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Conditional distributions of financial returns y;, 4
If Gaussian, distribution summarized by

e conditional mean p; = E[y;,1|info at time t] = 0 daily
e conditional standard deviation o; = SD[y;,|info at time t]
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Conditional distributions of financial returns y;, 4

Non-Gaussian distributions are often modeled as a mixture of
Gaussians.
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Data: daily log-differenced S&P 500 futures prices Important properties of stock market returns

(roughly S&P percentage returns in excess of riskless T-bill rate) 1) Unconditional and conditional distributions are not Gaussian.
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2) We observe clusters of big (or small) absolute returns. Some early moving-average approaches to modeling
dInF persistence in conditional variances of stock market returns

0% e Moving-window sample variance

10% ' e Riskmetrics (J.P. Morgan)
o *WMM e GARCH

-20%

-30%

-40% t t t t t t t t t t t t t t
82 B4 BO6H BE 90 92 94 95 98 00 02 04 06 08 10

3) Markets are more volatile following market drops than
following comparable market increases.




Notation
Yer1 = In(Fr 4 /F;) is the log-differenced futures price
o = SD(y;4+1|information available at time t)

Moving-window sample variance

6% ~~¥N_  yt1_n  (ignoring u,, which is ~ 0 daily)
RiskMetrics

6t2 ~ Yn=1 Wnyt2+1—n for w, =.06(0.94)"

Generalized autoregressive conditional heteroskedasticity
(GARCH(1,1)):

62 — 0 ~ a(y? —0) + B(c’y — 6), where 8 = E[a?].

dy. 252-day sample volatility versus RiskMetrics
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Conditional volatility estimates
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Moving-window &; drops when *87 outliers leave the window, in 1988.
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All of these are filtration algorithms &; = f(6:—1, Vs, ... ) that
capture substantial persistence in 4;.

e Moving-window: 62 ~ 62, + %(yt2 —y& )
o RiskMetrics: 67 =~ 0.94 62, + 0.06y?

¢« GARCH(1,1): 62— 0 ~ a(y? — 0) + B(c’, — )
(includes RiskMetricsfor 6 = 0, a + 8 = 1)

Enormous variety of GARCH specifications
6t = f (61, Ytr )
-additional lags
-different functional forms of f
-can allow different 6, updating for y, > 0 versus <0.

ML estimation of parameters under the assumption

Vev1 = B+ 0p€piq
for &, i.1.d. from some distribution, possibly fat-tailed.
o; is assumed known given the parameters & past data.
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Stochastic volatility models of the joint evolution of (y,, a;)
Discrete-time

Ye+1 = U+ Or€rqq
Inoy = w+pInod +npy

Continuous-time
d ln Ft = (‘uO + Mlo'tz)dt + O'tqu + )/dNt
do? = (a — Bo?)dt + o, dW,,
where dW;,;, dW,, are Wiener shocks with correlation p < 0;

dN, is a Poisson counter with intensity 1, = 1, + 1,07
that counts the occurrence of jumps of size y~N (¥, 62);
PTObt(dNt = 1) = /‘l,tdt

(1-factor model of volatility and tail risk)
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Filtration

P(Ve+1, Or+1|Ye, 0¢): JOint transition density from time series
model conditional upon knowing o; (which we don’t)

Y: = {yv., ¥, ..., V:}: Setof observed data
p(o:|Y+): what is known about g, at time t
(including E[o|Y+])

Then

P(Ve+1, 0:41]|Y ) joint density conditional on Y,
p(Ve+11Y:): marginal density of y,,,conditional on Y,

can be evaluated via

PVes1, Oe1|Y ) = fp(Yt+1:0t+1|3’t» o.)p(o¢|Y,)do,
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Filtration uses Bayes’ rule to update p(o;|Y;) recursively over
time, given the latest observation y; , 4:

P(Ver1, 0e411Y¢)
P(Ves1lYe)
_ fp(Yt+1r0't+1|Yt; op)p(a¢|Y,)doy
fP(J’t+1|Yt» o)p(o¢|Y¢)do,

le., p(0¢|Y:) & Yer1 = P(0ps1|Yig1)
Challenges/difficulties

p(0r411Yet1) =

e How do we summarize the entire univariate function
p(o:|Y) across all values of o; at each point in time t?

e How do we update an entire function, and summarize the
result?
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1) Approaches: special analytical cases
Kalman filtration

1.1f observed y; and latent x; have a jointly Gaussian
evolution, x;|Y; is Gaussian and is summarized by its first
two moments E (x.|Y;), Var(x:|Y ).

2.Updating the moments is regression-like and simple.

Markov chains
1. x, can take on a finite number of values {x1, ..., x5}, with
filtered probabilities w7, = Prob[x; = x°|V,],s = 1,...,S.

2. Updating these probabilities involves summation rather than
integration.
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2) Approximate approaches
Use these approaches as approximations

e “unscented”, “robust” Kalman filtrations: summarize what
is known about x, as Gaussian even when structure is not
Gaussian.

-update its moments over time.

o discrete-state approximations to a continuously-distributed

latent variable x;.
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3) Monte Carlo filtration (particle filter)

1) Summarize p(x;|Y.) by a large number (e.g., 10,000) of
draws from that density -- a random histogram.

2) Update to p(x;41|Y¢+1) by a large number of draws from
p(x¢4+1|x:), with heavier posterior probability weights
placed on those draws that make observed y;,; more

likely (relatively high p(y¢411xt41))-

3) Go tostep 1.

4) Various refinements (resampling, auxiliary particle filters)
to deal with distributions with low-probability outliers.
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4) My approach: Bayes’ rule for characteristic functions

Define F(i®, i) = E[e!®Y+1¥¥] = [[ ei®Y+0¥x p(y, x)dydx
as the joint CF (and Fourier transform) of y and x.

The characteristic function G (iy|y) = E[e™¥*|y] of x
conditional upon y can be computed via inverse Fourier
transforms of F:

[F(i®, iyp)e " *Ydd

G(i = "
(llply) f F(lq), O)e—lq)ydcb
Posterior moments: E[x™|y] = %
=0
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Applied using a form of robust Kalman filtration

o Start with G, (i) = E[e™*t|Y,] associated W/ p(x;|Y )
e Update posterior mean & variance of x;,; given y,,

e Use two-moment approximate distribution for G, 141 (i)
e Continue

Advantages

e Don’t typically have analytical p(V;41, X¢41| Ve, X¢) OF
p(Ve+1, Xe4+1|Y ) But for affine or quadratic time series
models, we do have their joint characteristic functions.

e Can be used both for estimating time series parameters and
for filtering latent variables.
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Model-specific implications for volatility filtration

If y;., jumps and o, doesn’t, it is optimal to downweight large
|¥¢+1|’s impact on 6,,, — &, revisions. (Bates, RFS 2006)

SD revision

SV: noy;., jJumps
SVJO: iid. jumpsiny, 4

7 SVIL: y,,, jumps with
v intensity 1,04
—SVJo

% - —svi1

Filtration is different if
s a4 v o4 3 0,41 jumps synchronously
2% with y;, .

Asset return z, in SD units

Bates (JFE, 2012) two-factor model of variance and crash
risk evolution (1, = 1,07)

o? mean-reverts quickly towards 6, (half-life = 1 week),

which mean-reverts towards 8 (half-life = 1 year).
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-Filtration can use other potentially more informative data
sources. E.g., high-low ranges, intradaily realized volatility.
-1 use it to assess whether volatilities inferred from index
option prices (VIX) are accurate.
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