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Seven papers examined option pricing issues: Aït-Sahalia and Duarte (2000), Bakshi,1

Kapadia and Madan (2000), Chernov (2000), Garcia, Luger and Renault (2000), Rosenberg and
Engle (2000), Jones (2000) and Pan (2000).  Three papers examined bond pricing issues:  Ahn,
Dittmar, Gao, and Gallant (2000), Dai and Singleton (2000b), and Duffee and Stanton (2000).
Jangannathan, Kaplin and Sun (2000) examined the interplay between bond and option pricing
models.  Chernov, Gallant, Ghysels, and Tauchen (2000) and Zhou (1999) examined time series
estimation, while Cagetti, Hansen, Sargent and Williams (2000) and Stutzer (2000) advocated robust
and entropy-based estimation techniques, respectively.

On October 20-21, 2000, a conference was held at Duke University on the subject of risk-neutral and

objective probability measures.  Some of the fifteen papers examined recent econometric  techniques

for estimating conditional distributions, others discussed “risk-neutral” models consistent with

observed bond and/or options prices, while most drew inferences from the interplay of time series

analysis and derivatives prices.   The papers demonstrated the considerable advances of the last1

decade with regard to developing tractable models for pricing bonds and options, and with regard

to developing numerically intensive econometric techniques compatible with the continuous-time

framework commonly employed in derivatives research.

It is my intent in this article to reflect on what we have achieved, what are the issues in

empirical option pricing research, and where we may be heading.  I begin in Section I with a basic

framework for categorizing empirical derivatives research, and discuss some of what we have

learned from proposing and testing alternative option pricing models.  In Section II, I discuss some

major remaining puzzles in option pricing.  I conclude in Section III with some suggestions for

possible research topics for those interested in working in the area.



Objective
Distribution

Cross-sectional
properties of
derivatives
  -by maturity
  -by moneyness

    Risk
Adjustment

Risk-neutral
Distribution

Time series
properties of
underlying

Time series
properties of
derivatives

2

Figure 1.  Objective and risk-neutral distributions.

I. Empirical derivatives research

I.A. A basic framework

Derivatives are products with payoffs and prices dependent upon the stochastic evolution of

associated underlying financial variables.  Option payoffs depend upon the evolution of the asset

price upon which the options are written, while bond prices of various maturities are sensitive to the

stochastic properties of short-term interest rates.  Theoretical derivative research is typically

concerned with developing plausible models of the time series properties of the underlying financial

variables, and identifying appropriate risk premia for various risks such as interest rate, volatility and

jump risk that are not directly priced by other traded assets.  These “objective” time series models

and risk premia imply an associated “risk-neutral” probability measure that can be used to price any

derivative at the expected discounted value of its future payoff.  While the objective and risk-neutral

probability measures are related, and may share some common parameters, they are identical only

in the case of zero risk premia on all relevant risks.

Empirical tests of bond and option pricing models examine whether various facets of the joint

transition densities of the underlying and of derivatives’ prices are in fact consistent with information

contained in the cross-section of derivatives prices, after appropriate risk adjustments.  The two

major approaches have involved examining the derivatives pricing implications of models estimated

from time series analysis, and examining particular model-specific predictions for joint asset and
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derivatives returns conditional on information inferred from the cross-section of derivatives prices.

The latter approach has been somewhat more common, especially for models with latent variables

such as stochastic volatility.  The values of those latent variables are more easily inferred from

derivatives prices than estimated from time series analysis, under the null hypothesis of correct

model specification.

Within the empirical bond pricing literature, the key issue is whether the term structure of

interest rates is consistent with the stochastic evolution of the short-term interest rate and of bond

prices.  For example, the expectation hypothesis tests discussed in Campbell (1995) examine whether

yield spreads between n-period and 1-period bonds correctly predict future interest rate and bond

yield increases.  Multifactor bond pricing models frequently use time series and cross-sectional

implications when estimating stochastic processes.  Examples include the interest rate models of

Pearson and Sun (1994), Ahn et al (2000), and Jagannathan et al (2000), and the Heath, Jarrow and

Morton (1992) method of modelling stochastic forward rate curve evolution consistently with an

initial term structure of forward rates.

Within the empirical option pricing literature, model-specific implications for objective and

risk-distributions and how they interact create a considerable variety of possible tests of any given

model.  For example, consider the myriad ways the Black-Scholes-Merton (BSM) model has been

tested over the last thirty years.

       1) Time series properties of underlying asset.  The assumption of constant instantaneous

volatility of returns or of log-differenced asset prices has been rejected by the ARCH

literature, while the assumption that asset prices follow a diffusion has been rejected by the

fat-tailed properties of returns.  The “leverage” effects noted by Black (1976) and subsequent

researchers indicated more complicated interactions between stock returns and stock

volatility than could be accommodated by the assumption of geometric Brownian motion.

      2) Cross-sectional properties of option prices.  BSM implies only one free parameter , so the

implicit standard deviations (ISD’s) inferred from option prices should be identical across
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(1)

different strike prices (“moneyness”) and maturities.  This has been rejected by the non-flat

“smile” and “smirk” patterns observed across different strike prices, and by non-flat term

structure patterns.

      3) Time series properties of option prices.  BSM implies that ISD’s should also be constant

across time -- a hypothesis clearly rejected by time series graphs of ISD’s.

      4) Cross-sectional option prices and asset returns.  The fundamental compatibility between the

ISD inferred from options and the volatility of asset returns has typically been tested by

regressing realized volatility measures upon ISD’s.  Typical results summarized in Bates

(1996b, pp. 593-5) are that ISD’s are frequently biased and possibly inefficient predictors of

realized asset return volatility.  

      5) Cross-sectional option prices versus option returns.  Stein (1989), Diz and Finucane (1993),

and Campa and Chang (1995) examined whether the term structure of ISD’s predicts

subsequent evolution in short-term ISD’s. 

       6) Joint distribution of asset returns and option returns. Bakshi, Cao, and Chen (2000) note that

BSM and other univariate Markov models imply that call option returns should be directly

related (and put options inversely related) to underlying asset returns, while call and put

returns should be inversely related.  They find these predictions are rejected 7%-17% of the

time at intradaily and daily data frequencies for S&P 500 index options in 1994.

       7) Option prices versus the joint distribution of asset returns and option returns.  The no-

arbitrage foundations of BSM imply that option returns should be a levered function of asset

returns, 
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The original Black-Scholes (1972) test of their model used time-series based volatility2

estimates, which falls within the sixth test classification above.

See Bates (1996b, pp. 587-9).3

with the leverage estimate based typically on an ISD inferred from recent option prices.2

Profitability tests examine the average returns from self-financing portfolios of options and

accompanying asset hedge positions, while hedge ratio tests examine the magnitude of risk

reduction from hedging.  The Bakshi et al. (2000) results imply the BSM prediction of zero

risk cannot be achieved.

Tests of the Black-Scholes-Merton model were often run in a somewhat ad hoc fashion: testing

specific implications of the model while ignoring other obvious inconsistencies.  For instance, the

fact that options of different strike prices and maturities yielded different ISD’s initially generated

a debate on how to construct weighted ISD estimates for use in examining the conditional

distribution of asset and/or options returns,  rather than being taken as evidence against the model.3

Similarly, the use of contemporaneous or lagged ISD’s when forecasting volatility and computing

hedge ratios was inconsistent with the BSM prediction that ISD’s should be constant over time.  The

focus of this literature was often on how well ad hoc versions of the model worked for practitioners;

not on formally testing the null hypothesis of the BSM model.

I.B. Alternative models

The empirical deficiencies of the Black-Scholes-Merton model have prompted research along three

dimensions.  The univariate diffusion models maintained the diffusion and no-arbitrage foundations

of BSM, but relaxed the assumption of geometric Brownian motion.  Examples include the constant

elasticity of variance model of Cox and Ross (1976) and Cox and Rubinstein (1985); the leverage

models of Geske (1979) and Rubinstein (1983); and the more recent implied binomial and trinomial

trees models.  Stochastic volatility models allow the instantaneous volatility of asset returns to

evolve stochastically over time -- typically as a diffusion, but possibly as a regime-switching (Naik,

1993) or jump-diffusion process (Duffie, Pan, and Singleton, 1998).  Jump models such as Merton

(1976) relax the diffusion assumption for asset prices.  Recent approaches have combined features

of these three approaches.  Stochastic generalizations of binomial tree models are surveyed in
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See, e.g., Bates (1996a, 2000), Scott (1997), Duffie, Pan and Singleton (1998), Dai and4

Singleton (2000a), and Bakshi and Madan (2000).

Skiadopoulos (1999), while the currently popular affine class of distributional models creates a

structure that nests particular specifications of the stochastic volatility and jump approaches.

While alternatives to the BSM model began appearing within a few years of the original

Black-Scholes (1973) paper, and continued in the 1980’s with the stochastic volatility models,

actually testing those alternatives using options data was handicapped by several factors.  First,

options data weren’t readily available until after the advent of options trading on centralized

exchanges.  Second, the new models were perforce more complicated. Pricing options was a

substantial computational burden for the (mainframe) computers available at the time, while

employing these option pricing models in empirical work was a major computational and

programming challenge.  Third, the extra risks introduced by jumps and stochastic volatility raised

the issue of how to price those risks.  The early literature tended to assume zero risk premia; e.g.,

Merton (1976) for jump risk, and the stochastic volatility models of Hull and White (1987), Johnson

and Shanno (1987) Scott (1987), and Wiggins (1987).

The 1990’s witnessed several important developments that have facilitated greater empirical

scrutiny of alternative option pricing models.  The most important has been the Fourier inversion

approach to option pricing of Stein and Stein (1981) and Heston (1983).  While other methods

already existed for pricing options under general stochastic volatility processes -- e.g., the Monte

Carlo approach of Scott (1987), or the higher-dimensional finite-difference approach of Wiggins

(1987) --  Fourier inversion is substantially more efficient when applicable.  Furthermore, as

discussed by various authors,  it can be applied to multiple types of risk (stochastic volatility, jumps,4

stochastic interest rates) and more general structures (multiple additive or concatenated latent

variables; time-varying jump risk) without sacrificing option pricing tractability.  Finally, the affine

pricing kernels first developed by Cox, Ingersoll, and Ross (1985) imply risk premia on untraded

risks are linear functions of the underlying state variables, creating a method for going between

objective and risk-neutral probability measures while retaining convenient affine properties for both

measures.
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The Cox, Ingersoll, and Ross (1985) square-root diffusion implies conditional transition5

densities  have a non-central  distribution.  Those transition densities are more easily evaluated
by a series solution than by Fourier inversion.

Affine models have two major advantages for econometric work.  First, European call (and

put) option prices  with maturity T can be computed rapidly conditional upon the

observed underlying asset price , the values of relevant underlying state variables , and the

various model parameters  and risk premia  that determine the risk-neutral probability measure.

Second, the joint characteristic function associated with the joint conditional transition density

 has an analytic solution, implying objective transition densities can also be

evaluated via Fourier inversion or other methods.   Consequently, it becomes relatively5

straightforward to infer  values from observed option prices, and to test whether the observed time

series properties of asset and/or option prices conditional on those values  are consistent with the

predicted properties.

Reverse tests based upon the time series properties of asset and/or option prices and their

option pricing implications have been handicapped by the difficulty of estimating continuous-time

models with latent state variables such as stochastic volatility.  However, the time series literature

has advanced sufficiently over the last decade that this approach is now feasible. Examples include

the Bayesian Monte Carlo Markov Chain approach of Jaquier, Polson and Rossi (1994), and Gallant

and Tauchen’s EMM/SNP approach.  The latter approach derives moment conditions from a

particular auxiliary time series model that captures discrete-time data properties, uses Simulated

Method of Moments to estimate the parameters of a continuous-time model consistent with those

moment conditions, and uses “reprojection” to generate filtered and smoothed estimates  from

times series data.  As illustrated in Ahn et al (2000), the methodology can be used to estimate model

parameters and latent variable values from the joint time series properties of the underlying and of

derivatives prices.
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I.C. Testing alternative models

So what have we learned from proposing alternatives to the Black-Scholes-Merton model of

geometric Brownian motion with constant volatility and interest rates?  In terms of the criteria

discussed in connection with Figure 1, I would say we have learned a great deal about the cross-

sectional option pricing implications of the alternative models, and some of the models’ qualitative

strengths and weaknesses.  We are starting to learn the degree to which cross-sectional option pricing

patterns are quantitatively consistent with the time series properties of the underlying asset and of

option prices, but more work can be done.  Finally, even though Black-Scholes-Merton is not the

right model, results from the tests of that model are informative and should be kept in mind.

The early univariate diffusion alternatives to geometric Brownian motion were attempting

to capture time-varying volatility and the “leverage” effects of Black (1976) in a simple fashion.  The

more recent implied binomial trees models, by contrast, were designed to exactly match observed

cross-sectional option pricing patterns at any given instant; a goal achieved by a large number of free

instantaneous volatility parameters at the various nodes.  One of the strengths of the approach -- only

asset price risk, implying no-arbitrage option pricing -- is also one of its major weaknesses.  First,

as noted in Bakshi, Cao and Chen (2000), instantaneous option price evolution is not fully captured

by underlying asset price movements, precluding the riskless hedging predicted by these models.

Second, these models imply conditional distributions depend upon the level of the underlying asset

price, which in turn counterfactually implies nonstationary objective and risk-neutral conditional

distributions for stock, stock index, or exchange rate returns.  Third, these models introduce a time

dimension into option pricing in a fashion inconvenient for empirical work.  This last property is

shared by bond pricing models that rely on time-dependent processes to match an initial term

structure of bond yields.

Standard jump models have primarily been used to match volatility smiles and smirks.  This

they can do fairly well for a single maturity, less well for multiple maturities.  As discussed in Bates

(2000, p. 205),  the standard assumption of independent and identically distributed returns in jump

models implies these models converge towards BSM option prices at longer maturities -- in contrast
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See Tompkins (2000) for an examination of observed ISD patterns from stock index, bond,6

currency, and interest rate options for various countries.

to the still-pronounced volatility smiles and smirks at those maturities.   The i.i.d. return structure6

is also inconsistent with time variation in implicit volatilities.  Furthermore, only infrequent large

jumps matter for option pricing deviations from Black-Scholes, and it is difficult to estimate such

models on time series data.

The major strength of stochastic volatility models is their consistency with the stochastic but

typically mean-reverting evolution of implicit standard deviations.  The option pricing implications

of standard stochastic volatility models are otherwise fairly close to an ad hoc Black-Scholes model

with an updated volatility estimate, when the volatility process is calibrated using parameter values

judged plausible given the time series properties of asset volatility or option returns.  Consequently,

standard stochastic volatility models cannot easily match observed volatility smiles and smirks.

Bakshi, Cao and Chen (1997) find that stochastic volatility models do as well as jump and stochastic

interest rate models with regard to an option hedging criterion.

Since every simple model has its weaknesses, hybrid models are needed -- and are feasible

within the affine model structure.  Having jump components addresses moneyness biases, while

having stochastic latent variables allows distributions to evolve stochastically over time.

Furthermore, Bates (2000) finds that modelling jump intensities as stochastic alleviates the maturity-

related option pricing problems of standard jump models.  It is interesting that the latest binomial

tree models incorporate additional stochastic components as well, as discussed in Skiadopoulos

(1999).

  Using option pricing models with stochastic latent variables reduces the ad hoc structure of

many early option pricing tests.  The early models were sufficiently inconsistent with key empirical

findings that periodic recalibration was common: infer key parameter(s) from option prices, test a

particular time series prediction for the next period, and repeat the inference and testing for

subsequent periods.  Latent variable models by contrast create a state space structure consistent with

the hypothesized data generating process.  Parameters are constant, current values of specific state
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One frequently voiced concern is that the “out-of-sample” properties of the early tests are7

lost when parameter invariance is imposed over, e.g., a 10-year horizon for both objective and risk-
neutral probability measures.  However, one can run subsample stability tests such as the Chow test
to check for parameter drift.

variables theoretically determine cross-sectional option prices and the objective conditional joint

distribution of asset and option returns, and the testable hypotheses are the consistency of the

objective and risk-neutral measures.7

Of course, these generalized models in conjunction with general continuous-time estimation

techniques for multiple series can get quite complicated.  Since an affine model has cross-sectional

and time series implications, it is now possible to combine multiple implications in the estimation

methodology in an internally consistent fashion.  This approach has been used in testing bond pricing

models since Pearson and Sun (1994), and in option pricing research since Bates (1996a).  Chernov

(2000) provides a recent illustration of how affine models can exploit multiple information sources.

However, econometric techniques that pool cross-sectional and time series information

should be treated with caution.  While valid under the null hypothesis of correct model specification,

this approach has two disadvantages.  First, the approach is mixing fundamentally different statistical

techniques: time series estimation, and parameter inference from derivatives prices.  While the

statistical properties of the former approach are well-understood, the latter essentially involves

inversion rather than estimation.  And while “measurement error” gives parameter inference an aura

of statistical respectability, hypothesizing measurement error can obscure a fundamental

incompatibility between the time series properties and cross-sectional derivatives prices.

Second, merging time series and cross-sectional implications can make it difficult to identify

why a particular model is rejected -- as it almost invariably is.  Merged estimation techniques mix

together multiple model implications, and it can be difficult to identify what is driving the parameter

estimates and the model rejections.  It is useful expositionally to structure tests in the form of cross-

sectional derivatives price patterns versus time series properties, before building more complicated

models premised upon those aspects being compatible.
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The above regression used ISD’s from 30-day noon ATM options over January 1988 through8

November 1998, and realized volatility computed from noon futures prices over the lifetime of the
options.  The data were consequently monthly, and essentially non-overlapping.  Using standard
deviations instead of variances generates a higher slope coefficient of 0.756 (standard error of .073),
and an  of .45.  The average annualized divergence between implicit and realized standard
deviations over 1988-98 was 2%.

(2)

II. Current issues and concerns

At present, empirical options research seems substantially concentrated on stock index options, and

the “volatility smirk” evidence of negatively skewed risk-neutral distributions.  This empirical focus

is certainly reasonable.  Equity is the riskiest portion of most investors’ portfolios, and options have

gained acceptance as one method of managing that risk -- as is evident in the sharply increased

demand for put options on stock indexes since the crash of 1987 (see Figure 1 of Bates, 2000), and

the emergence of instruments such as equity-linked annuities that offer downside-protected equity

investments.

As we move towards more complicated models, it is useful to keep in mind some key results

from the earlier tests of the Black-Scholes-Merton model.  First, implicit volatilities are biased

forecasts of subsequent stock market volatility.   Regressing some volatility measure upon

corresponding volatility assessments inferred from options prices typically yields results such as

with slope coefficients significantly less than 1.   Since the intercept is small, implicit volatilities8

typically exceeded realized volatilities on average over 1988-98.  And although implicit variances

inferred using the geometric Brownian motion are biased estimates of expected average variance

under alternate specifications, the bias appears to be small and is of the wrong sign to explain the

volatility bias puzzle.  This bias has generated substantial speculative profit opportunities from

writing at-the-money options in the post-crash era; see Fleming (1998) and Jackwerth (2000).

Pan (2000) illustrates the relevance of keeping the volatility bias results in mind when

working with more complicated affine models.  She uses stock index returns and the evolution of



a ( b (

Vart [ln(Ft%T / Ft )] ' a(T) % b(T )Yt

Var (t [ln(Ft%T / Ft )] ' a ((T) % b ((T )Yt .

b̂ ( > b̂

b ( Yt

12

Assuming a time-varying jump intensity is critical.  The jump risk premia on a time-9

invariant jump process such as in Bates (1996a) would affect  but not .

(3)

a latent variable inferred from ATM option prices to estimate the actual and risk-neutral parameters

under the Heston (1993) stochastic volatility model, and under the Bates (2000) stochastic

volatility/jump-diffusion model with time-varying jump risk.  Affine models imply that objective

and risk-neutral conditional variances are maturity-dependent linear transforms of the latent state

variable hypothesized common to asset returns and option prices:

The volatility bias results of equation (2) require .  This can be achieved in two ways:  by

a volatility risk premium that implies slower volatility mean reversion under the risk-neutral than

under the objective measure (and therefore greater sensitivity  to the initial value ), or by jump

risk premia increasing risk-neutral jump variance and total variance relative to objective jump

variance.   Pan finds the latter approach fits the cross-sectional moneyness and maturity properties9

of option prices substantially better than the former approach, but does not otherwise examine the

plausibility of the estimated risk premia.

The second major empirical puzzle is the pronounced volatility smirk implicit in options on

stock indexes or stock index futures, which implies strongly negatively skewed risk-neutral

distributions.  As discussed in Bates (2000), the parameter values necessary to match the smirk in

S&P 500 futures options appear inconsistent with the time series properties of the stock index futures

and of option prices.  Moderately infrequent large crashes occurring 0.5 - 5 times a year (under the

risk-neutral distribution) can match the smirk, but it takes substantial risk adjustments to reconcile

those parameters with the absence of large crashes in the thirteen years since the crash of 1987.  A

similar point emerges from Jackwerth’s (2000) discussion of the substantial crash frequencies

needed to eliminate profit opportunities from writing out-of-the-money put options. 

Current models attribute to risk premia any discrepancies between objective properties of

stock index returns, and risk-neutral probability measures inferred from the volatility smirk.  The
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Those “gamma” and “vega” risks can hedged by buying options, but that just transfers the10

risk to another marketmaker.

fundamental theorem of asset pricing implies that provided there are no outright arbitrage

opportunities in cross-sectional option prices, there exists some pricing kernel that can reconcile the

two probability measures.  This result has prompted examinations by Aït-Sahalia and Lo (1998),

Jackwerth (2000), and Rosenberg and Engle (2000) inter alia regarding general characteristics of

the pricing kernel, while Chernov (2000) and Pan (2000) examine pricing kernel and risk premia

issues within the class of affine models. 

Too much weight has been given to the no-arbitrage foundations of pricing kernels.  It is the

function of the asset pricing branch of finance to ascertain appropriate risk premia on financial risks

-- including the jump and stochastic volatility risks spanned by traded options.  To blithely attribute

divergences between objective and risk-neutral probability measures to the free “risk premium”

parameters within an affine model is to abdicate one’s responsibilities as a financial economist.  Of

course, judging appropriate prices of risks is complicated by the empirical rejections of standard

asset pricing models such as the CAPM and consumption CAPM. Cochrane and Saá-Requejo (1996)

provide one possible starting point, by deriving option pricing bounds from plausible conditional

Sharpe ratio constraints on the risk premia on untraded risks.

Furthermore, the “representative agent” construction and calibration associated with implicit

pricing kernels and risk premia appear inconsistent with the industrial organization of stock index

options markets.  Such models imply risk dispersal across all agents in the economy, until all agents

are indifferent at the margin to the systematic risks they bear given the prices of those risks.  The

stock index options markets, by contrast, appear to be functioning as an insurance market.  A large

clientele of assorted institutional investors predominantly buy stock index options, whereas a

relatively small number of specialized option marketmaking firms predominantly write them.  These

firms can delta-hedge their positions against small market fluctuations, but are perforce exposed in

aggregate to jump and volatility risks.    Consequently, marketmakers limit their exposure to these10

risks by risk management techniques such as Value at Risk and worst-case scenario analysis.  The

limited capitalization of the marketmakers implies a limited supply of options, and the pricing of the
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extra risks spanned by options at the shadow prices of investors with relatively high aversions to

those risks.

III.  Suggestions for future research

As the above discussion suggests, I believe a renewed focus on the explicit financial intermediation

of the underlying risks by option marketmakers is needed.  Since such marketmakers are effectively

writing crash insurance, there may be lessons to be learned from the insurance literature.  Froot

(1999a,b), for instance, has looked at the financial intermediation of catastrophe risk.  From a finance

perspective, that market for rare events appears rather inefficient (with premia originally nine times

expected losses), given the risks are in principle diversifiable.  The banking literature has also been

concerned with the financial intermediation of risk, and it is possible there are useful models to be

found there.  Both banking and insurance have greater entry restrictions than are theoretically present

in options markets, however.

As part of this research, further scrutiny of marketmakers’ risk management issues appears

warranted.  There has, of course, been substantial scrutiny of option hedging under frictions such as

discrete-time hedging or transactions costs, but most of that literature has been partial-equilibrium

in nature, and premised on Black-Scholes-Merton assumptions of geometric Brownian motion for

the underlying asset price.  Devising plausible models of marketmaker behavior under more general

risks and incorporating them into equilibrium models of risk pricing is desirable.

It is possible that transactions costs may be relevant for some of the observed option pricing

puzzles.  However, the fact that the deviations between objective and risk-neutral probability

measures appear substantially more pronounced for stock index options than for currency options

suggests that transactions costs are not the major factor.  Furthermore, those models are difficult to

work with even in a geometric Brownian motion framework, and have not yielded especially useful

insights.  One conclusion is that it is unproductive to combine transactions costs and the no-arbitrage

foundations of Black-Scholes-Merton.  Such approaches implicitly assume option marketmakers are

infinitely risk-averse, and generate excessively broad bid-ask spreads -- e.g., the asking price for a
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call option is the value of the underlying stock.  Transactions costs models need to operate in

conjunction with a more general risk-return calculation on the part of option marketmakers.

There is, as always, some scope for pricing exotic options under alternative distributional

hypotheses.  We certainly could use more efficient methods for pricing American options under

jumps and/or stochastic volatility; most of the existing literature (see, e.g., Broadie and Detemple,

1996) has focussed on geometric Brownian motion.  However, I am generally reluctant to encourage

students to explore exotic option pricing issues.  First, since those markets are predominantly over-

the-counter, data are not readily available for empirical work.  Second, there do exist methods for

pricing derivatives under jumps (Amin, 1993) or stochastic volatility (Wiggins, 1987; Ritchken and

Trevor, 1999).  They may be inefficient, but they work.  Coming up with more efficient methods or

approximations may be of interest to practitioners, but otherwise has a somewhat limited audience.

In terms of alternate model specifications, the Markovian assumptions of standard affine

models appear excessively strong.  It is assumed that market participants know the instantaneous

values  of all relevant underlying state variables as well as the parameter values  of stochastic

processes with certainty, so those values are theoretically inferable from options prices.  But whereas

the instantaneous conditional volatility may be inferable from high-frequency data in a standard

stochastic volatility model, do we really know the time-varying “central tendency” towards which

it is headed in a multifactor generalization?  Or the instantaneous jump intensity if time-varying --

or even if constant?  These assumptions place strong testable restrictions on the relationship between

time series evidence and cross-sectional option prices; perhaps too strong.

It would be interesting to see equilibrium option pricing models that incorporate uncertainty

about the correct model, the parameters, and/or the values of relevant latent variables.  My suspicion

is that there would still be latent variables inferable from option prices that summarize the market’s

best guess of the true distributional characteristics, as suggested by the Bayesian approach of Dothan

and Feldman (1986).  However, uncertainty could break the perfect-information identity between

parameters inferred from option prices and those estimated from time series analysis.  The robust

decision-making approach of Andersen, Hansen, and Sargent (1998) and Cagetti et al (2000) is an
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alternate approach to specification risk that could generate some interesting equilibrium option

pricing implications.

Finally, it is safe to predict that numerical methods will be used increasingly in future

empirical options research.  Computers continue to get faster at a remarkable pace, and the need for

analytically tractable models diminishes as alternative brute-force methods become cheaper.  An

expositional barrier will still remain, however: explaining the methodology and the results given the

many methods discussed above whereby option pricing models can be tested.  Implementing any of

the above suggestions and presenting them intelligibly is left as an exercise to the readers.
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