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Abstract

This article develops a direct filtration-based maximum likelihood methodology for
estimating the parameters and realizations of latent affine processes.  Filtration is
conducted in the transform space of characteristic functions, with a version of Bayes’
rule used for recursively updating the joint characteristic function of latent variables
and the data conditional upon past data.  An application to daily stock returns over
1953-96 reveals substantial divergences from EMM-based estimates; in particular,
more substantial and time-varying jump risk.  The implications for stock index
options’ prices are discussed.
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1See Nelson (1992), Nelson and Foster (1994), and Fleming and Kirby (2003) for filtration
interpretations of GARCH models.

“The Lion in Affrik and the Bear in Sarmatia are Fierce,
but Translated into a Contrary Heaven, are of less Strength and Courage.”

Jacob Ziegler; translated by Richard Eden (1555)

While models proposing time-varying volatility of asset returns have been around for thirty years,

it has proven extraordinarily difficult to estimate the parameters of the underlying volatility process,

and the current volatility level conditional on past returns.  It has been especially difficult to estimate

the continuous-time stochastic volatility models that are best suited for pricing derivatives such as

options and bonds.  Recent models suggest that asset prices jump and that the jump intensity is itself

time-varying, creating an additional latent state variable to be inferred from asset returns.

Estimating unobserved and time-varying volatility and jump risk from stock returns is an example

of the general state space problem of inferring latent variables from observed data.   This problem

has two associated subproblems:

       1) the estimation issue of identifying the parameters of the state space system; and 

       2) the filtration issue of estimating current values of latent variables from past data, given the

parameter estimates.

For instance, the filtration issue of estimating the current level of underlying volatility is the key

issue in risk assessment approaches such as Value at Risk.  The popular GARCH approach of

modeling latent volatility as a deterministic function of past data can be viewed as a simple method

of specifying and estimating a volatility filtration algorithm.1

This article proposes a new recursive maximum likelihood methodology for semi-affine processes:

those for which the (discrete-time) data and the latent variables have a joint conditional

characteristic function that is exponentially affine in the latent variable, but not necessarily in the

observed data.  Such processes include the general class of fully affine continuous-time jump-

diffusions discussed in Duffie, Pan, and Singleton (2000), the time-randomized Lévy processes of

Carr, Geman, Madan, and Yor (2003), and various discrete-time stochastic volatility models such

as the Gaussian AR(1) log variance process.
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The major innovation is to work almost entirely in the transform space of characteristic functions,

rather than working with probability densities. While both approaches are in principle equivalent,

working with characteristic functions has a couple of advantages.  First, the approach is more suited

to filtration issues, since conditional moments of the latent variable are more directly related to

characteristic functions than to probability densities.  Second, the set of state space systems with

analytic conditional transition densities is limited, whereas there is a broader set of systems for

which the corresponding conditional characteristic functions are analytic.  

I use a version of Bayes’ rule for updating the characteristic function of a latent variable conditional

upon observed data.  Given this and the semi-affine structure, recursively updating the characteristic

functions of observations and latent variables conditional upon past observed data is relatively

straightforward.  Probability densities of the data needed for maximum likelihood estimation can

be evaluated numerically by Fourier inversion. 

The approach can be viewed as an extension of the Kalman filtration methodology used with

Gaussian state space models – which indeed are included in the class of affine processes.  In Kalman

filtration, the multivariate normality of the data and latent variable(s) is exploited to update the

estimated mean  and variance  of the latent variable realization conditional on past data.x̂ t* t Pt* t

Given normality, the conditional distribution of the latent variable is fully summarized by those

moment estimates, while the associated moment generating function is of the simple form

.  My approach generalizes the recursive updating of  toGt* t (ψ) ' exp[x̂t* tψ % ½Pt* tψ
2 ] Gt* t(ψ)

other affine processes that lack the analytic conveniences of multivariate normality. 

A caveat is that the updating procedure does involve numerical approximation of .  TheGt* t(ψ)

overall estimation procedure is consequently termed approximate maximum likelihood (AML), with

potentially some loss of estimation efficiency relative to an exact maximum likelihood procedure.

However, estimation efficiency could be improved in this approach by using more accurate

approximations.  Furthermore, the simple moment-based approximation procedure used here is a

numerically stable filtration that performs well on simulated data, with regard to both parameter

estimation and latent variable filtration.
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2Ruiz (1994) and Harvey, Ruiz, and Shephard (1994) have applied the Kalman filtration
associated with Gaussian models to latent volatility.  Fridman and Harris (1998) essentially use a
constrained regime-switching model with a large number of states as an approximation to an
underlying stochastic volatility process.

This approach is of course only the latest in a considerable literature concerned with the problem

of estimating and filtering state space systems of observed data and stochastic latent variables.

Previous approaches include

      1) analytically tractable specifications, such as Gaussian and regime-switching specifications;

      2) GMM approaches based on analytic moment conditions; and

      3) simulation-based approaches, such as Gallant and Tauchen’s (2002) Efficient Method of

Moments, or Jacquier, Polson and Rossi (1994) Monte Carlo Markov Chain approach.

The major advantage of AML is that it provides an integrated framework for parameter estimation

and latent variable filtration, of value for risk management and for pricing derivatives.  Moment-

and simulation-based approaches by contrast focus primarily upon parameter estimation, to which

must be appended an additional filtration procedure to estimate latent variable realizations.  Gallant

and Tauchen (1998, 2002), for instance, propose identifying via “reprojection” an appropriate rule

for inferring volatility from past returns, given an observable relationship between the two series in

the many simulations.  Johannes, Polson, and Stroud (2002) append a particle filter to the MCMC

parameter estimates of Eraker, Johannes and Polson (2003).  And while filtration is an integral part

of Gaussian and regime-switching models, it remains an open question as to whether these are

adequate approximations of the asset return/latent volatility state space system.2

The AML approach has two weaknesses. First, the approach is limited at present to semi-affine

processes, whether discrete- or continuous-time, whereas simulation-based methods are more

flexible.  However, the affine class of processes is a broad and interesting one, and is extensively

used in pricing bonds and options.  In particular, jumps in returns and/or in the state variable can be

accommodated.  Furthermore, some recent interesting expanded-data approaches also fit within the

affine structure; for instance, the intradaily “realized volatility” used by Andersen, Bollerslev,

Diebold, and Ebens (2001).  Finally, some discrete-time non-affine processes become affine after
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appropriate data transformations; e.g., the log stochastic variance model examined inter alia by

Harvey, Ruiz, and Shephard (1994) and Jacquier, Polson, and Rossi (1994).

Second, AML has a “curse of dimensionality” originating in its use of numerical integration.  It is

best suited for a single data source; two data sources necessitate bivariate integration, while using

higher-order data is probably infeasible.  However, extensions to multiple latent variables appear

possible.

The parameter estimation efficiency of AML appears excellent for two processes for which we have

performance benchmarks.  For the discrete-time log variance process, AML is more efficient than

EMM and almost as efficient as MCMC, while AML and MCMC estimation efficiency are

comparable for the continuous-time stochastic volatility/jump model with constant jump intensity.

Furthermore, AML’s filtration efficiency also appears to be excellent.  For continuous-time

stochastic volatility processes, AML volatility filtration is substantially more accurate than GARCH

when jumps are present, while leaving behind little information to be gleaned by EMM-style

reprojection.

Section 1 below derives the basic algorithm for arbitrary affine processes, and discusses alternative

approaches.  Section 2 runs diagnostics, using data simulated from continuous-time affine stochastic

volatility models with and without jumps.  Section 3 provides estimates of some affine continuous-

time stochastic volatility/jump-diffusion models previously estimated by Andersen, Benzoni and

Lund (2002) and Chernov, Gallant, Ghysels, and Tauchen (2003).  For direct comparison with

EMM-based estimates, I use the Andersen et al data set of daily S&P 500 returns over 1953-1996,

which were graciously provided by Luca Benzoni. Section 4 discusses option pricing implications,

while Section 5 concludes.
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F(iΦ, iψ *z t ) / E e iΦNyt%τ % iψNxt%τ * z t

' exp[C(iΦ, iψ; y t , τ) % D(iΦ, iψ; y t , τ)Nx t ] .
(1)

1. Recursive evaluation of likelihood functions for affine processes

Let  denote an  vector of variables observed at discrete dates indexed by t.  Let yt (L × 1) x t

represent an  vector of latent state variables affecting the dynamics of .  The following(M × 1) yt

assumptions are made:

       1)  is assumed to be Markov; z t / ( y t , x t )

       2) the latent variables  are assumed stationary; andx t

       3) the characteristic function of  conditional upon observing  is exponentially affine inzt%τ z t

the latent variables :x t

Without loss of generality, it can be assumed that the data  observed at discrete time intervalsy t

have also been made stationary if necessary.  In financial applications this is generally done via

differencing, such as the log-differenced asset prices used below.  I will focus on the most common

case of one data source and one latent variable:  .  Generalizing to higher-dimensionalL ' M ' 1

data and/or multiple latent variables is theoretically straightforward, but involves multidimensional

integration for higher-dimensional .y t

Processes satisfying the above conditions will be called semi-affine processes.  Examples of such

processes include

       1) the fully affine continuous-time jump-diffusion processes summarized in Duffie, Pan, and

Singleton (2000), for which  is also linear in ;C % D ) x t y t

       2) the time-randomized Lévy processes considered by Carr, Geman, Madan and Yor (2001) and

Huang and Wu (2002), in which the rate of information flow follows a square-root diffusion;

       3) All discrete-time Gaussian state-space models; and
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3For diffusions, the instantaneous moments of  can be evaluated by taking partialdz
derivatives with respect to  and  of the joint cumulant generating function , and takingΦ ψ C % D ) x
the limit as .  And while this suggests that the moments of  can be nonlinear in  but mustτ 6 0 dz y
be linear in , only the fully affine case can provide a solution to the associated backwardx
Kolmogorov equation that is of the form (1).

       4) the discrete-time AR(1) specification for log variance , where  is either the de-xt / lnV 2
t yt

meaned log absolute return (Ruiz, 1994) or the high-low range (Alizadeh, Brandt, and

Diebold, 2002).

While written in a general form, the semi-affine assumption (1) actually places substantial

constraints upon possible stochastic processes.  For instance, there are no semi-affine continuous-

time processes that are not also fully affine.3   As discussed in Duffie, Pan and Singleton (2002,

p.1350), this severely constrains possible jump-diffusion specifications:  the instantaneous mean,

covariance matrix and jump intensities of  must be linear in .  However, there exist do discrete-dz t z t

time semi-affine processes that are not fully affine; for instance,  multivariate normal withzt%1

conditional moments that depend linearly on  but nonlinearly on .xt yt

The best-known discrete-time affine process is the Gaussian state-space system discussed in

Hamilton (1994, Ch. 13), for which the conditional density function  is multivariatep(zt%1*z t )

normal.  As described in Hamilton, a recursive structure exists in this case for updating the

conditional Gaussian densities of  over time based upon observing .  Given the Gaussianx t y t

structure, it suffices to update the mean and variance of the latent , which is done by Kalmanx t

filtration.

More general affine processes typically lack analytic expressions for the conditional density

functions needed in maximum likelihood estimation.  Their popularity for bond and option pricing

models lies in the ability to compute densities, distributions, and option prices numerically from

characteristic functions.  In essence, the characteristic function is the Fourier transform of the

probability density function, while the density function is the inverse Fourier transform of the

characteristic function.  Each fully summarizes what is known about a given random variable.
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F( iΦ, iψ) / E e iΦy % iψ x

' mme iΦy % iψ x p( y, x) dy dx
(2)

G (iψ) / E e iψ x

' me iψ x p (x) dx

' F(0, iψ) .

(3)

p(x) '
1
2π m G(iψ) e &iψx dψ (4)

p( y, x) '
1

(2π)2 mm F(iΦ, iψ) e &iΦ y & iψ x dΦ dψ . (5)

In order to conduct the equivalent of Kalman filtration using conditional characteristic functions,

we need the equivalent of Bayesian updating for characteristic functions.  The following describes

the procedure for arbitrary random variables.

1.1 Bayesian updating of characteristic functions: the static case

Consider an arbitrary pair  of continuous random variables, with joint probability density( y, x)

.  Letp( y, x)

be their joint characteristic function.  The marginal densities  and  have correspondingp( y) p(x)

univariate characteristic functions  and , respectively.  It will prove convenientF(iΦ, 0) F(0, iψ)

below to label the characteristic function of the latent variable x separately:  

Similarly,  is the moment generating function of x, while  is itsG(ψ) ' Ee ψx g(ψ) / lnG(ψ)

cumulant generating function.  Derivatives of these evaluated at  provide the noncentralψ ' 0

moments and cumulants of x, respectively.

The characteristic functions in (2) and (3) are the Fourier transforms of the probability densities.

Correspondingly, the probability densities can be evaluated as the inverse Fourier transform of the

characteristic functions; for instance,

and 
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Gx* y(iψ* y) '

1
2π mF(iΦ, iψ)e &iΦy dΦ

p( y)
(6)

p( y) '
1

2π mF(iΦ, 0)e &iΦy dΦ (7)

Gx* y (iψ* y) ' me iψx p(x* y) dx

'
1

p( y) me iψx p( y, x) dx .
(8)

F(iΦ, iψ) ' me iΦy [Gx* y (iψ* y) p( y)] dy

' mme iΦ y % iψx p( y, x)dx dy .
(9)

The following key proposition indicates that characteristic functions for conditional distributions

can be evaluated from a partial inversion of F that involves only univariate integrations.

Proposition 1 (Bartlett, 1938).  The characteristic function of  x conditional upon observing y is

where 

is the marginal density of y.

Proof: By Bayes’ law, the conditional characteristic function  can be written asGx* y

 is therefore the Fourier transform of :F( iΦ, C) Gx* y(C* y) p( y)

Consequently,  is the inverse Fourier transform of , yielding (6) above.Gx* y(iψ* y) p( y) F(iΦ, C)

         

1.2 Dynamic Bayesian updating of characteristic functions

While expressed in a static setting, Proposition 1 also applies to conditional expectations, and the

sequential updating of the characteristic functions of dynamic latent variables  conditional uponxt

the latest observed datum .  The following notation will be used below for such filtration:yt

 is the data observed by the econometrician up through date t;Y t / {y1, . . ., y t}

 is the expectational operator conditional upon observing data ;E [C * Y t ] / Et (C) Y t
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G0*0(iψ) / E e iψx0 ' lim exp[C(0, iψ ; y , τ) ] .
τ64 (10)

F(iΦ, iψ*Y t ) ' E E e iΦ yt%1 % iψxt%1 * yt , xt * Y t

' E e C (iΦ, iψ ; yt , τ) % D (iΦ, iψ ; yt , τ) xt * Y t

' e C (iΦ, iψ ; yt , τ) Gt* t [D (iΦ, iψ ; yt , τ) ] ,

(11)

 is the joint characteristic function (1) conditionalF(iΦ, iψ*zt ) ' E e iΦ yt%1 % iψxt%1 * yt , xt

upon observing the Markov state variables  (including the latent variable realization );z t xt

 is the joint characteristic function of next period’sF(iΦ, iψ*Yt ) ' E e iΦ yt%1 % iψxt%1 *Y t

variables conditional upon observing only past data ; andY t

 is the characteristic function of the latent variable  at time tGt*s(iψ) / E [e iψx t * Y s ] x t

conditional upon observing .  Y s

Given Proposition 1 and the semi-affine structure, the filtered characteristic function (CF) Gt | t (iψ)

can be recursively updated as follows.

Step 0: At time , initialize  at the CF of the unconditional density of thet ' 0 Gt* t(iψ) ' G0*0(iψ)

latent variable.  From equation (1), this has an analytic solution of the form

The assumption of stationary  implies that  will not depend upon  in the limit.yt G0*0 y

Step 1:  Given , the joint characteristic function of next period’s Gt | t(ψ) / E [e ψxt * Y t ] ( yt%1 , xt%1 )

conditional on data observed through date t can be evaluated by iterated expectations, exploiting the

special structure of affine characteristic and moment generating functions given in (1) above:

where  is the time gap between observations.τ

Step 2: The conditional density function of next period’s datum  conditional upon data observedyt%1

through date t can be evaluated by Fourier inversion of its characteristic function:



10

p( yt%1*Y t ) '
1

2π m
4

&4
F(iΦ, 0*Y t ) e &iΦyt%1 dΦ . (12)

Gt%1* t%1 (iψ) '

1
2π m

4

&4
F(iΦ, iψ *Y t ) e &iΦyt%1 dΦ

p( yt%1* t )

'

1
2π m

4

&4
Gt* t [D(iΦ, iψ ; C)]e C(iΦ, iψ ; C) & iΦyt%1 dΦ

p( yt%1 * t )

(13)

x̂ t%1* t%1 ' G )

t%1* t%1(0)

'
1

2π p ( yt%1*Y t ) m
4

&4
Fψ(iΦ, 0*Y t )e &iΦyt%1 dΦ (14)

Step 3:  Using Proposition 1, the conditional characteristic function of next period’s latent variable

is 

Step 4: Repeat steps 1-3 for subsequent values of t.  Given underlying parameters , the log likeli-θ

hood function for maximum likelihood estimation is .ln L(Y T*θ) ' ln p( y1*θ) % j
T

t'2
ln p( yt*Yt&1 , θ)

 is the time-t prior characteristic function of the latent variable , while  inGt* t(iψ) xt F(iΦ, iψ *Y t )

equation (11) is the time- prior joint CF for .  Step 3 is the equivalent of Bayesiant ( yt%1 , xt%1 )

updating for characteristic functions, and yields the posterior CF of latent  – which is also thext%1

time-  prior CF for the next time step.  The equivalent steps for updating moment generating(t%1)

functions and the associated conditional density functions are given in Table 1.  For expositional

simplicity, the dependency of C and D on the time gap  between observations and on  isτ yt

suppressed in the table.  The algorithm can easily cope with irregular time gaps between

observations.

Filtered estimates of next period’s latent variable realization and the accompanying precision can

be directly computed from derivatives of the moment generating function  in (13):Gt%1* t%1(ψ)



11

Pt%1* t%1 / Vart%1 (xt%1 )

' G ))

t%1* t%1(0) & x̂ 2
t%1* t%1

'
1

2πp ( yt%1*Y t ) m
4

&4
Fψψ(iΦ, 0*Y t )e &iΦyt%1 dΦ & x̂ 2

t%1* t%1 .
(15)

p(x) ' 1 %
κ4

24
(x 4 & 6x 2 % 3) n(x)

G(iψ) ' e &½ψ2
1 %

κ4

24
ψ4

(16)

1.3 Implementation

The recursion in (10) - (13) indicates that for a given conditional prior characteristic function

 of latent  and an observed datum , it is possible to compute an updated posteriorGt* t (iψ) xt yt%1

characteristic function  that fully summarizes the filtered distribution of latent .  ToGt%1* t%1(iψ) xt%1

implement the recursion, it is necessary to temporarily store the entire function  in someGt* t(iψ)

fashion.  This is an issue of approximating functions -- a subject extensively treated in Press et al

(1992, Ch. 5) and Judd (1998, Ch.6).  Using atheoretic methods such as splines or Chebychev

polynomials, it is possible to achieve arbitrarily precise approximations to . Gt* t(iψ)

However, such atheoretic methods do not necessarily preserve the shape restrictions that make a

given atheoretic approximating function  a legitimate characteristic function.  A simpleĜt* t(iψ)

illustration of potential pitfalls arises with the symmetric Edgeworth distribution, with unitary

variance and an excess kurtosis of .  The associated density and characteristic functions areκ4

where  is the standard normal density function.  The Edgeworth distribution requires  ton(x) κ4 # 4

preclude negative probabilities.  And yet it is not obvious from inspecting  that  is aG(iψ) κ4 ' 4

critical value, and that using an approximating function equivalent to a numerical value of κ̂4 ' 4.005

would generate invalid densities.  To avoid such potential problems, it appears safer to use

approximating characteristic functions that are generated directly from distributions with known

properties.  As the recursion in (10) - (13) is just Bayesian updating, any legitimate approximate prior
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ln Ĝt%1* t%1(iψ) ' x̂t%1*t%1 (iψ) % ½ Pt%1* t%1 (iψ)2 . (17)

ln Ĝt%1* t%1(iψ) ' &νt%1 ln (1 & κt%1 iψ)
κt%1 / Pt%1*t%1 / x̂t%1*t%1

νt%1 / x̂ 2
t%1*t%1 / Pt%1* t%1 .

(18)

 from a known distribution will generate a legitimate posterior characteristic functionĜt* t (iψ)

.  Ĝt%1* t%1(iψ)

The choice of approximating function also involves a trade-off between accuracy and computational

speed.  Evaluating  at each complex-valued point  involves numerical integration.Gt%1* t%1(D ) D

More evaluations map the surface more accurately, but are also slower. 

The analysis below therefore uses a simple moment-matching approximation similar in spirit to

Kalman filtration.  An approximate  from a two-parameter distribution is used at eachĜt%1* t%1(iψ)

time step.  The parameter values at each step are determined by the conditional mean  andx̂t%1* t%1

variance  of the latent variable , which are evaluated as described in (14) and (15).  ThePt%1* t%1 xt%1

choice of distribution depends upon the properties of the latent variable.  If  is unbounded,  as inxt%1

the discrete-time log variance model, the natural approximating characteristic function is Gaussian:

If  is nonnegative, as in the continuous time square-root variance process, a gamma characteristicxt%1

function is more appropriate:

In both cases, the initial unconditional distribution is a member of the family of conditional

distributions.  Given the moment matching, these approximations can be viewed as second-order

Taylor approximations to the true log characteristic functions.  Further details on computing these

moments are in the appendices.  Three numerical integrations are required at each time step: one for

the conditional density (12), and two for the moment conditions (14) and (15).

The approach is analogous to the Kalman filtration approach used by Ruiz (1994) and Harvey, Ruiz,

and Shephard (1994) of updating the conditional mean and variance of the latent state variable based

on the latest datum.  The major difference is that Kalman filtration uses strictly linear updating for



13

yt%1

x̂t%1*t%1

Pt%1*t%1

'

C 0
Φ

C 0
ψ

C 0
ψψ

%

C y
Φ DΦ 0

C y
ψ Dψ 0

C y
ψψ Dψψ D 2

ψ

yt

x̂t*t

Pt*t

%

ut%1

vt%1

wt%1 & v 2
t%1

(20)

Zt%1 ' A % B Z t % gt%1 (21)

the conditional mean, whereas (14) and (15) above give the optimal nonlinear moment updating rules

conditional upon the distributional properties of observed , and conditional upon a correctlyyt%1

specified prior characteristic function .  Approximation error enters in that the priorGt*t(iψ)

characteristic function   is approximate rather than exact, which can distort the appropriateĜt*t(iψ)

relative weights of the datum and the prior when updating posterior moments.

There may well be better approximation methodologies that bring the approach closer to true

maximum likelihood estimation.  However, the above moment-matching approach can be shown to

be a numerically stable filtration, despite the complexity of the concatenated integrations.  Filtration

errors die out as more data are observed.  This follows from a vector autoregression representation

of the data and the revisions in conditional moments derived in appendix A.1.  In the fully affine case

with joint conditional cumulant generating function of the form

the inputs to the algorithm follow a stable VAR of the form  

or

where

 is the expectational operator using the approximate prior, conditional upon data ;Êt Y t

 is the observed prediction error for  of the approximate prior;ut%1 / yt%1 & Êt yt%1 yt%1

 is the revision in the latent variable estimate using the abovevt%1 / (Êt%1 & Êt ) xt%1
algorithm and approximate prior, given an additional datum ;yt%1

;wt%1 / ( Êt%1 & Êt ) x 2
t%1 & 2vt%1 (Cψ % Dψ x̂t* t )

lnF(Φ, ψ* yt , xt ) ' C 0(Φ, ψ ; τ) % C y(Φ, ψ ; τ) yt % D(Φ, ψ ; τ) xt (19)
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4In the special case of Kalman filtration, the variance revision  is a nonpositivewt%1 & v 2
t%1

deterministic nonlinear function of the prior variance , which in turn converges to a steady-statePt* t
minimal value conditional upon a steady information flow; see Hamilton (1994, Ch. 13) or appendix
B below.  For general affine processes, variance revisions are stochastic, and can be positive.

and all partial derivatives ( , etc.) are evaluated at . Since   and  are assumedCψ , Dψ Φ ' ψ ' 0 xt yt

stationary, the block-diagonal matrix  is well-behaved: its eigenvalues have modulus less than 1,B

and  as .B n 6 0 n 6 4

The matrices A and B are determined analytically by the specification (19) of the affine process.

Approximation issues consequently affect only the signals  inferred from observing .  Undergt%1 yt%1

an exact prior ( ), the signals  would be serially uncorrelated, andÊt ' Et (ut%1 , vt%1 , wt%1 )

independent of all lagged data .  But even under an approximate prior, the impact of inefficientlyYt

processing the latest observation  when computing the signals dies out geometrically over time.yt%1

In the absence of news (e.g., when projecting forward in time), the conditional moments converge

to the unconditional moments , where  is the identity matrix.(I & B )&1 A I

Since the posterior variance  is computed by Bayesian updating, it is strictly positive.4  SincePt%1* t%1

the approximate Bayesian updating algorithm depends upon the prior moments  and the( x̂t* t , Pt*t )

latest observation , all of which are stationary, the signals  are also stationary, and the overallyt%1 gt%1

system is well-behaved.  The extent to which the use of an approximate prior leads to inefficient

signals is of course an important issue, which will be examined below for specific models.  However,

the matrices A and B that determine the weighting of past signals when computing the mean and

variance of  are not affected by approximation issues.xt%1

1.4 Comparison with alternate approaches

There have of course been many alternative approaches to the problem of estimating and filtering

dynamic state space systems.  These approaches fall into two categories: those that assume the

Markov system  is fully observable, and those for which  contains latent components z t z t ' ( yt , xt ) xt

that must be estimated from past realizations .  Included in the first category are those approachesYt&1

that infer the current values of  from other data sources; from bond prices for multifactor termxt

structure models, from option prices for latent volatility, or deterministically from past returns in
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5Pearson and Sun note that if  is inferred from observed data, an additional Jacobian termz t
for the data transformation is required in the log likelihood function.

GARCH models.  In the discussion below, I will primarily focus on the approaches for estimating

affine models of stochastic volatility.

If  is fully observable or inferrable, then direct maximum likelihood estimation of the parameterz t

vector  is in principle feasible.  In some cases the log transition densities   that enterθ ln p(zt*zt&1 , θ)

into the log likelihood function can be analytic, as in the multifactor CIR model of Pearson and Sun

(1994).5  Alternatively, the log densities may be evaluated numerically: by Fourier inversion of the

conditional characteristic function, by numerical finite-difference methods (Lo, 1988), by simulation

methods (e.g., Durham and Gallant, 2002), or by good approximation techniques (Aït-Sahalia, 2002).

Some (e.g., Pan, 2002) use GMM rather than maximum likelihood, based on conditional moment

conditions derived from the conditional characteristic function.  Feuerverger and McDunnough

(1981a,b) show that a continuum of moment conditions derived directly from characteristic functions

achieves the efficiency of maximum likelihood estimation.  Singleton (2001) and Carrasco, Chernov,

Florens and Ghysels (2003) explore how to implement this empirical characteristic function

approach using a finite number of moment conditions.

This article is concerned with the second category of state space systems – those that include latent

variables. Current approaches for estimating such systems include

      1) analytically tractable filtrations approaches such as Gaussian and regime-switching models;

      2) GMM approaches that use moment conditions evaluated either analytically or by simulation

methods; and

      3) the Bayesian Monte Carlo Markov Chain approach of Jacquier, Polson, and Rossi (1994) and

Eraker, Johannes, and Polson (2003).

Filtration approaches typically rely on specific state space structures that permit recursive updating

of the conditional density functions  of observed data used in maximum likelihoodp( yt*Yt&1 , θ)
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6See, e.g., Jegadeesh and Pennacchi (1996) for a Kalman filtration examination of the
multifactor Vasicek bond pricing model.

estimation.  While there exist some affine processes that fall within these categories,6 both Gaussian

and regime-switching models can be poor descriptions of the stochastic volatility processes examined

below.  The joint evolution of asset prices and volatility is not Gaussian, nor does volatility take on

only a finite number of discrete values.  Nevertheless, some papers have used such models as

approximations for volatility evolution and estimation.  Harvey, Ruiz, and Shephard (1994) have

explored the Kalman filtration associated with Gaussian models, while Sandmann and Koopman

(1998) add a simulation-based correction for the deviations from Gaussian distributions.  Fridman

and Harris (1998) essentially use a constrained regime-switching model with a large number of states

as an approximation to an underlying stochastic volatility process.

One major strand of the literature on GMM estimation of stochastic volatility processes without or

with jumps focuses on models for which moments of the form  for  can beE [ y m
t y n

t&L ] m , n $ 0

evaluated analytically.  Examples include Melino and Turnbull (1990), Andersen and Sørensen

(1996), Ho, Perraudin, and Sørensen (1996), Jiang and Knight (2002) and Chacko and Viceira (2003).

This is relatively straightforward for models with affine conditional characteristic functions.  As

illustrated in Jiang and Knight (2002), iterated expectations can be used to generate unconditional

characteristic functions  or joint characteristic functions F(iΦ) / E [exp (iΦyt ) ] F(iΦ0 , ... , iΦL ) /

. Unconditional moments and cross-moments of returns can thenE [exp(iΦ0 yt % ... % iΦL yt&L ) ]

be computed by taking derivatives. Alternatively, one can generate moment conditions by directly

comparing theoretical and empirical characteristic functions.  Feuerverger (1990) shows that a

continuum of such moment conditions for different values of ’s is equivalent to maximumΦ

likelihood estimation premised on the limited-information densities   – a resultp( yt*yt&1 , ... , yt&L ; θ)

cited in Jiang and Knight (2002) and Carrasco et al (2003).

The second strand of GMM estimation evaluates theoretical moments numerically by Monte Carlo

methods, using the simulated method of moments approach of McFadden (1989) and Duffie and

Singleton (1993).  Eliminating the requirement of analytic tractability greatly increases the range of

moment conditions that can be used.  The currently popular Efficient Method of Moments (EMM)



17

Ĝt* t (iψ) . j πt* t (i) exp iψ x (i) (22)

methodology of Gallant and Tauchen (2002) uses first-order conditions from the estimation of an

auxiliary discrete-time semi-nonparametric time series model as the moment conditions to be

satisfied by the postulated continuous-time process.

The approximate maximum likelihood (AML) methodology is closest in spirit to the filtration

approaches that evaluate  recursively over time.  Indeed, Fridman and Harris (1998)’sp( yt*Yt&1 , θ)

discretization of possible variance realizations within the range of ±3 unconditional standard

deviations can be viewed as a particular point-mass approximation methodology for the conditional

characteristic function:  

where .  Fridman and Harris use the Bayesian state probabilityπt* t (i) / Prob [xt ' x ( i ) * Y t ]

updating of regime-switching models to recursively update the state probabilities  over time.πt*t

The AML methodology has strengths and weaknesses relative to Fridman and Harris.  AML can be

used with the broader class of discrete- or continuous-time affine models, whereas the Fridman and

Harris approach requires a discrete-time model with explicit conditional transition densities

 for the latent variable.  Second, AML can accommodate correlations between observedp(xt*xt&1 ; θ )

data and the latent variable evolution (e.g., correlated asset returns and volatility shocks), whereas

the regime-switching structure used by Fridman and Harris relies on conditional independence when

updating state probabilities.  Both approaches generate filtered estimates , but the Fridman andx̂t* t

Harris approach can also readily generate smoothed estimates .  Finally, the AML approach atx̂t*T

present lacks a systematic method of increasing the accuracy of  estimates, whereas it is simpleĜt*t

to increase the number of grid points in the Fridman and Harris approach.

The major advantage of AML relative to moment- and simulation-based approaches is that it directly

provides filtered estimates  for use in assessing risk or pricing derivatives.  Most other methodsx̂t* t

do not, and must append an additional filtration methodology.  Melino and Turnbull (1990), for

instance, use an extended Kalman filter calibrated from their GMM parameter estimates.  EMM

practitioners use reprojection.  The MCMC approach of Eraker, Johannes, and Polson (2003)
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provides smoothed but not filtered latent variable estimates, to which  Johannes, Polson and Stroud

(2003) append a particle filter.

The other issue is, of course, how the various methods compare with regard to parameter estimation

efficiency.  AML presumably suffers some loss of efficiency for poor-quality  approximations.Ĝt* t

The performance of moment-based approaches depend upon moment selection.  Ad hoc moment

selection can reduce the performance of GMM approaches, while EMM’s moment selection

procedure asymptotically approaches the efficiency of maximum likelihood estimation.  The latent-

variable empirical characteristic function approaches of Jiang and Knight (2002) and Carrasco et al

(2003) can at best achieve the efficiency of a maximum likelihood procedure that uses the limited-

information densities .  Given that L is in practice relatively small, there mayp( yt*yt&1 , ... , yt&L ; θ)

be substantial efficiency losses relative to maximum likelihood estimation that uses the densities

.  Conditional moment estimates in (20) place considerable weight on the signals fromp( yt*Yt&1 ; θ)

longer-lagged observations when the latent variable is persistent (i.e., when  is near 1).Dψ

It is not possible to state in general which approaches will work best for which models.  However,

some guidance is provided by Andersen, Chung, and Sørensen’s (1999) summary of the relative

estimation efficiency of various approaches for the benchmark log variance process.  In Appendix

B, I develop the corresponding AML methodology, and append the results to those of Andersen et

al.  The Jacquier, Polson and Rossi (1994) MCMC method competes with Sandmann and Koopman’s

(1998) approach for most efficient.  The AML and Fridman and Harris (1998) approaches are almost

as efficient, followed by EMM, GMM, and the inefficient Kalman filtration approach of Harvey,

Ruiz, and Shephard (1994).  And although Andersen et al do not examine the latent-variable

empirical characteristic function approach, Jiang and Knight’s (2002)  moment conditions resemble

those of the GMM procedure and would probably perform comparably.
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dS /S ' (µ0 % µ1 V & λt k ) dt % V ρ dW1 % 1 & ρ2 dW2 % (e γs & 1) dN

dV ' (α & βV ) dt % σ VdW1

(23)

2. A Monte Carlo examination of parameter estimation and volatility filtration

The above algorithm can be used with any discrete- or continuous-time model that generates a

discrete-time exponentially affine conditional characteristic function of the form (1) above.  One such

process is the continuous-time affine stochastic volatility/jump process

where  is the instantaneous asset return,dS /S

 is its instantaneous variance,Vt

 and  are independent Wiener processes,W1 W2

 is a Poisson counter with intensity  for the incidence of jumps, Nt λ0 % λ1 Vt

is the random Gaussian jump in the log asset price conditional upon a jumpγs - N(γ, δ2 )

occurring; and

 is the expected percentage jump size: k k / E e γs & 1 ' e γ % ½ δ2
& 1

This model generates an analytic, exponentially affine conditional characteristic function  forFy, V

observed log-differenced asset prices  and variance  that is given inyt%1 / ln (St%1 /St ) xt%1 / Vt%1

appendix A.2.

Variants of the model have been estimated on stock index returns by Andersen, Benzoni and Lund

(2002), Chernov, Gallant, Ghysels and Tauchen (2003), and Eraker, Johannes and Polson (2003).

All use simulation-based methods.  The first two papers (henceforth ABL and CGGT, respectively)

use the SNP/EMM methodology of Gallant and Tauchen for daily stock index returns over 1953-96

and 1953-99, respectively.  The third paper (henceforth EJP) uses Bayesian MCMC methods for

daily S&P returns over 1980-99, as well as NASDAQ returns over 1985-99. The latter two papers

also examine the interesting affine specification in which there are jumps in latent variance that may

be correlated with stock market jumps.

2.1 Parameter estimates on simulated data

To test the accuracy of parameter estimation from the AML algorithm in section 1, 100 independent
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7Hamilton (1994, p.689) discusses the issue in the context of regime-switching models.
Honoré (1998) has raised the issue for jump-diffusion processes.

sample paths of daily returns and latent variance were generated over horizons of 1,000 - 12,000

days (roughly 4 - 48 years) using a Monte Carlo procedure described in appendix A.6.  Three models

were examined:  a stochastic volatility (SV) process, a stochastic volatility/jump process (SVJ0)

with constant jump intensity , and a stochastic volatility/jump process (SVJ1) with jump intensityλ0

.  Parameter values for the SV and SVJ1 models were based upon those estimated below inλ1Vt

Section 3.  By contrast, the SVJ0 parameter values were taken from Eraker et al (2003), in order to

replicate their study of parameter estimation efficiency.  The EJR parameter values are generally

close to those estimated below in section 3.  However, the annualized unconditional non-jump

variance  is somewhat higher:  , as opposed to the AML estimate of .α /β (14.1%)2 (12.0%)2

Parameters were estimated for each simulated set of returns by using the Davidon-Fletcher-Powell

optimization routine in GQOPT to maximize the log-likelihood function computed using the

algorithm described above in Section 1.  The true parameter values were used as starting values,

with parameter transformations used to impose sign constraints.  In addition, the parameter space

was loosely constrained to rule out the sometimes extreme parameter values tested at the early stages

of quadratic hill-climbing; e.g., , , etc.  None of these constraints was bindingσ 0 [.03, .50] *ρ* < .95

at the final optimized parameter estimates, with one exception:  the  constraint was binding*γ* < .15

for 8 of the 100 SVJ1 runs on the shortest 1000-observation data samples.  These  estimates wereγ

accompanied by very low estimated jump intensities, indicating these were essentially no-jump

estimates for eight short samples with few jumps.

Various authors have argued that maximum likelihood is ill-suited for estimating mixtures of

distributions. Arbitrarily high likelihood can be achieved if the conditional mean equals some daily

return and the specification permits some probability of extremely low daily variance on that day.7

To preclude this, all models were estimated subject to the additional parameter constraint 2α > σ2

– a constraint that was never binding at the final estimates.  This constraint implies that latent

variance cannot attain its lower barrier of zero, and can be viewed as imposing a strong prior belief

that there is not near-zero stock market variance when markets are open.
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8The results in EJR’s Table VII were converted into annualized units.  In addition, it seems
likely that EJR are reporting standard deviations rather than root mean squared errors of parameter
estimates, since their reported RMSE’s are occasionally less than the absolute bias.  Consequently,
the EJR numbers were also adjusted using .  As estimated biases wereRMSE 2 ' SD 2 % bias 2

generally small, only the  numbers were significantly affected by this adjustment.RMSE(β̂)

The optimizations involved on average 6-10 steps for the SV model and 9-15 steps for the SVJ1

model, with on average about 14 (18) log likelihood function evaluations per step for the SV (SVJ1)

model given linear stretching and numerical gradient computation.  The optimizations converged

in fewer steps for the longer data sets. Actual computer time required for each optimization averaged

between 4 minutes (1000 observations) and 30 minutes (12,000 observations) for the SV model, and

between 10 and 80 minutes for the SVJ1 model, on a 3.2 GHz Pentium 4 PC.  Estimation of the

SVJ0 model on 4000 observations averaged about 29 minutes per optimization.  

Table 1 summarizes the results of replicating the EJR Monte Carlo examination of MCMC

parameter estimation efficiency for the SVJ0 model, on 4000-day samples with two jump intensities

of 1.51 and 3.78 jumps per year, respectively.  Overall, it would appear that AML parameter

estimation efficiency is broadly comparable to that of MCMC.  Estimation biases were smaller for

the AML procedure, especially for the variance mean reversion parameter .  The root meanβ

squared errors of parameter estimates are generally comparable, with neither MCMC nor AML

clearly dominating.8

Tables 2 and 3 summarize the results for the SV and SVJ1 models, respectively.  The tables also

report results for parameters  estimated by direct maximum likelihood conditionalθ̂V ' (α, β, σ)

upon observing the  sample path, using the noncentral  transition densities and initial{Vt}
T&1
t'0 χ2

gamma distribution.  These latter estimates provide an unattainable bound on asymptotic parameter

estimation efficiency for those parameters, given latent variance is not in fact directly observed.  

The AML estimation methodology appears broadly consistent, with the RMSE of parameter

estimates roughly declining inversely to the square root of the number of observations T.  The

estimated bias (average bias rows) for all parameters and parameter transformations also generally

decreased with longer data samples.
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9See Nankervis and Savin (1988) and  Stambaugh (1999) for a discussion of these biases.

There do not appear to be significant biases in the estimates of jump parameters: the sensitivity of

jump intensities  to changes in latent variance, or the mean and standard deviation of jumpsλ1

conditional upon jumps occurring.  However, the  estimates are quite noisy even with 48 yearsλ1

of daily data.  The RMSE of 21.0 is a substantial fraction of the true value of 93.4.

There are substantial biases for two parameter estimates: the sensitivity  of expected stock returnsµ1

to the current level of variance, and the parameter  that determines the serial correlation and theβ

associated half-life of the variance process.  The  bias remains even at 12000-day (48-year)µ̂1

samples; the  bias is still substantial at 16-year samples but disappears for longer samples.  Theβ̂

latter bias reflects in magnified fashion the small-sample biases for a persistent series that would

exist even if the  series were directly observed, as is illustrated in the second sets of  estimatesV(t) β̂

conditioned upon observing  .9  Here, of course, the values of latent variance must be inferredVt

from noisy returns data, which almost doubles the magnitude of the bias relative to the -dependentV

estimates.  

The estimates of some of the parameters of the latent stochastic variance process perform

surprisingly well.  Daily returns are very noisy signals of daily latent variance, and yet the RMSE

of returns-based parameter estimates of  and  is typically less than double that of estimatesα /β β

conditioned on actually observing the underlying variance.  Furthermore, the parameter estimates

are highly correlated with the estimates conditional on directly observing  data.  Vt

An interesting exception is the volatility of variance estimator . Were   observed, its volatilityσ̂ Vt

parameter  would be pinned down quite precisely even for relatively small data sets; e.g., a RMSEσ

of .005 - .007 on data sets of 1000 observations.  By contrast, when   must be inferred from noisyVt

stock returns, the imprecision of the  estimates increases the RMSE of the  estimate tenfold.V̂t* t σ̂

Similar results are reported for the discrete-time log variance process in Appendix B.  The mean

reversion parameter estimate for latent log variance has two to three times the RMSE of estimates

conditioned on actually observing log variance, while the RMSE of the estimate of the volatility

of log variance  rises seven- to eightfold.
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10The mean and variance of  can be derived from those of  (  and ,Vt%1* t Vt* t κtνt κ2
t νt

respectively) by using (A.2).  The mean and variance of  are updated from Vt%1* t%1 (κt , vt )
conditional on the observed asset return by using the algorithm in (11) - (13).  

E V . E [V ] 1 &
1
8

Var[V ]
E[V ]2

. (24)

2.2 Filtration

A major advantage of the filtration algorithm is that it provides estimates of latent variable

realizations conditional upon past data.  Figure 1 illustrates how volatility assessments are updated

conditional upon the last observation for three models estimated below: the stochastic volatility

model (SV), a stochastic volatility/jump model with constant jump intensities (SVJ0), and a

stochastic volatility/jump model with variance-dependent jump intensities (SVJ1).  For

comparability with Hentschel’s (1995) study of GARCH models, the figure illustrates volatility

revisions , using the conditional moments10 of  and the Taylor approximation(Et%1& Et ) Vt%1 Vt%1

The estimates were calibrated from a median volatility day with a prior volatility estimate of 11.4%,

and initial filtered gamma distribution parameters .(κt , vt ) ' (.00229, 5.89)

All news impact curves are tilted, with negative returns having a larger impact on volatility

assessments than positive returns.  All models process the information in small asset returns

similarly.  The most striking result, however, is that taking jumps into account implies that volatility

updating becomes a non-monotonic function of the magnitude of asset returns.  Under the SVJ0

model, large moves indicate a jump has occurred, which totally obscures any information in returns

regarding latent volatility for moves in excess of seven standard deviations.  Under the SVJ1 model,

the large-move implication that a jump has occurred still contains some information regarding

volatility, given jump intensities are proportional to latent variance.  Neither case, however,

resembles the U- and V-shaped GARCH news impact curves estimated by Hentschel (1995). 

Figure 2 illustrates the accuracy of the volatility filtration  conditional upon using the trueEt Vt

parameters, for the first 1000 observations (four years) of a 100,000-observation sample generated

from the SVJ1 model.  The filtered estimate tracks latent volatility quite well, with an overall R 2
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of 70% over the full sample.  Changes in filtered volatility  perforce lag behind changes in the true

volatility, since the filtered estimate must be inferred from past returns.  The absolute divergence

was usually less than 5% (roughly 2 standard deviations), but was occasionally larger.  To put this

error in perspective: the volatility estimate in mid-sample of 15% when the true volatility was 10%

represents a substantial error when pricing short-maturity options.  The magnitude of this error

reflects the low informational content of daily returns for estimating latent volatility and variance.

2.2.1 Filtration diagnostics

A key issue is whether force-fitting posterior distributions into a gamma distribution each period

degrades the quality of the filtrations.  Two sets of diagnostics were used, on simulated data.  First,

the accuracy and informational efficiency of the variance filtration was compared with various

GARCH approaches and with Gallant and Tauchen’s (2002) reprojection technique.  Second, the

extent of specification error in conditional distributions was assessed using higher-moment and

quantile diagnostics.  The diagnostics were run on two 200,000-day (794-year) data sets simulated

from the SV and SVJ1 processes, respectively.  The first 100,000 days were used for in-sample

estimation and testing, while the subsequent 100,000 days were used for out-of-sample tests.

Three GARCH models were estimated on the SV simulated data: the standard GARCH(1,1) and

EGARCH specifications, and Hentschel’s (1995) generalization (labeled HGARCH) that nests these

and other ARCH specifications.  Filtration performance was assessed based on how well the filtered

volatility and variance estimates tracked the true latent values, as measured by overall .  R 2

As shown in Table 5, the approximate maximum likelihood SV filtration outperforms all three

ARCH models, when either the true SV parameters or the parameters estimated from the full sample

are used.  However, the EGARCH and HGARCH specifications that take into account the

correlations between asset returns and volatility shocks perform almost as well as the SV model,

when estimating latent volatility and variance from past returns.

For the SVJ1 data with jumps, the ARCH models were modified to  t-ARCH specifications to

capture the conditionally fat-tailed property of returns.  Despite the modification, the t-GARCH and
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11Gallant and Tauchen (2002) use lagged variance estimates from their SNP-GARCH
approach as regressors.

12Testing the improvement in  via an F-test is statistically equivalent to examiningR 2

whether the regressors have any explanatory power for the residuals .Vt & V̂t*t

t-EGARCH filtrations performed abysmally, while even the t-HGARCH specification substantially

underperformed the SVJ1 filtration  The problem is, of course, the jumps.  As illustrated in Figure

1, the optimal filtration under the postulated stochastic volatility/jump process is essentially to

ignore large outliers.  The GARCH failure to do this can generate extremely high volatility estimates

severely at odds with true latent volatility.  For instance, the simulated data happened to include a

crash-like -21% return.  The (in-sample) annualized volatility estimates of 108%, 159%, and 32%

from the t-GARCH, t-EGARCH and t-HGARCH models for the day immediately after the outlier

greatly exceeded the true value of 10%.

The informational efficiency of the algorithm’s filtrations was assessed using a reprojection

technique based on that in Gallant and Tauchen (2002).  The true variance  was regressed onVt

current and lagged values of the filtered variance estimates , as well as on lags of returns andV̂t*t

absolute returns and a constant.11  Comparing the resulting ’s with those of the AML algorithmR 2

tests jointly for forecasting biases and for any information not picked up by the contemporaneous

filtered estimate .12  The lag length was set equal to 4.32  (4.32 half-lives of varianceV̂t* t ln 2 /β

shocks), which implies from (20) that less than 5% of the potential information in the omitted data

from longer lags is still relevant for variance forecasting.  Given  estimates, this generated 128-β

and 178-day lag lengths of the three dependent variables, for the SV and SVJ models respectively.

All regressions were run in RATS.

The reprojection results in Table 5 indicate very little information is picked up by the additional

regressors.  In-sample, the ’s of the variance estimates increase only from 69.0% to 69.5% forR 2

the SV variances generated from the SV process, and from 70.0% to 70.6% for the SVJ1 variances.

In the out-of-sample tests, there is virtually no improvement in forecasting ability.  The increases

in  are of course statistically significant, given almost 100,000 observations.  Nevertheless, theR 2

virtually comparable  performance suggests little deterioration in latent variance estimation fromR 2
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approximating prior distributions by an gamma distribution.

2.2.2. Diagnostics of conditional distributions 

Two additional diagnostics were used to assess how well gamma approximations captured the

overall conditional distributions of latent variance.  The first diagnostic was based upon computing

higher conditional moments of posterior distributions.  The algorithm uses only the posterior mean

and variance of the latent variable as inputs to next period’s prior distribution.  However, the

posterior skewness and excess kurtosis can be computed by similar numerical integration methods,

and compared with the gamma-based values of  and , respectively.  2 / νt%1 6 /νt%1

The results reported in Table 6 indicate the posterior distributions of latent variance from the SV

model are invariably positively skewed and leptokurtic.  The divergences in moments from the

gamma moments are positive but near zero on average, and with a small standard deviation.

Overall, it would appear that the gamma posterior approximation generally does a good job.

However, the min/max ranges for moment divergences indicate there are specific days on which a

more flexible specification might be preferable.

The posterior moments for the SVJ1 model are also generally close to the gamma moments.  Again,

however, there are specific days in which a more flexible specification is desirable.  In particular,

the posterior distribution can occasionally be negatively skewed and platykurtic.  This reflects the

fact that the posterior distributions for latent variance from the SVJ1 model are mixtures of

distributions: the posterior distributions conditional upon n jumps occurring weighted by the

posterior probabilities of n jumps.  For days with substantially ambiguity ex post regarding whether

a jump has or has not occurred, the posterior distribution for latent variance can be multi-modal and

platykurtic.

It should be emphasized that all of the above posterior moment computations involve updating

conditional upon a gamma prior distribution.  As such, they provide a strictly local diagnostic of

whether a more flexible class of distributional approximations would better capture posterior

distributions at any single point in time.
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A second diagnostic was used to assess the overall performance of the approximate conditional

distributions:  the frequency with which simulated  realizations fell within the quantiles of theVt

conditional  gamma distributions.  The realized frequencies over runs of 100,000 observationsVt* t

indicate the gamma conditional distributions do on average capture the conditional distribution of Vt

realizations quite accurately:

Quantile p: .010 .050 .100 .250 .500 .750 .900 .950 .990

SV .008 .042 .089 .232 .478 .734 .891 .944 .987

SVJ1 .008 .042 .086 .227 .469 .722 .879 .935 .983

The above results were for filtrations using the true parameter vector ; the results using in-sampleθ

estimated  were identical.θ̂

In summary, the approximate maximum likelihood methodology performs well on simulated data.

Parameter estimation is about as efficient as the MCMC approach for two processes for which we

have benchmarks: the discrete-time log variance process, and the continuous time stochastic

volatility jump process SVJ0.  Volatility and variance filtrations are more accurate than GARCH

approaches, especially for processes with jumps, while the filtration error is virtually unpredictable

by EMM-style reprojection.  Finally, the mean- and variance-matching gamma conditional

distributions assess the quantiles of variance realizations quite well on average.  However, there are

individual days for which matching higher moments better would be desirable.
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13The ABL estimates are from their Table IV, converted to an annualized basis. 

14It is possible the difference in estimates is attributable to how different specifications of the
SNP discrete-time auxiliary model interact with outliers.  ABL specify an EGARCH-based auxiliary
model to capture the correlation between return and volatility shocks.  CGGT use a GARCH
framework, and capture the volatility-return correlation through terms in the Hermite polynomials.

3. Estimates from stock index returns

For estimates on observed stock returns, I  use the 11,076 daily S&P 500 returns over 1953 through

1996 that formed the basis for Andersen, Benzoni and Lund’s (2002) EMM/SNP estimates.  I will

not repeat the data description in that article, but two comments are in order.  First, Andersen et al

prefiltered the data to remove an MA(1) component that may be attributable to nonsynchronous

trading in the underlying stocks.  Second, there were three significant outliers:  the -22% stock

market crash of October 19, 1987, the 7% drop on September 26, 1955 that followed reports of

President Eisenhower’s heart attack, and the 6% mini-crash on October 13, 1989. 

The first three columns of Table 7 present estimates of the stochastic volatility model without jumps

(SV) from Chernov et al, Andersen et al, and the methodology of this paper.13 As discussed in

CGGT, estimating the parsimonious stochastic volatility model without jumps creates conflicting

demands for the volatility mean reversion parameter  and the volatility of volatility parameter .β σ

Extreme outliers such as the 1987 crash can be explained by highly volatile volatility that mean-

reverts within days, whereas standard volatility persistence suggest lower volatility of volatility and

slower mean reversion.  In CGGT’s estimates, the former effect dominates; in ABL’s estimates, the

latter dominates. 

AML estimates are affected by both phenomena, but matching the volatility persistence clearly

dominates.  While constraining  to the CGGT estimate of 1.024 substantially raises the likelihoodσ

of the outliers in 1955, 1987, and 1989, this is more than offset by likelihood reductions for the

remainder of the data.  The overall log likelihood falls from 39,234 to 39,049  – a strong rejection

of the constraint with an associated P-value less than .  And although the CGGT data set10&16

includes a few outliers in 1997-99 that are not in the ABL data set used here, the likelihood impact

per outlier of a larger  seems insufficient to explain the difference in results.14σ̂
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15The Monte Carlo RMSE results in Tables 2 and 3 for 12,000-observation data samples
indicate that the estimated asymptotic standard errors in Table 7 are in general reliable. 

Although my stochastic volatility parameter estimates are qualitatively similar to those of ABL on

the same data set, there are statistically significant differences.  In particular, I estimate a higher

volatility of volatility (.315 instead of .197) and faster volatility mean reversion (half-life of 1.4

months, instead of 2.1 months).  The former divergence is especially significant statistically, given

a standard error of only .018.15  The estimate of the average annualized level of variance is also

higher: , rather than .  The estimates of the correlation between volatility and return(.125)2 (.112)2

shocks are comparable.   The substantial reduction in log likelihood of the six ABL parameter

estimates is strongly significant statistically, with a P-value of .  It appears that the two-stage10&15

SNP/EMM methodology used by Andersen et al generates a objective function for parameter

estimation that is substantially different from my maximum likelihood methodology.

As found in the earlier studies, adding a jump component substantially improves the overall fit.  As

indicated in the middle three columns of  Table 2, I estimate a more substantial, less frequent jump

component than previous studies: three jumps every four years, of average size -1.0% and standard

deviation 5.2%.  As outliers are now primarily explained by the jump component, the parameters

governing volatility dynamics are modified:   drops, and the half-life of volatility shocksσ

lengthens.  The divergence of parameter estimates from the ABL estimates is again strongly

significant statistically.

Bates (2000) shows that a volatility-dependent jump intensity component  helps explain theλ1Vt

cross-section of stock index option prices.  Some weak time series evidence for the specification is

provided in Bates and Craine (1999), while Eraker et al (2003) find stronger empirical support.  In

contrast to the results in ABL, the final two columns of Table 2 indicate that jumps are indeed more

likely when volatility is high.  The hypothesis that  = 0 is rejected at a P-value of .  Theλ1 5×10&8

time-invariant jump component  ceases to be statistically significant when  is added.  Theλ0 λ1

Monte Carlo simulations in Table 4 establish that the standard error estimates are reasonable, and

that the AML estimation methodology can identify the presence of time-varying jump intensities.
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16Multiple-jump processes are equivalent to a single-jump process in which the jump is
drawn from a mixture of distributions.

y (

t%1 ' N &1 [CDF( yt%1*Y t , θ̂) ] (25)

Prob [dN1 ' 1] ' 131.1Vt , ln (1 % k1 ) - N [ .001, (.029)2 ]

Prob [dN2 ' 1] ' 2.4Vt , ln (1 % k2 ) - N [&.222, (.007)2 ] .
(26)

Standard maximum likelihood diagnostics dating back to Pearson (1933) can be used to assess

model specification.  As in Bates (2000), I use the normalized transition density

where  is the inverse of the cumulative normal distribution function, and the cumulativeN &1

distribution function CDF is evaluated from the conditional characteristic function by Fourier

inversion given parameter estimates .  Under correct specification, the ’s should be independentθ̂ y (

and identical draws from a normal  distribution.N(0, 1)

Figure 3 examines specification accuracy using normal probability plots generated by Matlab, which

plot the theoretical quantiles (line) and empirical quantiles (+) against the ordered normalized data

.  Unsurprisingly, the stochastic volatility model (SV) is unable to match the tail properties ofy (

the data; there are far too many extreme outliers. The models with jumps (SVJ0, SVJ1) do

substantially better.  However, both have problems with the 1987 crash, which is equivalent in

probability to a negative draw of more than 5 standard deviations from a Gaussian distribution.  As

such moves should be observed only once every 14,000 years, the single 1987 outlier constitutes

substantial evidence against both models.

To address this issue, an additional stochastic volatility/jump model SVJ2 was estimated with two

separate jump processes, each with -dependent jump intensity.16  The resulting estimates for theVt

stochastic volatility component are roughly unchanged; the jump parameters become

The conditional distribution of daily returns is approximately a mixture of three normals: normal

daily volatility that varies stochastically over a range of .2% - 1.8%, infrequent symmetric jumps

with a larger standard deviation of 2.9% and time-varying arrival rate that averages 1.85 jumps per

year, and an extremely infrequent crash corresponding to the 1987 outlier.  Log likelihood rises from
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39,309.51 to 39,317.81 -- an improvement almost entirely attributable to a better fit for the 1987

crash.  The increase in log likelihood has a marginal significance level of .0008 under a likelihood

ratio test, given 3 additional parameters.  

The -score for the 1987 crash drops in magnitude, to a more plausible value of -3.50.  As showny (

in Figure 3, the resulting empirical and theoretical quantiles for the SVJ2 model are much more

closely aligned.  However, there remain small deviations from perfect alignment that indicate some

scope for further model improvement.

3.2 Filtration

Figure 4 illustrates the filtered estimates of latent volatility  from the SVJ1 model, and theVt

difference between SVJ1 and SV volatility estimates.  Those estimates are generally almost

identical, except following large positive or negative stock returns.  For instance, the 1955 and 1987

crashes have much more of an impact on volatility assessments under the SV model than under the

jump models. 

The number of jumps on any given day is also a latent variable that can be inferred from observed

returns.  It is shown in Appendix A that the joint conditional distribution of log-differenced asset

prices and the number of jumps   has an affine specification.  Consequently, the∆N / N(t%1) & N(t)

characteristic function  can be evaluated by Proposition 1.G∆N (iξ * Yt%1 ) / E [e iξ∆Nt%1 * yt%1 , Y t ]

While it is possible to evaluate the daily probability that n jumps occurred by Fourier inversion of

, it is simpler to estimate the number of jumps:  .  At the dailyG∆N E[∆Nt%1 * Yt%1 ] ' G∆NN(0 *Yt%1 )

horizon,  is essentially binomial, and the estimated number of jumps is approximately the∆N

probability that a jump occurred.  Unsurprisingly from Figure 5, large moves are attributed to jumps

and small moves are not.  Intermediate moves of roughly three to five times the estimated latent

standard deviation imply a small probability that a jump occurred.  It is the accumulation of these

small jump probabilities for the moderately frequent intermediate-sized moves that underpin the

overall estimate of jump intensities; e.g., .744 jumps per year in the SVJ0 model.
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17This approach is equivalent to but more efficient than the approaches in Bates (1996, 2000)
and Bakshi and Madan (2000).  Those approaches require two univariate integrations, whereas (28)
has only one, with an integrand that falls off more rapidly in .  Carr and Madan (2000), LewisΦ
(2001) and Attari (2004) have independently derived similar formulas by alternate methods.

4.  Implications for option prices

One of the major advantages of using affine processes is their convenience for pricing options.  If

the log of the pricing kernel is also affine in the state variables, the “risk-neutral” asset price process

used when pricing options is also affine, and options can be priced by Fourier inversion of the

associated exponentially affine characteristic function.  Under the risk-neutral parameters , theθ(

upper tail probability conditional upon knowing latent variance  is Vt

where  and  are  and  evaluated at the risk-neutral parameters .  The valueC ((C) D ((C) C(C) D(C) θ(

for a European call option  with maturity T and strike price X can be evaluated byc(St , Vt , T ; X )

using , substituting (27) for , and integrating with respect to X:Mc /MX ' &e &rT P2 P2

where  is the current dividend yield, and the ex-dividend spot price  is a constant ofdt St e &dtT

integration determined by the value of a call option with zero strike price.17  Given the affine

structure inside the integrand in (28), an econometrician’s valuation of a European call option

conditional upon observing past returns  and the current asset price  is Y t St

The filtration used in estimating the conditional characteristic function  of current latentGt*t(C)

variance is based on the objective parameter values, not the risk-neutral parameters.  The option

valuation in (29) is roughly equivalent to using a filtered variance estimate  in (28) and addingV̂t* t

P2 / Prob ([ln (St%T /St ) > ln (X /St ) * Vt ]

'
1
2

%
1
2π m

4

&4

exp[C ((iΦ, 0) % D ((iΦ, 0) Vt & iΦ ln (X /St )]
iΦ

dΦ
(27)

c(St , Vt , T ; X ) 'St e &dtT & e &rT X 1
2

%
1
2π m

4

&4

e C ((iΦ, 0) % D ((iΦ, 0) Vt & iΦ ln (X /St )]

iΦ (1 & iΦ)
dΦ (28)

c(St , T ; X * Y t ) ' E [c(St , Vt , T ; X ) *Y t , St ]

' St e &dtT & e &rT X 1
2

%
1
2π m

4

&4

e C ((iΦ, 0)Gt* t [D
((iΦ, 0)]e & iΦ ln (X /St )

iΦ (1 & iΦ)
dΦ

(29)
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a Jensen’s inequality correction for state uncertainty . Pt*t

The risk adjustments incorporated into the divergence between the actual parameters  and the risk-θ

neutral parameters  depend upon the pricing kernel M.  The general affine pricing kernelθ(

specification commonly used in the affine literature takes the form

where  is such that .  This reduced-form specification nests variousµm Et (dM /M ) ' &rt dt

approaches.  For instance, the submodel with  is the myopic power utility pricing kernelRV ' RJ ' 0

used in the implicit pricing kernel literature, and in Coval and Shumway’s (2001) empirical

examination of the profits from straddle positions.  If S is viewed as a good proxy for overall wealth,

R measures relative risk aversion.  More generally, R reflects the projection of pricing kernel

innovations upon asset returns, and can be greater or less than the coefficient of relative risk

aversion.

 determines a volatility risk premium in addition to the wealth-related effect that volatilityRV

innovations tend to move inversely with stock market returns.  While theoretically zero under

myopic preferences such as log utility,  will diverge from zero for representative agentsRV

concerned with volatility-related shifts in the investment opportunity set.  Kapadia and Bakshi

(2003) and Coval and Shumway attribute the overpricing of stock index options to a significantly

negative .  Similarly,  determines the additional risk premium on market stock jumps beyondRV RJ

the direct wealth-related effects on marginal utility captured by .  Non-zero  can arise ifRd ln S RJ

there are jump-related changes in investment opportunities (volatility-jump models) or in

preferences (e.g., habit formation models), or if investors are directly averse to jumps (Bates, 2001)

or to jump estimation uncertainty (Liu, Pan, and Wang, 2002).   will also differ from zero if theRJ

jump-contingent projection of pricing kernel innovations on asset returns diverges from the

diffusion-based projection.

Using this pricing kernel, the objective and risk-neutral processes for excess returns for the SVJ2

model will be of the form

d ln M ' µm dt & R d lnS & RV dV & RJ γs dN , (30)
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dS /S % (dt & rt )dt ' µ1Vdt % V ρ dW1 % 1 & ρ2 dW2 % j
2

i'1
(e γi & 1) dNi & λi Vk i dt

dV ' (α & βV ) dt % σ VdW1

(31)

dS /S % (dt & rt )dt ' V ρ dW (

1 % 1 & ρ2 dW (

2 % j
2

i'1
(e γ(i & 1) dN (

i & λ(i V k(i dt

dV ' α & β(V dt % σ VdW (

1

(32)

µ0 ' 0

µ1 ' R % RV ρσ % j
2

i'1
(λ(i k(i & λi k i ) , (34)

Objective measure:

Risk-neutral measure:

where  and  are independent Wiener processes;W1 W2

 are Poisson counters with instantaneous intensities  for ;Ni λi Vt i ' 1, 2

 is the jump size of log asset prices conditional upon a jump occurring;γi - N(γ i , δ
2
i )

 is the expected percentage jump size conditional upon a jump; k i ' exp(γ i & ½δ2
i ) & 1

 are the corresponding values for the risk-neutral process (32); and(λ(i , γ(, k(i )

 and  are the corresponding risk-neutral Wiener processes and Poisson counters.W (

i N (

i

If dividend yields and interest rates are nonstochastic, (32) is also the risk-neutral process for futures

returns used in pricing futures options.

The affine pricing kernel constrains both objective and risk-neutral parameter values.  As discussed

in Bates (1991, Appendix I), the instantaneous equity premium estimated under the objective

probability measure is 

For the SVJ2 model, this implies

while the risk-neutral parameter values used in pricing derivatives are

µ0 % µ1 V % dt & rt dt ' &Et
dS
S

dM
M

. (33)
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λ(i ' λi E dM
M

*dNi ' 1

' λi exp (R % RJ )γ i % ½ (R % RJ )2δ2
i

γ(i ' γ i % Cov(γi , ∆ lnM*dNi ' 1)

' γ i & (R % RJ )δ2
i

β( ' β & E dV
V

dM
M

' β % Rρσ % RV σ
2 .

(35)

4.2 Estimated option prices

To illustrate the option pricing implications of the AML estimation methodology, I will focus upon

the myopic power utility pricing kernel, with .  This is done for two reasons.  First, theRV ' RJ ' 0

appropriate risk adjustments for pricing options can be estimated solely from past stock index excess

returns under the AML methodology presented above, whereas pricing volatility or jump risk premia

requires incorporating additional information from option prices or option returns.  Second, the

power utility pricing kernel is the jump-diffusion equivalent of the conditional capital asset pricing

model.  Substantial deviations of observed option prices from the power utility valuations indicate

investment opportunities with an excessively favorable instantaneous return/risk tradeoff from a

conditional CAPM perspective.  Of course, it is possible that such investment opportunities can be

rationally explained by investors’ aversions to time-varying volatility or jump risk, which would

show up in non-zero  or .  RV RJ

Since (31) requires excess returns, the ABL data were adjusted by monthly dividend yields and 1-

month Treasury bill rates obtained from the Web sites of Robert Shiller and Ken French,

respectively.  In addition, the ABL data set was extended through 2001 using CRSP data, for use

in out-of-sample tests.  Since the substantial autocorrelations in daily S&P 500 index returns

estimated by Andersen et al (2002) over 1953-96 were not apparent over the post-1996 period, post-

’96 excess returns were used directly, without prefiltration.

Table 8 contains estimates of the SVJ2 model on returns and excess returns, and the corresponding
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18A minor issue is the difference between American and European options, and the
computation of associated ISD’s.  The price of an American futures option is bounded below by the
European price, and bounded above by the future value of the European price.  The resulting error
in annualized European at-the-money ISD estimates is bounded by  (  on± ˆISDt × rT ±0.04%
December 31, 1996), while the errors for out-of-the-money ISD estimates are even smaller.

estimates of the risk-neutral parameters under the myopic power utility pricing kernel.  Unsurprising,

the unconstrained SVJ2 estimates on raw and excess returns in the first two rows of each panel are

virtually identical, except for a difference in the mean parameter .  The dividend and interest rateµ1

series are smooth, inducing little change in the estimates of volatility dynamics and jump risk.

Affine pricing kernel models imply that  for the SVJ2 model.  The estimated sensitivity µ0 ' 0 µ1

of the equity premium to the current level of variance determines the risk aversion parameter R for

the power utility pricing kernel, and constrains the risk aversion parameters for other models.  In

Table 8, the  constraint is borderline insignificant, with a marginal significance level of 6.8%µ0 ' 0

under a likelihood ratio test.  The risk aversion estimate is approximately 4.  The implications for

the risk-neutral parameters used in option pricing are twofold.  First, the risk-neutral frequency of

’87-like crashes is more than double that of the objective frequency.  Second, the risk-neutral

volatility dynamics implicit in the term structure of implied volatilities involve somewhat slower

mean reversion to a somewhat higher level: a half-life of 2.0 months rather than 1.8 months, and a

long-run level of  instead of .(12.8%)2 (11.9%)2

For comparison, daily settlement prices for the Chicago Mercantile Exchange’s American options

on S&P 500 futures and the underlying futures contracts were obtained from the Institute for

Financial Markets, for the option contracts’ inception on January 28, 1983 through June 29, 2001.

The use of end-of-day option prices synchronizes nicely with the AML variance filtration, which

uses closing S&P 500 index returns.  The shortest-maturity out-of-the-money call and put options

with a maturity of at least 14 days were selected.  The corresponding implicit standard deviations

(ISD’s) were computed using the Barone-Adesi and Whaley (1987) American option pricing

formula, for comparison with those computed from AML European option price estimates.  In

addition, a benchmark at-the-money ISD was constructed for each day by interpolation.18
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Figure 6 shows the observed and estimated volatility smirks for out-of-the-money put and call

options on December 31, 1996, which was the last day of the ABL data set.  Several results are

evident.  First, the ISD’s estimated from stock index returns exhibit a substantial volatility smirk.

This smirk partly reflects the negative correlation between asset returns and volatility shocks, but

also reflects the substantial and time-varying crash risk – in particular, the estimated risk of

infrequent  ‘87-like crashes.  

Second, estimates are imprecise.  Option price estimates and the associated ISD’s contain two types

of error:  

parameter estimation error, with variance  , and Mc
Mθ)

Var (θ̂) Mc
Mθ)

filtration error (or state uncertainty), with variance .  Mc
MV̂t*t

2
Pt* t

The at-the-money estimated ISD contains little parameter uncertainty, reflecting the relative

robustness of volatility estimates to model specification.  However, there is considerable state

uncertainty regarding the current level of  and the at-the-money ISD.  This state uncertaintyVt

reflects the relatively low informational content of daily returns, and could be reduced by using more

informative data sources.  Out-of-the-money put and call option prices are less affected by state

uncertainty, but more affected by parameter uncertainty.  This reflects the difficulties in estimating

the jump parameters, which are of key importance in determining the probability of these options

paying off.  

Third, the deviations between estimated and observed ISD’s were sometimes large enough to be

statistically significant.  S&P 500 futures options were mostly overpriced on December 31, 1996,

from the perspective of a myopic power utility investor with a risk aversion of 4 who is 100%

invested in S&P 500 stocks.  This sort of overpricing is responsible for the high Sharpe ratios

reported by various authors for option-selling strategies.

Figure 7 shows at-the-money ISD’s for short-maturity options over 1983-2001, the corresponding

AML filtered ISD estimates, and the divergence between the two.  The estimates prior to 1997 are
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“in-sample,” in that the parameter estimates underlying the filtration are from the full 1953-96 data

set. The post-1996 filtered estimates are out-of-sample.

 

Overall, the filtered estimates track the at-the-money option ISD’s reasonably well.  There are,

however, some interesting and persistent deviations between the two series.  For instance, at-the-

money options were substantially overpriced during the two years preceding the 1987 crash, when

judged against the time series estimates of appropriate risk-adjusted value.  The extent of the

overpricing soared after the crash but gradually dwindled over 1988-91, only to re-emerge in late

1996 and in subsequent years.  The mispricing was especially pronounced following the mini-crash

of October 1997, and in the fall of 1998.   Overall, option overpricing was most pronounced when

observed and estimated ISD’s were both relatively high – a result mirroring standard results from

regressing realized volatility on ISD’s.  

Over 1988-96, ISD’s averaged 2.2% higher than the time series valuations, while the average gap

was 4.6% over 1997-2001.  It is possible that this greater gap reflects out-of-sample instabilities in

the time series model.  However, it seems more plausible to attribute it to structural shifts in the

stock index options market – in particular, to the bankruptcy of Long Term Capital Management in

August 1998.  By 2000, estimated ISD’s were again tracking observed ISD’s fairly closely.

5. Conclusions and extensions

This article has presented a new approximate maximum likelihood methodology for estimating

continuous-time affine processes on discrete-time data: both parameter values and latent variable

realizations.  Results on simulated data indicate the parameter estimation efficiency is excellent for

those processes for which we have performance benchmarks.  Furthermore, the approach directly

generates a filtration algorithm for estimating latent variable realizations, of value for risk

management and derivatives pricing.  Most other approaches must append an additional filtration

procedure to the parameter estimation methodology.

The AML approach was used to estimate the parameters of an affine stochastic volatility/jump

process, using the data set of Andersen, Benzoni and Lund (2002).  Parameter estimates were similar
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to the EMM-based estimates of Andersen et al, but differ in statistically significant fashions.  In

particular, I find a generally higher volatility of volatility, a more substantial jump component, and

strong support for the hypothesis that jumps are more likely when volatility is high.  Furthermore,

Monte Carlo simulations establish that the AML estimation methodology can reliably identify these

phenomena.

My methodology differs substantially from the SNP/EMM methodology used by Andersen et al, so

the source of divergence is not immediately apparent.  It does appear that the EMM methodology

may be sensitive to precisely how the auxiliary discrete-time SNP model is specified – especially

in the presence of infrequent large outliers such as the 1987 crash.  Chernov et al (2003) find very

different estimates from Andersen et al for the stochastic volatility model, for a similar data set but

a different auxiliary model.  A Monte Carlo examination of whether the EMM estimation procedure

is indeed robust to stochastic volatility/jump processes would appear desirable.

This article has focused on classical maximum likelihood estimation.  However, the recursive

likelihood evaluation methodology presented here can equally be used in Bayesian estimation, when

combined with a prior distribution on parameter values.

More recent research into volatility dynamics has focused on the additional information provided

by alternate data sources; e.g., high-low ranges, or “realized” intradaily variance.   Furthermore, it

appears from Alizadeh, Brandt and Diebold (2002) and Andersen, Bollerslev, Diebold and Ebens

(2001) that the additional data are sufficiently informative about latent variance that single-factor

models no longer suffice.  The complexities of using alternative data sources in conjunction with

multi-factor models of latent variance will be explored in future research.
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Appendix A

A.1 Conditional moment dynamics 

For fully affine stochastic processes, the conditional joint cumulant generating function is

where  is the cumulant generating function of latent  conditional upongt*t (ψ) / ln Ê [e ψxt *Y t ] xt

using the approximate maximum likelihood methodology and observing data .  Conditional meansY t

and variances can be evaluated by taking derivatives of the joint cumulant generating function:

where all derivatives of  and D are evaluated at . The first and second derivativesC 0, C y Φ ' ψ ' 0

of , evaluated at , give the time-t conditional mean and variance of . gt* t D(0, 0) ' 0 xt

Conditional moment dynamics can be evaluated by writing each noncentral moment as the sum of

the prior expectation and the revision in expectations in light of new data.  For conditional means

this takes the form

where  and .  Using the same approach for revising theut%1 / yt%1 & Êt yt%1 vt%1 / x̂t%1* t%1 & x̂t%1* t

conditional second noncentral moment of the latent state variable yields

Substituting in the expressions for  and  from (A.2) above yields the dynamics ofPt%1* t x̂t%1* t

ln F(Φ, ψ* Y t ) / ln Ê [e Φyt%1 % ψxt%1 * Y t ]

' C 0(Φ, ψ ) % C y(Φ, ψ) yt % gt*t [D(Φ, ψ) ]
(A.1)

Êt yt%1 ' C 0
Φ % C y

Φ yt % g )

t*t [0] DΦ

' C 0
Φ % C y

Φ yt % x̂t*t DΦ

x̂t%1* t ' C 0
ψ % C y

ψ yt % x̂t*t Dψ

Pt%1* t ' C 0
ψψ % C y

ψψ yt % g )

t*t(0) Dψψ % g ))

t*t (0) D 2
ψ

' C 0
ψψ % C y

ψψ yt % x̂t*t Dψψ % Pt*t D 2
ψ

(A.2)

(Pt%1* t%1 % x̂ 2
t%1* t%1 ) ' (Pt%1* t % x̂ 2

t%1*t ) % (Êt%1 & Êt ) x 2
t%1 . (A.4)
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F(Φ, ψ, ξ* st , Vt , Nt , t ) / Et [ e ΦsT % ψVT % ξNT * st , Vt , Nt ] (A.6)

Et dF(C * st , Vt , Nt , t ) ' 0 . (A.7)

F (Φ , ψ , ξ* st , Vt , Nt , τ ) ' exp[Φst % ξ Nt % C (Φ , ψ , ξ ; τ) % D (Φ , ψ , ξ ; τ) Vt ] (A.8)

ds ' µ0 % (µ1 & ½)V & (λ0 % λ1 V )k dt % V ρ dW1 % 1 & ρ2 dW2 % γs dN

dV ' (α & βV ) dt % σ V dW1

(A.9)

conditional variance:

where .  This, along with (A.3), yields the vectorwt%1 / ( Êt%1 & Êt ) x 2
t%1 & 2vt%1 (Cψ % Dψ x̂t* t )

autoregression for conditional moments that is given in (20).

A.2 Joint moment generating functions from continuous-time affine processes

Let

be the joint moment generating function of the future variables  conditional uponzT / (sT , VT , NT )

observing  today, where  is the log asset price,  is the instantaneous variance, and  is az t st Vt Nt

Poisson counter.  Since F is a conditional expectation, it is a martingale:

Expanding this by the jump-diffusion generalization of Itô’s lemma yields the backwards

Kolmogorov equation that F must solve for a given stochastic process.  For the affine processes in

this article, the solution is exponentially affine in the state variables:

for .    τ / T & t

By Itô’s lemma, the stochastic volatility/jump-diffusion in equation (23) implies a log asset price

evolution of the form

where  are independent Brownian motions,  is a Poisson counter with intensity(W1, W2 ) Nt

,  is normally distributed  , and .  The corresponding backwardsλ0% λ1Vt γs N (γ, δ2 ) k / e γ % ½δ2
& 1

Kolmogorov equation for F is

Pt%1* t%1 ' C 0
ψψ % C y

ψψ yt % Dψψ x̂t*t % D 2
ψ Pt* t % (wt%1 & u 2

t%1 ) , (A.5)



42

Fτ ' [µ0 % (µ1 & ½)V & (λ0 % λ1 V )k ]Fs % (α & βV )FV

% ½V (Fss % 2ρσv FsV % σ2
v FVV )

% (λ0% λ1 V )E [ F(C*s % γs , N %1, V ; τ) & F ]
(A.10)

F(Φ, ψ, ξ* s, V, N; τ ' 0) ' e Φs % ψV % ξ N. (A.11)

E(Φ , ξ ) ' e ξ % γΦ % ½δ2Φ2
& (1% kΦ) (A.12)

C (Φ, ψ, ξ ; τ) ' µ0ΦT &
ατ
σ2

[ρσΦ & β & γ(Φ) ] % λ0τ E(Φ, ξ )

&
2α
σ2

ln 1 % ½ [ρσvΦ & β & γ(Φ) ] 1 & e γ(Φ)τ

γ(Φ)
&

2α
σ2

ln[1 & Κ(Φ, ξ )ψ ]
(A.13)

D(Φ, ψ, ξ; τ ) '
&2(µ1 & ½)Φ & Φ²

ρσΦ & β % γ(Φ) 1 % e γ(Φ)τ

1 & e γ(Φ)τ

%
Λ(Φ, ξ ) ψ

1 & Κ(Φ, ξ ) ψ (A.14)

γ(Φ) ' (ρσΦ & β )2 & 2σ2 [½Φ2 % (µ1 & ½)Φ ] % λ1 E(Φ, ξ ) (A.15)

Λ(Φ, ξ ) '

e γ(Φ)τ % 1
e γ(Φ)τ & 1

2

& 1

e γ(Φ)τ % 1
e γ(Φ)τ & 1

%
β & ρσΦ
γ(Φ)

2 (A.16)

Κ(Φ, ξ) '
σ2

γ(Φ) e γ(Φ)τ%1
e γ(Φ)τ&1

% β & ρσΦ
.

(A.17)

which is solved subject to the boundary condition

Plugging (A.8) into (A.10) yields a recursive system of ordinary differential equations that C(C; τ)

and  must solve, subject to the boundary conditions  and .  TheD(C; τ) C(C; 0) ' 0 D(C; 0) ' ψ

resulting solutions are: 
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     8For , , , and .Φ ' ξ ' 0 γ(0) ' β Λ(0, 0) ' e &βτ Κ(0, 0) ' ½σ2 (1 & e &βτ ) /β

Fy, V, ∆N (Φ , ψ, ξ* Vt , ∆t ) ' exp[C (Φ , ψ, ξ ; ∆t) % D (Φ , ψ, ξ ; ∆t) Vt ], (A.18)

Fy, V (Φ , ψ* Vt , ∆ t ) ' Fy, V, ∆N (Φ , ψ, 0 * Vt , ∆ t ) . (A.19)

Fy, V (iΦ , iψ* Y t ) ' E [Fy, V (iΦ, iψ*Vt , ∆t) * Y t ]

' e C(iΦ, iψ, 0; ∆ t) Gt* t[D(iΦ, iψ, 0; ∆ t)]
(A.20)

p( yt%1 *Y t ) '
1

2π m
4

&4
Fy, V (iΦ, 0*Y t ) e &iΦyt%1 dΦ . (A.21)

The moment generating functions underlying the marginal transition densities of  , , and sT VT NT

are of course given by , , and , respectively.8  EquationsF(Φ, 0, 0* C ) F(0, ψ, 0* C) F(0, 0, ξ* C)

(A.12) - (A.17) are similar to those in appendix D of Pan (2002), but are written in a form that makes

it easy to take analytic derivatives with respect to .ψ

Given (A.8), the joint moment generating function of log-differenced prices ,y / ∆s ' ln(St%1 /St )

number of jumps , and future variance  conditional upon observing  is ∆N / Nt%1 & Nt Vt%1 Vt

where  is the time interval between observations.  The case of  is used only for inferences∆t ξ … 0

about the occurrences of jumps.  In variance filtration and maximum likelihood estimation,  is setξ

to zero and the joint transform in equation (1) is

As discussed above in equation (11), iterated expectations can be used to compute the joint

characteristic function of  conditional upon data  through time t:( yt%1 , Vt%1 ) Y t

where  is the conditional moment generating function of  , and is approxi-Gt* t(ψ) / E e ψVt * Y t Vt

mated by the gamma MGF .Ĝt* t(ψ) / &vt ln(1 & κtψ)

A.3 Filtration

Density evaluation and variance updating involves three numerical integrations at each date ,t%1

to evaluate the prior density of the asset return  and the posterior mean and variance of the latentyt%1

variable .  The density is evaluated by Fourier inversion of (A.20):Vt%1
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     9Numerical derivatives are also feasible, but reduce the accuracy of the numerically computed
log likelihood gradient used in maximum likelihood estimation. 

Et%1 (Vt%1 ) ' /000
MGt%1* t%1 (ψ)

Mψ ψ'0

'
1

2π p( yt%1*Y t ) m
4

&4
fψ (iΦ, 0) e f (iΦ, ψ) & iΦyt%1 dΦ .

(A.23)

Et%1 (V 2
t%1 ) ' /0000

M2 Gt%1* t%1 (ψ)

Mψ2
ψ'0

'
1

2π p( yt%1*Y t ) m
4

&4
fψψ (iΦ, 0) % fψ (iΦ, 0)2 e f (iΦ, ψ) & iΦyt%1 dΦ .

(A.24)

κt%1 vt%1 ' Et%1(Vt%1 )

κ2
t%1 vt%1 ' Et%1(V

2
t%1 ) & Et%1(Vt%1 ) 2 .

(A.25)

G0*0(iψ) ' (1 & iκ0ψ)&v0 (A.26)

The noncentral moments  are evaluated as in (14) and (15) by taking analytic derivativesEt%1 [V n
t%1 ]

of equation (13) with respect to .9  Definingψ

for , the first two posterior noncentral moments areln Gt* t (D ) ' &νt ln (1 & κt D )

Higher-order posterior moments can be computed similarly, by taking higher-order derivatives. In

all cases, the integrand for negative  is the complex conjugate of the positive-  values.  MomentsΦ Φ

can therefore be evaluated by integrating the real component of the integrand over  and[0, 4)

doubling the result.

The first two posterior moments were then used to update the parameters  of next period’s(κt%1 , νt%1 )

conditional moment generating function .  These were based on the posterior momentsGt%1* t%1(ψ)

The algorithm is initiated at the unconditional gamma characteristic function of the initial : V0

f (iΦ, ψ) / ln Fy, V (iΦ, ψ*Y t ) ' C(iΦ, ψ) % ln Gt* t [D(iΦ, ψ) ] (A.22)
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Fy, ∆N (iΦ , iξ* Y t ) ' e C(iΦ, 0, iξ ; ∆ t) Gt* t[D(iΦ, 0, iξ ; ∆ t)] . (A.27)

G∆N (iξ*Yt%1) / E [e iξ∆Nt%1 * yt%1, Y t ] . (A.28)

m [e a y p ( y) ] e iΦy dy ' E e (a% iΦ)y

' exp f (a % iΦ, 0)
(A.29)

for  and .  The unconditional mean and variance of  are  andv0 / 2α /σ2 κ0 ' σ2 /2β V0 κ0 v0 ' α /β

, respectively.κ2
0 v0 ' (α /β) (σ2 /2β)

A.4 Inferring jumps

A similar procedure was used to infer whether a jumps occurred on a given day.  Using (A.8), the

prior joint characteristic function of  conditional on data through date t is( yt%1, ∆Nt%1 )

Proposition 1 can then be invoked to compute the posterior characteristic function

The posterior moments of the number of jumps  can be computed analogously toE [(∆Nt%1)
n * Yt%1 ]

the approach in (A.21) - (A.24).  In particular, since the number of jumps on a given day is

approximately a (0, 1) binomial variable, the estimated number of jumps  isE [∆Nt%1 * Yt%1 ]

approximately the probability that a jump occurred on date .  Since analytic derivatives witht%1

respect to  are messy, numerical derivatives were used instead.ξ

A.5 Outliers and numerical efficiency

The integrations in equations (A.21) - (A.24) are valid but numerically inefficient methods of

evaluating densities and moments.  For extreme return outliers,  takes on near-zero values (e.g.,p( y)

 for the 1987 crash under the SV model) that can create numerical problems for the2 × 10&22

integrations.  The  scaled density function can be evaluated more robustly and more efficiently.  The

Fourier transform of the scaled density function  is e ay p( y)

for f defined in (A.22) above.  This transformation is also known as exponential tilting, or the

Esscher transform.  It is the Fourier transform equivalent of Monte Carlo importance sampling, and

is the basis of saddlepoint approximations. Fourier inversion of this yields a density evaluation
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     10See, e.g., Kolassa (1997, Ch. 4) or Barndorff-Nielsen and Cox (1989, Ch. 4).

p ( y ) '
e &a y

2π m
4

&4
e f a % iΦ, 0 & iΦy dΦ

'
e f (a, 0) & a y

2π fΦΦ(a, 0)

fΦΦ(a, 0)
2π m

4

&4
e f a % iΦ, 0 & f (a, 0) & iΦy dΦ .

(A.30)

From saddlepoint approximation theory10 the optimal y-dependent value of a (labeled ) is givenay

implicitly by the mininum of :f (a, 0) & ay

The scale factor  equals 0 when y equals its conditional mean , and  is of the sameay y ' fΦ (0, 0) ay

sign as .y & y

Using this scaling factor has several consequences.  First, the term inside the brackets in (A.30) is

approximately 1, while the term preceding the brackets is the basic saddlepoint approximation for

the density:   .  This follows from a second-order Taylorp ( y) . exp[ f (ay , 0) & ay y ] / 2π fΦΦ(ay , 0)

expansion of the exponent in (A30):

given that the first-order term in the Taylor expansion cancels by choice of  from (A.31).ay

Second, using  makes the numerical integration in (A.30) better behaved. The cancellationa ' ay

of the imaginary component removes an oscillatory component in the integrand in the neighborhood

of , and reduces it elsewhere.  Furthermore, the integration is using locally the complex-valuedΦ ' 0

path of steepest descent, for which the integrand falls off most rapidly in magnitude near .Φ ' 0

Finally, evaluating the term in brackets in (A.30) to a given absolute accuracy implies comparable

fΦ (ay , 0) ' y . (A.31)

m
4

&4
e f ay % iΦ, 0 & f (ay , 0) & iΦy dΦ .m

4

&4
exp [ fΦ(ay , 0) & y ](iΦ) % ½ fΦΦ ay , 0 (iΦ) 2 dΦ

'm
4

&4
exp&½ fΦΦ ay , 0 Φ 2 dΦ

'
2π

fΦΦ ay , 0 Φ 2

(A.32)
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dq ' (µq0 % µq1 Vt ) dt % (1 & ρ2 )Vt dW2 % γs dN (A.33)

∆q *{Vt}
t%1
t , n jumps - N [(µq0 % µq1 Vt ) ∆t % n γ, (1 & ρ2 )Vt ∆t % n δ2 ]

n - Poisson [ (λ0 % λ1 Vt )∆t ] .
(A.34)

accuracy for the log densities used in maximum likelihood estimation.

Similar rescalings were used to improve the efficiency and robustness of the integrals in (A.23) and

(A.24).  For each integral, an upper limit  was computed analytically for which estimatedΦmax

absolute truncation error would be less than .  The integral was then computed numerically10&9

to  accuracy using IMSL’s adaptive Gauss-Kronrod DQDAG integration routine over ,10&8 (0, Φmax )

exploiting the fact that the integrands for negative  are complex conjugates of those for positiveΦ

.  In the Monte Carlo runs, each integration required on average about 136 and 150 evaluationsΦ

of the integrand for the SV and SVJ models, respectively.

A.6 Monte Carlo data generation

By Itô calculus and (A.9), the orthogonalized state variable  follows a jump-qt / ln St & (ρ /σ)Vt

diffusion, with innovations uncorrelated with variance shocks:

for  and .  Given this orthogonality and theµq0 / µ0 & λ0 k & αρ /σ µq1 / µ1 & ½ & λ1 k % βρ /σ

linearity of instantaneous mean, variance, and jump intensity in , the daily time-aggregatedVt

innovation  conditional upon the intradaily variance sample path is a mixture∆q / qt%1 & qt {Vs }t%1
t

of normals, with parameters that depend only upon the average intradaily variance:

for .Vt ∆t / m
t%1

t
Vs ds

 

Daily asset returns were therefore generated by 

      1) generating intradaily variance sample paths and computing average intradaily variance Vt
and the daily variance shock  ;Vt%1& Vt

      2) randomly generating the daily number of jumps n given daily average ;Vt

      3) randomly generating daily  given n and sample ; and∆q Vt

      4) computing daily log asset returns .∆ lnS / ∆q % (ρ /σ) (Vt%1 & Vt )
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     11The default random number generator in IMSL (a multiplicative congruential generator with
a multiplier of 16807) was found to be insufficiently random for generating intradaily data.  A
comparison of the statistical properties of daily variances generated from intradaily data with those
generated directly at daily frequencies revealed low-order serial correlations in the former that
biased the estimates of β by 5-10%.  Using IMSL’s most powerful random number generator (a
higher multiplier, combined with shuffling) eliminated the biases.

2Vt%h

Κ
* Vt - χ2 4α

σ2
,

2Vt

Κ
e &βh for Κ / σ2

2β
1 & e &βh and h ' ∆ t / 50 . (A.35)

Intradaily variance sample paths were generated by dividing days into 50 subperiods, and using the

exact discrete-time noncentral chi-squared transition density

Random numbers were generated in two fashions.  For the SV and SVJ1 simulations, the volatility

of volatility parameter  was selected to make  integer.  This permitted exact Monteσ m / 4α /σ2

Carlo generation of noncentral  shocks from the sum of m independent squared normalχ2 (m , Λt )

shocks with unitary variance and mean .11  For the SVJ0 model, noncentral chi-squaredΛt /m

random draws were generated using a substantially slower inverse CDF method, in order to

duplicate exactly the parameter values used by Eraker, Johannes, and Polson (2003).  The initial

variance  was independently drawn from its unconditional gamma density for each sample path.V0

The latent variance sample paths are therefore exact discrete-time draws from their postulated

process, while log asset returns are drawn from the correct family of distributions with the

appropriate sensitivity to variance shocks.  Discretization error enters only in the evaluation of

variance at 50 intradaily points rather than continuously, when computing the intradaily average

variance used in generating returns via (A.34) above.
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1The complex-valued log gamma function was evaluated using the Lanczos approach
described in Press et al (1992, Ch. 6), which is accurate to .  IMSL lacks a double-precision2 × 10&10

complex log gamma function, while its single-precision CLNGAM function was found to be
insufficiently smooth for use with filtration and parameter estimation.

Appendix B:  Log variance processes

The benchmark discrete-time log variance process is

where  are i.i.d.  shocks.  By taking logs, the process has an affine state space(gt , ηt ) N(0, 1)

representation of the form

where .  The joint characteristic function conditional upon knowing  takes thext / ln Vt xt

exponentially affine form

where

and  is the natural logarithm of the gamma function.1ln Γ(C)

Approximate maximum likelihood

Latent log variance  has an unbounded domain, and an unconditional normal distributionxt / ln Vt

with unconditional moments

zt%1 ' Vt g̃t%1

ln Vt%1 ' ω % φ ln Vt % σv η̃t%1

(B.1)

yt%1 / ln z 2
t%1 ' xt % ln g̃2

t%1

xt%1 ' ω % φ xt % σv η̃t%1

(B.2)

F(iΦ, iψ * xt ) / E e iΦ yt%1 % iψxt%1 * xt

' e iΦxt E *g̃t%1*
2iΦ e iψ (ω % φxt ) E e ψσv η̃ t%1

' exp[C(iΦ, iψ) % D(iΦ, iψ) xt ]

(B.3)

C(iΦ, iψ) / iΦ ln 2 % ln Γ(½ % iΦ) & ln Γ(½) % [ω iψ % ½ σ2
v (iψ)2 ]

D(iΦ, iψ) ' iΦ % φ (iψ)
(B.4)
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and associated unconditional characteristic function

Since the domain of the latent variable is unbounded, the natural approximate prior to use in the

AML filtration is the Gaussian distribution, with associated characteristic function

Conditional upon observing the datum , the posterior moments  canyt%1 / ln z 2
t%1 ( x̂t%1*t%1 , Pt%1*t%1 )

be updated using the algorithm (11) - (13), with  and  defined by (B.3) and (B.7) above.C, D, Gt*t

Those posterior moments then determine the approximate normal posterior characteristic

function  for the next step.Gt%1 * t%1(iψ)

The procedure is similar to the Kalman filtration used by Ruiz (1994) and Harvey, Ruiz, and

Shephard (1994).  Kalman filtration uses a strictly linear updating of the conditional mean of the

latent log variance:  

where  is Euler’s constant, and  are the mean and variance of .  Theγ . .577 (&γ & ln 2, ½π2 ) ln g̃2
t%1

Kalman variance updating is nonlinear and deterministic:

The key difference is that AML permits nonlinear functions of the latest datum when updating the

mean and variance of latent log variance. The AML filtration is the optimal Bayesian updating

conditional upon a Gaussian  prior.  Kalman filtration is suboptimal because  is not Gaussian.ln g̃2
t%1

E [x] / x0*0 '
ω

1 & φ

Var [x] / P0*0 '
σ2

v

1 & φ2

(B.5)

G0*0 (iψ) ' exp[ x̂0*0 iψ & ½ P0*0 ψ
2 ] . (B.6)

Gt* t (iψ) ' exp[ x̂t* t iψ & ½ Pt* t ψ
2 ] . (B.7)

x̂t%1* t%1 ' (ω % φ x̂t*t ) %
φ Pt* t

Pt* t % ½π2
[ yt%1 & (xt* t & γ & ln2) ] (B.8)

Pt%1* t%1 '
β2

P &1
t* t % 2/π2

% σ2
v . (B.9)
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Figure B.1 Weekly volatility estimates  conditional upon seeing an absoluteEt%1 Vt%1
return of size .  Initial volatility estimate  = 2.68% weekly; log*zt%1* / Et Vt Et Vt
scales for both axes.

                 AML

        Kalman
      

       Et Vt

        Absolute return, in standard deviation units (log scale)

Figure (B.1) above compares the Kalman and AML volatility filtrations, using the weekly parameter

values  =  from Andersen, Chung, and Sørensen (1999).  A Gaussian(ω, φ, σv ) (&.736, .90, .363)

prior (B.7) was used for latent log variance in both cases, evaluated at the unconditional mean

 and the minimal steady-state variance  achieved underx̂t* t ' x̂0*0 ' &7.36 Pt* t ' Pss ' .4985

Kalman filtration.  These values imply an initial volatility estimate of Et Vt '

 = 2.68% weekly, or about 19.3% annualized. exp[½ x̂t* t % c Pss ]

The “inlier” problem noted by Sandmann and Koopman (1998) is apparent: small absolute returns *zt%1*

generate large negative values for , and undesirably large downward revisions inyt%1 ' ln z 2
t%1

Kalman volatility and log variance estimates.  The graph illustrates that the Kalman filter also

suffers from an “outlier” problem: it substantially under-responds to returns larger than about two

standard deviations.  The result is inefficient filtration.  On a generated sample of 20,000 weekly
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observations, Kalman filtration had an  of 27% when estimating true volatility  or log varianceR 2 Vt

.  By contrast the AML volatility and log variance filtrations had substantially higher ’s oflnVt R 2

37 - 38%.

Parameter estimation efficiency

The AML approach potentially suffers some loss of estimation efficiency from its use of normal

distributions to summarize what is known about the latent variable at each point in time. For the log

variance process (B.1), the estimation efficiency can be directly compared with EMM, MCMC, and

other approaches.  The efficiency of those approaches for the log variance process is summarized

in Andersen, Chung, and Sørensen (1999).

Table B.1 below appends to Andersen et al’s Table 5 the results from simulating 500 independent

sample paths from (B.1) and estimating the parameters via AML, for sample sizes of T = 500 and

T = 2000 weeks, respectively.  In addition, parameters were estimated conditional upon observing

the log variance draws (denoted ML|V), as an unattainable bound on parameter estimation

efficiency.  The AML and ML|V approaches were estimated subject to the constraints  and*β* < 1

, to ensure stationarity and the existence of an unconditional distribution for the initialσ > 0

observation.

The AML approach is definitely one of the more efficient latent-variable methodologies reported

in the table.  While  Jacquier, Polson and Rossi’s (1994) Monte Carlo Markov Chain approach has

the lowest RMSE’s for 2000-observation samples, and is close to lowest for 500-observation

samples, the RMSE’s from AML estimation are almost as small.  The AML approach outperforms

Gallant and Tauchen’s (2002) EMM approach, which in turn out-performs the GMM approach of

Melino and Turnbull (1990) and the very inefficient Kalman filtrations (QML).  AML performs

about as well on 500-observation samples as Fridman and Harris’s (1998) approach (ML), which

also provides filtered estimates of latent volatility.

It may be possible to improve the AML performance further by better approximation methodologies

for .  However, Table B.1 indicates that even the simple 2-moment Gaussian approximation isGt* t

close to achieving the Cramer-Rao limit.  
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Table B.1 Comparison of estimation methodologies for the discrete-time log variance process

ML|V and  AML estimates were from 500 Monte Carlo sample paths of 500 and 2000 observations,
respectively.  Results for all other approaches are from comparable runs summarized in Table 5 of
Andersen, Chung, and Sørensen (1999).  Models:

ML|V: ML conditional upon observing {Vt}
AML: approximate ML of this paper
QML: Harvey, Ruiz and Shephard (1994)
GMM: Andersen and Sørensen (1996)

EMM: Andersen, Chung and Sørensen (1999)
JPR: Jacquier, Polson and Rossi (1994)
ML: Fridman and Harris (1996)
MCL: Sandmann and Koopman (1996)

True values:

T = 500 T = 2000

       ω
-.736

       φ
.90

        σv
.363

     ω
-.736

     φ
.90

      σv
.363

Bias

ML|V
AML

-.05
-.15

-.01
-.02

.00

.02
-.015
-.039

-.002
.005

.000

.005

QML
GMM
EMM
JPR
ML
MCL

-.7 
 .12
-.17
-.13
-.13
 .14

-.09
.02

-.02
-.02
-.02
.00

.09
-.12
.02

-.01
.01
.01

-.117
.15

-.057
-.026

-.02
.02

-.007
-.004

.020
-.08
-.004
-.004

Root mean squared error

ML|V
AML

.17

.42
.02
.06

.01

.08
.076
.173

.010

.023
.006
.043

QML
GMM
EMM
JPR
ML
MCL

1.60
.59*
.60
.34
.43
.27

.22

.08*

.08

.05

.05

.04

.27

.17*

.20

.07

.08

.08

.46

.31

.224

.15
     NA
     NA

.06

.04

.030

.02
     NA
     NA

.11

.12

.049

.034
   NA
   NA

*Andersen et al note that the GMM results for T = 500 are from runs that did not crash, and are
therefore not comparable to results from other methods.

zt%1 ' Vt g̃t%1

ln Vt%1 ' ω % φ ln Vt % σv η̃t%1.
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F(Φ, ψ* yt , xt ) / E [e Φyt%1 % ψxt%1 * yt , xt ]
' exp[C(Φ, ψ ; yt ) % D(Φ, ψ , yt) xt ]

Gt*s(ψ) / E e ψxt* Y s

p( yt%1, xt%1 *Y t )
' m p( yt%1 , xt%1*yt , xt ) p(xt*Y t )dxt

F(Φ, ψ *Y t ) ' Et E e Φyt%1 % ψxt%1 * yt , xt

' E e C(Φ, ψ) % D(Φ, ψ) xt * Y t

' e C(Φ, ψ) Gt* t [D(Φ, ψ) ]

p( yt%1*Y t ) '
1

2π m
4
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F(iΦ, 0*Y t ) e &iΦyt%1 dΦ
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p( yt%1 *Y t )
Gt%1* t%1(ψ) '

1
2π m
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F(iΦ, ψ*Y t ) e &iΦyt%1 dΦ

p( yt%1*Y t )

Table 1:  Fourier inversion approach to computing likelihood functions

Let

be the (analytic) joint moment generating function of  conditional upon knowing . ( yt%1, xt%1 ) ( yt , xt )
Let

be the moment generating function (MGF) of  conditional on observing data .  Itsxt Y s ' { y1, . . ., ys}

initial value   (the unconditional MGF of ) has an analytic solution.  For a givenG0*0(ψ ) ' E [exp(ψx0) ] x0

parameter vector θ, subsequent MGF’s  and the likelihood function can be updated via the followingGt* t

recursion:

Densities Associated moment generating functions

Conditional density                              p(xt * t ) Gt* t (ψ)

Joint density of datum and next period’s
latent variable

Conditional density evaluation 

Updated conditional density of xt%1

Noncentral moments of :xt%1

     E [x n
t%1*Yt%1 ] ' m x n

t%1 p (xt%1*Yt%1 ) dxt%1 E [x n
t%1*Yt%1 ] ' /0000

Mn Gt%1* t%1 (ψ)

Mψ n
ψ' 0



Table 2.  Parameter estimates on simulated daily data: SVJ0 model.
Process:

dS /S ' (µ0 & λ0 k ) dt % V ρ dW1 % 1 & ρ2 dW2 % (e γs & 1) dN

dV ' (α & βV ) dt % σ VdW1

Prob (dN ' 1) ' λ0 dt , γs - N(γ, δ2 )
100 sample paths were simulated for data sets of 4000 days (roughly 16 years).  All parameter
estimates are in annualized units.

EJP: Results from Eraker, Polson, and Rossi (2003, Table VII), in annualized units.
AML: Approximate maximum likelihood

mean SV parameters jump parameters

µ0 α /β β σ ρ λ0 γ δ

True values: .126 .020 3.78 .252 -.400 1.51 -.030 .035

Bias
   EJP
   AML

.007
-.004

.001

.001
1.49
.34

.029

.001
-.023
.004

.20

.04
-.007
.002

-.005
-.004

RMSE
   EJP
   AML

.033

.033
.003
.002

2.12
1.02

.037

.028
.065
.080

0.61
0.55

.018

.014
.007
.009

True values: .126 .020 3.78 .252 -.400 3.78 -.030 .035

Bias
   EJP
   AML

.009
-.008

.002

.001
1.61
.37

.043

.001
-.013
-.009

.10
-.05

-.004
-.002

.001
-.002

RMSE
   EJP
   AML

.035

.041
.010
.002

2.21
1.01

.075

.025
.067
.089

.79

.88
.009
.009

.005

.005



Table 3.  Parameter estimates on simulated daily data:  SV model.
Process: dS /S ' (µ0 % µ1 V ) dt % V ρ dW1 % 1 & ρ2 dW2

dV ' (α & βV ) dt % σ VdW1

100 sample paths were simulated for data sets of 1,000 - 12,000 days; roughly 4 - 48 years of daily data.  

Returns-based estimates Estimates  if latentθ̂ θ̂V
variance  were observedVt

T
(days)

mean SV parameters

µ0 µ1 α /β β σ ρ α /β β σ

 
 True values: .026 3.68 .126 5.94 .306 -.576 .126 5.94 .306

Average bias
θ̂ & θ

1000
2000
4000
8000

12000

-.021
-.025
.001
.013
.013

5.08
5.43
3.82
2.50
2.55

-.002
.000

-.001
.001
.001

1.85
.67
.63
.09

-.04

.013

.000

.003

.000
-.005

-.033
-.037
-.002
.000

-.001

-.002
.000

-.001
.000
.000

.93

.46

.37

.05

.12

.000

.000
-.001
.000
.000

standard error 1000
2000
4000
8000

12000

.010

.007

.005

.003

.003

.80

.52

.39

.29

.28

.001

.001

.001

.000

.000

.31

.20

.13

.08

.06

.006

.004

.003

.002

.001

.011

.008

.006

.004

.003

.001

.001

.001

.000

.000

.17

.14

.09

.07

.05

.001

.001

.000

.000

.000

RMSE: 1000
2000
4000
8000

12000

.101

.077

.045

.036

.034

9.47
7.52
5.47
3.79
3.75

.011

.010

.006

.005

.004

3.57
2.10
1.47
.85
.61

.057

.035

.026

.016

.014

.114

.087

.056

.040

.033

.007

.005

.003

.002

.002

1.95
1.46
.97
.66
.53

.007

.005

.003

.002

.002

Corr(θ̂ , θ̂V ) 1000
2000
4000
8000

12000

.95

.97

.95

.95

.93

.66

.76

.67

.72

.62

.12

.11

.03

.17

.35



Table 4.  Parameter estimates on simulated daily data: SVJ1 model.
Process: dS /S ' (µ0 % µ1 V & λ1 V k ) dt % V ρ dW1 % 1 & ρ2 dW2 % (e γs & 1) dN

dV ' (α & βV ) dt % σ VdW1

Prob (dN ' 1) ' λ1 Vdt, γs - N(γ, δ2 )
100 sample paths were simulated for data sets of 1,000 - 12,000 days; roughly 4 - 48 years of daily data.  

Returns-based estimates Estimates  if latentθ̂V
variance  wereVt

observedT
(days)

mean SV parameters jump parameters

µ0 µ1 α /β β σ ρ λ1 γ δ α /β β σ

True values: .040 3.09 .119 4.25 .246 -.611 93.4 -.024 .039 .119 4.25 .246
Average

bias
θ̂ & θ

1000
2000
4000
8000

12000

-.017
-.022
-.005
.001
.009

4.62
5.32
3.64
2.70
2.15

.000
-.001
-.001
.000
.001

1.46
1.16

.53

.08

.00

.013

.009

.002
-.002
-.002

-.031
-.006
-.004
-.005
-.003

2.1
0.4

 0.1
1.3

-2.7

-.016
-.009
-.003
-.001
-.002

-.014
-.010
-.005
-.001
-.001

.000
-.002
-.001
.000
.000

.87

.67

.34

.06

.07

.001

.001
-.001
.000
.000

standard error 1000
2000
4000
8000

12000

.010

.007

.005

.003

.003

.87

.63

.43

.26

.24

.002

.001

.001

.001

.000

.28

.18

.12

.07

.05

.005

.003

.002

.001

.001

.013

.008

.006

.004

.004

8.3
6.1
3.9
2.5
2.1

.005

.002

.002

.001

.001

.004

.002

.001

.000

.000

.001

.001

.001

.001

.000

.16

.11

.08

.05

.04

.001

.000

.000

.000

.000

RMSE: 1000
2000
4000
8000

12000

.101

.074

.048

.032

.027

9.83
8.24
5.62
3.72
3.23

.015

.010

.007

.005

.004

3.12
2.12
1.29

.70

.50

.054

.034

.025

.015

.011

.134

.084

.056

.038

.038

82.9
61.1
39.2
24.8
21.0

.051

.027

.019

.009

.007

.041

.018

.011

.005

.004

.015

.010

.007

.005

.004

1.83
1.31

.83

.53

.41

.005

.004

.003

.002

.002

Corr(θ̂ , θ̂V ) 1000
2000
4000
8000

12000

.92

.71

.96

.95

.89

.68

.44

.66

.76

.63

.17

.07

.30

.33

.13



Table 5: Volatility and variance filtration performance under various approaches

Criterion:   , for  (volatility filtrations) or  (variance filtrations).R 2 / 1 &
j (xt & x̂t* t )

j (xt & x )
xt ' Vt xt ' Vt

Two samples of 200,000 daily observations (794 years) were generated from the SV and SVJ processes,
respectively.  In-sample fits use the first 100,000 observations for parameter estimation and filtration.  Out-of-
sample fits use the subsequent 100,000 observations for filtration.

Filtration
method

 on SV dataR 2

Filtration
method

 on SVJ1 dataR 2

 volatility variance volatility variance

In-sample fits

GARCH .598 .553 t-GARCH -.008 -2.222

EGARCH .674 .649 t-EGARCH .356 -2.184

HGARCH .678 .649 t-HGARCH .585 .453

SV ( ) .703 .690 SVJ1 ( ) .723 .700θ θ

SV ( )θ̂ .704 .692 SVJ1 ( )θ̂ .726 .702

SV( ) + reprojection .695 SVJ1( ) + reprojection .705θ θ

Out-of-sample fits

HGARCH .678 .650 t-HGARCH .603 .430

SV ( ) .699 .687 SVJ1 ( ) .747 .727θ θ

SV( ) + reprojection .689 SVJ1( ) + reprojection .727θ θ
  



Table 6.  Higher conditional moments of latent variance.  Summary statistics of the conditional
moment estimates, and of the divergence from gamma-based estimates, based on 100,000
observations of simulated data from the SV and SVJ1 models, respectively.

Average
Standard
deviation Min Max

Percentage
less than 0

Conditional moment estimates

SV: ˆSKEW
       ˆXKURT

  .87
1.23

.25

.80
.34
.18

  2.75
11.62

0%
0%

SVJ1:  ˆSKEW
           ˆXKURT

  .80
1.05

.23

.68
-.19
-.79

  2.56
10.08

0.02%
0.06%

Divergence from gamma-based estimates

SV: ˆSKEW & ˆSKEWgamma

      ˆXKURT & ˆXKURTgamma

.03

.10

.08

.27

-.11

-.36

.71

5.06

48.9%

48.7%

SVJ1: ˆSKEW & ˆSKEWgamma

          ˆXKURT & ˆXKURTgamma

.02

.07

.07

.23

-.91

-2.58

.64

3.99

50.5%

50.0%



Table 7: Model estimates, and comparison with EMM-based results
Model: 

dS /S ' (µ0 % µ1 V & λt k ) dt % V ρdW1 % 1 & ρ2 dW2 % (e γs & 1) dN
dV ' (α & βV ) dt % σ VdW1

Prob[dN ' 1] ' (λ0 % λ1 V ) dt, γs - N[γ, δ2 ]

CGGT: Chernov et al (2003) EMM-based estimates on daily DJIA returns, 1953 - July 16, 1999 (11,717 obs.).
ABL:  Andersen et al (2002) EMM-based estimates on daily S&P 500 returns, 1953 -1996 (11,076 obs.).
AML: Approximate maximum likelihood estimates of this paper, using the ABL data set.

All parameters in annualized units except the variance shock half-life , which is in months.  HL ' 12ln2/β

SV SVJ0, SVJ1, λ1 ' 0 λ1 … 0

CGGT ABL AML CGGT ABL AML ABL AML AML

µ0 .051
(.032)

.026
(.025)

.037
(.045)

.028
(.027)

.037
(.095)

.040
(.025)

.040
(.025)

µ1 2.58
(2.82)

3.70
(1.98)

4.02
(3.89)

3.89
(2.19)

4.03
(5.77)

3.09
(2.16)

3.09
(2.16)

α 1.283 .051
(.010)

.093
(.011)

.044 .047
(.013)

.063
(.009)

.047
(.017)

.061
(.008)

.061
(.008)

β 137.87
(.17)

3.93
(.81)

5.94
(.81)

2.79
(.54)

3.70
(1.08)

4.38
(.70)

3.70
(1.71)

4.25
(.59)

4.25
(.59)

σ 1.024
(.030)

.197
(.018)

.315
(.018)

.207
(.02)

.184
(.019)

.244
(.016)

.184
(.019)

.237
(.015)

.237
(.015)

ρ -.199
(.000)

-.597
(.045)

-.579
(.031)

-.483
(.10)

-.620
(.067)

-.612
(.031)

-.620
(.086)

-.611
(.031)

-.611
(.031)

α /β .096 .114 .125
(.004)

.125 .113 .120
(.004)

.113 .119
(.004)

.119
(.004)

HL 0.06
(.00)

2.12
(.44)

1.40
(.19)

2.98
(.58)

2.25
(.66)

1.90
(.31)

2.25
(1.04)

1.96
(.27)

1.96
(.27)

λ0 1.70 5.09
(.43)

.744
(.217)

5.09
(7.18)

.000
(.000)

λ1 .70
(488.0)

93.4
(33.4)

93.4
(33.4)

γ -.030
(.002)

-.010
(.010)

-.002
(.006)

-.002
(.006)

δ .008
(.001)

.012
(.001)

.052
(.009)

.012
(.001)

.039
(.008)

.039
(.008)

ln L 39,192.45a 39,233.87 39,238.03a 39,294.79 39,238.03a 39,309.51 39,309.51

aABL log likelihoods were evaluated at the ABL parameter estimates using the AML methodology



Table 8. Estimates of multi-jump model SVJ2, and associated risk-neutral parameter
estimates.  Daily S&P 500 returns and excess returns over 1953-1996.

mean parameters Stochastic volatility parameters

R µ0 µ1 α β β( σ ρ

Returns .041
(.024)

2.8
(2.1)

.059
(.007)

4.15
(.57)

.233
(.012)

-.614
(.033)

Excess
 returns 

.045
(.024)

1.7
(2.1)

.060
(.007)

4.22
(.59)

.234
(.012)

-.610
(.033)

Excess 
returns 

3.94
(1.26)

0 4.8
(1.4)

.067
(.004)

4.72
(.56)

4.12
 (.53)

.240
(.012)

-.627
(.029)

Jump parameters (i = 1,2)
ln L

λi λ(i γ i γ(i δi

Returns 131.1 (38.8)
    2.4   (1.6)

.001 (.004)
-.222 (.092)

.029 (.004)

.007 (.036)
39.317.81

Excess
Returns 

121.1 (36.0)
    1.5   (2.8)

.002 (.004)
-.217 (.043)

.030 (.004)

.005 (.062)
39,314.69

Excess
Returns 

121.1 (36.2)
    1.6   (2.1)

121.3 (36.4)
    3.7   (4.3)

.001 (.004)
-.216 (.024)

-.002 (.004)
-.216 (.024)

.030 (.004)

.003 (.012)
39,313.03
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Figure 1: News impact curves for various models.  The graph shows the revision in
assessed conditional standard deviation, , conditional upon observing an

standardized asset return of magnitude .
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Figure 2: Latent volatility, and its filtered estimate and standard deviation.  Data (in
annualized units) were simulated from the SVJ1 model.

          

     

   



Figure 3: Normal probability plots for the normalized returns , for different models.  The
diagonal line gives the theoretical quantiles conditional upon correct specification; + gives the empirical quantiles.
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Figure 4: Filtered volatility estimate  from the stochastic volatility/jump model

SVJ1, and divergence from SV volatility estimates.
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Figure 5: Estimated number of jumps, versus standardized returns , SVJ0yt%1 / V̂t*t ∆ t
model.  The values are approximately the probability for each day that a jump occurred.
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Figure 7.  Observed and estimated ISD’s for at-the-money S&P 500 futures options. Estimated
ISD’s are based on SVJ2 parameter estimates from 1953-96, and on filtered variance estimates.
Gray area is the 95% confidence interval for , given both parameter and state
uncertainty.  

      time series estimates

Figure 6.  Observed and estimated ISD’s for 17-day Jan. ’97  S&P 500 futures options on
December 31, 1996.  The dark grey area is the 95% confidence interval given only parameter
estimation uncertainty.  The light grey area is the 95% confidence interval given both parameter and
state uncertainty.

     (left scale)

      (right scale)




