On estimating stock market volatility and crash risk

David S. Bates, Finance
ACMS Lecture
May 4, 2012

Outline
- Issue: estimating conditional distributions of stock market returns
- Early methodologies
- Filtration
- Challenges
- Approaches

Conditional distributions of financial returns y_{t+1}
If Gaussian, distribution summarized by
- conditional mean $\mu_t = E[y_{t+1}|\text{info at time } t] \approx 0 \text{ daily}$
- conditional standard deviation $\sigma_t = SD[y_{t+1}|\text{info at time } t]$

Non-Gaussian distributions are often modeled as a mixture of Gaussians.
Data: daily log-differenced S&P 500 futures prices
(roughly S&P percentage returns in excess of riskless T-bill rate)

Important properties of stock market returns
1) Unconditional and conditional distributions are not Gaussian.
 There are major outliers.

 Mean: 0.02%
 SD: 1.27%
 Max: 17.7%
 Min: -33.7%
 Skew: -2.36
 Xkurt: 80.9
 (log futures returns over 1982-2010)

2) We observe clusters of big (or small) absolute returns.

3) Markets are more volatile following market drops than following comparable market increases.

Some early moving-average approaches to modeling persistence in conditional variances of stock market returns
- Moving-window sample variance
- Riskmetrics (J.P. Morgan)
- GARCH
Notation
\[y_{t+1} = \ln(F_{t+1}/F_t) \] is the log-differenced futures price
\[\sigma_t = SD(y_{t+1}|\text{information available at time } t) \]

Moving-window sample variance
\[\hat{\sigma}_t^2 \approx \frac{1}{N} \sum_{n=1}^{N} y_{t+1-n}^2 \] (ignoring \(\mu_t \), which is \(\approx 0 \) daily)

RiskMetrics
\[\hat{\sigma}_t^2 \approx \sum_{n=1}^{\infty} w_n y_{t+1-n}^2 \] for \(w_n = .06(0.94)^n \)

Generalized autoregressive conditional heteroskedasticity (GARCH(1,1)):
\[\hat{\sigma}_t^2 - \theta \approx \alpha (y_t^2 - \theta) + \beta (\sigma_{t-1}^2 - \theta), \text{ where } \theta = E[\sigma_t^2]. \]

\(\hat{\sigma}_t \): 252-day sample volatility versus RiskMetrics

Moving-window \(\hat{\sigma}_t \) drops when '87 outliers leave the window, in 1988.

All of these are filtration algorithms \(\hat{\sigma}_t = f(\hat{\sigma}_{t-1}, y_t, ...) \) that capture substantial persistence in \(\hat{\sigma}_t \).

- Moving-window: \(\hat{\sigma}_t^2 \approx \hat{\sigma}_{t-1}^2 + \frac{1}{N} (y_t^2 - y_{t-N}^2) \)
- RiskMetrics: \(\hat{\sigma}_t^2 \approx 0.94 \hat{\sigma}_{t-1}^2 + 0.06y_t^2 \)
- GARCH(1,1): \(\hat{\sigma}_t^2 - \theta \approx \alpha (y_t^2 - \theta) + \beta (\sigma_{t-1}^2 - \theta) \) (includes RiskMetrics for \(\theta = 0, \alpha + \beta = 1 \))

Enormous variety of GARCH specifications
\(\hat{\sigma}_t = f(\hat{\sigma}_{t-1}, y_t, ...) \)
- additional lags
- different functional forms of \(f \)
- can allow different \(\hat{\sigma}_t \) updating for \(y_t > 0 \) versus \(<0 \).

ML estimation of parameters under the assumption
\[y_{t+1} = \mu + \sigma_t \tilde{\epsilon}_{t+1} \]
for \(\tilde{\epsilon}_{t+1} \) i.i.d. from some distribution, possibly fat-tailed.
\(\sigma_t \) is assumed known given the parameters & past data.
Stochastic volatility models of the joint evolution of \((y_t, \sigma_t)\)

Discrete-time

\[
y_{t+1} = \mu + \sigma_t \varepsilon_{t+1} \\
\ln \sigma_{t+1}^2 = \omega + \phi \ln \sigma_t^2 + \eta_{t+1}
\]

Continuous-time

\[
d \ln F_t = (\mu_0 + \mu_1 \sigma_t^2) dt + \sigma_t dW_{1t} + \gamma dN_t \\
d \sigma_t^2 = (\alpha - \beta \sigma_t^2) dt + \sigma_t dW_{2t}
\]

where \(dW_{1t}, dW_{2t}\) are Wiener shocks with correlation \(\rho < 0\);
\(dN_t\) is a Poisson counter with intensity \(\lambda_t = \lambda_0 + \lambda_1 \sigma_t^2\) that counts the occurrence of jumps of size \(\gamma \sim \mathcal{N}(\bar{y}, \delta^2)\); \(\text{Prob}(dN_t = 1) = \lambda_t dt\).

(1-factor model of volatility and tail risk)

Filtration

\[
p(y_{t+1}, \sigma_{t+1}|y_t, \sigma_t)\): joint transition density from time series model conditional upon knowing \(\sigma_t\) (which we don’t)
\[
Y_t = \{y_1, y_2, \ldots, y_t\}: \text{set of observed data}
\]
\[
p(\sigma_t|Y_t)\): what is known about \(\sigma_t\) at time \(t\)
\[
(\text{including } E[\sigma_t|Y_t])
\]

Then

\[
p(y_{t+1}, \sigma_{t+1}|Y_t)\): joint density conditional on \(Y_t\)
\[
p(y_{t+1}|Y_t)\): marginal density of \(y_{t+1}\) conditional on \(Y_t\)
\]

can be evaluated via

\[
p(y_{t+1}, \sigma_{t+1}|Y_t) = \int p(y_{t+1}, \sigma_{t+1}|y_t, \sigma_t)p(\sigma_t|Y_t)d\sigma_t
\]

1) **Approaches: special analytical cases**

Kalman filtration

1. If observed \(y_t\) and latent \(x_t\) have a jointly Gaussian evolution, \(x_t|Y_t\) is Gaussian and is summarized by its first two moments \(E(x_t|Y_t), Var(x_t|Y_t)\).
2. Updating the moments is regression-like and simple.

Markov chains

1. \(x_t\) can take on a finite number of values \(\{x_s, \ldots, x^S\}\), with filtered probabilities \(\pi_{t}^{s|t} = \text{Prob}[x_t = x^s|Y_t]\), \(s = 1, \ldots, S\).
2. Updating these probabilities involves summation rather than integration.

Challenges/difficulties

- How do we summarize the entire univariate function \(p(\sigma_t|Y_t)\) across all values of \(\sigma_t\) at each point in time \(t\)?
- How do we update an entire function, and summarize the result?
2) Approximate approaches

Use these approaches as approximations

- “unscented”, “robust” Kalman filtrations: summarize what is known about \(x_t \) as Gaussian even when structure is not Gaussian.
 - update its moments over time.
- discrete-state approximations to a continuously-distributed latent variable \(x_t \).

3) Monte Carlo filtration (particle filter)

1) Summarize \(p(x_t | Y_t) \) by a large number (e.g., 10,000) of draws from that density -- a random histogram.

2) Update to \(p(x_{t+1} | Y_{t+1}) \) by a large number of draws from \(p(x_{t+1} | x_t) \), with heavier posterior probability weights placed on those draws that make observed \(y_{t+1} \) more likely (relatively high \(p(y_{t+1} | x_{t+1}) \)).

3) Go to step 1.

4) Various refinements (resampling, auxiliary particle filters) to deal with distributions with low-probability outliers.

4) My approach: Bayes’ rule for characteristic functions

Define \(F(i\Phi, i\psi) = E[e^{i\Phi y + i\psi x}] = \int e^{i\Phi y + i\psi x} p(y, x)dydx \)

as the joint CF (and Fourier transform) of \(y \) and \(x \).

The characteristic function \(G(i\psi | y) = E[e^{i\psi x} | y] \) of \(x \) conditional upon \(y \) can be computed via inverse Fourier transforms of \(F \):

\[
G(i\psi | y) = \frac{\int F(i\Phi, i\psi) e^{-i\Phi y} d\Phi}{\int F(i\Phi, 0) e^{-i\Phi y} d\Phi}
\]

Posterior moments: \(E[x^m | y] = \frac{\partial^m G(\psi | y)}{\partial \psi^m} \bigg|_{\psi=0} \)

Applied using a form of robust Kalman filtration

- Start with \(G_{t|t}(i\psi) = E[e^{i\psi x_t} | Y_t] \) associated w/ \(p(x_t | Y_t) \)
- Update posterior mean & variance of \(x_{t+1} \) given \(y_{t+1} \)
- Use two-moment approximate distribution for \(G_{t+1|t+1}(i\psi) \)
- Continue

Advantages

- Don’t typically have analytical \(p(y_{t+1}, x_{t+1} | y_t, x_t) \) or \(p(y_{t+1}, x_{t+1} | Y_t) \) But for affine or quadratic time series models, we do have their joint characteristic functions.
- Can be used both for estimating time series parameters and for filtering latent variables.
Model-specific implications for volatility filtration

If y_{t+1} jumps and σ_{t+1} doesn’t, it is optimal to **downweight** large $|y_{t+1}|$’s impact on $\hat{\sigma}_{t+1} - \hat{\sigma}_t$ revisions. (Bates, RFS 2006)

SV: no y_{t+1} jumps
SVJ0: i.i.d. jumps in y_{t+1}
SVJ1: y_{t+1} jumps with intensity $\lambda_1 \sigma_t^2$

Filtration is different if σ_{t+1} jumps synchronously with y_{t+1}.

Bates (JFE, 2012) two-factor model of variance and crash risk evolution ($\lambda_t = \lambda_1 \sigma_t^2$)

σ_t^2 mean-reverts quickly towards θ_t (half-life = 1 week), which mean-reverts towards $\bar{\theta}$ (half-life = 1 year).

-Filtration can use other potentially more informative data sources. E.g., high-low ranges, intradaily realized volatility. -I use it to assess whether volatilities inferred from index option prices (VIX) are accurate.