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Abstract

This article reviews the Bates and Scott option pricing models, which capture both stochastic volatility

and jump risk within a tractable affine specification.
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The Bates [3] and Scott [13] option pricing models were designed to capture two features of asset

returns:  the fact that conditional volatility evolves over time in a stochastic but mean-reverting fashion,

and the presence of occasional substantial outliers in asset returns.  The two models combined the

Heston [9] model of stochastic volatility with the Merton [11] model of independent normally

distributed jumps in the log asset price.  The Bates model ignores interest rate risk, while the Scott

model allows interest rates to be stochastic.  Both models evaluate European option prices numerically,

using the Fourier inversion approach of Heston. The Bates model also includes an approximation for

pricing American options.  The two models were historically important in showing that the tractable

class of affine option pricing models includes jump processes as well as diffusion processes.

All option pricing models rely upon a risk-neutral representation of the data generating process

that includes appropriate compensation for the various risks.  In the Bates and Scott models, the risk-

neutral processes for the underlying asset price  and instantaneous variance  are assumed to be of

the form

where b is the cost of carry;  and  are Wiener processes with correlation ;  is an integer-valued

Poisson counter with risk-neutral intensity  that counts the occurrence of jumps; and  is the

random percentage jump size, with a Gaussian distribution 

conditional upon a jump occurring.  The Bates model assumes b is constant, while the Scott model

assumes it is a linear combination of  and an additional state variable that follows an independent

square-root process.  Bates [3] examines foreign currency options, for which b is the domestic/foreign

interest differential, while Scott’s application [13] to non-dividend paying stock options implies the cost

of carry is equal to the risk-free interest rate. 

The postulated process has an associated conditional characteristic function that is exponentially

affine in the state variables.  For the Bates model, the characteristic function is

where  is the risk-neutral expectational operator associated with equation (1), and
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The terms  and  are identical to those in the Heston [9] stochastic volatility model, while 

captures the additional distributional impact of jumps.  Scott’s generalization to stochastic interest rates

uses an extended Fourier transform of the form 

which has an analytical solution for complex-valued z that is also exponentially affine in the state

variables  and .

European call option prices take the form , where B is the price of a

discount bond of maturity T, F is the forward price on the underlying asset, X is the option’s exercise

price, and  and  are upper tail probability measures derivable from the characteristic function. The

Bates (1996) and Scott (1997) papers present Fourier inversion methods for evaluating  and 

numerically.  However, faster methods were subsequently developed for directly evaluating European

call option prices, using a single numerical integration of the form 

where  is the real component of a complex variable z.  For the Bates model, ; for

the Scott model, .  European put options can be evaluated from European call option

prices using the put-call parity relationship  .

Evaluating equation (4) typically involves integration of an dampened oscillatory function.

While there exist canned programs for integration over a semi-infinite domain, most papers use various

forms of integration over a truncated domain.  Bates [3] uses Gauss-Kronrod quadrature.  Fast Fourier

(3)

(4)
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Transform approaches have also been proposed, but involve substantially more functional evaluations.

The integration is typically well-behaved, but there do exist extreme parameter values (e.g.,  near

1) for which the path of integration crosses the branch cut of the log function. As all contemporaneous

option prices of a given maturity use the same values of  regardless of the strike price X,

evaluating options jointly greatly increases numerical efficiency

Related models

Related affine models can be categorized along four lines:

1) alternate specifications of jump processes;

2) the Bates [5] extension to stochastic-intensity jump processes; 

3) models in which the underlying volatility can also jump; and

4) multifactor specifications.

Alternate jump specifications (including Lévy processes) with independent and identically distributed

jumps involve modification of the functional form of , and are discussed in other articles in this

Encyclopedia.  The Bates [5] model with (risk-neutral) stochastic jump intensities of the form

 involves modifying  and :

Bates [5] also contains multifactor specifications for the instantaneous variance and jump intensity.

The general class of affine jump-diffusion models is presented in Duffie et al [8], including the

volatility-jump option pricing model.  Scott’s extended Fourier transform approach for stochastic

interest rates was subsequently also used by Bakshi and Madan [2] and Duffie et al.

Further reading

Bates [7, pp. 943-4] presents a simple derivation of equation (4), and cites earlier papers that develop

the single-integration approach.  Numerical integration issues are discussed in Lee [10].  Bates [3] and

Bakshi et al [1] estimate and test the Bates and Scott models, respectively, while Pan [12] provides

additional estimates and tests of the Bates [5] stochastic-intensity model.  Bates [4, 6] surveys empirical

option pricing research.  
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