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Abstract
Thisarticlereviewsthe Bates and Scott option pricing models, which capture both stochastic volatility

and jump risk within atractable affine specification.
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The Bates [3] and Scott [13] option pricing models were designed to capture two features of asset
returns: thefact that conditional volatility evolvesover timeinastochastic but mean-reverting fashion,
and the presence of occasional substantial outliers in asset returns. The two models combined the
Heston [9] model of stochastic volatility with the Merton [11] model of independent normally
distributed jumps in the log asset price. The Bates model ignores interest rate risk, while the Scott
model allowsinterest ratesto be stochastic. Both modelseval uate European option pricesnumerically,
using the Fourier inversion approach of Heston. The Bates model also includes an approximation for
pricing American options. The two models were historically important in showing that the tractable

class of affine option pricing models includes jump processes as well as diffusion processes.

All option pricing modelsrely upon arisk-neutral representation of the datagenerating process
that includes appropriate compensation for the variousrisks. In the Bates and Scott models, the risk-
neutral processes for the underlying asset price S, and instantaneous variance ¥, are assumed to be of
the form

ds,/S, = (b - \'E)dt + \[V,dZ, + k*dq, 0
1

dv, = (a - B*V)dt + o,,/V,dZ,

wherebisthecost of carry; Z, and Z, are Wiener processeswith correlation p; g, isaninteger-val ued
Poisson counter with risk-neutral intensity A* that counts the occurrence of jumps; and k£ * is the
random percentage jump size, with a Gaussian distribution In(1+%&*) ~ N[In(1 +&") - %%, 8%]
conditional upon ajump occurring. The Bates model assumes b is constant, while the Scott model
assumesit isalinear combination of ¥, and an additional state variable that follows an independent
sguare-root process. Bates[3] examinesforeign currency options, for which bisthe domestic/foreign
interest differential, while Scott’ sapplication [ 13] to non-dividend paying stock optionsimpliesthe cost
of carry isequal to the risk-free interest rate.

Thepostul ated processhasan associated conditional characteristic functionthat isexponentially
affine in the state variables. For the Bates model, the characteristic function is
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where E, [] isthe risk-neutral expectational operator associated with equation (1), and
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Theterms C(-) and D(-) areidentical to thosein the Heston [9] stochastic volatility model, while E(-)
capturestheadditional distributional impact of jumps. Scott’ sgeneralizationto stochasticinterest rates

uses an extended Fourier transform of the form

¢'(2) = Eo*

exp( —fOTrtdt + zlnST) | Sp5 79> Vo T} (3)

which has an analytical solution for complex-valued z that is also exponentially affine in the state

variables S, r, and V.

European call option prices take the form ¢ = B(FP, - XP,), where B is the price of a
discount bond of maturity T, F isthe forward price on the underlying asset, X isthe option’s exercise
price, and P, and P, areupper tail probability measuresderivablefromthecharacteristic function. The
Bates (1996) and Scott (1997) papers present Fourier inversion methods for evaluating P, and P,

numerically. However, faster methods were subsequently developed for directly evaluating European

} (4)

where Re[z] isthereal component of acomplex variablez. For the Bates model, fi®) = @(i®); for

call option prices, using a single numerical integration of the form
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the Scott model, fi®) = ¢*(i®) /B. European put optionscan beeval uated from European call option
prices using the put-call parity relationship p = ¢ + B(X-F).

Evaluating equation (4) typically involves integration of an dampened oscillatory function.
Whilethere exist canned programsfor integration over asemi-infinite domain, most papersusevarious

forms of integration over atruncated domain. Bates|[3] uses Gauss-Kronrod quadrature. Fast Fourier
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Transform approaches have a so been proposed, but invol ve substantially morefunctional evaluations.
Theintegration istypically well-behaved, but there do exist extreme parameter values (e.g., |p| near
1) for which the path of integration crosses the branch cut of thelog function. Asall contemporaneous
option prices of a given maturity use the same values of Ai®) regardless of the strike price X,

evaluating options jointly greatly increases numerical efficiency

Related models
Related affine models can be categorized along four lines:

1) alternate specifications of jJump processes;

2) the Bates [5] extension to stochastic-intensity jump processes,

3) models in which the underlying volatility can also jump; and

4) multifactor specifications.
Alternate jump specifications (including L évy processes) with independent and identically distributed
jumps involve modification of the functional form of E(), and are discussed in other articlesin this
Encyclopedia. The Bates [5] model with (risk-neutral) stochastic jump intensities of the form
A*+ A}V, involves modifying y(-) and D("):

Y@ = |(po,z - B - 0L[2% - z + 24 E(2)]
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Bates [5] also contains multifactor specifications for the instantaneous variance and jump intensity.
The general class of affine jump-diffusion models is presented in Duffie et a [8], including the
volatility-jump option pricing model. Scott’s extended Fourier transform approach for stochastic
interest rates was subsequently also used by Bakshi and Madan [2] and Duffie et al.

Further reading

Bates[7, pp. 943-4] presents a simple derivation of equation (4), and cites earlier papers that develop
the single-integration approach. Numerical integration issuesarediscussed in Lee[10]. Bates[3] and
Bakshi et a [1] estimate and test the Bates and Scott models, respectively, while Pan [12] provides
additional estimatesand testsof the Bates[5] stochastic-intensity model. Bates[4, 6] surveysempirical

option pricing research.
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