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This paper examines how well alternate time-changed Lévy processes capture stochas-
tic volatility and the substantial outliers observed in U.S. stock market returns over the
past 85 years. The autocorrelation of daily stock market returns varies substantially
over time, necessitating an additional state variable when analyzing historical data.
I estimate various one- and two-factor stochastic volatility/Lévy models with time-
varying autocorrelation via extensions of the Bates (2006) methodology that provide
filtered daily estimates of volatility and autocorrelation. The paper explores option
pricing implications, including for the Volatility Index (VIX) during the recent financial
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1. Introduction

What is the risk of stock market crashes? Answering
this question is complicated by two features of stock
market returns: the fact that conditional volatility evolves
over time, and the fat-tailed nature of daily stock market
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returns. Each issue affects the other. Which returns are
identified as outliers depends upon that day’s assessment
of conditional volatility. Conversely, estimates of current
volatility from past returns can be disproportionately
affected by outliers such as the 1987 crash. In standard
generalized autoregressive conditional heteroskedasticity
(GARCH) specifications, for instance, a 10% daily change in
the stock market has one hundred times the impact on
conditional variance revisions of a more typical 1% move.

This paper explores whether recently proposed con-
tinuous-time specifications of time-changed Lévy pro-
cesses are a useful way to capture the twin properties of
stochastic volatility and fat tails. The use of Lévy pro-
cesses to capture outliers dates back at least to the
Mandelbrot (1963) use of the stable Paretian distribution,
and many specifications have been proposed, including
the Merton (1976) jump-diffusion, the Madan and Seneta
(1990) variance gamma, the Eberlein, Keller, and Prause
(1998) hyperbolic Lévy, and the Carr, German, Madan, and
Yor (2002) CGMY process. As all of these distributions
assume identically and independently distributed (i.i.d.)
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returns, however, they are unable to capture stochastic
volatility.

More recently, Carr, German, Madan, and Yor (2003)
and Carr and Wu (2004) have proposed combining Lévy
processes with a subordinated time process. The idea of
randomizing time dates back at least to Clark (1973). Its
appeal in conjunction with Lévy processes reflects the
increasing focus in finance - especially in option pricing -
on representing probability distributions by their asso-
ciated characteristic functions. Lévy processes have log
characteristic functions that are linear in time. If the time
randomization depends on underlying variables that have
an analytic conditional characteristic function, then the
resulting conditional characteristic function of time-chan-
ged Lévy processes is also analytic. Conditional probabil-
ity densities, distributions, and option prices can then be
numerically computed by Fourier inversion of simple
functional transforms of this characteristic function.

Thus far, empirical research on the relevance of time-
changed Lévy processes for stock market returns has
largely been limited to the special cases of time-changed
versions of Brownian motion and the Merton (1976)
jump-diffusion. Furthermore, there has been virtually no
estimation of newly proposed time-changed Lévy pro-
cesses solely from time series data.! Papers such as Carr,
German, Madan, and Yor (2003) and Carr and Wu (2004)
rely on option pricing evidence to provide empirical
support for their approach, instead of providing direct
time series evidence. The reliance on options data is
understandable. Because the state variables driving the
time randomization are not directly observable, time-
changed Lévy processes are hidden Markov models, creat-
ing a challenging problem in time series econometrics.
Using option prices potentially identifies realizations of
those latent state variables, converting the estimation
problem into the substantially more tractable problem
of estimating state space models with observable state
variables.

While options-influenced parameter and state variable
estimates should be informative under the hypothesis of
correct model specification, the objective of this paper is to
provide estimates of crash risk based solely upon time series
analysis. Such estimates are of interest in their own right,
and are useful for testing the central empirical hypothesis in
option pricing: whether option prices are, in fact, compa-
tible with the underlying time series properties of the
underlying asset, after appropriate risk adjustments. Testing
the compatibility hypothesis is more difficult under joint
options/time series estimation approaches that are pre-
mised upon compatibility. Furthermore, option-based and
joint estimation approaches are constrained by the avail-
ability of options data only since the 1980s, whereas time
series estimation can exploit a longer history of extreme
stock market movements.? For instance, it has been asserted

1 Li, Wells, and Yu (2008) use Markov chain Monte Carlo (MCMC)
methods to estimate some models in which Lévy shocks are added to
various stochastic volatility models. However, the additional Lévy
shocks are independently and identically distributed, not time-changed.

2 The —20% and +11% movements on October 19, 1987 and
October 13, 2008, respectively, were the only daily stock market

that deep out-of-the-money index put options appear over-
priced, based on their surprisingly large negative returns
since the 1987 crash. But all such tests require reliable
estimates of downside risk; and it can be difficult to
establish whether puts are overpriced based only on post-
1987 data?

Risk-adjusted time series estimates of conditional
distributions can also provide useful real-time valuations
of option prices, for comparison with observed option
prices. At the end of the paper I compare the options-
based Volatility Index (VIX) measure of volatility with
time series estimates, during a 2007-2010 period span-
ning the recent financial crisis.

This paper uses the Bates (2006) approximate max-
imum likelihood (AML) methodology for estimation of
various time-changed Lévy processes over 1926-2006,
and for out-of-sample fits over 2007-2010. AML is a
filtration methodology that recursively updates condi-
tional characteristic functions of latent variables over
time given observed data. Filtered estimates of the latent
variables are directly provided as a by-product, given the
close link between moments and characteristic functions.
The methodology’s focus on characteristic functions
makes it especially useful for estimating Lévy processes,
which typically lack closed-form probability density func-
tions. The paper primarily focuses on the time-changed
CGMY process, which nests other Lévy processes as
special cases. The approach is also compared with the
stochastic volatility processes with and without normally
distributed jumps previously estimated in Bates (2006).

A concern with any extended data set is the possibility
that the data generating process might not be stable over
time. Indeed, this paper identifies substantial instability
in the autocorrelation of daily stock market returns.
Autocorrelation estimates appear to be nonstationary,
and peaked at the extraordinarily high level of 35% in
1971 before trending downward to the near-zero values
observed since the 1980s. The instability is addressed
directly, by treating autocorrelation as another latent
state variable to be estimated from observed stock market
returns. The paper also uses subsample estimation to test
for (and find) apparent instabilities or specification issues
in the one-factor volatility process used. Given these
issues, I estimate a two-factor concatenated model of
volatility evolution, which can be interpreted as a model
of parameter drift in the unconditional mean of the one-
factor variance process. Finally, I examine the sensitivity
of volatility filtration and option prices to the use of
different data sets and volatility models.

Overall, the time-changed CGMY process is found to be a
slightly more parsimonious alternative to the Bates (2006)
approach of using finite-activity stochastic-intensity jumps

(footnote continued)

movement over 1945-2010 in the Center for Research in Security Prices
(CRSP) value-weighted index to exceed 10% in magnitude, whereas there
were seven such movements over 1929-1932.

3 See Broadie, Chernov, and Johannes (2009) for a Monte Carlo study
of unhedged one-month returns for puts on S&P 500 futures over August
1987 to June 2005. They find that their large excess return estimates
often lack statistical significance, especially when volatility is stochastic.
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drawn from a mixture of normals, although the fits of the
two approaches are very similar. Interestingly, one cannot
reject the hypothesis that stock market crash risk is ade-
quately captured by a time-changed version of the Carr and
Wau (2003) log-stable process. That model’s implications for
upside risk, however, are strongly rejected, with the model
severely underpredicting the frequency of large positive
outliers.

Section 2 progressively builds up the time series model
used in estimation. Section 2.1 discusses basic Lévy
processes and describes the processes considered.
Section 2.2 discusses time changes, the equivalence to
stochastic volatility, and the leverage effect. Section 2.3
contains further modifications of the model to capture
time-varying autocorrelations and day-of-the-week
effects. Section 2.4 describes how the model is estimated,
using the Bates (2006) AML estimation methodology for
hidden Markov models.

Section 3 describes the data on excess stock market
returns over 1926-2010 and presents parameter esti-
mates, diagnostics, and filtered estimates of latent auto-
correlation and volatility. Given results from the
diagnostics, I develop and estimate a two-factor variance
model in Section 3.7. Section 4 examines option pricing
implications, and Section 5 concludes.

2. Time-changed Lévy processes
2.1. Lévy processes

A Lévy process L(t) is an infinitely divisible stochastic
process; i.e., one that has i.i.d. increments over nonover-
lapping time intervals of equal length. The Lévy processes
most commonly used in finance have been Brownian
motion and the jump-diffusion process of Merton
(1976), but there are many others. All Lévy processes
without a Brownian motion component are pure jump
processes. Such processes are characterized by their Lévy
density k(x), which gives the intensity (or frequency) of
jumps of size x. Alternatively and equivalently, Lévy
processes can be described by their generalized Fourier
transform

F(u) = Ee'"0 = exp[tf 4y (w)], ueD, cC, (1)

where u is a complex-valued element of the set D, for
which Eq. (1) is well-defined. If @ is real, F(i®) is the
characteristic function of L(t), while tfs(®) is the cumu-
lant generating function (CGF) of L(t). Following Wu
(2006), the function f4 (@) is called the cumulant expo-
nent of L(t).%

The Lévy-Khintchine formula gives the mapping
between jump intensities k(x) and the cumulant exponent
for arbitrary ueD,. Lévy processes in finance are typically
specified for the log asset price and then exponentiated:
S(t)=exp[L(t)]. For such specifications, it is convenient to
write the Lévy-Khintchine formula for pure jump processes

4 Carr, German, Madan, and Yor (2003) call y(®)=fy(i®) the “unit
time log characteristic function.” Bertoin (1996) calls —/(®) the “char-
acteristic exponent.”

in the form

faw)=uu+ / [e**—1—u(e*—1)]k(x)dx, )
-0
where p=f4(1) is the continuously compounded expected
return on the asset:

ES(t) = Eel® — g fa(Dt _ out 3)

Pure-jump Lévy processes can be thought of as a drift
term plus an infinite sum L(t)= [L,dx of independent
point processes, each drift-adjusted to make exp[L.(t)] a
martingale:

dLy = xdNy—(e*—1)k(x)dt, 4)

where N, is an integer-valued Poisson counter with
intensity k(x) that counts the occurrence of jumps of fixed
size x. The log characteristic function of a sum of inde-
pendent point processes is the sum of the log character-
istic functions of the point processes, yielding Eq. (2).
Exponential martingale processes of the form L(t)= [L, dx
for L, defined in Eq. (4) are called compensated Lévy
processes, as also are diffusions of the form aWt—%azt.

As discussed in Carr, German, Madan, and Yor (2002),
Lévy processes are finite-activity if [k(x)dx < oo and infi-
nite-activity otherwise. Finite-activity jumps imply there is
a nonzero probability that no jumps will be observed within
a time interval. Lévy processes are finite-variation if
J|x|k(x)dx < oo and infinite-variation otherwise. An infi-
nite-variation process has sample paths of infinite length,
which is also a property of Brownian motion. All Lévy
processes must have finite [ min(x2,1)k(x)dx to be well
behaved but need not have finite variance fxzk(x)dx, the
stable distribution being a counterexample. A priori, all
financial prices must be finite-activity processes, because
price changes reflect a finite (but large) number of market
transactions. However, finite-activity processes can be well
approximated by infinite-activity processes, and vice versa;
e.g., the Cox, Ross, and Rubinstein (1979) finite-activity
binomial approximation to Brownian motion. Activity and
variation therefore are treated as empirical specification
issues concerned with identifying which functional form
k(x) for jump intensities best fits daily stock market excess
returns.

I consider two particular underlying Lévy processes for
log asset prices. The first is the Merton (1976) combina-
tion of Brownian motion and finite-activity normally
distributed jumps:

dInS; = pdt + (o dW,;—Vs6? dt)+(y dN;—kdb), (5)

where W, is a Wiener process, N; is a Poisson counter with
intensity /, y~N(7,52) is the normally distributed jump
conditional upon a jump occurring, and k=el+%" 1 s
the expected percentage jump size conditional upon a
jump. The associated intensity of jumps of size x is

A x=7)
k(x) = ex s 6
= Vans "{ 26° ©
and the cumulant exponent takes the form
Frterton(W) = H+ V502U —u) + 27+ 70 1 ). (7)

doi:10.1016/j.jfineco.2012.03.004

Please cite this article as: Bates, D.S., U.S. stock market crash risk, 1926-2010. Journal of Financial Economics (2012),



dx.doi.org/10.1016/j.jfineco.2012.03.004

4 D.S. Bates / Journal of Financial Economics 1 (11s1) -

The approach can be generalized to allow alternate
distributions for y—in particular, a mixture of normals:

2 . =2
k)= > i exp {—(X i) } (8)

2
i=1/215? 29;

Second, I consider the generalized CGMY process of
Carr, Geman, Madan, and Yor (2003), which has a Lévy
density of the form

Cae S |x| """ forx <0,

Coe Ml x| 717" forx >0,

k(x) = 9)

where C,,Cp,G,M >0 and Y,,Y, < 2. The associated cumu-
lant exponent is

feemy) = (u—w)u

(G+u)Yn _Gyn
Yn(Yn—1)G'n—2 +{1=wn)

(M—u)"» —M"»
Yo(Y,—1M"» 2|’
(10

+V|w,

where  is a mean-normalizing constant determined by
feomy (1)=p, Vis variance per unit time, and w;, is the fraction
of variance attributable to the downward-jump component.
The corresponding intensity parameters C,,Cp in Eq. (9) are

wpV (1-wp)V

S\ AN o N € L)\ A 11
re-Y)G"2" P re-y,m%»? an

n
where I'(z) is the gamma function.

As discussed in Carr, German, Madan, and Yor (2002),
the Y parameters are key in controlling jump activity near
zero, in addition to their influence over tail events. The
process has finite activity if Y,,Y, <O, finite variation if
YpYn <1, but infinite activity or variation if min(Yp,Y,) is
greater or equal to zero or one, respectively. The model
conveniently nests many models considered elsewhere.

Table 1

For instance, Y,=Y,= —1 is the finite-activity double expo-
nential jump model of Kou (2002), while Y,=Y,=0 includes
the variance gamma model of Madan and Seneta (1990). As
Y, and Y, approach two, the CGMY process for fixed
variance V converges to a diffusion, and the cumulant
exponent converges to the corresponding quadratic form

Fsy() = pu+%vVu?—u). (12)

As G and M approach zero for arbitrary Yp,Y, and fixed
Cn,Cp, the Lévy density in Eq. (9) approaches the infinite-
variance log stable process advocated by Mandelbrot
(1963), with a power law property for asymptotic tail
probabilities. The log-stable special case proposed by Carr
and Wu (2003) is the limiting case with only negative
jumps (C,=0). While infinite-variance for log returns,
percentage returns have finite mean and variance under
this specification. For daily stock market returns of less
than 25% in magnitude, Carr and Wu'’s log-stable process
is well approximated by a finite-variance CGMY process
with minimal exponential dampening; e.g., G=0.001.

The cumulant exponent of any finite-variance Lévy
process can written in the form

Fa)=Vgy ), (13)

where V =f7;(0) is variance per unit time and gg(u) is a
standardized cumulant exponent with unitary variance. One
can also combine Lévy processes, to nest alternative speci-
fications within a broader specification. Any linear combi-
nation wikq(x)+woky(x) of Lévy densities for nonnegative
weights that sum to one is also a valid Lévy density and
generates an associated standardized weighted cumulant
exponent of the form wig:(u)-+wa.gy(u), where gj(u) is the
standardized cumulant exponent associated with kix) for
i=1,2. The various gy (u) specifications considered in this
paper are listed in Table 1.

Standardized cumulant exponents gy (1) = In(Ee%!)/dt for various compensated Lévy specifications that have
unitary variance V per unit time and a continuously compounded expected return p equal to zero.

Diffusion [Eq. (12)]

Normally distributed jumps
CGMY jumps [Eq. (10)],

with @ such that gegmy (1)=0

General specification

Zov(u) =Ya(u?—u)

giw) =5 1(52 [e47: +¥asl _q —u(e’ +1407 1)

_ (G—u)'n—G"n _ M+uw)'P —Mm"P
Bcamy (U) =Wn 3t vy +(1=Wn)

Yp(Y,— )M 2 —wu

2
8ar (W) =Wsy gy (W) + > Wyig)i(W)+Weemy Ecomy (1)
i<

Weights
Model Parameter restrictions
Wsy Wceemy
NY 1
SVJ1 1 e (7% +()%) wp=0
1+ +60) T @R oD
sviz ! JiCTE +07)
T Y7 4 +67) 14+ 52, WGP +02)
DEXP 1= Fiump Fiump Yo=Y,=—1
VG 1—fiump fiump Y,=Y,=0
Y 0 1 Y=Y,
YY 0 1
YY—D 1 7-’}”’"!’ L'UT”P
LS 0 wy, =1, G=.001

The weights (Wsy,wj1,wj2,Weemy) in the general specification sum to one and give the fractions of variance

attributable to the underlying Lévy processes.
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2.2. Time-changed Lévy processes and stochastic volatility

Time-changed Lévy processes generate stochastic volati-
lity by randomizing time. Because the log of F(u) in Eq. (1)
can be written as InF(u) =g, (u)Vt, randomizing time is
fundamentally equivalent to randomizing variance. Because
the connection between time changes and stochastic vola-
tility becomes less transparent once leverage effects are
added, I use explicit stochastic volatility or stochastic
intensity representations of stochastic processes.

The leverage effect, or correlation between asset
returns and conditional variance innovations, is captured
by directly specifying shocks common to both.> I initially
assume that the log asset price s; = InS; follows a process
of the form

dse = (Ho + i VOt + (P, /VedW = 2p2,Vedt) +dLe
dV; = BO—V)dt +6+/VdW,. (14)

The log increment ds, consists of the continuously com-
pounded expected return plus conditionally independent
increments to two exponential martingales. dW, is a Wiener
increment and dL, is the increment to a compensated Lévy
process, with instantaneous variance (1—p2)V,dt. Further
refinements are added below, to match properties of stock
market returns more closely.

This specification has various features or implicit
assumptions. First, the approach allows considerable
flexibility regarding the distribution of the instantaneous
shock dL, to asset returns, which can be Wiener, com-
pound Poisson, or any other fat-tailed distribution. Three
underlying Lévy processes are considered:

1. a second diffusion that is independent of W, with
incremental variance (1—p2,)Vdt (Heston, 1993);

2. finite-activity jumps drawn from a normal distribution
or a mixture of normals; and

3. the generalized CGMY Lévy process from Eq. (9).

Combinations of these processes are also considered,
to nest the alternatives.

Second, the specification assumes a single underlying
variance state variable V; that follows an affine diffusion
and which directly determines the variance of diffusion
and jump components. This approach generalizes the
stochastic jump intensity model of Bates (2000, 2006) to
arbitrary Lévy processes.

Two alternate specifications are not considered, for
different reasons. First, I do not consider the approach of
Li, Wells, and Yu (2008), who model log-differenced asset
prices as the sum of a Heston (1993) stochastic volatility
process and a constant-intensity Lévy process that cap-
tures outliers. Bates (2006, Table 7) finds the stochastic-
intensity jump model fits Standard & Poor’s (S&P) returns
better than the constant-intensity specification, when
jumps are drawn from a finite-activity normal distribu-
tion or mixture of normals. Second, the diffusion assump-
tion for V; rules out volatility-jump models, such as the

5 This approach is equivalent for affine models to the change of
measure approach in Carr and Wu (2004).

exponential-jump model proposed by Duffie, Pan, and
Singleton (2000) and estimated by Eraker, Johannes, and
Polson (2003). The general issue of modeling correlated
Lévy shocks to asset prices and to conditional variances is
left for future research.

Define y; = [!_, ds; as the discrete-time return observed
over horizon t=T—t, and define f (1) = (1—p2,)Vigq4 (u) as
the cumulant exponent of dL; conditional upon knowing V..
By construction, g4 (u) is a standardized cumulant exponent,
with g4(1)=0 and variance g7;(0)=1. A key property of
affine models is the ability to compute the conditional
generalized Fourier transform of (y;,Vy). This can be done
by conditioning initially on the future variance path and
iterating the expectational operator recursively backward in
time:

T
F(@,lp ‘ Vtvr) = E[e(l).]' _ rdSr+‘//VT ‘Vt]
— E{E[e"7 [ O —sp2 Vrdr + pgy N/ VrdW, +dLy )
xe?VT Vi _ | Vi)

T
— Ele®t [, i@ ¥aph @ =)+ (1 pl)ga (@IVedr+ Vi Vi)
T
— E[e@uorJrh((I)) ./, _ Vedr+yvr ‘Vt] (15)

for h(®) = puy &+ Y2p2, (P>~ ®)+(1—p2,)gq(®). Eq. (15) is
the generalized Fourier transform of the future spot variance
Vrand the average future variance V; 17 = [TT: ¢ Vrdr. This is
a well-known problem discussed in Bakshi and Madan
(2000), with an analytic solution if V; follows an affine
process. For the affine diffusion above, F-|V,t) solves the
Feynman-Kac partial differential equation

—F 4+ B(O-V)Fy +%0%V Fyy = — [® g+ h(P)V|F (16)
subject to the boundary condition F(®,i|V,0)=expy/V).
The solution is

F(®,y|V:,7) = exp[pyT P+ 0C(t; DY)+ D(T; D,)Vi] 17)

where
o)=L pyo0-pp)
28 (1-eM] 2B
—ﬁln 1+(ps,0P—F—y) 2 —Fln[l—K(tD)lp],
(18)
o 2P+ p (PP D) +2(1-p2,)ga(P)
DT ) = = e 1) J@ 1)1+ f—peyo®
A(®)
+71—K(<P)1//' (19)

7 = V(0 0P~ BP 2021ty B+ V22, (B>~ )+ (1— 2 ) (D)),
20)
et 4+1 2 e’ +1
oy /(e

et 1
K(®) = 62 / <y e [f—pme). 22)

2
A(D)= [ﬁ—p%ad)) , and

21

The specifications of gg4;(-) considered in this paper are
listed above in Table 1.
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2.3. Autocorrelations and other refinements

That stock indexes do not follow a random walk was
recognized explicitly by Lo and MacKinlay (1988) and
implicitly by earlier practices in variance and covariance
estimation designed to cope with autocorrelated returns;
e.g., the Dimson (1979) lead/lag approach to beta estima-
tion. The positive autocorrelations typically estimated for
stock index returns are commonly attributed to stale
prices in the stocks underlying the index. A standard
practice in time series analysis is to prefilter the data by
fitting an autoregressive moving average (ARMA) model;
see, e.g., Jukivuolle (1995). Andersen, Benzoni, and Lund
(2002), for instance, use a simple MA(1) specification to
remove autocorrelations in S&P 500 returns over 1953-
1996, a data set subsequently used by Bates (2006).

Prefiltering the data was considered unappealing in
this study, for several reasons. First, the 1926-2006
interval used here is long, with considerable variation
over time in trading activity and transactions costs, and
structural shifts in the data generating process are prob-
able. Indeed, Andersen, Benzoni, and Lund (2002, Table 1)
find autocorrelation estimates from their full 1953-1996
sample diverge from estimates for a 1980-1996 subsam-
ple. Second, ARMA packages use a mean squared error
criterion that is not robust to the fat tails observed in
stock market returns. Finally, explicit consideration of
autocorrelation is necessary when identifying the var-
iance of relevance to option pricing.

Consequently, autocorrelations were treated as an
additional latent variable, to be estimated as part of the
overall time series model. I explore below two alternate
models for daily log-differenced stock index excess
returns y;:

Ves1=PYe+Ne1 (Model 1) (23)
or

Yer1=pPYe+A=pi 1 (Model 2), (24)
where

4Tt t+Te
N1 = / ds;, Vi1 =Vet+ / dV,, and

Jr=t Jr=t

Pri1=Pc+e1, 6~N(0,05)and iid. (25)

7, is the effective length of a business day, p; is the daily
autocorrelation, ds; is the instantaneous intradaily shock
to log asset prices, and V,dt=Var{ds;) is the instanta-
neous conditional variance of ds,. The intradaily shocks
(ds.,dV,) are given by Eq. (14).

Both models add an autocorrelation state variable p,
that captures the fact that autocorrelations of stock
market returns are not constant over time. Following
the literature on time-varying coefficient models, the
autocorrelation is modeled as a simple random walk, to
avoid constraining estimates of p, Estimation of the
autocorrelation volatility parameter ¢, endogenously
determines the appropriate degree of smoothing to use
when estimating the current autocorrelation value p,
from past data.

The two models differ in ease of use, in their implications
for the interaction between volatility and autocorrelation,

and in the pricing of risks. Model 1 assumes that the stock
market excess return residual 77¢, 1 =Y, 1 — Py is stationary
(i.e., with a stationary conditional variance process) and that
the current value of p; affects only the conditional mean of
Ye+ 1. Autocorrelation filtration in the model is consequently
closer to standard autocorrelation estimation, and becomes
identical when #;, 1 is i.i.d. Gaussian and the autocorrelation
is constant (g, =0). Model 1 also has a semi-affine structure
that permits direct estimation via the methodology of Bates
(2006).

In Model 2, ;. is the permanent impact of daily
shocks to stock index excess returns, and is again
assumed stationary. The model assumes that infrequent
trading in the component stocks (proxied by p;) slows the
incorporation of such shocks into the observed stock
index, but that the index ultimately responds fully once
all stocks have traded.® Unlike Model 1, Model 2 is
consistent with the LeBaron (1992) observation that
annual estimates of daily stock market volatility and
autocorrelation appear inversely related. Higher autocor-
relations smooth shocks across periods, reducing
observed market volatility. Furthermore, the model is
more suitable for pricing risks; i.e., identifying the equity
premium or the (affine) risk-neutral process underlying
option prices. The current value of p, affects both the
conditional mean and higher moments of y, 1, resulting
in a substantially different filtration procedure for esti-
mating p, from past excess returns. The time series model
is not semi-affine, but I develop below a change of
variables that makes filtration and estimation as tractable
as for Model 1.

Both models build upon previous time series and
market microstructure research into stock market returns.
For instance, the effective length 7, of a business day is
allowed to vary based upon various periodic effects. In
particular, day-of-the-week effects, weekends, and holi-
days are accommodated by estimated time dummies that
allow day-specific variation in 7.’ In addition, time
dummies are estimated for the Saturday morning trading
available over 1926-1952, and for the Wednesday
exchange holidays in the second half of 1968 that are
the focus of French and Roll (1986). Finally, the stock
market closings during the Bank Holiday of March 3-15,
1933 and following the September 11, 2001 attacks are
treated as 12/365- and 7/365-year returns, respectively.
Treating the 1933 Bank Holiday as a 12-day interval
substantially reduces the influence of its +15.5% return
on parameter estimation. September 17, 2001 saw a
smaller movement, of —4.7%.

For Model 1, the cumulant generating function of
future returns and state variable realizations conditional
upon current values is analytic and of the semi-affine

6 Jukivuolle (1995) distinguishes between the observed and true
stock index when trading is infrequent, and proposes using a standard
Beveridge-Nelson decomposition to identify the latter. This paper differs
in assuming that the parameters of the autoregressive integrated
moving average (ARIMA) process for the observed stock index are not
constant.

7 Gallant, Rossi, and Tauchen (1992) use a similar approach, and also
estimate monthly seasonals.
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form
INF(P,EY |y 0 Ve) = InE[e®ee PtV |y o Vi
= pgTP+0C(1e; D) + 202 E +(E+ Dy )p, +D(te; DY)V

=c(t;; QY.+ (E+ Py)p, +D(t; PV, (26)

where C(1;®,}/) and D(t;®,/) are given in Egs. (18) and
(19). For Model 2, the conditional cumulant generating
function is of the non-affine form

INF(D,E |V P Vi) = o T(1—p) @+ 0C(ze: (1-p )b, + 303 E2

+(E+Py)p+D(Te; 1—p )@YV
27)

given the shocks to y,, 1 are scaled by (1—p,).8
2.4. Filtration and maximum likelihood estimation

If the state variables (p,V;) were observed along with
returns, it would in principle be possible to evaluate the
joint transition densities of the data and the state variable
evolution by Fourier inversion of the joint conditional
characteristic function F(i®,i&,is|y,,p.. V), and to use this
in a maximum likelihood procedure to estimate the
parameters of the stochastic process. However, because
(pw V) are latent, this is a hidden Markov model that must
be estimated by other means.

For Model 1, the assumption that the cumulant generat-
ing function in Eq. (26) is affine in the latent state variables
(psVe) implies that the hidden Markov model can be filtered
and estimated using the approximate maximum likelihood
(AML) methodology of Bates (2006). The AML procedure is a
filtration methodology that recursively updates the condi-
tional characteristic functions of the latent variables and
future data conditional upon the latest datum. Define
Y ={y1Y2, ..., ¥} as the data observed up through period t,
and define

GyjeGE i) = Ele™re HVe Y ] (28)

as the joint conditional characteristic function that sum-
marizes what is known at time t about (p.V;). The prob-
ability density of the latest observation y,,; conditional
upon Y, can be computed by Fourier inversion of its
conditional characteristic function:

p(yH] ‘Y[) = 21? / Gr\t [id)yt,D('C[; l¢,0)] eC(T’;i(p'O'O)’i‘D,VtH do.
(29)

Conversely, the joint conditional characteristic func-
tion Gy 1)¢+1(i&,iYy) needed for the next observation can
be updated given y,,; by the characteristic-function
equivalent of Bayes’ rule:

1

Ge)e1GEI) = W

8 Dilip Madan informs me that practitioners distinguish between
time-scaled and space-scaled models of time-varying volatility. GARCH
models are typically space-scaled, whereas Model 1 is a time-scaled
model of stochastic volatility. Model 2 contains both (stationary) time
scaling via V; and the time dummies, and (nonstationary) space scaling
via 1-py.

« / GliC +i®y, D(xe: i, i e i Eih-i0% 1 4. (30)

The algorithm begins with an initial joint characteristic
function Gq1(¢) and proceeds recursively through the
entire data set, generating the log likelihood function
> Inp(y,,1|Ye) used in maximum likelihood estimation.
Filtered estimates of the latent variables can be computed
from derivatives of the joint conditional moment gener-
ating function, as can higher conditional moments:

aernGrJA \t+1(évlp)
M ay"

The above procedure would permit exact maximum
likelihood function estimation of parameters if implemen-
table. However, the procedure requires storing and updating
each entire function G -) based on point-by-point univari-
ate numerical integrations. As such a procedure would be
slow, the AML methodology instead approximates Gy|(-) on
each date t by a moment-matching joint characteristic
function, and updates the approximation based upon
updated estimates of the moments of the latent variables.
Given an approximate prior Ct\f(') and a datum y;, 1,
Eqgs. (30) and (31) are used to compute the posterior
moments of (p,, 1,V¢, 1), which are then used to create an
approximate G, , ; t+1(*)- The overall procedure is analogous
to the Kalman filtration procedure of updating conditional
means and variances of latent variables based upon
observed data, under the assumption that those variables
and the data have a conditional normal distribution. How-
ever, Egs. (29) through (31) identify the optimal nonlinear
moment updating rules for a given prior G-), whereas
standard Kalman filtration uses linear rules. I show below
that this modification in filtration rules is important when
estimating latent autocorrelations and volatilities under fat-
tailed Lévy processes. Furthermore, Bates (2006) proves that
the iterative AML filtration is numerically stable and shows
that it performs well in estimating parameters and latent
variable realizations.

Autocorrelations can be negative or positive, while con-
ditional variance must be positive. Consequently, different
two-parameter distributions were used to summarize con-
ditional distributions of the two latent variables at each
point in time: Gaussian for autocorrelations (in Model 1),
gamma for variances. Furthermore, because volatility esti-
mates mean-revert within months while autocorrelation
estimates evolve over years, realizations of the two latent
variables were assumed independent conditional upon past
data. These assumptions resulted in an approximate cumu-
lant generating function (CGF) for Model 1 of the form

NGy (&) = [Py & +VaW E]-ve In(1 — 1), (32)

E[plaVia|Yea] = 3D

t=y=0

To initiate the AML filtration, initial spot variance V; is
assumed drawn from its unconditional gamma distribu-
tion, using the parameter values (i1,v1) given in Table 2.
Because autocorrelations are assumed nonstationary, no
unconditional distribution exists. Consequently, the AML
algorithm for Model 1 is initiated using a relatively diffuse
conditional distribution for the initial autocorrelation p,
that spans a much wider range than the plausible (-1,
+1) domain. The distributional assumptions for latent
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Table 2

Distributional approximations of latent state variables conditional upon past data Y,. All latent state variables are assumed conditionally independent of

each other.

State variable Conditional distribution

Distributional parameters Initial parameters

at time t =1

Spot variance V, (Models 1 and 2) Gamma

Autocorrelation p; (Model 1) Gaussian

1—p: (Model 2) Inverse Gaussian

(¢,v¢) where E[V,|Y]= Vr‘r =KVt
and Var{V¢|Y] =Py, =x2v

Puje =Elp;|Yel Wy, = Varp, Y]
Py =Elp,|Yel Wy, =Var[p,|Y]

o= (5. %)

(P1)1.Wy1) = (0,10%)
(P1j1:W1p1) = (0,0.5%)

state variables under Models 1 and 2 are summarized in
Table 2.

The parameters (P, Wy ;i ve), or equivalently the
moments (D¢, W ;s Vir,Pyr), summarize what is known
about the latent variables at time t. These were updated
daily using the latest observation y,, 1 and Eqgs. (29)-(31).
For each day, five univariate integrations were required: one
for the density evaluation in Eq. (29), and four for the mean
and variance evaluations in Eq. (31). An upper ®@.x was
computed for each integral for which upper truncation error
would be less than 10~ '° in magnitude. The integrands
were then integrated over (— ®ma,Pmax) to a relative
accuracy of 107°, using the double-precision adaptive
Gauss-Legendre quadrature routine DQDAG in the Interna-
tional Mathematics and Statistics Library (IMSL) and
exploiting the fact that the integrands for negative ¢ are
the complex conjugates of the integrands evaluated at
positive @. On average between 234 and 448 evaluations
of the integrand were required for each integration.’

The nonaffine specification y;, 1=py+(1—p)ey1 in
Model 2 necessitates additional restrictions upon the
distribution of latent p.. In particular, it is desirable that
the scaling factor 1 - p, be nonnegative, so that the lower
tail properties of 7, originating in the underlying Lévy
specifications do not influence the upper tail properties of
Ye+1- Consequently, the conditional distribution of latent
1— p, for Model 2 is modeled as inverse Gaussian - a two-
parameter unimodal distribution with conditional mean
l—f)m and conditional variance Wy Appendix A derives
the filtration procedure for this model, exploiting a useful
change of variables procedure. The filtration is initiated at
01 ~(0,0.5%), and again assumes that pe and V; are con-
ditionally independent for all t.

3. U.S. stock market returns, 1926-2010
3.1. Data

Two value-weighted measures of the U.S. stock market
are readily available: the Center for Research in Security
Prices (CRSP) value-weighted index, and the S&P Compo-
site Index. This paper uses the former for time series
analysis, but also considers the latter when assessing
stock index options. The CRSP data used for parameter
estimation consist of 21,519 daily cum-dividend

9 The Fast Fourier Transform approach in Carr, Geman, Madan, and
Yor (2002) uses 16,384 evaluations.

value-weighted returns over January 2, 1926 through
December 29, 2006, based on stocks traded on the New
York Stock Exchange and the American Stock Exchange.
The out-of-sample tests use 1,008 additional daily obser-
vations over 2007-2010.

CRSP daily returns for each month were converted to
daily log excess returns using Ibbotson Associates’ (2006)
data on monthly Treasury bill returns and the formula

ye=In(1+R)— %mu +i), (33)

where R; is the daily CRSP cum-dividend return; i is that
month’s return on Treasury bills of at least one month to
maturity; N is the number of calendar days spanned by
the monthly Treasury bill return; and n, is the number of
calendar days spanned by the business-day return R,. The
monthly interest rate data were downloaded from Ken
French’s website and extended backward through 1926
using data in Ibbotson Associates’ SBBI Yearbook.

For pricing options based on the S&P 500 index, I
constructed a spliced CRSP/S&P 500 series: CRSP excess
returns up through March 4, 1957, and S&P 500 excess
returns thereafter. I prefer CRSP data to the early cum-
dividend S&P data available within the Schwert (1990)
database, for three reasons. First, the S&P Composite
Index prior to March 4, 1957 is based upon 90 stocks,
whereas the CRSP index is broader. Second, S&P data
within the Schwert database begin in 1928, and it is
important for volatility filtration around the 1929 stock
market crash to have data over 1926 and 1927.1° Third,
the S&P Composite Index is only reported to two decimal
places, which creates significant rounding error issues for
the low S&P values (around five) observed in the 1930s. I
updated Schwert’s cum-dividend S&P 500 returns
through 2010 using his methodology. Ex-dividend daily
S&P 500 returns from CRSP (from Yahoo for data in 2010)
were augmented by an average daily dividend yield
computed from a monthly S&P 500 dividend series from
Bloomberg and the previous month’s end-of-month index
level. Cum-dividend returns were then converted into log
excess returns using Eq. (33).

3.2. Parameter estimates

Table 3 describes and provides estimates of the time
dummies from the most general time-changed CGMY

10 The Schwert database also includes daily returns over 1885 to
1927, based on the (price-weighted) Dow Jones Industrial Average.
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Table 3

Effective length of a business day relative to 1-day Wednesday returns, on a close-to-close basis.

Estimates are for the YY model, which is the most general version of the Carr, Geman, Madan, and Yor (2003) model of time-changed Lévy returns.
Estimates for other models are almost identical. Data are daily value-weighted excess returns over 1926-2006, using cum-dividend returns from the
Center for Research in Securities Prices. One 3-day weekday holiday on August 14-17, 1945 is included among the 3-day returns. The annualization
factor is the sum over 1926-2006 of all daily time horizons divided by the 80.936-year span, excluding the 12- and 7-day market closings in 1933 and

2001. Standard errors are in parentheses.

Number of days Description

Number of observations

Model 1 estimates Model 2 estimates

Monday close —» Tuesday close
Tuesday —» Wednesday
Wednesday — Thursday
Thursday — Friday

Friday — Saturday (1926-1952)

Saturday — Monday (1926-1952)
Weekday holiday

Wednesday exchange holiday in 1968
Holiday weekend or holiday

—_ e e

Holiday weekend
Holiday weekend

(SN wNND N

Total number of observations

Annualization factor:
Wednesday — yearly

3,831
4,037
3,998
3,924
1,141

1,120
341
22
2,755

343
6

21,518

1.02 (0.04) 1.03 (0.03)
1 1

0.94 (0.03) 0.94 (0.03)
0.93 (0.03) 0.92 (0.03)
0.43 (0.02) 0.44 (0.02)
1.05 (0.05) 1.07 (0.05)
1.25 (0.11) 1.26 (0.10)
0.73 (0.33) 0.81 (0.35)
1.10 (0.04) 1.10 (0.04)
1.58 (0.14) 1.56 (0.13)
1.31 (1.00) 1.25 (0.93)
259.8 (5.6) 260.3 (5.5)

model, with Wednesday returns (Tuesday close to Wednes-
day close) arbitrarily selected as the benchmark day. Esti-
mates from other Lévy models were typically within + 0.01
of those in Table 3. Daily variance tended to be highest at
the beginning of the week and decline thereafter, but day-
of-the-week effects do not appear to be especially pro-
nounced. The major exception is the Saturday returns
generally available over 1926-1952.!! Saturdays were effec-
tively 43% as long as the typical Wednesday. Total weekend
variance (Friday close to Monday close) was (0.43+1.05)/
1.10—1=34.5% higher when Saturday trading was available
(over 1926-1952) than when it was not (over 1945-
2006).12 This is qualitatively similar to but less pronounced
than the doubling of weekend variance found by Barclay,
Litzenberger, and Warner (1990) in Japanese markets when
Saturday half-day trading was feasible. Barclay, Litzenber-
ger, and Warner lucidly discuss market microstructure
explanations for the increase in variance.

Holidays generally did not have a strong impact on the
effective length of a business day, with the exception of
holiday weekends spanning four calendar days. Consis-
tent with French and Roll (1986), two-day returns span-
ning the Wednesday exchange holidays in 1968 (Tuesday
close to Thursday close) had a variance not statistically
different from a typical one-day Wednesday return but
substantially less than the 1+0.94=1.94 two-day var-
iance observed for returns from Tuesday close to Thurs-
day close in other years. Overall, the common practice of
ignoring day-of-the-week effects, weekends, and holidays
when analyzing the time series properties of daily stock

1 saturday morning trading (ten to noon) was standard before
1945. Over 1945-1951, it was increasingly eliminated in summer
months, and was permanently eliminated on June 1, 1952.

12 As the time dummy estimates are estimated jointly with the
volatility and autocorrelation filtrations, the estimates of weekend
variances with versus without Saturday trading control for divergences
in volatility and autocorrelation levels in the two samples.

market returns appears to be a reasonable approximation,
provided the data exclude Saturday returns.

Table 4 contains estimates for various specifications
listed in Table 1, while Fig. 1 presents associated normal
probability plots for Model 2. (The plots for Model 1 are
similar.) All specifications capture the leverage effect by a
correlation pg, with the diffusion shock to conditional
variance. The specifications diverge in their modeling of
the Lévy shocks dL, orthogonal to the variance innovation.
SV is the Heston (1993) stochastic volatility model, while
SVJ1 and SVJ2 have an additional diffusion for small asset
return shocks, plus finite-activity normally-distributed
jumps to capture outliers. The other models examine the
generalized time-changed CGMY model, along with specific
parameter restrictions or relaxations indicated in Table 1.

Most specifications using either Model 1 or Model 2 have
similar estimates for the parameters determining the condi-
tional mean and stochastic variance evolution. The evidence
for a variance-sensitive equity premium (g, > 0) is stronger
for Model 2 specifications, but f; is not typically significantly
different from zero for either model. Latent permanent
variance in Model 2 mean-reverts towards an estimated
average level around (0.172)?, with a half-life about 1.6
months. The SV and LS models are the outliers, with different
estimates of the equity premia and variance process from
other specifications. As discussed in Section 3.6, this reflects
these two specifications’ substantially different approach to
variance filtration.

The various specifications diverge primarily in how they
capture tail risk. The Merton-based SVJ1 and SV]2 results in
Panel B of Table 4 largely replicate the jump risk results in
Bates (2006). The SV]J1 model has symmetric normally
distributed jumps with a jump standard deviation of approxi-
mately 3.3% and time-varying jump intensities that average
A10=3.4 jumps per year. As shown in Fig. 1, this jump risk
assessment fails to capture the substantial 1987 crash. By
contrast, the SVJ2 model adds a second jump component that
directly captures the 1987 outlier. The resulting increase
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Table 4
Parameter estimates using daily CRSP value-weighted excess returns y, over 1926-2006.

See Eqgs. (14) and (25) for definitions of parameters affecting the conditional means and volatilities, and see Table 1 for the various specifications of Lévy shocks. All parameters in Panel A are in annualized
units except for the half-life HL=121In2/f of variance shocks, which is in months. Models with fj,m, <1 in Panel B combine Lévy jumps with an additional independent diffusion, with variance proportions
(fjump» 1=f jump), Tespectively. The fraction of total return variance attributable to jumps is (1 — p2))fump- Standard errors are in parentheses.

Panel A: Estimates of parameters affecting the conditional means and volatilities

Models of InL Conditional mean Stochastic volatility
Lévy shocks
Ho H 0pv/252 N a Psv HL (months)
Model 1: y¢ y1=pY e+ 11
NY 74,940.85 0.013 (0.015) 2.16 (0.90) 0.029 (0.007) 0.153 (0.004) 0.452 (0.010) —0.625 (0.018) 1.4 (0.1)
SVJ1 75,043.90 0.042 (0.015) 0.91 (0.91) 0.030 (0.006) 0.155 (0.005) 0.374 (0.011) —0.641 (0.020) 1.9 (0.2)
SVJ2 75,048.49 0.042 (0.015) 0.87 (0.76) 0.030 (0.007) 0.155 (0.007) 0.371 (0.015) —0.642 (0.018) 1.9 (0.2)
DEXP 75,047.33 0.043 (0.015) 0.87 (0.90) 0.031 (0.007) 0.155 (0.005) 0.368 (0.012) —0.587 (0.020) 2.0 (0.2)
VG 75,049.09 0.043 (0.015) 0.92 (0.91) 0.030 (0.006) 0.155 (0.005) 0.366 (0.012) —0.586 (0.020) 2.0 (0.2)
Y 75,049.63 0.042 (0.015) 0.90 (0.92) 0.030 (0.006) 0.156 (0.009) 0.351 (0.020) —0.576 (0.032) 2.1(0.2)
YY 75,052.56 0.041 (0.015) 0.87 (0.92) 0.030 (0.006) 0.158 (0.009) 0.360 (0.019) —0.571 (0.031) 2.1(0.2)
YY_D 75,052.81 0.042 (0.015) 0.93 (0.91) 0.030 (0.006) 0.156 (0.006) 0.355 (0.013) —0.579 (0.021) 2.1(0.2)
LS 75,007.86 0.018 (0.015) 1.50 (0.73) 0.031 (0.007) 0.171 (0.006) 0.431 (0.015) —0.541 (0.020) 1.8 (0.2)
Model 2: yry 1=pde+(1—peiesn
NY 74,999.87 —0.014 (0.020) 3.04 (0.90) 0.043 (0.005) 0.170 (0.004) 0.562 (0.015) —0.658 (0.017) 1.0 (0.1)
SVJ1 75,092.10 0.033 (0.020) 1.69 (1.04) 0.036 (0.005) 0.171 (0.004) 0.457 (0.015) —0.674 (0.018) 1.4 (0.1)
SVJ2 75,096.68 0.037 (0.020) 1.25 (0.89) 0.036 (0.005) 0.172 (0.004) 0.456 (0.015) —0.673 (0.018) 1.4 (0.1)
DEXP 75,094.20 0.034 (0.020) 1.44 (0.90) 0.036 (0.005) 0.171 (0.004) 0.452 (0.015) —0.625 (0.018) 1.5 (0.1)
VG 75,094.70 0.034 (0.020) 1.42 (0.90) 0.037 (0.005) 0.171 (0.004) 0.447 (0.016) —0.623 (0.018) 1.6 (0.1)
Y 75,093.68 0.036 (0.021) 1.35 (0.90) 0.036 (0.005) 0.172 (0.007) 0.432 (0.021) —0.613 (0.027) 1.6 (0.1)
YY 75,097.20 0.033 (0.020) 1.44 (0.90) 0.036 (0.005) 0.172 (0.006) 0.437 (0.018) —0.613 (0.022) 1.6 (0.1)
YY_D LS 75,097.49 0.035 (0.020) 1.36 (0.90) 0.036 (0.005) 0.172 (0.005) 0.436 (0.016) —0.616 (0.020) 1.6 (0.1)
75,045.48 0.053 (0.019) 1.50 (0.76) 0.031 (0.003) 0.174 (0.005) 0.436 (0.015) —0.576 (0.019) 1.8 (0.2)
Panel B: Estimates of jump parameters
Models of fiump CGMY parameters Merton parameters
Lévy shocks
Wy G M Y, Y, i 7; 5
Model 1: yr1=pe+nei1
SVJ1 0.150 (0.017) 142.7 (22.7) 0.000 (0.002) 0.032 (0.002)
Svj2 0.156 (0.054) 162.9 (30.9) 0.000 (0.002) 0.029 (0.002)
0.5 (1.6) —0.189 (0.094) 0.005 (0.189)
DEXP 0.253 (0.027) 0.49 (0.01) 66.1 (6.0) 45.4 (8.4) -1
VG 0.272 (0.030) 0.52 (0.07) 41.1 (5.4) 31.6 (9.1) 0

Y 1 0.59 (0.06) 7.0 (4.6) 2.3 (7.3) 1.87 (0.03)
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in log likelihood is statistically significant under a likelihood
ratio test, with a marginal significance level around 3% for
Models 1 and 2.

The various CGMY models primarily diverge across the
specification of the (Y},Y;) parameters: whether they are set
to specific levels and whether they diverge for positive
versus negative jumps. The DEXP model with Y,=Y,=—1is

0.034 (0.002)
0.031 (0.002)
0.010 (0.046)

a8 conceptually similar to the jump-diffusion model SV]1, but
S @ o . . . .. . . .
=) it uses instead a finite-activity double exponential distribu-
5 é £ tion for jumps. Despite the fatter-tailed specification, Fig. 1
3 = S indicates the DEXP model has difficulties comparable to
| |

SVJ1 in capturing the 1987 crash. The VG model has an
infinite-activity variance process (Y,=Y,=0) and has a
slightly higher log likelihood. The VG normal probability
plot is virtually identical to that of DEXP in Fig. 1, and is
omitted to save space. Both models include a diffusion
component, which captures 73-76% of the variance of the
orthogonal Lévy shock dL,.

Specifications Y, YY, and LS involve pure-jump processes
for the orthogonal Lévy process L, without an additional
diffusion component. Overall, higher values of Y fit the data
better—especially the 1987 crash, which ceases to be an
outlier under these specifications. Relaxing the restriction
Y,=Y, leads to a statistically significant improvement in fit,
with the increase in log likelihood (YY versus Y) having p-
values of 1.8% and 0.8% for Models 1 and 2, respectively. Point
estimates of the jump parameters (w,,G,Y,;) governing down-
ward jump intensities diverge sharply from the parameters
(1-w,M,Y,) governing upward jump intensities when the
Y,=Y, restriction is relaxed, although standard errors are
large. The dampening coefficient G is not significantly differ-
ent from zero, implying one cannot reject the hypothesis that
the downward jump intensity is from a stochastic-intensity
version of the Carr and Wu (2003) log-stable process. By
contrast, the upward intensity is estimated as a finite-activity
jump process which, however, still overestimates the fre-
quency of big positive outliers (YY plot in Fig. 1).

Motivated by option pricing issues, Carr and Wu (2003)
advocate using a log-stable distribution with purely down-
ward jumps. An approximation to this model generated by
setting G=0.001 and w,=1 fits stock market excess returns
very badly. The basic problem is that while the LS model does
allow substantial positive excess returns, it severely under-
estimates the frequency of large positive values. This leads to
a bad fit for the upper tail (LS plot in Fig. 1). However, the YY
estimates indicate that the Carr and Wu specification can be
a useful component of a model, provided the upward jump
intensity function is modeled separately.

The Y and YY models generate at least one Y parameter
in the infinite-activity, infinite-variation range [1, 2], and
typically near the diffusion value of two. This suggests
that the models may be trying to capture considerable
near-zero activity. Adding an additional diffusion compo-
nent to the time-changed YY Lévy specification to capture
that activity separately (specification YY_D) alters the
CGMY jump parameter estimates substantially but leads
to no statistically significant improvement in fit.

Overall, Fig. 1 suggests the alternate fat-tailed specifi-
cations fit the data similarly over most of the data range
‘ (]z| <3). The models SV, SV]J1, DEXP, VG, and LS appear
less desirable, given their failure to capture the largest
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—0.24 (1.36)
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Fig. 1. Normal probability plots for the normalized returns z;.=N~"[CDF(y;. 1 |Y))], for different Lévy specifications under Model 2. The diagonal lines
are the theoretical quantiles conditional upon correct specification, whereas the data (+ ) are the empirical quantiles. See Eq. (A.12) for the computation
of the conditional distribution function (CDF).
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Fig. 2. Unconditional probability density functions of Model 1 return residuals, on a log scale. Empirical data frequencies (+) are from a histogram of
21,516 daily return residuals 7, ; =y 1 —[)[‘[y[ from the YY model, using a 0.25% cell width. Residuals for the two extended market closings in 1933 and

2001 were excluded.

outliers. The SV]2, Y, and YY specifications appear to fit
about the same. All models appear to have a small amount
of specification error (deviations from linearity) in the
ze[—3.5,—2] range and in the upper tail (z > 3).

3.3. Unconditional distributions

A further diagnostic of model specification is the models’
ability or inability to match the unconditional distribution of
returns; in particular, the tail properties of unconditional
distributions. Mandelbrot (1963) and Mandelbrot and
Hudson (2004) argue that empirical tails satisfy a power
law: tail probabilities plotted against absolute returns
approach a straight line when plotted on a log-log graph.
This empirical regularity underlies Mandelbrot’s advocacy of
the stable Paretian distribution, which possesses this prop-
erty and is nested within the CGMY model for G=M=0.

Mandelbrot’s argument is premised upon identically and
independently distributed returns, but the argument can be
extended to time-changed Lévy processes. Lévy densities
time-average; if the conditional intensity of moves of size x
is (1—p2,)k(x)V;, then the unconditional frequency of moves
of size x is (1—p2,)k(x)E(V;). Because unconditional prob-
ability density functions asymptotically approach the uncon-
ditional Lévy densities for large |x|, while unconditional tail
probabilities approach the corresponding integrals of the
unconditional Lévy densities, examining unconditional dis-
tributions might still be useful under stochastic volatility.

Fig. 2 provides estimates of unconditional probability
density functions of stock market excess return residuals
Nes1=Ye41— Py for various specifications under Model 1,
as well as data-based estimates from a histogram of
filtered residuals 7, ,;=Y;.1—pY; Given the day-of-
the-week effects reported in Table 3, the unconditional
density functions are a mixture of horizon-dependent
densities, with mixing weights set equal to the empirical
frequencies. (The two shocks spanning the longer market
closings in 1933 and 2001 are omitted.) The substantial

impact of the 1987 crash outlier upon parameter esti-
mates is apparent. The SVJ2 estimates treat that observa-
tion as a unique outlier. The CGMY class of models
progressively fatten the lower tail as greater flexibility is
permitted for the lower tail parameter Y,,, with the lower
tail approaching the Carr and Wu (2003) log-stable (LS)
estimate for the YY specification. However, the LS model
is unable to capture the frequency of large positive out-
liers and behaves similarly to the SV model in the upper
tail. All models closely match the empirical unconditional
density function within the + 3% range where most
observations occur; and all models underestimate the
unconditional frequency of moves of 3-7% in magnitude.

Fig. 3 provides similar estimates for unconditional lower
and upper tail probabilities from the YY model, using the
log-log graphs advocated by Mandelbrot. Residuals were
selected from 19,663 days with time horizons within 11% of
Wednesday’s value, to make time horizons roughly identi-
cal. In addition, 1,000 sample paths of stock market excess
return residuals over 1926-2006 were simulated via a
Monte Carlo procedure that used YY parameter estimates,
to provide confidence intervals.'> Unsurprisingly, the con-
fidence intervals on extreme tail events are wide. The
underestimation of moves of 3-7% in magnitude is again
apparent, and is statistically significant. This rejection of the
YY model does not appear attributable to misspecification of
the Lévy density, which in Fig. 1 captures conditional
densities quite well. Rather, the poor unconditional fits in
Figs. 2 and 3 appear due to misspecification of volatility
dynamics. Half of the 3-7% moves occurred over 1929-
1935, a prolonged high-volatility period that simulated

13 Conditional intradaily variance shocks for data-based daily time
horizons were simulated using the approach of Bates (2006, Appendix
A.6). Lévy shocks 7, 1 conditional upon intradaily average variance were
generated via an inverse cumulative distribution function (CDF) meth-
odology, with CDFs computed by Fourier inversion. The subset of days
with roughly 1.0 days to maturity ( &+ 11%) were then selected.
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Fig. 3. Unconditional daily tail probabilities (solid black lines) and Lévy tail intensities of return residuals; log scales on both axes. The probability and
intensity functions are based on YY Model 1 parameter estimates. Data-based estimates of tail probabilities (+ ) are the empirical quantiles of excess
return residuals 7, ; =Y, 1—Py .Y, for 19,663 business days with estimated time horizons within + 11% of the typical Wednesday. Grey areas are 95%
confidence intervals from 1,000 simulated sample paths of the stochastic-intensity YY process. The dashed lines give the tail probabilities from a
comparable constant-intensity Lévy process. Tail probabilities converge to tail intensities for large |x|, and converge faster when volatility is not

stochastic.

volatility realizations from the one-factor variance process
of Eq. (14) generally do not match.

Fig. 3 also shows the unconditional tail intensities, and
shows that the estimated tail probabilities converge to the
estimated tail intensities. The lower tail intensity is

K(x) = /X k(y)dy = CaG"" T(— Y, GIx]), (34)

where Cp =wy(1—p2)07/[I'(2—Y,)G" ] and I'(a,z) is the
incomplete gamma function. Furthermore, given G esti-
mates near zero, K(x)~ Cn,x~Y"/Y, is roughly a power
function in x, implying the near linearity (when plotted
on a log-log scale) evident in Fig. 3.

However, the graph indicates that the convergence of
tail probabilities to the tail intensity K(x) occurs only for
observations in excess of 5% in magnitude, or roughly 5
standard deviations. As this is outside the range of almost
all data, it does not appear that graphing empirical tail
probabilities on log-log scales provides a useful diagnostic
of model specification and tail properties for daily data.
This is partly due to stochastic volatility, which signifi-
cantly slows the asymptotic convergence of unconditional
tail probabilities to K(x) for large |x|. Absent stochastic
volatility (c=0), the tail probabilities of an i.i.d. YY Lévy
process converge to K(x) for daily observations roughly in
excess of 3% in magnitude (3 standard deviations), as
illustrated by the dashed lines in Fig. 3.

No power law properties are observed for upper tail
probabilities, given substantial estimated exponential
dampening. The failure of both lower and upper uncondi-
tional tail probabilities to capture the frequency of moves
of 3-7% in magnitude is again apparent and statistically
significant.

3.4. Subsample estimates

Table 5 provides estimates for data subsamples, as a test
of the stability of the time series process. The mean,
stochastic volatility, and jump parameters were allowed to
differ before and after March 5, 1957.1* The time dummies
(similar to those in Table 3) that capture day-of-the-week
effects were kept common across subsamples; but some of
those dummies also capture subsample-specific phenomena
(Saturday trading before 1953; exchange holidays in 1968).
The estimation and filtration over the two subsamples nest
the full-sample estimates of Table 4, so that standard like-
lihood ratio tests can be used to test whether the divergences
in subsample parameter estimates are statistically significant.

Parameter estimates diverge strongly across subsam-
ples, with p-values less than 10~ ', but in different
fashions for the SVJ1 and YY models. For the SVJ1 model,
the major divergence was clearly in the estimated vola-
tility process. The 1926-1957 period includes the highly
volatile 1930s, yielding an overall average variance of
(0.202)? over 1926-1957 versus (0.149)? over 1957-2006.
The volatility dynamics also diverge, with volatility more
volatile and with faster mean reversion over 1926-1957
than over 1957-2006. Jump risk estimates diverge as well,
with more frequent but smaller jumps in the first half
than in the second half. Progressively relaxing full-sample
constraints on parameter categories (mean, o, stochastic
volatility parameters, jump parameters) indicates that

14 The data split was chosen so that the second subsample’s
estimates could be compared with estimates from S&P 500 returns, as
well as with other studies that use data starting in the 1950s, such as
Andersen, Benzoni, and Lund (2002), Chernov, Gallant, Ghysels, and
Tauchen (2003), and Bates (2006).
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Table 5
Subsample parameter estimates for Model 2.

Data are daily CRSP value-weighted excess returns over 1926-2006. Split-sample estimates involve different parameter values before/after March 5, 1957, apart from time dummies. See Eq. (14) and the notes

to Table 4 for parameter definitions. Standard errors are in parentheses.

Panel A: Estimates of parameters affecting the conditional means and volatilities

Model Period InL Conditional mean Stochastic volatility
Ho t 6,7/252 Vo 4 Psv HL (months)
svj1 1926-2006 75,092.10 0.033 (0.020) 1.69 (1.04) 0.036 (0.005) 0.171 (0.004) 0.457 (0.015) —0.674 (0.018) 1.4 (0.1)
1926-1957 0.051 (0.034) 1.35 (1.38) 0.050 (0.009) 0.202 (0.007) 0.678 (0.035) —0.661 (0.027) 0.9 (0.1)
svi 1957-2006 75,183.99 0.003 (0.027) 2.90 (1.61) 0.027 (0.005) 0.149 (0.005) 0314 (0.015) ~0.725 (0.023) 1.7 (0.2)
Yy 1926-2006 75,097.20 0.033 (0.020) 1.44 (0.90) 0.036 (0.005) 0.172 (0.006) 0.437 (0.018) ~0.613 (0.022) 1.6 (0.1)
1926-1957 0.056 (0.034) 1.03 (1.15) 0.051 (0.009) 0.201 (0.008) 0.657 (0.033) —0.585 (0.026) 12 (0.2)
YY 1957-2006 75,196.14 0.012 (0.027) 035 (0.67) 0.025 (0.005) 0.365 (0.320) 0.404 (0.026) —0281 (0.247) 1.7 (02)
Panel B: Estimates of jump parameters
Model Period Sjump CGMY parameters Merton parameters
Wa G M Ya Y, P 7, 8
svj1 1926-2006 0.133 (0.015) 114.1 (19.2) —0.001 (0.003) 0.034 (0.002)
1926-1957 0.167 (0.015) 216.8 (54.9) 0.000 (0.003) 0.028 (0.003)
svi1 1957-2006 0.093 (0.020) 49.5 (12.0) —0.003 (0.007) 0.043 (0.004)
YY 1926-2006 1 0.89 (0.03) 2.6 (4.1) 711 (57.8) 1.94 (0.01) ~1.96 (2.6)
1926-1957 1 0.86 (0.04) 207 (7.9) 97.8 (107.2) 1.82 (0.05) ~3.1(45)
Yy 1957-2006 1 0.92 (0.15) 0.0 (0.0) 6.0 (13.4) 1.54 (0.41) 1.94 (0.03)
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Fig. 4. Revision in autocorrelation estimate p ;. ;—p,, conditional upon observing excess return y,,, and conditional upon y,= + 1%.

between 71% and 86% of the subsample improvement in
log likelihood comes from using subsample stochastic
volatility parameters. Between 8% and 22% of the change
in log likelihood comes from using subsample jump
parameters, depending on whether stochastic volatility
or jump parameters are relaxed first.

The 1957-2006 subsample estimates for the YY model
are even more heavily affected by the 1987 crash than are
the full-sample estimates. The parameter G approaches its
lower bound of zero, implying that the lower tail density
is approaching the time-changed version of the infinite-
variance log-stable distribution. Correspondingly, the
subsample unconditional variance estimate ():(0.365)2
becomes substantially meaningless and cannot be com-
pared with estimates from other models or other periods.
By contrast, the estimates over 1926-1957 are strictly
finite-variance. Given strong interactions between sto-
chastic volatility and jump parameters, it is not clear
which is more responsible for the strong rejections of
parameter stability across subsamples.

3.5. Autocorrelation filtration
Because the prior distribution of p, given past data Y, is

assumed N(p;,Wy,), it can be shown that the autocorre-
lation filtration algorithm of Eq. (31) for Model 1 updates

conditional moments via the robust Kalman filtration
approach of Masreliez (1975):

alnpy,,1|Yo)

i)t+1\t+1 :f’[\t—YrWt\t Vs (35)
+
&Inpy, ., 1|Y0
Wt+1\t+1 = W[‘t+of,+(ytwt‘t)zay+l‘[~ 36)
t+1

If y.,1 were conditionally normal, the log density
would be quadratic in y;,{, and Eq. (35) would be the
linear updating of standard Kalman filtration. More gen-
erally, the conditionally fat-tailed properties of y, | are
explicitly recognized in the filtration.!> The partial deri-
vatives of log densities can be computed numerically by
Fourier inversion.

Fig. 4 illustrates the autocorrelation filtrations esti-
mated under various models. For Model 1, the autocorre-
lation revision is fairly similar to standard Kalman
filtration for observations within a + 2% range, which
captures most observations given a unconditional daily
standard deviation around 1%. However, the optimal
filtration for fat-tailed distributions is to downweight

15 See Schick and Mitter (1994) for a literature review of robust
Kalman filtration.
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Fig. 5. Daily filtered autocorrelation estimates over 1926-2010 from the YY model, and stocks’ annual turnover (+

) from French (2008). The light and

dark grey areas are 95% confidence intervals for the zero autocorrelation hypothesis for Models 1 and 2, respectively.

the information from returns larger than 2% in magnitude.
The exceptions are the stochastic volatility (SV) and Carr
and Wu log-stable (LS) specifications. Those specifications
do not particularly downweight outliers occurring in non-
fat tails: in both tails for SV, in the upper tail for LS.

The autocorrelation filtration under Model 2 is differ-
ent. Because y;,1=p¢+(1—pgne,1 in that model, large
observations of y,, 1 are attributable either to large values
of 1— p, (small values of p,), or to large values of the Lévy
shocks captured by #;,;. The resulting filtration illu-
strated in the lower panels of Fig. 4 is consequently
sensitive to medium-size movements in a fashion sub-
stantially different from the Model 1 specifications.

Fig. 5 presents filtered estimates of the daily autocor-
relation from the YY model. The most striking result is the
extraordinarily pronounced increase in autocorrelation
estimates from 1941 to 1972, reaching a peak around
35% in May 1970 for the Model 1 estimates. Estimates
from both models give similar results, as do crude sample
autocorrelation estimates using a one- or two-year mov-
ing window.'® Autocorrelation estimates fell steadily after
1971, and became insignificantly different from zero over
1999-2007. Filtered autocorrelation estimates appear
inversely related to measures of annual stock turnover
computed by French (2008), attaining values closer to
zero in the higher-turnover periods before 1933 and after
1982. This inverse relationship is consistent with the
standard stale-price explanation of autocorrelation in
stock index returns.

More puzzling are the negative autocorrelation esti-
mates for stock market excess returns in 2008-2010.
Autocorrelation estimates from Model 2 can be affected
by the overall level of stock market volatility; e.g., in the
1930s. However, negative p,|, estimates from Model 1 are

16 See LeBaron (1992, Fig. 1) for annual estimates of the daily
autocorrelation of S&P composite index returns over 1928-1990.

unprecedented over 1926-2006, and are statistically sig-
nificant in late 2008 and early 2009.!7 Fig. 5 also indicates
that estimates of daily autocorrelation are essentially
nonstationary, indicating that fitting ARMA processes
with time-invariant parameters to stock market excess
returns is fundamentally pointless.

3.6. Volatility filtration

When returns follow an autocorrelated process with
i.i.d. shocks of the form
=pYe+(1=p) U1,

variance can be measured in various ways.

Yer Ut 1 ~(H,aﬁ), (37)

1. Conditional or residual variance:

Vary, ., |y]=(1-py*"a?2. (38)

2. Unconditional variance of returns:
_\m _ \2m
var(y, 1] :Var{(l P) um] _d=p™ 5

1-pL 1-p2 %
where L is the lag operator.
3. The contribution of u,, ; to permanent variance:
Zywryt:l —Var }
=1
—Var [(1 —P)””ut+1} — (1=p)XmDg2,
1-p
These measures of variance are also approximately
relevant in the above models with stochastic conditional
volatility and slow-moving autocorrelations. The 6 values

(39)

o0
D VerelVoler

t=1

Var

(40

17°A market with negatively autocorrelated returns is sometimes
called a choppy market.
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Fig. 6. News impact curves for various models. The graphs show the revision in estimated annualized standard deviation (E; . —E;)\/V,,1 conditional

upon observing a standardized excess return y, /4 /Vm/252.

in Panel A of Table 4 are estimates of the average level of
residual variance for Model 1 (m=0) but are estimates of
shocks’ contribution to permanent variance for Model 2
(m=1). Furthermore, the unconditional variance of returns
is an increasing function of p under Model 1 but a decreas-
ing function under Model 2. The latter is more consistent
with the inverse relationship between annual estimates of
daily autocorrelation and volatility over 1928-1990 reported
in LeBaron (1992).

The left panel of Fig. 6 illustrates how the estimated
conditional volatility E;,1+/V;,1 is updated for the var-
ious specifications under Model 1. The conditional vola-
tility revisions use median parameter values
(K ve)=(0.00294, 5.85) for the prior gamma distribution
of V,, implying a conditional mean :v,=(0.131)? that is
close to the (0.129) median value observed for \A/r‘t
estimates from the YY model.'® For comparability with
GARCH analyses such as Hentschel (1995), Fig. 6 shows
the news impact curve, or revision in conditional volati-
lity estimates upon observing a given excess return, using
the expected volatility formula in Bates (2006, p. 932).

All news impact curves are tilted, with negative returns
having a larger impact on volatility revisions than positive
returns. This reflects the leverage effect, or estimated
negative correlation between asset returns and volatility
shocks. All specifications process the information in small-
magnitude asset returns similarly. Furthermore, almost all
specifications truncate the information from returns larger
than three standard deviations. This was also found in Bates
(2006, Fig. 1) for the SV]J1 model, indicating such truncation
appears to be generally optimal for arbitrary fat-tailed Lévy
processes. The SV and LS exceptions support this rule. The
LS model has a fat lower tail but not an especially fat upper
tail, and it truncates the volatility impact of large negative
returns but not of large positive returns. The fact that
volatility revisions are not monotonic in the magnitude of

18 As \7(‘[ estimates have substantial positive skewness, the median
is substantially below the mean estimate of (0.158)? reported in Panel A
of Table 4.

asset returns is perhaps the greatest divergence of these
models from GARCH models, which almost invariably
specify a monotonic relationship.’® However, because
moves in excess of + 3 standard deviations are rare, all
specifications generate similar volatility estimates most of
the time. The volatility filtrations for Model 2 shown in the
right panel of Fig. 6 using the YY model's median para-
meters (k.v;)=(0.00385, 6.01) are qualitatively similar to
those for Model 1.

Volatility filtration does appear sensitive to the data
interval used in estimation, via the underlying parameter
estimates. For instance, the subsample SV]1 estimates in
Table 5 yield filtered annualized volatilities that are 1.86%
higher on average over 1926-1957 than the full-sample
estimates, and 1.29% lower over 1957-2006. A major
contributing factor is the estimate of average variance 0
in Table 5, which is higher in the first than in the second
subsample. A similar influence of average variance esti-
mates upon conditional variance estimates is observed in
GARCH models.?°

3.7. Multifactor variance models

The analysis above notes two areas where the one-
factor square-root process for conditional variance
appears inconsistent with the data: the subsample
instability of the average variance estimate 0, and the
substantial number of 3-7% stock market movements
(over 1929-1935) shown in Fig. 3 that a one-factor model
is unlikely to generate. More generally, graphs of volatility
estimates from the various models show more persistent

19 An exception is Maheu and McCurdy (2004), who put a jump
filter sensitive to outliers into a GARCH model. They find that the
sensitivity of variance updating to the latest squared return should be
reduced for outliers, for both stock and stock index returns.

20 See, e.g., Andersen, Bollerslev, Christoffersen, and Diebold (2007,
p. 521), who note that GARCH(1,1) models diverge from the RiskMetrics
approach in taking into account reversion of conditional variance toward
its mean. This implies that GARCH conditional variance estimates are
affected by sample-specific estimates of the average variance.
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swings than are consistent with the 1%- to 2-month
estimated half-life of variance shocks, as is shown below.
It consequently appears worthwhile to explore multi-
factor models of variance evolution.

Multiple option pricing papers explore whether multi-
factor models can better capture various features of
observed option prices. Taylor and Xu (1994) consider
whether a two-factor model could better capture the evol-
ving term structure of implicit variances for foreign cur-
rency options, while Carr and Wu (2007) examine two- and
three-factor models of the skewness implicit in currency
options. Multifactor models of stock index options include
Bates (2000), Huang and Wu (2004), and Santa-Clara and
Yan (2010). However, few papers estimate multifactor
stochastic volatility models of stock market returns using
only time series data, with the notable exception of
Chernov, Gallant, Ghysels, and Tauchen (2003).

Two-factor models can be specified in various ways,
depending upon which features of conditional distribu-
tions one wishes to capture. Additive approaches typically
specify independently evolving determinants of the var-
ious sources of volatility: diffusion versus jump risk, for
instance (Huang and Wu, 2004; Santa-Clara and Yan,
2010) or left tail versus right tail (Carr and Wu, 2007).
Bates (2000) effectively estimates separate diffusion and
jump-intensity loadings on two underlying and indepen-
dently evolving square-root factors. Concatenated models
typically have one factor being a slow-moving central
tendency toward which spot variance evolves. While
examples from stock index options are somewhat lacking,
Egloff, Leippold, and Wu (2010) have a concatenated
model of S&P 500 variance swaps. Concatenated models
of currency options include Taylor and Xu (1994) and the
last model in Carr and Wu (2007), while Dai and Singleton
(2000) discuss additive versus concatenated models of the
term structure of interest rates.

The above additive approaches model instantaneous
shocks as the sum of two independent shocks that are
driven by separate underlying variance factors. The resulting
conditional cumulant generating function (CGF) of instanta-
neous shocks ds,=ds;.+ds, used in Eq. (15) takes the form

InE[e® @i +420| V1 Vo] = [@ptg+hi (@)1 +ho(P)Vo)dt
(41)

for

hi(®) = ;@ +VapZe, (P> — D)+ (1—p2g,)8ar (D), 1=1.2,
(42)

with associated instantaneous conditional variance
Vi=V1:+ V5. By contrast, discrete-time cumulant generating
functions for concatenated models can be computed directly
using the conditional CGF specification [® o+ h(P)Ve]dt in
Eq. (15), but with a more complicated concatenated two-
factor model describing the evolution of V..

Two-factor additive and concatenated models both
specify ARMA(2,1) dynamics for total variance V. and,
consequently, have similar implications for spot volatility
forecasts and for expected quadratic variation when those
ARMA specifications are similar. The option pricing impli-
cations for the term structures of the model-free implicit

volatilities of Britten-Jones and Neuberger (2000) are
therefore also virtually identical, as are (approximately)
the implications for the term structures of at-the-money
implicit volatilities. Indeed, additive and concatenated
approaches have substantially identical pricing implica-
tions for all options in the special case of identical
hi(®)=hy(®)=h(P) and identical ARMA specifications.
Additive models such as the papers cited above with
hi(®@)#hy(®) introduce time-varying higher-moment
phenomena such as stochastic skewness, for daily market
returns and for the longer maturities relevant for option
pricing. Such models when fitted to option prices can
consequently capture evolution over time in moneyness
phenomena, such as the tilt and curvature of options’
volatility smirk. Concatenated models, by contrast, pri-
marily have implications for the shape and evolution of
the term structures of implicit volatilities.?!

While two-factor additive models have been estimated
using options data, I find it somewhat difficult to estimate
them using only time series data.>?> Consequently, I focus
here upon the dynamics of total variance V;, and estimate
the following concatenated two-factor model for the
overall conditional variance of intradaily shocks:

dS[ = (:uO +H Vi +‘u20t*)dt+(psv V thW“_l/zp?vvtdr)—Fst,

dVe = BOp—Vodt+a/VidWy,,
do, = ﬁz(g—gt)df-i-az \/H—rdwzry (43)

where 6« is the central tendency each day toward which
intradaily spot variance reverts, dL, is again a compen-
sated Lévy increment with instantaneous variance
(1-p2,)Vidt, and Wy, and W,, are independent Wiener
processes. The central tendency 0 is assumed constant
intradaily for analytic tractability but resets at the end of
each day to its underlying value 0,. Given that I estimate a
slow-moving process for 6,, the specified process approx-
imates a fully continuous-time model of the central
tendency.?®> Alternately, the process for 0s can be

21 principal components analyses of index options’ implicit volatility
(IV) surfaces such as Skiadopoulos, Hodges, and Clewlow (1999) typi-
cally identify the first principal component as roughly a level effect for
IVs of all strike prices and maturities. The secondary and tertiary
principal components reflect shifts across strike prices and across
maturities, but results are sensitive to the data used. The referee notes
that analyses of exchange-traded options with a wide range of strike
prices give heavier weight to shifts in the tilt of volatility smirks,
whereas analyses of over-the-counter data with fewer strike prices but
more maturities give greater weight to shifts in IV term structures.

22 In a two-factor additive variance model, one variance factor is
estimated as highly volatile but with rapid mean reversion, while the
other has less volatility and slower mean reversion. However, maximum
likelihood estimation does not appear well behaved unless the Feller
condition that ensures strictly positive variance is imposed on the first
variance process. This constraint influences all parameter and latent
variable estimates, making the results difficult to interpret.

23 As discussed in Carr and Wu (2007, pp. 243-244), the generalized
Fourier transform for a continuous-time central-tendency model must
be evaluated numerically, which slows the AML estimation methodology
considerably. One such numerical procedure involves subdividing indi-
vidual days and concatenating the intradaily cumulant generating
function, as described in Appendix B. Using 64 intradaily subintervals,
conditional log densities for the YY model diverge on average by 1077
from those computed using the process in Eq. (43), while the log
likelihood estimate for 21,519 observations changes by only 0.025.
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Table 6
Parameter estimates for the two-factor variance process.

Data are daily CRSP value-weighted excess returns over 1926-2006. See Eq. (43) and the notes to Table 4 for parameter definitions. All parameters are
in annualized units except the half-lives HL=12In 2/ and HL,=12 In 2/, of spot variance and central tendency shocks, respectively, which are in
months. The fraction of total return variance attributable to jumps is (1 7pszv)fj,,mp. Standard errors are in parentheses.

Models of Lévy shocks

N SVJ1 SVJ2 DEXP VG Y YY
Conditional mean
o 0.006 (0.018) 0.047 (0.019) 0.038 (0.019) 0.051 (0.019) 0.052 (0.019) 0.047 (0.019) 0.041 (0.019)
1 7.3 (1.0) 4.4 (0.9) 4.4 (1.0) 4.0 (1.0) 4.1 (0.9) 4.3 (1.0) 5.1(0.9)
o —4.2 (0.5) —3.0(04) —2.9(0.4) —2.9(04) —2.9(0.4) —2.9(04) —3.3(0.5)
6,v252 0.074 (0.007) 0.057 (0.007) 0.056 (0.007) 0.055 (0.007) 0.057 (0.007) 0.057 (0.007) 0.057 (0.007)
V: process
HL 0.212 (0.015) 0.245 (0.020) 0.249 (0.020) 0.240 (0.020) 0.241 (0.020) 0.231 (0.019) 0.219 (0.018)
o 0.766 (0.028) 0.623 (0.029) 0.622 (0.031) 0.620 (0.029) 0.617 (0.029) 0.622 (0.047) 0.637 (0.032)
Psv —0.684 (0.017) —0.746 (0.019) —0.749 (0.019) —0.701 (0.019) —0.703 (0.020) —0.707 (0.042) —0.720 (0.022)
0, process
Vo 0.154 (0.006) 0.157 (0.006) 0.158 (0.007) 0.157 (0.007) 0.157 (0.007) 0.160 (0.010) 0.157 (0.007)
HL, 10.3 (1.8) 11.0 (2.1) 11.0 (2.1) 11.5 (2.2) 11.5 (2.3) 10.7 (1.3) 10.7 (1.8)
03 0.191 (0.014) 0.211 (0.017) 0.210 (0.018) 0.208 (0.017) 0.210 (0.017) 0.221 (0.012) 0.211 (0.015)
CGMY parameters
Wy 0.43 (0.06) 0.43 (0.06) 0.40 (0.08) 0.13 (0.02)
G 46.8 (5.5) 29.7 (5.2) 1.4 (4.8) 37.9 (14.3)
M 62.2 (10.5) 41.9(9.3) 6.5 (7.8) 4.9 (3.6)
Y -1 0 1.84 (0.04) —0.38 (0.98)
Y, -1 0 1.84 (0.04) 1.90 (0.02)
Merton parameters
2,72 121.0 (20.6) 128.3 (24.8),
0.69 (1.20)

Y172 0.003 (0.003) 0.003 (0.002),

—0.178 (0.020)
91,02 0.033 (0.002) 0.030 (0.002),

0.011 (0.016)
fiump 0 0.130 (0.015) 0.139 (0.033) 0.281 (0.032) 0.319 (0.035) 1 1
InL 75,166.90 75,242.88 75,247.50 75,245.88 75,246.17 75,242.29 75,245.21

interpreted as a model of (stationary) parameter drift in
the unconditional mean 6 of a one-factor variance pro-
cess, similar in spirit to the models of parameter drift in
the daily autocorrelation parameter in Egs. (23) and (24).

The multifactor generalized Fourier transform for
future (s;; 1 —5¢Ve41,0¢4 1) conditional upon current (V,,0,)
is exponentially affine in those state variables and is given
in Eq. (B.1) in Appendix B. Modifying this transform for
autocorrelated returns under Models 1 and 2 is a straight-
forward extension of Eqgs. (26) and (27), while recursive
filtration of (V,,0,) is also a straightforward extension of
the approach used for one-factor variance processes. |
report below only results for Model 2, using a filtration
procedure outlined at the end of Appendix A.

Table 6 contains parameter estimates for the various
Lévy specifications. The major change relative to the one-
factor variance estimates in Table 4 is, unsurprisingly, in
the variance dynamics—which are ARMA(2,1), as opposed
to the AR(1) dynamics of the one-factor variance model in
Eq. (14). Spot variance shocks are highly correlated with
market returns (ps, ~ —0.7), but V; mean-reverts rapidly
to its central tendency 0,, with an estimated half-life of
roughly one week. The central tendency, by contrast, is
less volatile and more persistent, with an estimated half-
life of almost a year. Estimates of the volatility process are
virtually identical for most models. The exceptions are

again the SV and LS models, which have more volatile
spot variance processes given greater sensitivity to return
outliers in the upper tail (LS) or both tails (SV).

The conditional mean of stock market returns in
Table 6 appears sensitive to the variance divergence
Vi—0,, not to the level of spot variance V; observed in
Panel A of Table 4. This is not necessarily evidence of
return predictability, however. The conditional mean
parameters (ug,/q,1,) influence the filtration algorithm
for estimating the latent state variables (p,,V:,0;), as well
as directly affecting conditional densities. Jump para-
meter estimates in Table 6 are broadly similar to those
in Panel B of Table 4, except for the YY model.

Fig. 7 presents the filtered estimates of annualized
volatilities from the best-fitting SVJ2 model over 1926-
2010, as well as the associated annualized conditional
volatilities.>* The graphs from other fat-tailed models are

24 Annualized volatility refers to the choice of units. V; is variance
per year, while the daily volatility estimate for a Wednesday return with
an estimated length of 1/260 years (from Table 3) is approximately
E¢/V:/260. Because variance mean-reverts, it is not appropriate to
interpret spot volatility estimates in Fig. 7 as showing the volatility
estimate for a one-year investment. However, the estimated central
tendency E.\/0; is roughly the predicted volatility for a one-year
investment.
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Fig. 7. Filtered annualized spot volatility and central tendency estimates over 1926-2010, associated conditional standard deviations of volatility
estimates, and comparisons with one-factor estimates and with intradaily realized volatility. V; is the annualized instantaneous (spot) variance, while 6,
is the central tendency toward which it reverts. Filtered estimates and standard deviations are from the SVJ2 two-factor variance Model 2, based upon
CRSP value-weighted excess returns up to the latest date. The lower panel shows the difference between spot volatility estimates from two- and one-
factor models. The inset shows daily realized volatilities of 15-minute S&P 500 futures returns over 1987-1989 on a log scale, and filtered forecasts of

those realized volatilities from the one- and two-factor volatility models.

similar, apart from the above-noted sensitivity of SV and LS
volatility estimates to return outliers.> The graph highlights
the longer-term evolution of underlying volatility /0;; in
particular, the persistently turbulent market conditions of
the 1930s, unmatched by any period in the post-1945 era.
Spot volatility estimates E;/V; oscillate around the \/9_[
estimates, at a frequency too high to be discernable in this
85-year graph. The conditional standard deviations of spot
volatilities are on average about 2.9%, indicating a 95%
confidence interval of roughly +5.7% in the annualized
volatility estimates. Underlying volatility /0; is much less
precisely estimated than spot volatility, with an average
conditional standard deviation of 6.9%.

The lower graph in Fig. 7 shows that spot volatility
estimates are generally similar for the one- and two-factor
variance specifications, apart from substantial divergences
in the 1930s. Spot volatility estimates from both the one-
and two-factor specifications averaged 15.9% over the full
1926-2006 period. Two-factor filtration does, however,
yield more accurate volatility estimation: a 2.9% conditional
standard deviation of spot volatility on average, as opposed
to 3.2% for the one-factor filtration.

The inset to Fig. 7 compares adjusted filtered volatility
estimates 0.8655E;./V,t; over 1987-1989 with subsequent
realized volatilities computed daily from intradaily
15-minute log-differenced S&P 500 futures prices. (Open-
to-close futures returns were 86.55% as volatile as close-to-
close futures returns over 1982-2001.) The inset shows that
the one- and two-factor variance estimates using daily data

25 See Bates (2006, Fig. 4) for the divergence between SV and SV]1
volatility estimates from a one-factor variance model.

generally track and predict realized intradaily volatility
closely—except for the occasional volatility spikes, which
are how major daily outliers manifest themselves in intra-
daily data. The cluster of high intradaily volatility values
over October 19-28, 1987 is inconsistent with the
models’ diffusive-volatility assumption and is the major
time series evidence supporting an alternate volatility-jump
specification.2®

4. Option pricing implications

Do these alternative models imply different option
prices? Exploring this issue requires identifying the
appropriate pricing of equity, jump, and stochastic vola-
tility risks. Furthermore, the presence of substantial and
stochastic autocorrelation raises issues not previously
considered when pricing options. In particular, the
observed stock index level underlying option prices can
be stale, while the relevant volatility measure over the
option’s lifetime is also affected. The variance of the sum
of future stock market returns is not the sum of the
variances when returns are autocorrelated.

4.1. Equilibrium stock index and futures processes

To examine these issues, | focus upon Model 2, with its
interpretation in Eqgs. (24)-(25) of ds; as the permanent
shock to the log stock market level. Furthermore, I address

26 Johannes, Polson, and Stroud (2009, p. 2788) find that the super-
ior fit of a volatility-jump model is entirely attributable to the increase
in log likelihood on days shortly after the 1987 crash.
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the potential impact of autocorrelations upon option
prices by examining prices of options on S&P 500 futures.
[ assume that futures prices respond instantaneously and
fully to the arrival of news, whereas lack of trading in the
underlying stocks can delay the incorporation of that
news into the reported S&P 500 stock index levels. I also
assume that index arbitrageurs effectively eliminate any
stale prices in the component stocks on days when
futures contracts expire, so that stale stock prices do not
affect the cash settlement of stock index futures.
MacKinlay and Ramaswamy (1988) provide evidence
supportive of both assumptions.

These assumptions have the following implications
under Model 2 [Egs. (24) and (25)].

1. The observed futures price F, underlying options on
S&P 500 futures is not stale.

2. Log futures price innovations equal the permanent
innovations ds;:

dlnF[ = dS[. (44)

Consequently, European options on stock index futures
can be priced directly using risk-neutral versions of Egs.
(14) or (43)—which are affine, simplifying option evalua-
tion considerably. Furthermore, option prices do not
depend upon p,, except indirectly through the impact of
autocorrelation filtration upon the filtration of the latent
variance state variables V; and 0,.

A risk-neutral version of the s; process for use in
pricing options can be derived using the myopic power
utility pricing kernel of Bates (2006) to price the various
risks:

dInM; =y, dt—Rds;. (45)

This pricing kernel constrains both the equity pre-
mium estimated under the objective time series model
and the transformation of the s, process into the risk-
neutral process appropriate for pricing options. In parti-
cular, the instantaneous equity premium for one-factor
variance models is

(Mo + 1y Vydt = —Ey(e™ —1)(e R —1), (46)

which implies
o = 0.1, Ve =R pZ +(1=p2)(A~Fjump) | Ve
- / @ =1) (e *—1)k(x)dx ~ RV;. (47)

The approximation in Eq. (47) follows from first-order
Taylor expansions of the exponential terms and from the
fact that jumps account for a fraction fj,,,(1 —p?,) of
overall variance V.. For two-factor variance models, the
assumption of nonsystematic 0, risk implies u,=0.

The equity premium in Eq. (47) is well defined for the
SVJ1 and SVJ2 models. For the CGMY models, the restric-
tion G>R is required for a finite equity premium; the
intensity of downward jumps must fall off faster than an
investor’s risk aversion to such jumps. The log-stable

process is inconsistent with a finite equity premium for
R>0.27

The key risk aversion parameter R used for change of
probability measure was estimated by imposing the equity
premium restrictions in Eq. (47) and re-estimating all times
series models. The additional parameter restriction G >R
was imposed upon all CGMY models and was binding for
the one-factor variance YY model.?® Parameter estimates
reported in Panel A of Table 7 for the one-factor variance
models changed little relative to those in Table 4, while risk
aversion was estimated at roughly 2.5 for all models. The
restriction of a purely variance-sensitive equity premium
(1o=0) was not rejected for any one-factor variance model.

By contrast, the equity premium restriction po=p>=0
was strongly rejected for all two-factor variance models.
These rejections were examined further by estimating
and restricting two separate sets of (Lo,u1,142) parameters:
one set for generating filtered conditional distributions of
the latent state variables (p,,V,,0,), the other for evaluating
the conditional means and densities of excess returns
Ye+1 given those conditional distributions. The reduction
in log likelihood from imposing the equity premium
restriction is entirely attributable to poorer filtration of
state variables, not to reduced predictability of future
stock market returns.?®

4.2. Option pricing

The pricing kernel also determines the risk-neutral
cumulant generating function (CGF) for pricing European
options on stock index futures over a multiday time gap
T.1. For one-factor variance processes, the risk-neutral
CGF conditional upon knowing the objective variance V; is

E [eln(MT Mog®isr=so)| Vi
E[eln(MT/M,) ‘ Vt]

Cip(D)+Di (D), = ln{

= C(z¢,1; P—R,0)—C(tt,1; —R,0)+[D(tt,1: P—R,0)
—D(tt1; —R,0)|V¢, (48)

where C(-) and D( -) are defined in Egs. (18)-(22) and 7.
is the sum of the relevant future daily intervals. Two-
factor variance processes have a similar risk-neutral CGF:

C’:,T(é) +D’:T((D)V[ +DD’ET(¢)9t
= CCt,1(P—R,0,00—CCt1(—R,0,0)+[D;,1(P—R,0)

=D 1(—=R,0)]V; +[DD;7($-R,0,0)~DD;,r(—R,0,0)]0:,
(49)

27 Carr and Wu (2003) specify a log-stable process for the risk-
neutral process underlying option prices. This can be generated from a
CGMY process for the actual process with w,=0 and G=R.

28 Wu (2006) proposes an alternate pricing kernel with negative risk
aversion for downside risk, thereby automatically imposing G > R.

29 For instance, the log likelihood of the unconstrained SVJ1 model
on spliced CRSP/S&P 500 data was 74,259, which rose slightly to 74,266
when two separate sets of conditional mean parameters were estimated.
Imposing the equity premium constraints only on the second set of
conditional mean parameters reduced log likelihood to 74,258. Imposing
the constraint also on the conditional mean parameters that affect
filtration reduced log likelihood substantially, to 74,224.
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Table 7
Parameter estimates on spliced CRSP/S&P 500 data over 1926-2006, with constrained equity premium.
Data are daily CRSP value-weighted excess returns before March 5, 1957, and S&P 500 excess returns thereafter. See the notes to Tables 4 and 6 for
parameter definitions of the one- and two-factor variance models, respectively.

Estimates of the one-factor variance models in Panel A impose the conditional mean restriction 1o=0; p; is roughly equal to the risk aversion parameter R.
Standard errors of parameter estimates could not be computed for the YY model in Panel A because the parameter constraint G < R is binding. Estimates of the
two-factor variance models in Panel B impose the restrictions (uo, it>)=0, a restriction that was rejected at significance levels of less than 10~ for all models.

Panel A: Parameter estimates for one-factor variance models

Models of Lévy shocks

NY% SVJ1 SVJ2 DEXP VG Y YY
Conditional mean
R 2.49 (0.62) 2.44 (0.61) 2.43 (0.57) 2.44 (0.61) 2.50 (0.61) 2.42 (0.61) 2.38
67252 0.043 (0.005) 0.038 (0.005) 0.037 (0.005) 0.037 (0.005) 0.037 (0.005) 0.037 (0.005) 0.037
Ho: po=0 (p-value) 0.383 0.265 0.507 0.247 0.206 0.185 0212
V: process
N/ 0.172 (0.004) 0.173 (0.004) 0.174 (0.004) 0.174 (0.004) 0.174 (0.004) 0.174 (0.006) 0.175
HL 1.2 (0.1) 1.4 (0.1) 1.4 (0.1) 1.5 (0.1) 1.5(0.1) 1.6 (0.1) 1.6
o 0.534 (0.014) 0.448 (0.015) 0.449 (0.015) 0.444 (0.015) 0.441 (0.015) 0.427 (0.018) 0.429
Psy —0.649 (0.016) —0.678 (0.017) —0.679 (0.017) —0.632(0.017) —0.631(0.017) —0.623 (0.022) —0.621
CGMY parameters
Wp 0.55 (0.06) 0.53 (0.07) 0.58 (0.05) 0.90
G 51.6 (5.0) 35.9 (4.6) 5.4 (4.0) 24
M 53.9 (12.7) 344 (11.1) 4.5 (8.7) 64.3
Y -1 0 1.87 (0.03) 1.94
Y, -1 0 1.87 (0.03) -1.29
Merton parameters
A1h2 108.7 (18.2) 122.7 (23.1),

0.43 (0.38)
P1:72 —0.001 (0.003) 0.000 (0.002),
—0.219 (0.027)
01,02 0.034 (0.002) 0.031 (0.002),
0.003 (0.150)
Fiump 0.126 (0.015) 0.138 (0.021) 0.228 (0.026) 0.247 (0.028) 1 1
InL 74,028.53 74,119.26 74,125.33 74,121.73 74,122.51 74,122.19 74,124.33
Panel B: Parameter estimates for two-factor variance process
Models of Lévy shocks
NY% Svj1 SvJ2 DEXP VG Y YY

Conditional mean
R 2.53 (0.63) 2.46 (0.62) 2.45 (0.65) 2.45 (0.62) 2.44 (0.62) 2.38 (0.64) 2.43 (0.62)

GpN252 0.060 (0.006)
V, process

HL 0.330 (0.020)
g 0.662 (0.021)
Psv —0.664 (0.017)
0, process

Vo 0.164 (0.008)
HL, 23.8 (7.1)
02 0.154 (0.019)
CGMY parameters

Wn

G

M

YII

yp

Merton parameters

2, 72

Y172

01,02

fjump 0

InL 74,140.11

0.051 (0.006)

0.369 (0.025)
0.557 (0.023)

—0.738 (0.019)

0.165 (0.007)

19.3 (5.0)
0.177 (0.022)

143.0 (24.0)
0.002 (0.002)
0.030 (0.005)

0.134 (0.015)
74,224.13

0.051 (0.006)

0.365 (0.025)
0.560 (0.025)
—0.743 (0.019)

0.166 (0.008)

19.2 (4.9)
0.177 (0.022)

1733 (33.2),
0.50 (0.82)
0.003 (0.002),
~0.190 (0.020)
0.026 (0.002),
0.023 (0.027)
0.140 (0.028)
74,231.22

0.051 (0.006)

0.358 (0.024)
0.558 (0.023)
—0.693 (0.019)

0.165 (0.007)

18.9 (4.8)
0.179 (0.022)

0.44 (0.05)
475 (5.0)
69.8 (10.5)
~1
-1

0.288 (0.031)
74,228.56

0.050 (0.006)

0.357 (0.025)
0.556 (0.024)
—0.695 (0.019)

0.165 (0.007)

18.7 (4.8)
0.180 (0.022)

0.44 (0.05)
304 (4.7)
47.8(9.2)
0
0

0.319 (0.034)
74,229.37

0.050 (0.006)

0.354 (0.025)
0.553 (0.028)
—0.699 (0.026)

0.166 (0.008)

18.4 (4.6)
0.185 (0.023)

0.39 (0.05)
2.7 (4.3)
10.2 (7.7)

1.82 (0.04)

1.82 (0.04)

1
74,227.79

0.051 (0.006)

0.342 (0.024)
0.560 (0.026)
—0.706 (0.023)

0.166 (0.008)

18.2 (4.6)
0.183 (0.022)

0.16 (0.03)
24.9 (10.7)
7.1(7.3)
0.46 (0.74)
1.89 (0.03)

1
74,229.69
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where CCy1(-), D¢r(-), and DD;1{-) are computed via a
multi-day recursive procedure given in Appendix B, using
the estimated daily intervals over the lifetime of the
options.

Following Bates (2006), European call prices on an S&P
500 futures contract with exercise price X are evaluated at
their filtered values:

E(FeX;t,T|Yr) =e "t F, —e "X

1 1 0 ecﬁT(i¢)+g[ (D} 7 (i®)]+& [DD} 1 (i®)]—i® In(X /Fr)
X< =+ —Re / do| 3,
2 T Jo

io(1—id)
(50

where Re[c] is the real component of complex-valued c;
T;=n./365 is the maturity associated with the continu-
ously compounded Treasury bill yield r,, given n, calendar
days until option maturity; and {gt\t(l//)-gf‘t(lllz)} are the
filtered gamma cumulant generating functions that sum-
marize what is currently known about (V,,0;) given past
data Y. (The gf‘ . term is omitted for one-factor variance
models.) The associated annualized implicit volatilities IV,
from option prices with N; business days until maturity
are then computed using the French (1984) business-day
approach of a per period volatility of IV;/N;/252, given
the evidence in Table 3 that business days are roughly
comparable in length.

Panel A: One-factor IVs for January 2007 options, by moneyness
30% °

25%
20%
15%

10%

Implicit volatilities

5%

0%
-8 -6 -4 -2 0 2
In(X F) in standard deviation units (1 SD = 2.3%)

Panel C: One-factor at-the-money IVs, by maturity
20%

15%

10%

Implicit volatilities

5%

0%
0 0.2 04 0.6 0.8

Years to maturity

Implicit volatilities from the one- and two-factor
models are graphed in Fig. 8 and are compared with
observed IVs from settlement prices for American options
on S&P 500 futures with nonzero trading volume on
January 3, 2007. Fig. 8 also shows 95% confidence inter-
vals for the SVJ2 estimates, computed in three ways:
based on parameter uncertainty alone, based on para-
meter and V, state uncertainty, and (for the two-factor
model) based on parameter and (V,0,) state uncertainty.

Panels A and B of Fig. 8 show the estimated and
observed volatility smirks from the one- and two-factor
variance models, respectively, for January 2007 options
with 16 days (11 business days) to maturity. The most
striking result is that all Lévy specifications - including
the SV model - generate virtually identical option prices
and IVs over a range of + 2 standard deviations, a range
that contains the most actively traded options. The
estimated at-the-money I[Vs were virtually identical
across all specifications on January 3, 2007, reflecting no
recent major return outliers that would induce different
volatility estimates from different specifications. Some
divergences emerge between one- and two-factor esti-
mates, but both show a substantial volatility smirk. Given
the similarity to SV estimates, the tilt of the estimated
volatility smirk for near-the-money options appears to
be driven primarily by the correlation between shocks
to variance and stock market returns. Only for deep

Panel B: Two-factor IVs for January 2007 options, by moneyness
30%

25% « data
SV
svil
—8Vi2
- DEXP
—VG
o &
=YY

20%

15%

10%

5%

0%
-8 -6

4 2 0 2 4

In(X F) in standard deviation units (1 SD = 2.3%)

Panel D: Two-factor at-the-money IVs, by maturity
20%

15%
10% ,J——'#
5%

0%
0 02 0.4 0.6 0.8 1

Years to maturity

Fig. 8. Estimated and observed implicit volatilities (IVs) for options on S&P 500 futures on January 3, 2007, by moneyness and maturity. The IV data (M)
are from options’ settlement prices. Estimated IVs (lines) are from various models’ filtered estimates of end-of-day option prices, based upon daily spliced
CRSP/S&P 500 excess returns from 1926 to January 3, 2007. The moneyness graphs (Panels A and B) are for January 2007 options with 16 days (11
business days) to maturity. At-the-money IVs by maturity (Panels C and D) are shown for the SV]2 model only; estimates from other models are nearly
identical. 95% confidence intervals for the SV]2 estimates are shown in dark grey for parameter uncertainty, medium gray for combined parameter and V,

uncertainty, and light grey for combined parameter and (V;,0;)uncertainty.
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Fig. 9. Estimated and observed at-the-money implicit volatilities (IVs), 1987-2010. Observed IV, is from settlement prices on short-term options on S&P
500 futures with at least four business days to maturity. The estimated IV is from the two-factor SVJ2 model’s filtered estimates of option prices, using
spliced CRSP/S&P 500 daily excess returns from 1926 to date t. The lower panel shows the difference between the two. The dark and light grey areas
identify the 95% confidence intervals for the volatility gap IVﬁIVr for one- and five-week options respectively, given parameter and state uncertainty.

out-of-the-money put options do the divergences in
estimated tail properties generate substantially different
IV patterns across different Lévy specifications.>® The
near-the-money IV estimates have substantial state
uncertainty, given the difficulty of identifying current
variance V; (and central tendency 6, for the two-factor
model) from daily returns. By contrast, the confidence
intervals for deep out-of-the-money put options’ IV esti-
mates are driven primarily by parameter uncertainty,
given the difficulty of identifying the precise distribution
of extreme events even with 81 years of daily data.

Panels C and D of Fig. 8 show at-the-money IVs by
maturity for the SV]2 model. (Estimates from other Lévy
specifications are nearly identical.) The two graphs show
that the one- and two-factor models diverge strongly by
maturity. In the one-factor model, risk-neutral spot var-
iance V7 is projected to mean-revert within months to its
unconditional level of (0.187)2, which is tightly estimated
given 81 years of data. Consequently, state uncertainty
matters for short-maturity IVs, but not for longer matu-
rities. In the two-factor concatenated model, by contrast,
V7 is projected to revert within weeks to a slowly moving
risk-neutral central tendency 0; that is imprecisely esti-
mated. The uncertainty regarding where V; is headed
generates wide confidence intervals for filtered at-the-
money IV estimates for options of one month to maturity
or longer.

Fig. 9 chronicles estimated and observed at-the-money
IVs over July 1987 through December 2010 for the short-
est-term options with maturities of six days (four business

30 These results differ from Bates (2000, Table 3), who reports
substantial divergences between the SV and SV] models based substan-
tially upon implicit parameter estimation. It would appear that those
estimates are strongly influenced by the prices of deep out-of-the-
money options.

days) or more, beginning shortly after the introduction of
serial (monthly) options in July 1987. The options’ maturities
begin at 22-29 business days (31-39 calendar days) and
typically shrink to five business days, before being replaced
by a longer maturity.3! Observed and estimated IV's are
generally close during periods of low volatility but diverge
substantially during high-volatility periods—especially after
the 1987 stock market crash and at the height of the
financial crisis in 2008. The divergences are sometimes large
enough to be statistically significant for options with only a
week (five business days) to maturity. By contrast, it is rare
that the divergences in IV’s for five-week (25 business day)
options are statistically significant, given larger standard
errors attributable to state uncertainty about the central
tendency.

Table 8 compares the estimated term structures of at-
the-money Vs over 1988 through 2006 with observed
IVs, using values linearly interpolated or extrapolated to
standardized monthly maturities. The table also reports
properties of some risk-neutral volatility measures that
influence the estimated term structures: the filtered spot

volatility E;y/ V7, the filtered central tendency volatilities

E¢y/6%, and the unconditional volatility |/E(V{). These

volatilities are upwardly scaled versions of the corre-
sponding objective volatilities and affect short-, med-
ium-, and long-term Vs, respectively. For the SVJ2
model used in Table 8, the scaling factors are

VP 137 A R RO RST 467

_t =R*
Ve 1+ Y7 4 +07)

31 Good Friday occurred on the third Friday of the month in 1992,
2000, 2003, and 2008, shortening corresponding serial options’ matu-
rities by one day.
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Table 8

Statistical properties of risk-neutral volatilities and implicit volatilities (IVs) over 1988-2006, in percent.

Observed IVs are from options on S&P 500 futures, while filtered volatilities and IVs are from the one- and two-factor SVJ2 models estimated on spliced
CRSP/S&P 500 daily excess returns over the specified intervals. Observed IVs and model-specific fitted Vs for fixed maturities were linearly interpolated
from values at observed maturities. Out of 4,789 observations, 330 (36) of the 21-day (126-day) IVs were linearly extrapolated.

Asterisks () for the average divergences between observed and fitted IVs indicate statistical significance at the 1% level, based upon Newey-West
standard errors computed using 1,008 daily lags. The standard errors range from 0.6% to 1.0% for the one-factor estimates and are 0.6% for the two-factor

estimates. The R? for each fitted IVr series was computed by R = l—MSE(IVfI/Vz)/Var(IVt).

Statistic Estimation interval Filtered volatilities Implicit volatilities by maturity (number of business days)

E /Vf E /07 /E [Vﬂ 21 42 63 84 105 126
Average values
Options’ IVs 1926-2006 16.6 17.1 17.4 17.5 17.5 17.6
One-factor IVs 1926-2006 15.4 18.7 15.5 16.0 16.5 16.6 16.7 16.8
One-factor IVs 1957-2006 14.2 16.3 14.1 14.4 14.7 14.7 14.8 14.9
Two-factor IVs  1926-2006 15.0 14.5 17.0 14.7 14.7 14.7 14.7 14.7 14.7
Average (IV[—IV[)
One-factor 1926-2006 1.1 1.0 0.9 0.9 0.8 0.8
One-factor 1957-2006 2.5% 2.7* 2.7* 2.7* 2.7* 2.7*
Two-factor 1926-2006 1.9* 2.3 2.7* 2.8% 2.8* 2.9
Standard deviations
Options’ IVs 1926-2006 5.8 5.5 5.1 5.1 5.0 4.8
One-factor IVs 1926-2006 5.1 3.9 33 2.4 24 23 19
One-factor IVs  1957-2006 4.8 3.9 35 2.8 2.7 2.6 23
Two-factor IVs  1926-2006 48 3.0 3.7 3.3 3.0 3.0 2.9 2.8
RMSE(IV,—IV )
One-factor 1926-2006 3.2 33 35 3.5 35 3.6
One-factor 1957-2006 3.0 3.0 3.1 3.2 3.1 3.2
Two-factor 1926-2006 29 2.9 2.8 2.8 2.7 2.7
RZ
One-factor 1926-2006 70 64 53 53 51 44
One-factor 1957-2006 73 70 63 61 62 56
Two-factor 1926-2006 75 72 70 70 71 68

£
0 _ R* p (51) the smaller 0.8-1.1% gaps between observed and esti-

Qt h .B+Rpsvo-.

Implicit volatilities from the one-factor SVJ2 model
estimated from the full 1926-2006 data set appear to have
been substantially affected by the high-volatility conditions
in the 1930s. IVs are higher at all maturities than are IVs
based on SVJ2 parameter estimates over 1957-2006, while
convergence toward the higher unconditional volatility at
longer maturities imparts a more pronounced upward slope
on average to the term structures. The two-factor variance
model by contrast has flat term structures on average,
because estimates of risk-neutral medium-term volatility

\/97’[" are on average close to the spot volatility estimates.
While it can be difficult to identify ex ante whether an
estimated (filtered) IV gap on any given day is statistically
significant, the average IV gaps over 1988 through 2006
are statistically different from zero ex post at all matu-
rities for two of the estimated models: the one-factor SV]2
model estimated on stock market returns over 1957-2006
(2.5-2.7% gaps), and the two-factor SV]J2 model estimated
on returns over 1926-2006 (1.9-2.7% gaps).3? By contrast,

32 The significance tests use Newey-West standard errors with
1,008 daily lags (four years) to adjust for substantial positive autocorre-
lations in IV gaps present even at yearly intervals.

mated IVs at various maturities for the full-sample one-
factor variance model are not statistically significant.
Despite substantial bias, the two-factor model tracks the
term structure of at-the-money IVs more closely than do
the two estimates of the one-factor model, with lower
root mean squared errors and higher R?s at all maturities
and especially at longer maturities.

Overall, the above results appear broadly compatible
with previous studies that have compared IVs with subse-
quently realized volatility over the options’ lifetime.
Observed IVs from options on index futures do appear
higher on average over the post-1987 period than is justified
by risk-adjusted valuations based upon time series analysis.
Furthermore, time series plots indicate the gap is especially
pronounced during periods of high volatility.

4.3. The 2007-2008 financial crisis

The impact of the financial crisis upon index options
can also be assessed by comparing model-specific esti-
mates of the Volatility Index (VIX) with historical VIX data
available at http://www.cboe.com/micro/vix/historical.
aspx, on the website of the Chicago Board Options
Exchange. The estimated VIX is computed by evaluating
the log contract synthesized by the VIX portfolio of
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Fig. 10. Estimated and observed VIX, 2007-10. VIX is the volatility index computed from S&P 500 options by the Chicago Board Options Exchange,
converted to a percentage. VIX is the filtered out-of-sample estimate based on two-factor SVJ2 parameter estimates over 1926-2006 and on subsequent
S&P 500 excess returns. The lower panel shows the difference between the two. 95% confidence intervals are shown for the difference between observed
and estimated VIX based upon parameter uncertainty (dark grey), combined parameter and V; uncertainty (medium grey), and combined parameter and

(V0,) uncertainty (light grey).

options®3 :

2 2 ,
VIX, =— tTTE{E’; [ln(FT/Ft)\Vtﬁt} \Yt}

252 ACr(P)+ Dy (@)V1e+DDir (D)0 ]

21 oP '
d=0

(52)

where Cfj,, Dy, and DDj;, are computed from Egs. (48) and
(B.6) using a maturity of 21 business days. The state
variable estimates (V[‘t,ét‘t) over 2007-2010 are out-of-
sample filtered estimates based upon the SV]2 parameter
estimates in Table 7, and upon daily excess returns up to
date t.

Observed and estimated end-of-day VIX values are
shown in Fig. 10, as well as the gap between the two.
While the VIX has been called a fear index or fear gauge,
this gap identifies when VIX levels derived from traded
option prices appear excessive relative to the underlying
volatility of the stock market. Over 2007, for instance, the
estimated VIX gradually increases from 10% to 20% but
does not exhibit the dramatic swings observed in the
actual VIX. Those swings appear related to major events
discussed in the Brunnermeier (2009) account of the
financial crisis, beginning with the increase in subprime
mortgage defaults in February 2007. The VIX gap
increased further in late July following the first recogni-
tions of substantial bank exposure, and again in the first
ten days of August following a volatile week that gener-
ated large losses for quantitative hedge funds. The VIX gap
fluctuated considerably over the remainder of 2007 and in

33 Britten-Jones and Neuberger (2000) and Jiang and Tian (2005)
explain how the log contract approximately prices realized variance over
the lifetime of the underlying options.

the first half of 2008, in parallel with the Eurodollar-
Treasury interest rate spread that Brunnermeier (2009,
Fig. 3) uses to gauge the evolving liquidity crisis.

The VIX gap increased to 12% shortly after Lehman
Brothers’ bankruptcy on September 15, 2008 and it
temporarily exceeded 21% following the initial rejection
of the Troubled Asset Relief Program bill by the House of
Representatives on September 29. October’s turbulent and
falling stock market led to further increases in observed
and estimated VIX, with the difference between the two
peaking at 48% on October 24. The divergence subsided in
following months, especially after the stock market bot-
tomed out in March 2009, before flaring up again with the
European sovereign debt crisis in the spring of 2010. The
VIX gap stabilized around 4-9% for the remainder of 2010,
with observed and estimated VIX moving roughly in
parallel. Because of central tendency uncertainty regard-
ing where daily volatility is headed, only the largest VIX
gaps can be identified as statistically significant.

5. Summary and conclusions

This paper provides estimates of the time-changed
Carr, Geman, Madan, and Yor (2003) CGMY Lévy process
based on stock market excess returns, and compares them
to the time-changed finite-activity jump-diffusions pre-
viously examined by Bates (2006). I draw the following
three conclusions.

First, it is important to recognize the fat-tailed proper-
ties of returns when filtering latent variables. Failure to do
so makes latent variable estimates excessively sensitive to
daily outliers larger than three standard deviations and
affects parameter estimates—especially the parameters of
the volatility process. However, such major outliers are
relatively rare. Conditional volatility estimates from the
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less fat-tailed distributions [the Heston (1993) stochastic
volatility model; the Carr and Wu (2003) log-stable
model] diverge substantially from those of other distribu-
tions only in the weeks following large outliers.

Second, it is not particularly important which fat-
tailed distribution one uses. Estimates of the volatility
process parameters and realizations are virtually
unchanged across most specifications, while the option
pricing implications are virtually identical for all but the
deepest out-of-the-money options.

Third, conditional upon no recent outliers, even the
Heston stochastic volatility model fits option prices simi-
larly to the jump models for all but deep out-of-the-money
options. For these stochastic volatility or stochastic intensity
models, the estimated tilt of the volatility smirk for near-
the-money options ( +2 standard deviations) appears pri-
marily driven by the leverage effect.

I also present evidence of some structural shifts over
time in the data generating process. Most striking is the
apparently nonstationary evolution of the first-order
autocorrelation of daily stock market returns, which rose
from near-zero in the 1930s to around 35% in 1971 before
drifting down again to near-zero values at the end of the
20th century, and even negative in the 21st. The high
autocorrelation estimates in the 1960s and 1970s are
clearly attributable to a stale-price problem from low
stock turnover and are of substantial importance when
assessing historical stock market volatility. The paper
develops methods of dealing with time-varying autocor-
relation, by treating it as an additional latent state vari-
able to be filtered from observed data. Furthermore, the
paper develops a nonaffine model (Model 2) of evolving
autocorrelation that can nevertheless be easily estimated
on time series data. The model generates an affine risk-
neutral process for pricing index options and is consistent
with the inverse relationship between autocorrelation
and volatility found by LeBaron (1992).

Finally, the paper also shows longer-term swings in
volatility, which are modeled using a two-factor concate-
nated volatility model. Estimating a latent variable (the
central tendency) underlying another latent variable (spot
variance) underlying daily stock market returns is per-
force imprecise. Nevertheless, the two-factor model use-
fully highlights the misleading precision of multi-period
forecasts from one-factor variance models. One-factor
models erroneously predict tight confidence intervals for
implicit volatility at longer maturities, given hypothesized
volatility mean reversion to an identifiable mean. The
two-factor model estimates spot volatilities and term
structures of implicit volatilities more accurately than
the one-factor model—with, however, substantial gaps
remaining on average between observed and estimated
at-the-money implicit volatilities.

Alternate data sources could yield more accurate
assessments of spot variance and of its central tendency:
intradaily realized variances, for instance, or the high-low
range data examined by Alizadeh, Brandt, and Diebold
(2002). This paper has focused upon daily returns because
of its focus on daily crash risk, but the AML methodology
can equally be applied to estimating conditional volati-
lities from those alternative data. Realized variances

are noisy signals of latent conditional variance when
intradaily jumps are present, indicating the need for
filtration methodologies such as AML. Such applications
are potential topics for future research.

Appendix A. Filtration under Model 2
A.1. One-factor variance process

From Eq. (27), the cumulant generating function (CGF)
for future (¥;,1.p¢,1.Ve+1) conditional upon current
values under Model 2 is

InF(@,EY |y pn Vi) = toT(1—p)@+0C(Tte; 1—p) D)
+BTFE +(E+PYP,+D (T (1-p) DY)V (A1)
The filtered CGF conditional upon only observing past

data Y, can be computed by integrating this over the

independent conditional distributions of the latent vari-
ables (p.,V,):

F(,E3|Y0) = // MOV, | Y p(p, | Yo dVedp,

_ / loT(1=P)® +0C(T(1=p) ) + V103 + (& + Ly, + & [D(T(1-p D]

xp(p;| Yo)dp, (A.2)

where gt‘t(n//)z—v[ln(l—rm//) is the gamma conditional
CGF for latent V.. Under the change of variables
(zx)=[(1-p)@,(1—py)], and under the assumption that
the scaling term x=(1- p;) > 0, the Fourier inversion used
in evaluating p(y¢. 1|Y;) from Eq. (A.2) becomes

PWer1|Yo= lRe{ / F(i®,0,0 Yt)e‘@yfﬂdcb}
s Jo=0

oo
— lRe |:/ e,uuriz+HC(rt;iz,O)+gr‘t[D(r,;iz,0)]—iytz
z=0

TC
(/ . % e*iZO/H 1 *Yc)/xp(x ‘ yt)dx) dz:|
X =

%Re [/ 0F"‘(iz,O Yt)</ O%e(*’wﬂlfyf)/’”p(x\Yt)dx)}
zZ= X=

(A3)
where Re[c] denotes the real component of complex-
valued ¢, the 1/x term in the integrand reflects the
Jacobean from the change of variables, and
F @z, Y |Ye) = exp{(poT0)z+0C(t; 2,Y) + & [D(t: ZY)] -y, 2)

(A4

X

is the joint moment generating function of (¢ 1 —S¢—¥tVi11)
conditional upon past data Y.

It is convenient to use the two-parameter inverse
Gaussian distribution to approximate p(x|Y;):

_ At . }Lt(X—Xf)Z
P(XYI)—\/anrxp[ x| x>0 (A.5)

where X; = E(x|Y;) and A, =X; /Var(x|Y;) summarize what
is known about x (and about p,) at time t. For this
distribution, the inner integration in Eq. (A.3) can be
replaced by

M,l(a)z/ x~1e¥*p(x|Y)dx
x=0
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| A {1+\//1t(),t—2a)}ex [At—\/ﬂ,t(ﬂvt—Za)}
= 3 — p —
(Ae—20) Xt Xt

(A.6)

for a=—iz(y;.1—y:)=—izAy. Consequently, evaluating
Eq. (A.3) involves only univariate numerical integration.>*
Similar univariate integrations are used for filtering
Viy1 and p.,1 conditional upon observing y.,;. The
noncentral posterior moments of V,_ ; are given by

1
per1|Ye)
e} M % (5
Re / O"F (lz,r;//\Yt)
Jz=0 61// v=0

where the derivatives of F*(-) with respect to i inside the
integrand can be easily evaluated from Eq. (A.4) given the
specifications for C(-) and D(-) in Egs. (18)-(19). The
posterior moments of p,,; can be computed by taking
partials of Eq. (A.2) with respect to ¢ and then again using
the change of variables to reduce the Fourier inversion to
a univariate integration. The resulting posterior mean and
variance of p;, 1 are

;Re
np(_Vt+ 1 ‘ Yt)

EVEq[Yei) =

Mﬂ—isz)dz} , (A7)

{/w F*(iz.0|Yt)M0(—isz)dz}
z=0

Peitjer1=1-

(A.8)
1 00
Worrin =i el [ pzolvom izas].
t+1]t+1 =0y W a]Y0) _ (iz,0| Y )M ( Y)
(A.9)
where
Mo(a) = / e“/xp(fo)dx:\/T exp{m—m}
x=0 /L.[—Za Xt
(A.10)
and
Mi(a)= / xe*p(x| Y )dx = Xexp {@]
x=0 +
(A11)

Finally, the conditional distribution function (CDF)
used in the normal probability plots of Fig. 1 takes the
form

1 1, [ [ F(izolY
CDF(y[H\Yt):——ERe{Z F(iz0]Yr)

5 L = Mo(—zsz)dz] .

(A12)

A.2. Two-factor variance processes

Filtration under the two-factor variance process of
Eq. (43) is similar. The joint moment generating function
F¥(zy|Y;) of Eq. (A.4) gets replaced in Egs. (A.3), (A7),

34 Alternate distributions could be used for p(x|Yy); eg., a beta
distribution over the range [0, 2]. That would constrain |p, <1 and
results in an M_(a) term that involves the confluent hypergeometric U-
function. However, I could not find a method for evaluating that function
that is fast, accurate, and robust to all parameter values.

(A.8), (A.9), and (A.12) by
F*(zy ., |Ye) = exp{CC(r;z,x//z) +gt‘[[D(r,z,1p)}}
x exp{g?‘t [DD(t:zy,5)] —ytz} (A13)

evaluated at y,=0. CC(-) and DD(-) are defined below in
Egs. (B.2) through (B.4)), while gf‘t( ) = —v!In(1-«lyr,)
is the gamma conditional CGF that summarizes what is
known at time t about latent 6,. Filtration of 0, proceeds

similarly to that of V, in Eq. (A.7), with posterior moments

1
E(07 1Y =—
(t+1‘ t+1) ﬂ:p(yt+1|yt)
e TTIF* s Y
x Re / % M_q(—izAy)dz|.
Jz=0 al/jz Y, =0

(A14)

Appendix B. Cumulant generating functions under
a two-factor variance process

The approximate concatenated two-factor variance
model holds the central tendency 0, constant intradaily
and assumes that its daily evolution is noncentral gamma
and is independent of other state variables. Consequently,
the one-day conditional cumulant generating function
(CCGF) for s;,1—Ss; and future state variables (V;, 1,0¢+1)
conditional upon (V,,0,) and a one-day interval of length
involves replacing 6 in Eq. (17) by 6, and adding the
noncentral gamma CCGF that describes the evolution of
Ot s1:
lnF(@vl//-W2 ‘Vty(')t) = lnE[e¢(Sz+1—Sr)+ UViei1+¥20c 41 ‘tht]

= Ut @+ 0:C(t; @)+ D(t; DY)V,

2,0 e~Fry,
— O_% 1[1[1 —I(z(’f)lpz} + m()t

= CC(t; ,Y5)+ D(t; @)+ DD(t; D\, 5) 04, (B.1)

where C(-) and D( -) are defined in Egs. (18)-(22),
2,0
CC(t; D,r5) = gt P— g; In[1-K2(0)5], (B.2)
2

DD(: B ) = (s by + W2 B3

(T; D,y Y5) = C(1; D, )+mv (B.3)

02

Ky(1) = ﬁ(pe*ﬂzf). (B.4)

By iterated expectations, the multiperiod CCGF is also
affine and satisfies
CCr1+De1Vi+DDy 10, = InE[e?C1=0T¥Vr+abr |y, 0]

_ lnE[e¢(Sz+I*St)+CC[+l.T+Dl+1.TV[+l +DDy 41,7041 ‘tht]_

(B.5)

This implies the coefficients satisfy the backward
recursion
CCrr =CCry1,7+CC(te; D,DD; 4 1,7),
D¢ =D(t,P,D¢ 1,7),
DDyt = DD(t¢; D,D¢ 4 1,1,DD;¢ 1.1,7) (B.6)
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subject to the terminal condition (CCrp,Drr,.DDrr)=
(0 2). (CCe1,De1,DD.1) are functions of (@,p2), a
dependency omitted in Egs. (B.5) and (B.6) to simplify
the notation.

The multiperiod CCGF is useful in two contexts. First,
subdividing individual days into increasingly fine subin-
tervals yields a numerical algorithm for computing the
joint CCGF for continuously evolving 6,, which can then be
compared with the daily discrete-time specification. Sec-
ond, risk-neutral versions of Eqs. (B.5) and (B.6) are used
for pricing options with multiple days to maturity, as
described in Eq. (49).

The unconditional cumulant generating function of
(Vy,0,) satisfies a recursion similar to Eq. (B.5). Ignoring
daily seasonals in 7 yields an approximate fixed-point
characterization

SWy) = lnE{el//V[+l//th] —In E[E(el//‘/r+1 AL ZUeS |V[,9[)]
= CC(7; 0,4,) +g[D(7; 0,40), DD(7; 0,1, 4s,)]. B.7)

Derivatives of g(-) in Eq. (B.7) evaluated at Yy =y»,=0
implicitly give the unconditional moments of (V,,0,). The
unconditional means are EV; = E0; = 0, while the uncon-
ditional variances and covariance are solutions to the
recursive system of equations

1—e2fr _2e-Fr(1—eF7) (1—e~Fry?

0 1_6—(/i+[§2)1: _(1 _e—/f‘r)e—[izr
0 0 1
Var(Vy) %7 (1—e~267)
X COV(Vt.Ot) = 07 . (BS)
a20
Var(6;) =

The resulting unconditional Var(V;) is insensitive to the
precise value of T and was computed using t=1/252. The
unconditional means and variances are used to parame-
terize independent gamma distributions describing what
is known about the initial latent variables (V;,0;) when
starting the recursive AML filtration procedure.
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