity A, and astochastic volatility/jump process(SV J1) withjumpintensity
A,V,. Parameter values for the SV and SVJ1 models were based upon those estimated below in
Section 3. By contrast, the SV JO parameter values were taken from Eraker et al. (2003), in order
to replicate their study of MCMC parameter estimation efficiency. The EJP parameter values are
generally closeto those estimated below in section 3. However, the annualized unconditional non-
jump variance o/ is somewhat higher: (14.1%)?, as opposed to the AML estimate of (12.0%)>.

Parameters were estimated for each simulated set of returns by using the Davidon-Fletcher-Powell

optimization routine in GQOPT to maximize the log-likelihood function computed using the
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algorithm described above in Section 1. The true parameter values were used as starting values,
with parameter transformations used to impose sign constraints. In addition, the parameter space
wasloosely constrained to rule out the sometimes extreme parameter val uestested at the early stages
of quadratic hill-climbing; e.g., o € [.03, .50], |p| <.95, etc. Noneof theseconstraintswasbinding
at the final optimized parameter estimates, with one exception: the |y| <.15 constraint was
binding for 7 of the 100 SV J1 runs on the shortest 1000-observation data samples. Theserunshad
very low estimated jump intensities, and were from simulations in which only afew small jumps
occurred. As all seven estimates were observationally identical to the corresponding no-jump
estimates from the SV model, parameter estimates 4, = y = 8 = 0 were used for these runswhen
computing the summary statistics reported in Table 4. The problem reflects the difficulty of

estimating jump parameters on small data sets, and is not an issue for longer data samples.

Variousauthorsarguethat maximum likelihoodisill-suited for estimating mixturesof distributions.
Arbitrarily high likelihood can be achieved if the conditional mean equalssomedaily return and the
specification permits some probability of extremely low daily variance on that day.’ To preclude
this, all modelswere estimated subject to the additional parameter constraint 2« > o? —aconstraint
that was never binding at the final estimates. This constraint implies that latent variance cannot
attain itslower barrier of zero, and can be viewed asimposing astrong prior belief that thereis not

near-zero daily stock market variance when markets are open.

The optimizations involved on average 6-10 steps for the SV model and 9-15 steps for the SVJ1
model, with on average about 14 (18) log likelihood function eval uations per step for the SV (SVJ1)
model given linear stretching and numerical gradient computation. The optimizations converged
in fewer steps for the longer data sets. Actual computer time required for each optimization
averaged between 4 minutes (1000 observations) and 30 minutes (12,000 observations) for the SV
model, and between 10 and 80 minutesfor the SVJ1 model, on a3.2 GHz Pentium 4 PC. Estimation
of the SVJO model on 4000 observations averaged about 29 minutes per optimization.

®Hamilton (1994, p.689) discusses the issue in the context of regime-switching models.
Honoré (1998) raises the issue for jump-diffusion processes.
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Table2 summarizestheresultsof replicating the EJP Monte Carl o examination of MCM C parameter
estimation efficiency for the SV.JO model, on 4000-day samples with two jump intensities of 1.51
and 3.78 jumps per year, respectively. Overall, it would appear that AML parameter estimation
efficiency is broadly comparable to that of MCMC. Estimation biases are smaller for the AML
procedure, especially for the variance mean reversion parameter . The root mean squared errors
of parameter estimates are generally comparable, with neither MCMC nor AML clearly

dominating.*®

Tables 3 and 4 summarize the results for the SV and SV J1 models, respectively. The tables also
report results for parameters («, B, o) estimated by direct maximum likelihood conditional upon
observing the {I/t}th'ol sample path, using the noncentral x? transition densities and initial gamma
distribution. These latter estimates provide an unattainable bound on asymptotic parameter

estimation efficiency for those parameters, given latent variance is not in fact directly observed.

The AML estimation methodology appears broadly consistent, with the RMSE of parameter
estimatesroughly declining at rate 1/,/T. Theestimated bias (averagebiasrows) for all parameters

and parameter transformations also generally decreased with longer data samples.

There do not appear to be significant biasesin the estimates of jump parameters: the sensitivity A,
of jump intensities to changes in latent variance, or the mean and standard deviation of jumps
conditional upon jumps occurring. However, the A, estimates are quite noisy even with 48 years
of daily data. The RMSE of 21.0 is asubstantial fraction of the true value of 93.4.

There are substantial biases for two parameter estimates: the sensitivity p, of expected stock
returns to the current level of variance, and the parameter B that determines the seria correlation

and the associated haf-life of the variance process. The fi, biasremains even at 12000-day (48-

°Theresultsin EJP' s Table VI were converted into annualized units. In addition, it seems
likely that EJP are reporting standard deviations rather than root mean squared errors of parameter
estimates, since their reported RM SE’ sare occasionally less than the absolute bias. Consequently,
the EJP numbers were also adjusted using RMSE? = SD? + bias?. As estimated biases were
generally small, only the RMSE(B) numbers were significantly affected by this adjustment.
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year) samples; the B biasis still substantial at 16-year samples but disappears for longer samples.
Thelatter biasreflectsin magnified fashion the small-sampl e biasesfor apersistent seriesthat would
exist even if the ¥, serieswere directly observed, asisillustrated in the second sets of § estimates
conditioned upon observing 7,.** Here, of course, the values of latent variance must be inferred
from noisy returnsdata, which almost doublesthe magnitude of the biasrel ativeto the ¥, -dependent
estimates.

The estimates of some of the parameters of the latent stochastic variance process perform
surprisingly well. Daily returns are very noisy signals of daily latent variance, and yet the RMSE
of returns-based parameter estimates of /o/B and B istypically less than double that of estimates
conditioned on actually observing the underlying variance. Furthermore, the parameter estimates

are highly correlated with the estimates conditional on directly observing V, data.

An interesting exception isthe volatility of variance estimator 6. Were V, observed, its volatility
parameter ¢ would be pinned down quite precisely evenfor relatively small datasets; e.g., aRMSE
of .005 - .007 on data sets of 1000 observations. By contrast, when ¥, must beinferred from noisy
stock returns, the imprecision of the I7t| , estimates increases the RM SE of the 6 estimate tenfold.
Similar results are reported for the discrete-time log variance process in Appendix B. The mean
reversion parameter estimate for latent log variance has two to three times the RM SE of estimates
conditioned on actually observing log variance, while the RM SE of the estimate of the volatility

of log variance rises seven- to eightfold.

2.2 Filtration

A magor advantage of the filtration algorithm is that it provides estimates of latent variable
realizations conditional upon past data. Figure 1 illustrates how volatility assessments are updated
conditional upon the last observation for three models estimated below: the stochastic volatility
model (SV), the stochastic volatility/jJump model with constant jump intensities (SVJ0), and the
stochastic volatility/jump model with variance-dependent jump intensities (SVJ1l). For

See Nankervis and Savin (1988) and Stambaugh (1999) for a discussion of these biases.
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comparability with Hentschel’s (1995) study of GARCH models, the figure illustrates volatility
revisions (E,,, - E,),/V,.,, using the conditional moments® of ¥,,, and the Taylor approximation

ElyP] ~ JET7I [1 - l—V“"[V]}. 26

8 E[VT

Theestimateswere calibrated fromamedian volatility day with aprior volatility estimate of 11.4%,
and initial filtered gamma distribution parameters (x,, v,) = (.00229, 5.89).

All news impact curves are tilted, with negative returns having a larger impact on volatility
assessments than positive returns. All models process the information in small asset returns
similarly. Themost striking result, however, isthat taking jumpsinto account impliesthat volatility
updating becomes a non-monotonic function of the magnitude of asset returns. Under the SVJO
model, large movesindicate ajump has occurred, which totally obscuresany information in returns
regarding latent volatility for movesin excessof seven standard deviations. Under the SV J1 model,
the large-move implication that a jump has occurred still contains some information regarding
volatility, given jump intensities are proportional to latent variance. Neither case, however,
resembles the U- and V-shaped GARCH news impact curves estimated by Hentschel (1995).

Figure 2 illustrates the accuracy of the volatility filtration Et\/Vt conditional upon using the true
parameters, for thefirst 1000 observations (four years) of a 100,000-observation sample generated
from the SVJ1 model. The filtered estimate tracks latent volatility quite well, with an overall R?
of 70% over the full sample. Changesin filtered volatility perforcelag behind changesin thetrue
volatility, since the filtered estimate must be inferred from past returns. The absolute divergence
was usually less than 5% (roughly 2 standard deviations), but was occasionally larger. To put this
error in perspective: thevolatility estimate in mid-sample of 15% when the true volatility was 10%
represents a substantial error when pricing short-maturity options. The magnitude of this error

reflects the low informational content of daily returnsfor estimating latent volatility and variance.

The mean and variance of ¥, , can be derived from those of 7, (x,v, and KV,
respectively) by using (A.2). The mean and variance of Vi1 &€ updated from (x,, v,)
conditional on the observed asset return by using the algorithmin (13) - (15).
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2.2.1 Filtration diagnostics

A key issue is whether force-fitting posterior distributions into a gamma distribution each period
reduces the quality of thefiltrations. Two sets of diagnostics were used on simulated data. First,
the accuracy and informational efficiency of the variance filtration was compared with various
GARCH approaches and with Gallant and Tauchen’s (2002) reprojection technique. Second, the
extent of specification error in conditional distributions was assessed using higher-moment and
guantile diagnostics. The diagnostics were run on two 200,000-day (794-year) data sets simulated
from the SV and SV J1 processes, respectively. The first 100,000 days were used for in-sample
estimation and testing, while the subsequent 100,000 days were used for out-of-sample tests.

Three GARCH models were estimated on the SV ssimulated data:  the standard GARCH(1,1) and
EGARCH specifications, and Hentschel’ s(1995) generalization (labeled HGARCH) that neststhese
and other ARCH specifications. Filtration performance was assessed based on how well thefiltered

volatility and variance estimates tracked the true latent values, as measured by overall R2.

As shown in Table 5, the approximate maximum likelihood SV filtration outperforms all three
ARCH models, when either thetrue SV parametersor the parametersestimated fromthefull sample
are used. However, the EGARCH and HGARCH specifications that take into account the
correlations between asset returns and volatility shocks perform almost as well as the SV model,

when estimating latent volatility and variance from past returns.

For the SVJ1 data with jumps, the ARCH models were modified to t-ARCH specifications to
capturethe conditionally fat-tailed property of returns. Despitethe modification, thet-GARCH and
t-EGARCH filtrations performed abysmally, while even thet-HGARCH specification substantially
underperformed the SV J1 filtration The problemis, of course, the jumps. Asillustrated in Figure
1, the optimal filtration under the postulated stochastic volatility/jump process is essentialy to
ignorelargeoutliers. The GARCH failureto do thiscan generate extremely high volatility estimates
severely at odds with true latent volatility. For instance, the simulated data happened to include a
crash-like-21% return. The (in-sample) annualized volatility estimates of 108%, 159%, and 32%
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from the t-GARCH, t-EGARCH and t-HGARCH models for the day immediately after the outlier
greatly exceeded the true value of 10%.

The informational efficiency of the algorithm’s filtrations was assessed using a reprojection
technique based on that in Gallant and Tauchen (2002). The true variance ¥, was regressed on

current and lagged values of the filtered variance estimates V.

;- & well as on lags of returns and

absolute returns and a constant.** Comparing the resulting R 2’ swith those of the AML algorithm
testsjointly for forecasting biases and for any information not picked up by the contemporaneous
filtered estimate I7t|t.l4 The lag length was set equal to 4.32In2/p (4.32 half-lives of variance
shocks), which implies from (22) that less than 5% of the potential information in the omitted data
from longer lagsis till relevant for variance forecasting. Given B estimates, this generated 128-
and 178-day lag lengths of the three dependent variables, for the SV and SV J1 model srespectively.

All regressionswererun in RATS.

The reprojection results in Table 5 indicate very little information is picked up by the additional
regressors. In-sample, the R?’s of the variance estimates increase only from 69.0% to 69.5% for
the SV variances generated from the SV process, and from 70.0% to 70.6% for the SV J1 variances.
In the out-of-sampl e tests, there is virtually no improvement in forecasting ability. Thein-sample
increases in R? are of course statistically significant, given amost 100,000 observations.
Nevertheless, the virtually comparable R? performance suggests little deterioration in latent

variance estimation from approximating prior distributions by an gamma distribution.

2.2.2. Diagnostics of conditional distributions
Two additional diagnostics were used to assess how well gamma approximations captured the
overall conditional distributionsof latent variance. Thefirst diagnostic was based upon computing

higher conditional moments of posterior distributions. The algorithm uses only the posterior mean

BGallant and Tauchen (2002) use lagged variance estimates from their SNP-GARCH
approach as regressors.

YTesting the improvement in R? via an F-test is statistically equivalent to examining

A

whether the regressors have any explanatory power for the residuals 7, - Vie:
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and variance of the latent variable as inputs to next period’s prior distribution. However, the
posterior skewness and excess kurtosis can be computed by similar numerical integration methods,
and compared with the gamma-based values of 2/,/v,,, and 6/v,,,, respectively.

The results reported in Table 6 indicate the posterior distributions of latent variance from the SV
model are invariably positively skewed and leptokurtic. The divergences in moments from the
gamma moments are positive but near zero on average, and with a small standard deviation.
Overdl, it would appear that the gamma posterior approximation generally does a good job.
However, the min/max ranges for moment divergences indicate there are specific days on which a

more flexible specification might be preferable.

The posterior momentsfor the SVJ1 model arealso generally closeto thegammamoments. Again,
however, there are specific days in which amore flexible specification is desirable. In particular,
the posterior distribution can occasionally be negatively skewed and platykurtic. Thisreflectsthe
fact that the posterior distributions for latent variance from the SVJ1 model are mixtures of
distributions: the posterior distributions conditional upon n jumps occurring weighted by the
posterior probabilities of njumps. For dayswith substantially ambiguity ex post regarding whether
ajump hasor has not occurred, the posterior distribution for latent variance can be multi-modal and

platykurtic.

It should be emphasized that all of the above posterior moment computations involve updating
conditional upon agamma prior distribution. As such, they provide a strictly local diagnostic of
whether a more flexible class of distributional approximations would better capture posterior

distributions at any single point in time.

A second diagnostic was used to assess the overall performance of the approximate conditional
distributions: the frequency with which simulated V7, realizations fell within the quantiles of the
conditiona 7,

/| 9amma distributions. The realized frequencies over runs of 100,000 observations

indicatethegammaconditional distributionsdo on average capturetheconditional distributionof 7,

realizations quite accurately:



28

Quantile p: 010 .050 .100 .250 .500 .750 .900 .950 .990
SV 008 .042 .089 .232 .478 .734 .891 .944 987
Sval 008 .042 .086 .227 .469 .722 .879 .935 .983

Theaboveresultswerefor filtrations using thetrue parameter vector 8. Theresultsusingin-sample
estimated & wereidentical.

In summary, the approximate maximum likelihood methodology performswell on simulated data.
Parameter estimation is about as efficient as the MCM C approach for two processes for which we
have benchmarks: the discrete-time log variance process, and the continuous time stochastic
volatility/jump process SVJO. Volatility and variance filtrations are more accurate than GARCH
approaches, especially for processes with jumps, whilethefiltration error isvirtually unpredictable
by EMM-style reprojection. Finaly, the mean- and variance-matching gamma conditional
distributions assess the quantiles of variancerealizations quite well on average. However, thereare

individual days for which matching higher moments better would be desirable.

3. Estimates from Stock Index Returns

For estimates on observed stock returns, | usethe 11,076 daily S& P 500 returns over 1953 through
1996 that formed the basis for Andersen, Benzoni and Lund’s (2002) EMM/SNP estimates. | will
not repeat the data description in that article, but two commentsarein order. First, Andersenet al.
prefilter thedatato removean MA (1) component that may beattributableto nonsynchronoustrading
intheunderlying stocks. Second, therewerethree substantial outliers. the-22% stock market crash
of October 19, 1987, the 7% drop on September 26, 1955 that followed reports of President
Eisenhower’ s heart attack, and the 6% mini-crash on October 13, 1989.

Thefirst three columnsof Table 7 present estimates of the stochastic volatility model without jJumps
(SV) from Chernov et a., Andersen et al., and the AM L methodology of this paper.™ As discussed
in CGGT, estimating the parsimonious stochastic vol atility model without jumpscreatesconflicting
demandsfor the volatility mean reversion parameter  and the volatility of volatility parameter o .

Extreme outliers such as the 1987 crash can be explained by highly volatile volatility that mean-

5The ABL estimates are from their Table IV, converted to an annualized basis.
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revertswithindays, whereasstandard volatility persi stence suggestslower volatility of volatility and
slower meanreversion. In CGGT’ sestimates, the former effect dominates; in ABL’ sestimates, the

|atter dominates.

AML estimates are affected by both phenomena, but matching the volatility persistence clearly
dominates. While constraining o tothe CGGT estimate of 1.024 substantially raisesthelikelihood
of the outliersin 1955, 1987, and 1989, this is more than offset by likelihood reductions for the
remainder of the data. The overall log likelihood falls from 39,234 to 39,049 — astrong rejection
of the constraint with an associated P-value lessthan 107'¢. And although the CGGT datainclude
afew outliersin 1997-99 that are not in the ABL data used here, the likelihood impact per outlier

of alarger 6 seemsinsufficient to explain the difference in results.*®

Although my stochastic volatility parameter estimates are qualitatively similar to those of ABL on
the same data set, there are statistically significant differences. In particular, | estimate a higher
volatility of volatility (.315 instead of .197) and faster volatility mean reversion (half-life of 1.4
months, instead of 2.1 months). The former divergenceisespecially significant statistically, given
a standard error of only .018." The estimate of the average annualized level of variance is also
higher: (.125)?, rather than (.112)%. The estimates of the correlation between volatility and return
shocks are comparable. The substantial reduction in log likelihood of the six ABL parameter
estimates is strongly significant statistically, with a P-value of 107, It appears that the two-stage
SNP/EMM methodology used by Andersen et a. generates a objective function for parameter
estimation that is substantially different from my approximate maximum likelihood methodol ogy.

Asfoundintheearlier studies, adding ajump component substantially improvesthe overal fit. As

indicated in the middle three columnsof Table 7, | estimate amore substantial, less frequent jump

%1t ispossiblethe differencein estimatesis attributabl e to how different specifications of the
SNPdiscrete-timeauxiliary model interact with outliers. ABL specify an EGARCH-based auxiliary
model to capture the correlation between return and volatility shocks. CGGT use a GARCH
framework, and capture the volatility-return correl ation through termsin the Hermite polynomials.

"The Monte Carlo RMSE resultsin Tables 2 and 3 for 12,000-observation data samples
indicate that the estimated asymptotic standard errorsin Table 7 are in general reliable.
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component than previous studies: three jumpsevery four years, of average size-1.0% and standard
deviation 5.2%. Asoutliers are now primarily explained by the jump component, the parameters
governing volatility dynamics are modified: o drops, and the half-life of volatility shocks
lengthens. The divergence of parameter estimates from the ABL estimates is again strongly

significant statistically.

Bates (2000) shows that a volatility-dependent jump intensity component A, ¥, helps explain the
cross-section of stock index option prices. Some weak time series evidence for the specificationis
provided in Bates and Craine (1999), while Eraker et al. (2003) find stronger empirical support. In
contrast to the results in ABL, the final column of Table 7 indicates that jumps are indeed more
likely when volatility ishigh. The hypothesisthat A, = 0 isrejected at aP-value of 5x 1078, The
time-invariant jump component A, ceases to be statistically significant when A, is added. The
Monte Carlo simulationsin Table 4 establish that the standard error estimates are reasonable, and

that the AML estimation methodology can identify the presence of time-varying jump intensities.

Standard maximum likelihood diagnostics dating back to Pearson (1933) can be used to assess
model specification. Asin Bates (2000), | use the normalized transition density

Ye1 = N [CDF(y,,,|Y,, 6)] (27)

where N7! is the inverse of the cumulative normal distribution function, and the cumulative
distribution function CDF is evaluated from the conditional characteristic function by Fourier
inversion given parameter estimates 0. Under correct specification, the y*’'s should be

independent and identical draws from anormal N(0, 1) distribution.

Figure 3 examines specification accuracy using normal probability plotsgenerated by Matlab, which
plot the theoretical quantiles (line) and empirical quantiles (+) against the ordered normalized data
y*. Unsurprisingly, the stochastic volatility model (SV) is unable to match the tail properties of
the data; there are far too many extreme outliers. The models with jumps (SVJO, SVJ1) do
substantially better. However, both have problems with the 1987 crash, which is equivalent in

probability to a negative draw of more than 5 standard deviations from a Gaussian distribution. As
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such moves should be observed only once every 14,000 years, the single 1987 outlier constitutes

substantial evidence against both models.

To address thisissue, an additional stochastic volatility/jump model SV J2 was estimated with two
separate jump processes, each with ¥,-dependent jump intensity.*® The resulting estimates for the

stochastic volatility component are roughly unchanged; the jump parameters become

Prob[dN,,=1] = 131.17,, In(1+k,) ~ N[ .001, (.029)*]

28
Prob[dN,,=1] = 24V,, In(1+k,) ~ N[-.222, (.007)*]. )

The conditional distribution of daily returnsisapproximately amixture of threenormals: diffusion-
based daily volatility that varies stochastically over arange of .2% - 1.8%, infrequent symmetric
jumps with alarger standard deviation of 2.9% and atime-varying arrival rate that averages 1.85
jumpsper year, and an extremely infrequent crash corresponding to the 1987 outlier. Loglikelihood
rises from 39,309.51 to 39,317.81 -- an improvement almost entirely attributable to a better fit for
the 1987 crash. Theincrease in log likelihood has a marginal significance level of .0008 under a
likelihood ratio test, given 3 additional parameters.

The y *-scorefor the 1987 crash dropsin magnitude, to amore plausible value of -3.50. Asshown
in Figure 3, the resulting empirical and theoretical quantiles for the SVJ2 model are much more
closely aligned. However, thereremain small deviationsfrom perfect alignment that indicate some

scope for further model improvement.

3.1Filtration

Figure 4 illustrates the filtered estimates of latent volatility \/Vt from the SVJ1 model, and the
difference between SVJ1 and SV volatility estimates. Those estimates are generally almost
identical, except following large positive or negative stock returns. For instance, the 1955 and 1987
crashes have much more of an impact on volatility assessments under the SV model than under the

jump models.

BMultiple-jump processes are equivalent to a single-jump process in which the jump is
drawn from a mixture of distributions.
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The number of jJumps on any given day is aso alatent variable that can be inferred from observed
returns. Itisshownin Appendix A that the joint conditional distribution of log-differenced asset
prices and the number of jumps AN,,, = N,,, - N, hasan affine specification. Consequently, the

characteristic function G, y(i€| Y,,,) = E[eiEAJ\’,+1

¥:.1» ¥,] can be evaluated by Proposition 1.

Whileit is possible to evaluate the daily probability that n jumps occurred by Fourier inversion of
G,y itissimpler to estimate the number of jumps. E[AN,,,|Y,,,]1 = G,,'(0]Y,,,). Atthedaily
horizon, AN,

t

probability that ajump occurred. Unsurprisingly from Figure 5, large movesare attributed to jumps

. 1S essentially binomial, and the estimated number of jumps is approximately the

and small moves are not. Intermediate moves of roughly three to five times the estimated latent
standard deviation imply asmall probability that ajump occurred. It isthe accumulation of these
small jump probabilities for the moderately frequent intermediate-sized moves that underpin the
overall estimate of jump intensities; e.g., .744 jumps per year in the SV.JO model.

4. Implicationsfor Option Prices

One of the major advantages of using affine processesistheir convenience for pricing options. If
thelog of thepricing kernel isalso affinein the state variables, the“ risk-neutral” asset price process
used when pricing optionsis also affine, and options can be rapidly priced by Fourier inversion of
the associated exponentially affine characteristic function. Under the risk-neutral parameters 0™,

the upper tail probability conditional upon knowing latent variance V, is

P,

Prob*[In(S,,,/S,) > In(X/S,)| V]

1 1 peexp[C*(i®,0;T)+D*i®, 0;T)V, - i®In(X/S,)] i (29)
= 4+

2 2n f oo i®

where C*(e) and D *(*) arevariantsof C(s) and D(*) evaluated at the risk-neutral parameters 0*
andtimeinterval T. Thevaluefor aEuropean call option ¢(S,, V,, T; X') withmaturity T and strike

price X can be evaluated by using dc/0X = -e "1 P,, substituting (29) for P,, and integrating with
respect to X:
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-dT 1 1 e eC*(i!D, 0;T) + D*i®,0; T)V, - i® In(X/S,)
oS, Vs T3 X) = S,e™ - eTX| -+ | dd| (30)
2 21nJ - id(1-id)

where d, is the current dividend yield, and the ex-dividend spot price Ste_d'T is a constant of
integration determined by the value of a call option with zero strike price.’® Given the affine
structure inside the integrand in (30), an econometrician’s valuation of a European call option

conditional upon observing past returns ¥, and the current asset price S, is
CSt’ T;X|Yt) = E[C(St’ Vt’ T;X) |Yt’ St]

) . eC*(ifI), 0; T)G D* lq), 0, T e‘ i®In(X/S) (31)
= S,e 4T _ x|l if gdD ) do|.
2 2ml- i®(1 - iD)

The filtration used in estimating the conditional characteristic function G¢|,~(') of current latent
variance is based on the objective parameter values, not the risk-neutral parameters. The option
vauationin (31) isroughly equivalent to using afiltered variance estimate I7t| . In(30) and adding

a Jensen’sinequality correction for state uncertainty Py,

Therisk adjustmentsincorporated into the divergence between theactual parameters 8 and therisk-
neutral parameters 6 depend upon the pricing kernel M,. The general affine pricing kernel

specification commonly used in the affine literature takes the form

dinM, = p_dt - RdInS, - R,dV, - R,y dN,, (32)

where p, is such that E,(dM,/M,) = -r,dt. This reduced-form specification nests various
approaches. For instance, thesubmodel with R, = R, = 0 isthemyopic power utility pricing kernel
used in the implicit pricing kernel literature, and in Coval and Shumway’s (2001) empirical
examination of the profits from straddle positions. If S, is viewed as a good proxy for overall

wealth, Rmeasuresrelativerisk aversion. Moregenerally, Rreflectsthe projection of pricing kernel

*Thisapproachisequivalent to but more efficient than the approachesin Bates (1996, 2000)
and Bakshi and Madan (2000). Those approachesrequiretwo univariate integrations, whereas (30)
has only one, with an integrand that falls off more rapidly in ®@. Carr and Madan (2000), Lewis
(2001) and Attari (2004) have derived similar formulas by alternate methods.
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innovations upon asset returns, and can be greater or less than the coefficient of relative risk

aversion.

R, determines a volatility risk premium in addition to the wealth-related effect that volatility
innovations tend to move inversely with stock market returns. While theoretically zero under
myopic preferences such as log utility, R, will diverge from zero for representative agents
concerned with volatility-related shifts in the investment opportunity set. Bakshi and Kapadia
(2003) and Coval and Shumway attribute the overpricing of stock index optionsto a significantly
negative R,,. Similarly, R, determinesthe additional risk premium on market stock jumps beyond
the direct wealth-related effects on marginal utility captured by RdInsS,. Non-zero R, can ariseif
there are jump-related changes in investment opportunities (volatility-jump models) or in
preferences (e.g., habit formation models), or if investorsaredirectly averseto jumps (Bates, 2001)
or to jump estimation uncertainty (Liu, Pan, and Wang, 2004). R, will also differ from zero if the
jump-contingent projection of pricing kernel innovations on asset returns diverges from the

diffusion-based projection.

Using this pricing kernel, the objective and risk-neutral processes for excess returns for the SV.J2

model will be of the form

ODbjective measure:

2
dS,/S, + (d,-r)dt = p,V,dt + \/Vt(p aw,, +y1- Pdezt) £y { -1)dN, - AV, k,dt
i (39)

t

dv, = (a - BV,)dt + ofV,dw,

Risk-neutral measure;

2
ds,/S, + d, - r)dt = [V, (p dw,; +y1- dWZt) + Z ~1)dN; —A,.*V,%jdt}
= (34)

dv, = (a - B*V,)dt + o/V,dw,;

where W,, and W,, areindependent Wiener processes,
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N,, are Poisson counters with instantaneous intensities A, 7, for i = 1,2;
Y; ~ N(y i 6?) IS the jump size of log asset prices conditional upon ajump occurring;
%i = exp (Y - %6?) - 1 isthe expected percentage jump size conditional upon ajump;
Ay, E) are the corresponding values for the risk-neutral process (34); and
W, and N, are the corresponding risk-neutral Wiener processes and Poisson counters.
If dividendyieldsand interest ratesare nonstochastic, (34) isalso therisk-neutral processfor futures

returns used in pricing futures options.

Theaffine pricing kernel constrains both objective and risk-neutral parameter values. Asdiscussed
in Bates (1991, Appendix 1), the instantaneous equity premium estimated under the objective

probability measureis

ds,\ ( dM,
(uo +u, vV, +d - rt)dt = -E, Tt M . (35)
For the SVJ2 model, thisimplies
Ho = 0
2
K, =R +R,po +Z(A,*E _A’i%i)’ (=0)
i=1
while the risk-neutral parameter values used in pricing derivatives are
: dM,
A; = ME|1+ |dN, =1
M,
= Aiexp[—(R +R)Y, + %R +RJ)26§]
Y; =¥, + Cowy,, dinM,|dN,=1)
_ (37)
=y, - R +RJ)6?
dv, dM
B* — _ _t t
V. M,

=B +Rpo +R,0°%.
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4.1 Estimated option prices

Toillustrate the option pricing implications of the AML estimation methodology, | will focus upon
the myopic power utility pricing kernel, with R, = R, = 0. Thisisdonefor two reasons. First, the
appropriaterisk adjustmentsfor pricing options can be estimated sol el y from past stock index excess
returnsunder the AML methodol ogy presented above, whereaspricing volatility or jumprisk premia
under other specificationsrequiresincorporating additional information from option pricesor option

returns.

Second, the power utility pricing kernel is a useful performance measure that has been previously
employed for assessing returns on options (Cova and Shumway, 2001) and on mutual funds (e.g.,
Cumby and Glen, 1990). It isalso the standard benchmark against which implicit pricing kernels
are compared (Rosenberg and Engle, 2002; Bliss and Panagirtzoglou, 2004). While equivalent to
aconditional CAPM criterion when stock market and option returnsare approximately conditionally
normal, using a power utility pricing kernel is more robust to the substantial departures from
normality observed with returnson out-of -the-money options.?® L argedeviationsof observed option
prices from the power utility valuations indicate investment opportunities with an excessively
favorable conditional return/risk tradeoff. Of course, it is possible that such investment
opportunities can be rationally explained by investors aversions to time-varying volatility or to

jump risk, which would show up in non-zero R, or R,.

Since (33) requires excess returns, the ABL data were adjusted by monthly dividend yields and 1-
month Treasury bill rates obtained from the Web sites of Robert Shiller and Ken French,
respectively. In addition, the ABL data set was extended through 2001 using CRSP data, for use
in out-of-sample tests. Since the substantial autocorrelations in daily S&P 500 index returns
estimated by Andersen et al. (2002) over 1953-96 were not apparent over the post-1996 period, post-

'96 excess returns were used directly, without prefiltration.

©Goetzmann, Ingersoll, Spiegel and Welch (2002) discuss problems with the traditional
Sharpe ratio performance measure when funds can take positions in options.
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Table 8 contains estimates of the SV J2 model on returns and excess returns, and the corresponding
estimatesof therisk-neutral parametersunder the myopic power utility pricing kernel. Unsurprising,
the unconstrained SV J2 estimates on raw and excess returnsin the first two rows of each panel are
virtually identical, except for adifferencein the mean parameter p, . Thedividend and interest rate

series are smooth, inducing little change in the estimates of volatility dynamics and jump risk.

Affine pricing kernel modelsimply that u, = 0 for the SVJ2 model. The estimated sensitivity p,
of the equity premium to the current level of variance determinestherisk aversion parameter R for
the power utility pricing kernel, and constrains the risk aversion parameters for other models. In
Table8, the p, = 0 constraint isborderlineinsignificant, withamarginal significancelevel of 6.8%
under alikelihood ratio test. The risk aversion estimate is approximately 4. The implications for
the risk-neutral parameters used in option pricing are twofold. First, the risk-neutral frequency of
'87-like crashes is more than double that of the objective frequency. Second, the risk-neutral
volatility dynamics implicit in the term structure of implied volatilities involve somewhat slower
mean reversion to a somewhat higher level: ahalf-life of 2.0 months rather than 1.8 months, and
along-run level of (12.8%)? instead of (11.9%)2.

For comparison, daily settlement prices for the Chicago Mercantile Exchange' s American options
on S&P 500 futures and the underlying futures contracts were obtained from the Institute for
Financial Markets, for the option contracts’ inception on January 28, 1983 through June 29, 2001.
The use of end-of-day option prices synchronizes nicely with the AML variance filtration, which
uses closing S& P 500 index returns. The shortest-maturity out-of-the-money call and put options
with amaturity of at least 14 days were selected. The corresponding implicit standard deviations
(ISD’s) were computed using the Barone-Adesi and Whaley (1987) American option pricing
formula, for comparison with those computed from AML European option price estimates. In

addition, a benchmark at-the-money |SD was constructed for each day by interpolation.

ZA minor issue is the difference between American and European options, and the
computation of associated ISD’s. The price of an American futures option is bounded below by the
European price, and bounded above by the future value of the European price. The resulting error
in annualized European at-the-money 1SD estimates is bounded by iISbtx rT (£0.04% on
December 31, 1996), while the errors for out-of-the-money 1SD estimates are even smaller.
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Figure 6 shows the observed and estimated volatility smirks for out-of-the-money put and call
options on December 31, 1996, which was the last day of the ABL data set. Several results are
evident. First, the ISD’s estimated from stock index returns exhibit a substantial volatility smirk.
This smirk partly reflects the negative correlation between asset returns and volatility shocks, but
also reflects the substantial and time-varying crash risk — in particular, the estimated risk of
infrequent ‘87-like crashes.

Second, estimatesareimprecise. Option price estimates and the associated | SD’ s contain two types
of error:
parameter estimation error, with variance % Var (0) % , and
0

2
P

tt

filtration error (or state uncertainty), with variance ( g

ov

t|t

The at-the-money estimated ISD contains little parameter uncertainty, reflecting the relative
robustness of volatility estimates to model specification. However, there is considerable state
uncertainty regarding the current level of ¥, and the at-the-money ISD. This state uncertainty
reflectstherelatively low informational content of daily returns, and could bereduced by using more
informative data sources. Out-of-the-money put and call option prices are less affected by state
uncertainty, but are more affected by parameter uncertainty. This reflects the difficulties in
estimating thejump parameters, which are of key importancein determining the probability of these

options paying off.

Third, the deviations between estimated and observed 1SD’ s were sometimes large enough to be
statistically significant. S& P 500 futures options were mostly overpriced on December 31, 1996,
from the perspective of a myopic power utility investor with a risk aversion of 4 who is 100%
invested in S& P 500 stocks. This sort of overpricing is responsible for the high Sharpe ratios
reported by various authors for option-selling strategies.

Figure 7 shows at-the-money 1SD’ s for short-maturity options over 1983-2001, the corresponding
AML filtered ISD estimates, and the divergence between the two. The estimates prior to 1997 are
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“in-sample,” inthat the parameter estimates underlying thefiltration are from the full 1953-96 data
set. The post-1996 filtered estimates are out-of-sample.

Overadl, the filtered estimates track the at-the-money option ISD’s reasonably well. There are,
however, some interesting and persistent deviations between the two series. For instance, at-the-
money options were substantially overpriced during the two years preceding the 1987 crash, when
judged against the time series estimates of appropriate risk-adjusted value. The extent of the
overpricing soared after the crash but gradually dwindled over 1988-91, only to re-emergein late
1996 and in subsequent years. The mispricing was especially pronounced following the mini-crash
of October 1997, and in the fall of 1998. Overall, option overpricing was most pronounced when
observed and estimated 1SD’ s were both relatively high — aresult mirroring standard results from
regressing realized volatility on 1SD’s.

Over 1988-96, I SD’ s averaged 2.2% higher than the time series valuations, while the average gap
was 4.6% over 1997-2001. Itispossiblethat thisgreater gap reflects out-of-sampleinstabilitiesin
the time series model. However, it seems more plausible to attribute it to structural shiftsin the
stock index options market —in particular, to the bankruptcy of Long Term Capital Management in
August 1998. By 2000, estimated |1SD’ s were again tracking observed ISD’ sfairly closely.

5. Conclusions and Extensions

This article has presented a new approximate maximum likelihood methodology for estimating
continuous-time affine processes on discrete-time data: both parameter values and latent variable
realizations. Resultson simulated dataindicate the parameter estimation efficiency isexcellent for
those processes for which we have performance benchmarks. Furthermore, the approach directly
generates a filtration algorithm for estimating latent variable realizations, of value for risk
management and derivatives pricing. Most other approaches must append an additional filtration

procedure to the parameter estimation methodology.

The AML approach was used to estimate the parameters of an affine stochastic volatility/jump

process, using thedataset of Andersen, Benzoni and Lund (2002). Parameter estimatesweresimilar
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to the EMM-based estimates of Andersen et al., but differ in statistically significant fashions. In
particular, | find agenerally higher volatility of volatility, amore substantial jump component, and
strong support for the hypothesis that jumps are more likely when volatility is high. Furthermore,
Monte Carlo simulations establish that the AML estimation methodol ogy canreliably identify these

phenomena.

My methodology differs substantially from the SNF/EMM methodology used by Andersen et al.,
so the source of divergenceisnot immediately apparent. 1t doesappear that the EMM methodol ogy
may be sensitive to precisely how the auxiliary discrete-time SNP model is specified — especially
in the presence of infrequent large outliers such asthe 1987 crash. Chernov et al. (2003) find very
different estimatesfrom Andersen et al. for the stochastic volatility model, for asimilar data set but
adifferent auxiliary model. A Monte Carlo examination of whether the EMM estimation procedure

isindeed robust to stochastic volatility/jump processes would appear desirable.

This article has focused on classical maximum likelihood estimation. However, the recursive
likelihood eval uation methodol ogy presented here can equally be used in Bayesian estimation, when

combined with a prior distribution on parameter values.

More recent research into volatility dynamics has focused on the additional information provided
by alternate data sources; e.g., high-low ranges, or “realized” intradaily variance. Furthermore, it
appears from Alizadeh, Brandt and Diebold (2002) and Andersen, Bollerslev, Diebold and Ebens
(2001) that the additional data are sufficiently informative about latent variance that single-factor
models no longer suffice. The complexities of using alternative data sources in conjunction with

multi-factor models of latent variance will be explored in future research.
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Appendix A
A.1 Conditional moment dynamics

For fully affine stochastic processes, the conditional joint cumulant generating function is

In F(®, ¢ |Yt) = 1nE[ecI>ym + P, Y,]
= CU@,¢) + C(D,¥) y, + g,[D(®, §)]

(A1)

where gt|t(l|1) = lnE'[ewx’|Yt] is the cumulant generating function of latent x, conditional upon
using the approximate maximum ikelihood filtrationand observing data ¥,. Conditiona meansand
variances can be evaluated by taking derivatives of the joint cumulant generating function:

A

0 /
Etyt+1 - C<I> + CtI)))yt + gt|t(0)DtI)
0 A
C(I) + C(I);yt + xt|tD<I>

. 0 .
Xeje = Cy * leyt + xt|th; (A.2)

0 / 1 2

Prae = Cyy * qfq;yt + 81A0) Dy, + £4:(0) Dy
0 A 2
C‘II'IJ * ‘l;rlllyt + xt|tD1pq: + Pt|tDlIJ

whereall derivativesof C° C* andD areevaluatedat ® = ¢ = 0. Thefirst and second derivatives

of e evaluated at D(0, 0) = 0, give the time-t conditional mean and variance of x,.

Conditional moment dynamics can be evaluated by writing each noncentral moment as the sum of
the prior expectation and the revision in expectationsin light of new data. For conditional means

thistakestheform

0
Vi1 C<I> Cg D<I> Vi Uy
X = + . + (A.3)
Xpr1|141 C,ﬁ C,ﬁ) DlIJ X\t Vst

A

whereu,,, =y,,, - E, y,,andv, =%

re1jee1 ~ Xpa1)e- USING the same approach for revising the

conditional second noncentral moment of the latent state variable yields
A2 A2 A A 2
(Pt+l|t+1 * X)) = (Pt+1|t t X)) v Ey - E) X (A.4)

and x

Substituting in the expressions for P, rol e

t+1|t

from (A.2) above yields the dynamics of
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conditional variance:

P

t+1]£+1

0 . 2 2
= Cyy * Cyp¥, + Dyy e ¥ Dy Py + Weq — ), (A.5)

where w,,, = (E

t+1 t

- E)x;y - 2v,,(Cy + CJy, + D, %,). This, aong with (A.3), yields the

vector autoregression for conditional moments that is given in (22).

The dynamics of the higher noncentral conditional moments of x,,, and y,,, can be evaluated

t+1

similarly, using derivatives of the moment generating function

cY%@, ¥) + C¥(@,

F@,¢|¥) = <@V OVG ID@, y)] (A.6)
to evaluate E,x,%, and E, y,, for arbitrary integer m. The mth derivative of G,,, evaluated at
D(0,0) = 0, isthe noncentral conditional moment £, x,”.

A.2 Joint moment gener ating functions from continuous-time affine processes
Let
F(®, §,E|s, V,N,t,T) = E[e™7 V" |5 7, N,] (A.7)

bethejoint moment generating function of thefuturevariables z . = (s, V;, N;) conditional upon
observing z, today, where s, isthe log asset price, V, isthe instantaneous variance, and N, is a

Poisson counter. Since F isaconditional expectation, it isamartingale:

E[dF(+|s, V,, N1, T)| = 0. (A.8)
Expanding this by the jump-diffusion generaization of 1t6’s lemma yields the backwards
Kolmogorov equation that F must solve for a given stochastic process. For the affine processesin

this article, the solution is exponentially affine in the state variables, and depends on the time gap

T = T -t between observations:

F(®@,¥,&|s, V,, N;t) = exp[@s, + EN, + C(®,¥,E;7) + D@, ¥, E; DV,]. (A.9)

By It6’'s lemma, the stochastic volatility/jump-diffusion in equation (25) implies alog asset price
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evolution of the form

ds, = |Bo+ (b =RV, - (hy + MVE|de + 7, (p aw,, + 1 - dWZt) + y,dN, 10
v, = (@ - BV)dt + o7,dw, '

where (W,,, W,,) are independent Brownian motions, N, is a Poisson counter with intensity
Ay + AV, v, isnormally distributed N(Yy, 8%),and k = ¥ * %% - 1. Thecorresponding backwards

Kolmogorov equation for F is

FT=[}.I.0+(p,1—1/2)V—(A. +A‘1Vt)%]Fs + (“_BV,‘)FV

+ BV, (F, + 2po, F, + oiFVV) (A.11)
+ (Ag + AV)E[F(e|s,+Y,,N,+1,V,51) - F

which is solved subject to the boundary condition

eCI>s,+ YV, +EN,

F(®, W, E|s,, V,, N,y T=0) = (A.12)

Plugging (A.9) into (A.11) yields a recursive system of ordinary differential equationsin t that
C(s; ) and D(e; ) must solve, subject to the boundary conditions C(e; 0) = 0 and D(s; 0) = ¢

The resulting solutions are:

C@, P, E; 1) = p, @t - %[po@ - B - Y(®,E)] + A,TE(D,E)
20 1-eY@®0r 2a
—1 1 + d - -

2 n [po,®-B - v(P,E)] @5 02

(A.13)
n[1- K(®,&;1)¥]

vd2 + (I‘l'l —1/2)(1) + AIE(¢>E) + A((I),E,T)III

Y@, E) eY@01 1 + B - pod 1-K®,E1Y (A.14)
7T @Bt _ g

D(®, ¢, & 1) = 2

where

E(®, %) = et YD+ BB _ (1 +k®) (A.15)

Y(®@, E) = (po®@ - B)* - 20 [%D* + (p, - %)@ + A E(®,E)] (A.16)
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K@ED) = e A1
eV ® 4] A.17
V(P 8) ———— Y +P-pod
Y@, 1% .
e Y@.0T _ |
AD,E 1) = : (A.18)

e"®V7+1  B-pod ?
e®0 -1 ¥(2,8)

Equations (A.13) - (A.18) areidentical to those in appendix D of Pan (2002) when € =0, but are
written in aform that makes it easy to take analytic derivatives with respect to ¢ . In the two-jump
SVJ2 model of equation (28), A, = 0 and the A, E(®, &) terms are replaced by Ele A E(D, ),
where E,(®,£) = exp(§ +y,® + % ®?8)) - 1 - ®lexp(y, + %5)) - 1].

The moment generating functions underlying the marginal transition densities of s, , V., and N
areof coursegivenby F(®,0,0|¢), F(0,y,0]),and F(0,0,& | +), respectively. Inparticular, the
marginal transition density of 7. hasthe cumulant generating function of anoncentral chi-squared
random variable:

A0, 0; DY
1- K0,0; )y °

nEe 7|, - ——1n[1 - K(0,0;T)¢] + (A.19)

where A0, 0; 7) = e P*and K(0, 0; T) = 0%(1 - e P")/2B. Theunconditional cumulant generating

functionisthelimitas t - «,
WVT] o’
InGyo(h) = mER?"] = -1 1- Z y (A.20)
which isthat of agamma random variable.
Theempirical applicationsassumethe dataare spaced at aregular daily timeinterval. Usingt (with

adlight abuse of notation) to index observations, the joint moment generating function of discrete-

timelog-differencedprices y = As,,, = In(S,,,/S,), number of jumpsAN,,, = N,,, - N,,andfuture
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variance V.

.1 conditional upon observing ¥, can be computed from (A.9):

F,  an(@®, W, E|V,,7) = exp[C(@, ¥, E; 1) + D(®, ¥, E; D], (A.21)

where t = 1/252 isthefixed timeinterval between observations, inyears. Thecaseof £ # 0 isused
only for inferences about the occurrences of jumps. In variancefiltration and maximum likelihood

estimation, & is set to zero and the transform of the joint transition density in equation (1) is

F, (i®,i9|V) = F, ; \y(®, i9, 0|V, 7). (A.22)

As discussed above in equation (13), iterated expectations can be used to compute the joint
characteristic function of (y,,,, ¥,,;) conditional upon data ¥, observed through timet:

F, ,(i®, 1§ |Y,) = E[F, ,G®, i§|V)|Y,]

i A.23
_ o C®, zw,o;r)Gm[D(icI), iy, 0; 7)]. a

Gt|t(lII) =E [e"'V' |¥,] isthe conditional moment generating function of 7, . Itisapproximated by

the gamma moment generating function Gt|t(¢) =(1- KtllJ)_v', by appropriate choice of (x,, v,).

A.3Filtration
Density evaluation and variance updating involves three numerical integrations at each date #+1,
to evaluatethe prior density of theasset return y,,, and the posterior mean and variance of the latent

variable ¥,,,. Thedensity is evaluated by Fourier inversion of (A.23):

1 = . -i®
(. lY) = Ef_mFy,V(lq)’(”Yt)e Y1d @, (A.24)

The noncentral moments E,,,[V,},] areevaluated asin (16) and (17) by taking analytic derivatives
of equation (15) with respect to {2 Defining

fG®, §) = InF, ,(i®, ¢|Y,) = CGD, ¥, 0; 7) + InG, [DGED, ¥, 0; 7)] (A.25)

®Numerical derivatives are also feasible, but reduce the accuracy of the numerically computed
log likelihood gradient used in maximum likelihood estimation.
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for InG, (D) = -v,In(1 - x, D), thefirst two posterior noncentral moments are

oG
E. (V.) = M
W e (A.26)
1 w0 . fi®, 0) - iy
=— | f,i®,0)e *1d®
27 p(ya 1Y) f-w v
E (VZ ) _ a2Gt+1|t+1(ll'r)
t+1 t+1 - —2
v =0 (A.27)
1

mfw [f‘p‘l’(IQ’ 0) + fq, (Z(I), O)Z]Bf(i@’ 0) - i@ynl dQ .
t+1 Y g

Higher-order posterior moments can be computed similarly, by taking higher-order derivatives. In
all cases, theintegrand for negative @ isthe complex conjugate of the positive- ® values. Moments
can therefore be evaluated by integrating the real component of the integrand over [0, «) and

doubling the result.

The first two posterior moments were then used to update the parameters (x

1e1> Veap) OF next

period’ s conditional moment generating function Gt+1|t+1(1|1) . These were based on the posterior
moments

KV = Et+1(17t+1)

t+1 “t+1

2 (A.28)

2
KeaVer = Et+1(Vt+1) B [Et+1(Vt+1)]2’
Thealgorithmisinitiated at the unconditional gammacharacteristic function of theinitial ¥,), which
is given above in (A.20). The unconditional mean and variance of ¥V, are x,v, = /P and

Kov, = (a/B)(c?/2B), respectively.

A.4Inferring jumps
A similar procedure was used to infer whether jumps occurred on a given day. Using (A.9), the

prior joint characteristic function of (y,,,, AN,,,) conditional on datathrough datetis
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F, \y(i®, iE|Y)) = 050G, [Di®, 0, iE; 1)]. (A.29)
Proposition 1 can then be invoked to compute the posterior characteristic function

GuyGE|Y,,) = E[e"*"m

Ve Y1 (A.30)

The posterior moments of the number of jumps E[(AN,,,)"|Y,,,] can be computed anal ogously to
the approach in (A.24) - (A.27). In particular, since the number of jumps on a given day is
approximately abinomial variable, the estimated number of jumps E[AN,, | Y,,, ] isapproximately
the probability that ajump occurred on date #+1. Since analytic derivatives with respect to & are

messy, numerical derivatives were used instead.

A.5 Outliersand numerical efficiency

The integrations in equations (A.24) - (A.27) are vaid but numerically inefficient methods of
evaluating densitiesand moments. For extremereturnoutliers, p( y) takesonnear-zerovalues(e.g.,
2 x 10722 for the 1987 crash under the SV model) that can create numerical problems for the
integrations. The scaled density function can be evaluated morerobustly and moreefficiently. The

Fourier transform of the scaled density function e* p(y) is

[le”p()]e™ dy = Ele o]

exp [f(a + i®, 0)] 3D

for f defined in (A.25) above. This transformation is also known as exponential tilting, or the

Esscher transform. Itisthe Fourier transform equivalent of Monte Carlo importance sampling, and

isthe basis of saddlepoint approximations. Fourier inversion of thisyields a density evaluation

e
2n

p(») f_:ef(a+i@,0)—i¢ydq)

(A.32)
f@@(a, 0) fwef(a +i®,0) - f(a, 0) - iDy dd|.
21 -

/(@ 0)-ay

V27 fpe(a, 0)
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From saddlepoint approximation theory® the optimal y-dependent value of a (labeled a, ) isgiven
implicitly by the minimum of f{a, 0) - ay:

fo(a,,0) = y. (A.33)

The scalefactor a, equalsOwheny equalsits conditional mean y = f5(0,0), and a, isof thesame

signas y - y.

Using this scaling factor has several consequences. First, the term inside the bracketsin (A.32) is
approximately 1, while the term preceding the brackets is the basi ¢ saddlepoint approximation for

thedensity: p(y) = exp[ f{ a,,0)-a, y1/2m fo0(a,,0). Thisfollowsfromasecond-order Taylor
expansion of the exponent in (A.32):

f‘”ef(ay+i<I>,0) ‘f(ay’O)—iq)ydq) ~ f_:exp{[f;p(ayao) _y](lq)) + 1/2f(p(p(aya0) (z@)z]dd)

—0c0

-/ _:°Xp[—‘/sz(ay’ 0) ®?jd® (A.34)

_ \J 27
fM(ay, 0) ®?

given that the first-order term in the Taylor expansion cancels by choice of a, from (A.33).

Second, using a = a, makes the numerical integration in (A.32) better behaved. The cancellation
of theimaginary component removesan oscillatory component in theintegrand in the neighborhood
of ® = 0, and reduces it elsewhere. Furthermore, the integration is using locally the complex-
valued path of steepest descent, for which the integrand falls off most rapidly in magnitude near
® = 0. Finaly, evaluating the term in brackets in (A.32) to a given absolute accuracy implies

comparable accuracy for the log densities used in maximum likelihood estimation.

Similar rescalings were used to improve the efficiency and robustness of theintegralsin (A.26) and
(A.27). For each integral, an upper limit @ ___ was computed analytically for which estimated

absolute truncation error would be less than 107°. The integral was then computed numerically

°See, e.9., Kolassa (1997, Ch. 4) or Barndorff-Nielsen and Cox (1989, Ch. 4).
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t010® accuracy using |M SL’ sadaptive Gauss-K ronrod DQDAG integration routineover (0, @ )
exploiting the fact that the integrands for negative @ are complex conjugates of those for positive
®. Inthe Monte Carlo runs, each integration required on average about 136 and 150 evaluations
of the integrand for the SV and SVJ models, respectively.

A.6 Monte Carlo data generation
By 1t6 calculus and (A.10), the orthogonalized state variable g, = In S, - (p/ o)V, follows ajump-

diffusion, with innovations uncorrelated with variance shocks:
dg, = (R * B V)dt + \JA-pYV,dW, + y,dN, (A.35)

for po = By~ Agk - ap/ocandp, = p, - % - A k + Pp/o. Giventhisorthogonality and the

linearity of instantaneous mean, variance, and jump intensity in V,, the daily time-aggregated

innovation Agq = g,,. - g, conditional upon the intradaily variance sample path {Vs}i+T is a
mixture of normals, with parameters that depend only upon the average intradaily variance:
Aq [{V};"™, njumps ~ Nl(u,+ 1y V)T + ny, (1-p*)V,7 + nd’] A3

n ~ Poisson[(A, + A, V,)1].

where t isthe timeinterval between observationsand 7,

ft‘” v, ds.

Daily asset returns were therefore generated by

1) generating intradaily variance sample paths and computing average intradaily variance Vt
and the daily variance shock V,, - V,;

2) randomly generating the daily number of jumps n given daily average Vt;

3) randomly generating daily Ag given n and sample Vt; and

4) computing daily log asset returns AInS = Ag + (p/o)(V,,. - V,).
Intradaily variance sample paths were generated by dividing daysinto 50 subperiods, and using the
exact discrete-time noncentral chi-squared transition density

2Vt+h
K

27, 2
|V, ~ xz(%, Yte"ﬁh] for K = ;—B(I —e'Bh> and h = t/50. (A.37)
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Random numbers were generated in two fashions. For the SV and SV J1 simulations, the volatility
of volatility parameter ¢ was selected to make m = 4a/0? integer. This permitted exact Monte
Carlo generation of noncentral x*(m, A,) shocks from the sum of mindependent squared normal
shocks with unitary variance and mean A,/m.*° For the SVJ0 model, noncentral chi-squared
random draws were generated using a substantially slower inverse CDF method, in order to
duplicate exactly the parameter values used by Eraker, Johannes, and Polson (2003). The initial

variance ¥, wasindependently drawn from its unconditional gammadensity for each sample path.

The latent variance sample paths are therefore exact discrete-time draws from their postulated
process, while log asset returns are drawn from the correct family of distributions with the
appropriate sensitivity to variance shocks. Discretization error enters only in the evaluation of
variance at 50 intradaily points rather than continuously, when computing the intradaily average

variance used in generating returns via (A.36) above.

°The default random number generator in IMSL (a multiplicative congruential generator with
a multiplier of 16807) was found to be insufficiently random for generating intradaily data. A
comparison of the statistical propertiesof daily variances generated from intradaily datawith those
generated directly at daily frequencies revealed low-order serial correlations in the former that
biased the estimates of B by 5-10%. Using IMSL’s most powerful random number generator (a
higher multiplier, combined with shuffling) eliminated the biases.



51

Appendix B: Log Variance Processes

The benchmark discrete-time log variance process is

21 T VVt &

InV

t+1

) (B.1)
=@ + IV, + o,

where (5,, f},) are ii.d. N(0, 1) shocks. By taking logs, the process has an affine state space

representation of the form

nz2 =x +Ing
yt+1 t+1 t t+1

j (B.3)
PR d)xt t O, N

X

where x, = InV,. The joint characteristic function (1) conditional upon knowing x, takes the

exponentially affine form

F(@i®, iy |x,)

E[e iy, + iPx,,,

x|
[e i<I>x,E(| ét+1 |2,-q> )] [e (o + dx,) E(e ifo,q ;+1) } (B.3)

exp[C(i®, iYy) + D(E®, iY)x,]

where
C(i®, ip) = [i®In2 + InT'(4 +i®) - InT()] + [w(Y) + %o ()]
D@i®, iy) = i® + ¢(iy)

(B.4)

and InT’(e) is the natural logarithm of the gamma function.'

B.1 Approximate maximum likelihood
Latent log variance x, = In¥, has an unbounded domain, and an unconditional normal distribution

with unconditional moments

'The complex-valued log gamma function was evaluated using the Lanczos approach
described in Press et al. (1992, Ch. 6), which is accurate to 2 x 107'°. IMSL lacks a double-

precision complex log gamma function, while its single-precision CLNGAM function was found
to be insufficiently smooth for use with filtration and parameter estimation.
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w
E[x] = £ _
b = 500 = 50
o2 (B.5)
Var[x] = POIO = —1 - ¢2
and associated unconditional characteristic function
Goyo(iW) = exp[£oi¥ - 1/2P0|01|12]. (B.6)

Since the domain of the latent variable is unbounded, the natural approximate prior to use in the

AML filtration is Gaussian, with associated characteristic function
Gt|t(”‘|") = exp[fﬂt ”‘IJ - I/ZPt‘tIIJZ] . (B.7)

Conditional upon observing the datum y,,, = In ztz+1 ,

be updated using the algorithm (13) - (15), with C, D, and Gt|t defined by (B.4) and (B.7) above.

the posterior moments (xt+1| 115 Pra (+1) can

Those posterior moments then determine the approximate normal posterior characteristic function

Gt+1| ++1(W) for the next step.

The procedure is similar to the Kalman filtration used by Ruiz (1994) and Harvey, Ruiz, and
Shephard (1994). Kalman filtration uses a strictly linear updating of the conditional mean of the

latent log variance:

A _ A ¢ Pt|t In2
Xt = (w + d)xt|t) * W [Vea - (xt|t_Y ~In2)] (B.8)
where y = .577 is Euler’s constant, and (-y - In2, % m?) are the mean and variance of In §f+1. The
Kalman variance updating is nonlinear and deterministic:
2
Pt+1t+1=L+oi’ B.9
| P, + 2/m? (B.9)

t|t

and converges to a minimal steady-state variance P . The key difference is that AML permits
nonlinear functions of the latest datum when updating the mean and variance of latent log variance.
The AML filtration is the optimal Bayesian updating conditional upon a Gaussian prior. Kalman

L . ~2 . .
filtration is suboptimal because In €, ,, is not Gaussian.
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10%

AML

Kalman

Et\/Vt

1%
0.001

.01 0.1 1
Absolute return, in standard deviation units (log scale)

Figure B.1
Weekly volatility estimatesE, ,,/V,,, given an absolute return of size |z,,, | /Et\/Vt.

Initial volatility estimate E, \/Vt = 2.68% weekly; log scales for both axes.

Figure (B.1) above compares the Kalman and AML volatility filtrations, using the weekly parameter
values (w, ¢, 6,) =(-.736, .90, .363) from Andersen, Chung, and Serensen (1999). A Gaussian
prior (B.7) was used for latent log variance in both cases, evaluated at the unconditional mean
J?t|t = )20|0 = -7.36 and the steady-state variance P = .4985 achieved under Kalman filtration.
These values imply an initial volatility estimate of E, \/71 = exp [1/2)?t| , + V8P ]=2.68% weekly,

or about 19.3% annualized.

The “inlier” problem noted by Sandmann and Koopman (1998) is apparent: small absolute returns
|z,,,| generate large negative values for y,,; = In zil , and undesirably large downward revisions
in Kalman volatility and log variance estimates. The graph illustrates that the Kalman filter also
suffers from an “outlier” problem: it substantially under-responds to returns larger than about two

standard deviations. The result is inefficient filtration. On a generated sample of 20,000 weekly
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observations, Kalman filtration had an R? of 27% when estimating true volatility \/Vt or log variance
InV,. By contrast the AML volatility and log variance filtrations had substantially higher R 2’5 of
37 - 38%.

B.2 Parameter estimation efficiency

The AML approach potentially suffers some loss of estimation efficiency from its use of normal
distributions to summarize what is known about the latent variable at each point in time. For the log
variance process (B.1), the estimation efficiency can be directly compared with EMM, MCMC, and
other approaches. The efficiency of those approaches for the log variance process is summarized

in Andersen, Chung, and Serensen (1999).

Table B.1 below appends to Andersen et al.’s Table 5 the results from simulating 500 independent
sample paths from (B.1) and estimating the parameters via AML, for sample sizes of 7= 500 and
T=2000 weeks, respectively. In addition, parameters were estimated conditional upon observing
the log variance draws (denoted ML|V), as an unattainable bound on parameter estimation
efficiency. The AML and ML|V approaches were estimated subject to the constraints | B | < 1 and
o > 0, to ensure stationarity and the existence of an unconditional distribution for the initial

observation.

The AML approach is definitely one of the more efficient latent-variable methodologies reported
in the table. While Jacquier, Polson and Rossi’s (1994) Monte Carlo Markov Chain approach has
the lowest RMSE’s for 2000-observation samples, and is close to lowest for 500-observation
samples, the RMSE’s from AML estimation are almost as small. The AML approach outperforms
Gallant and Tauchen’s (2002) EMM approach, which in turn outperforms the GMM approach of
Melino and Turnbull (1990) and the very inefficient Kalman filtrations (QML). AML performs
about as well on 500-observation samples as Fridman and Harris’s (1998) approach (ML), which

also provides filtered estimates of latent volatility.

It may be possible to improve the AML performance further by better approximation methodologies

for G

;|- However, Table B.1 suggests that even the simple 2-moment Gaussian approximation is

close to achieving the Cramér-Rao limit.
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Table B.1
Comparison of estimation methodologies for the discrete-time log variance process

Zi T Vi€

InV,, =+ ¢InV, + o q,,
ML|V and AML estimates are from 500 Monte Carlo sample paths of 500 and 2000 observations,
respectively. Results for all other approaches are from comparable runs summarized in Table 5 of
Andersen, Chung, and Serensen (1999). Models:

ML|V: ML conditional upon observing {V,} AML: approximate ML of this paper
QML: Harvey, Ruiz and Shephard (1994) MCMC: Jacquier, Polson and Rossi (1994)
GMM: Andersen and Serensen (1996) ML: Fridman and Harris (1998)

EMM: Andersen, Chung and Serensen (1999) MCL: Sandmann and Koopman (1996)

T=500 T'=2000
) ¢ o, ® ¢ o,
True values: -.736 .90 363 -.736 .90 363
Bias
MLV -.05 -.01 .00 -.015 -.002 .000
QML -7 -.09 .09 - 117 -.02 .020
GMM 128 .02° -.12¢ 15 .02 -.08
EMM -17 -.02 .02 -.057 -.007 -.004
AML -.15 -.02 .02 -.039 .005 005
MCMC -.13 -.02 -.01 -.026 -.004 -.004
ML -.13 -.02 .01 NA NA NA
MCL .14 .00 .01 NA NA NA
Root mean squared error
MLV 17 .02 .01 076 .010 .006
QML 1.60 22 27 46 .06 A1
GMM .59° .08 A7 31 .04 12
EMM .60 .08 .20 224 .030 .049
AML 42 .06 .08 173 .023 043
MCMC 34 .05 .07 15 .02 .034
ML 43 .05 .08 NA NA NA
MCL 27 .04 .08 NA NA NA

*Andersen et al. note that the GMM results for 7= 500 are from runs that did not crash, and are
therefore not comparable to results from other methods.
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Table 1
Fourier inversion approach to computing likelihood functions
Moment generating functions:
@ + + T+
F@, ¥y, x) = Ele” "1y, x,]
exp[C(®@, ¥;y,) + D(@, ¥;y,)x,]

is the (analytic) joint moment generating function of (y,,,, x,,,) conditional upon knowing (y,, x,).

G, (W) = E[e"”"|Y,]

is the moment generating function of x, conditional on observing data ¥, = {y,, ..., y,} . Itsinitial value
Gy o(W) = E[exp(Px,)] is the unconditional moment generating function of x,. Subsequent G,,’s and
the conditional densities of the data used in the likelihood function can be recursively updated as follows:

Densities Associated moment generating functions

Conditional density of x,

p(xt | Yt) Gt| t(llj)

Joint conditional density of (y,,;, X,,,)

P +{x
PG X1 | ) F(®, |¥) = E|E[e™ "V |y, x)|¥,]
= fp(yt+1’ xt+1 | yt’ xt)p(xt|Yt)dxt — E|:ec(q)’ ¢’y1)+D(<I)’ w;yt)xt|Yt:|

D, V; .
= OV G D@, ¥; y,)]

Conditional density evaluation

1 o, -i®y,,
p(yt+1|Yt) = Ef_wF(l(D, 0|Yt)e Y, ld(b

Updated conditional density of x,,;

® / _1<I> t+
PYr> % | Y,) o [(FGR, ¥ |¥)e a0
Py 1Y) Gt 1B =

p(xt+] |Yt+]) =

(¥, 1Y)



Table 2

Parameter estimates on simulated daily data: SVJ0 model

dinsS, = podt + \/Vt(p aw,, +y1 -p? dWZt) + y,dN,

dv, = (« - BV,)dt + o\[V,dw,,

Prob(dN,=1) = A,dt, v, ~ N(y, &%)

100 sample paths were simulated for data sets of 4000 days (roughly 16 years). All parameter
estimates are in annualized units.
MCMC: Results from Eraker, Polson, and Rossi (2003, Table VII), in annualized units

AML: Approximate maximum likelihood estimates

True values:

Bias
MCMC
AML

RMSE
MCMC
AML

True values:

Bias
MCMC
AML

RMSE
MCMC
AML

mean
Ko
126

.007
.000

.033
.030

126

.009
-.002

.035
.034

SV parameters

jump parameters

o/P
020

.001
.000

.003
.002

020

.002
.000

.010
.002

B
3.78

1.49
35

2.12
1.01

3.78

1.61
38

2.21
1.00

o

252

.029
.001

.037
.027

252

.043
.001

.075
.025

-.400

-.023
.004

065
.079

-.400

-.013
-.008

.067
.087

A'0
1.51

.20
.05

0.61
0.55

3.78

.10
-.05

.79
.86

Y 0
-.030 .035
-.007 -.005
-.001 -.004
018 .007
014 .009
-.030 .035
-.004 .001
-.002 -.002
.009 .005
.009 .005



Table 3
Parameter estimates on simulated daily data: SV model

ds,/S, = (ue+p, V,)dt + \/Vt(p aw,, +y1 —p2dW2t)
dv = (a - B¥,)dt + o/V,aw,

100 sample paths were simulated for data sets of 1,000 - 12,000 days (roughly 4 - 48 years).

Returns-based estimates
mean SV parameters V- based estimates

(days) Ho Hy \/W B o P \/W B ¢

True values: .026 3.68 J26 594 306 -.576 J26 594 .306

Average bias 1000  -.021 508 -.002 185 .013 -033 -002 .93 .000
6-0 2000 -.025 543 .000 .67 .000 -.037 .000 .46 .000
4000 001  3.82 -.001 .63 .003 -.002 -.001 37 -.001

8000 013 250 .001 .09 .000 .000 .000 .05 .000

12000 013 2.55 001 -.04 -.005 -.001 .000 .12 .000

standard error 1000 .010 .80 .001 31 .006 011 .001 .17 .001
2000 .007 .52 .001 20 .004 .008 .001 14 .001

4000 .005 .39 .001 .13 .003  .006 .001 .09 .000

8000 .003 29 .000 .08 .002 .004 .000 .07 .000

12000 .003 28 .000 .06 .001 .003 .000 .05  .000

RMSE: 1000 101 9.47 011 3.57 .057 .114 .007 195 .007
2000 077 7.52 010 2.10 .035 .087 005 1.46 .005
4000 045 5.47 006 147 .026 .056  .003 97 .003
8000 036  3.79 .005 85 016 .040 .002 .66 .002
12000 034 3.75 004 .61 .014 .033 002 .53 .002

Correlation 1000 .95 .66 12
between returns- 2000 .97 76 A1
and V,-based 4000 .95 .67 .03
estimates 8000 .95 72 17

12000 .93 62 35



Table 4
Parameter estimates on simulated daily data: SVJ1 model.

Prob(dN,=1) = AV, dt, v, ~ N(y, &%)

ds,/S, = (uy+ BV, - AV, k)dt + \/Vt(deltﬂ/l ‘Pdezt) + (e™-1)adN,
dv,= (a -BV))dt + o[V, dw,

100 sample paths were simulated for data sets of 1,000 - 12,000 days (roughly 4 - 48 years).

Returns-based estimates

mean SV parameters jump parameters V.- based estimates

T —

(days) Ho By va/P B o P A'1 Y J vo/p p o

True values: 040 3.09 .119 4.25 .246 -.611 93.4 -.024 .039 JA19 425 246
Average 1000 -.025 5.33 .000 1.58 .015 -.033 2.0 -.007* -.017° .000 .87 .001
bias 2000 -.022 532 -001 1.16 .009 -.006 04 -009 -010 -002 .67 .001
0-0 4000 -.005 3.64 -.001 .53 .002 -.004 0.1 -.003 -.005 -.001 .34 -.001
8000 .001 2.70 .000 .08 -.002 -.005 1.3 -.001 -.001 .000 .06 .000
12000 .009 2.15 .001 .00 -.002 -.003 -2.7 -.002 -.001 .000 .07 .000
standard error 1000 .010 .90  .002 .27 .005 .013 8.3* .003* .004° .001 16 .001
2000 .007 .63 .001 .18 .003 .008 6.1 .002 .002 .001 .11 .000
4000 .005 .43  .001 .12 .002 .006 39 .002 .001 .001 .08 .000
8000 .003 .26 .001 .07 .001 .004 2.5 .001  .000 .001 .05 .000
12000 .003 .24 .000 .05 .001 .004 2.1 .001 .000 .000 .04 .000
RMSE: 1000 .105 10.44  .016 3.17 .056 .134 83.1* .035* .043° 015 1.83 .005
2000 .074 8.24 .010 2.12 .034 .084 61.1 .027 .018 010 1.31 .004
4000 .048 5.62  .007 1.29 .025 .056 39.2  .019 .011 .007 .83 .003
8000 .032 3.72 .005 .70 .015 .038 248 .009  .005 005 .53 .002
12000 .027 3.23 .004 .50 .011 .038 21.0 .007 .004 004 41 .002
Correlation 1000 .92 .68 17
between 2000 71 44 .07
returns- and 4000 .96 .66 .30
V,-based 8000 95 76 33
estimates 12000 .89 .63 13

“Jump parameter estimates for 7 runs (out of 100) were set to the observationally identical values of zero.



Table 5

Volatility and variance filtration performance under various approaches

Criterion: R%2 =1 -

E (x, - ft|t)2

E (x, -x)

, for x, = \/Vt (volatility) or x, = ¥, (variance).

Two samples of 200,000 daily observations (794 years) were generated from the SV and SVJ1 processes,
respectively. In-sample fits use the first 100,000 observations for parameter estimation and filtration. Out-of-
sample fits use the subsequent 100,000 observations for filtration.

Filtration
method

In-sample fits

GARCH

EGARCH

HGARCH

SV (8)

SV (8)

SV(0) + reprojection

Out-of-sample fits

HGARCH
SV (0)
SV(0) + reprojection

R? on SV data

volatility

598
674
678
703
704

678
699

variance

553
.649
.649
.690
.692
.695

.650
.687
.689

Filtration
method

t-GARCH

t-EGARCH
t-HGARCH

SVIJ1(0)

SVI1(6)

SVIJ1(0) + reprojection

t-HGARCH
SVIJ1(0)
SVIJ1(0) + reprojection

R? on SVJ1 data

volatility

-.008
356
585
723
726

.603
747

variance

-2.222
-2.184
453
.700
702
705

430
727
727



Table 6

Higher conditional moments of latent variance

Summary statistics of the conditional moment estimates, and of the divergence from gamma-based
estimates, based on 100,000 observations of simulated data from the SV and SVJ1 models, respectively.

Standard Percentage
Average deviation Min Max less than 0
Conditional moment estimates
SV: SKEW 87 25 34 2.75 0%
XKURT 1.23 .80 18 11.62 0%
SVI1: SKEW .80 23 -.19 2.56 0.02%
XKURT 1.05 68 =79 10.08 0.06%
Divergence from gamma-based estimates
SV: SKEW - SKEW,,,,,., .03 .08 -11 71 48.9%
XKURT - XKURT,,,,... .10 27 36 5.06 48.7%
SVIl: SKEW - SKEW,,,.. .02 07 -91 64 50.5%
XKURT - XKURT 07 23 -2.58 3.99 50.0%

gamma



Table 7

Model estimates, and comparison with EMM-based results

b + 1V, - Ay + A V) K] dt + ﬁ(deU w41 - p2dW2,) + (e™-1)dN,
(@ - BV)dt + oV, dw,
Prob[dN, =1] = (A, + A, V,)dt, v, ~ N[y, %]

ds, /S,

dv.

t

CGGT: Chernov et al. (2003) EMM-based estimates on daily DJIA returns, 1953 - July 16, 1999 (11,717 obs.)
ABL: Andersen et al. (2002) EMM-based estimates on daily S&P 500 returns, 1953 -1996 (11,076 obs.)

AML: Approximate maximum likelihood estimates of this paper, using the ABL data

All parameters are in annualized units except the variance shock half-life HL = 12In2/, which is in months.

Mo

My

InL

SV SVIO, A, =0 SVI1, A, #0

CGGT ABL AML CGGT ABL AML ABL AML
051 026 037 028 037 .040

(.032) (.025) (.045) (.027) (.095) (.025)

2.58 3.70 4.02 3.89 4.03 3.09

(2.82) (1.98) (3.89) 2.19) (5.77) (2.16)

1.283 051 093 044 047 063 047 061
(.010) (011) (.013) (.009) (.017) (.008)

137.87 3.93 5.94 2.79 3.70 4.38 3.70 4.25
(.17) (.81) (.81) (.54) (1.08) (.70) (1.71) (.59)
1.024 197 315 207 184 244 184 237
(.030) (.018) (.018) (.02) (.019) (.016) (.019) (.015)
~.199 -.597 -579 _.483 ~.620 -.612 ~.620 -611
(.000) (.045) (.031) (.10) (.067) (.031) (.086) (.031)
096 114 125 125 113 120 113 119
(.004) (.004) (.004)

0.06 2.12 1.40 2.98 2.25 1.90 2.25 1.96
(.00) (.44) (.19) (.58) (.66) (31) (1.04) (27)
1.70 5.09 744 5.09 .000

(.43) (217) (7.18) (.000)

70 93.4

(488.0)  (33.4)

~.030 -.010 -.002

(.002) (.010) (.006)

008 012 052 012 039

(.001) (.001) (.009) (.001) (.008)
39,192.45" 39,233.87 39,238.03° 39,294.79  39,238.03* 39,309.51

*ABL log likelihoods were evaluated at the ABL parameter estimates using the AML methodology.



Table 8
Estimates of the multi-jump model SVJ2, and associated risk-neutral parameter estimates
Data: daily S&P 500 returns and excess returns over 1953-1996. Standard errors are in parentheses.

mean parameters Stochastic volatility parameters
R Mo By o p B y p
Returns .041 2.8 .059 4.15 233 -.614
(.024) (2.1 (.007) (.57) (.012)  (.033)
Excess .045 1.7 .060 4.22 234 -.610
returns (.024) (2.1 (.007) (.59) (.012)  (.033)
Excess 3.94 0 4.8 .067 4.72 4.12 .240 -.627
returns (1.26) (1.4) (.004) (.56) (.53) (.012)  (.029)

Jump parameters (i = 1,2)

* — —x InL
A, A; Yi Yi 5,
Returns 131.1 (38.8) 001 (.004) 029 (.004) 39.317.81
24 (1.6) 2222 (.092) 007 (.036)
Excess 121.1(36.0) 002 (.004) 030 (.004) 39,314.69
Returns 1.5 (2.8) 2217 (.043) 005 (.062)

Excess 121.1(362) 121.3(36.4)  .001 (.004) -.002(.004) .030(.004) 39,313.03
Returns 1.6 (2.1) 3.7 (43) -216(.024) -216(.024) .003 (.012)
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News impact curves for various models.
The graph shows the revision in estimated annualized conditional standard deviation

(E,., - E,)|/V,,,, conditional upon observing a standardized asset return of magnitude

z =y, 1V, 1252.
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Figure 2
Latent volatility, and its filtered estimate and standard deviation: SVJ1 model.
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Figure 3

Normal probability plots for the normalized returns yttl = N[CDF( Vil Y, 6)] , for different models.
The diagonal line gives the theoretical quantiles conditional upon correct specification; + gives the empirical quantiles.
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Filtered volatility estimate E, \/Vt from the stochastic volatility/jump model SVJ1, and
divergence from SV volatility estimates.



4 9
I~z
811019 891013
. o . o, 1 - * o
550926 ., .:’
. 0.8 -
fa WA
(VR e)
*
4 i &,
. s
* : : O — *
o ' s
¢ QM-—.J ¢
T T T T
-16 -12 -8 -4 0 4 8
Figure 5
Estimated number of jumps, versus standardized returns y,,, /y/ I7t| /252, SVJ0 model.

The values are approximately the probability for each day that a jump occurred.



time series estimates
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Figure 6

Observed and estimated ISD’s for 17-day Jan. 97 S&P 500 futures options on Dec. 31, 1996.
The dark grey area is the 95% confidence interval given only parameter estimation uncertainty. The
light grey area is the 95% confidence interval given both parameter and state uncertainty.

50%

40% - -
ISD (left scale)

options

30% —

.l i
20% J
‘/‘»H\vtw. “L'"'\WV ‘W“J"\‘r '“l‘”"“ t“',, M AW\ .“*

10%

=
==
__:;
==
=
|

10%

ettt -10%
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01

Figure 7

Observed and estimated ISD’s for at-the-money S&P 500 futures options.

Estimated ISD’s are based on SVJ2 parameter estimates from 1953-96, and on filtered variance
estimates. The gray area is the 95% confidence interval given both parameter and state uncertainty.



