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Conditional distributions of financial returns ࢚ା 

If Gaussian, distribution summarized by  

 conditional mean ௧ ௧ାଵ   daily 
 conditional standard deviation ௧ ௧ାଵ   
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              ௧       ௧ାଵ  
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Conditional distributions of financial returns ࢚ା 

Non-Gaussian distributions are often modeled as a mixture of 
Gaussians. 

        ௧ାଵ     

                 ௧ାଵ  

 

 

      

 

                          ௧ାଵ  
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Data:  daily log-differenced S&P 500 futures prices 
(roughly S&P percentage returns in excess of riskless T-bill rate)  
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Important properties of stock market returns 

1) Unconditional and conditional distributions are not Gaussian. 
    There are major outliers. 

Mean:  0.02% 
SD:      1.27% 
Max:    17.7% 
Min:   -33.7% 
Skew:  -2.36 
Xkurt:  80.9 

(log futures returns over 
1982-2010) 
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2) We observe clusters of big (or small) absolute returns.  

            
 
3) Markets are more volatile following market drops than 
following comparable market increases. 
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Some early moving-average approaches to modeling 
persistence in conditional variances of stock market returns 

 Moving-window sample variance 
 Riskmetrics (J.P. Morgan) 
 GARCH 
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Notation 
 ௧ାଵ ௧ାଵ ௧  is the log-differenced futures price 
     ௧ ௧ାଵ  

Moving-window sample variance 

 ௧ଶ ଵே ௧ାଵିଶேୀଵ      (ignoring ௧, which is  daily) 

RiskMetrics 
     ௧ଶ  ௧ାଵିଶஶୀଵ  for   

Generalized autoregressive conditional heteroskedasticity 
(GARCH(1,1)):   

    ௧ଶ ௧ଶ ௧ିଵଶ , where ௧ଶ . 
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 ௧:  252-day sample volatility versus RiskMetrics 

 

 
 
 
 

 
Moving-window ߪො௧ drops when ’87 outliers leave the window, in 1988. 
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All of these are filtration algorithms  ௧ ௧ିଵ ௧  that 
capture substantial persistence in ௧. 
 Moving-window:  ௧ଶ ௧ିଵଶ ଵே ௧ଶ ௧ିேଶ  

 
 RiskMetrics:  ௧ଶ ௧ିଵଶ ௧ଶ 

 
 GARCH(1,1):  ௧ଶ ௧ଶ ௧ିଵଶ  

 (includes RiskMetrics for ߠ ൌ ߙ ,0  ߚ ൌ 1) 
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Enormous variety of GARCH specifications ௧ ௧ିଵ ௧  
 -additional lags 
 -different functional forms of f 
 -can allow different ௧ updating for ௧ > 0 versus  <0. 

ML estimation of parameters under the assumption  
 ௧ାଵ ௧ ௧ାଵ  
for ௧ାଵ i.i.d. from some distribution, possibly fat-tailed. ௧ is assumed known given the parameters & past data. 
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Stochastic volatility models of the joint evolution of ࢚ ࢚  

Discrete-time   ௧ାଵ ௧ ௧ାଵ௧ାଵଶ ௧ଶ ௧ାଵ  

Continuous-time ௧  ଵ ௧ଶ ௧ ଵ௧ ௧௧ଶ ௧ଶ ௧ ଶ௧ 
where ଵ௧ ଶ௧ are Wiener shocks with correlation ; 

  ௧ is a Poisson counter with intensity ௧  ଵ ௧ଶ 
   that counts the occurrence of jumps of size ଶ ; 
  ௧ ௧ ௧ . 

(1-factor model of volatility and tail risk) 
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Filtration ௧ାଵ ௧ାଵ ௧ ௧ : joint transition density from time series 
model conditional upon knowing ௧ (which we don’t) 
 ௧ ଵ ଶ ௧ :  set of observed data ௧ ௧ :  what is known about ௧ at time t  
(including ௧ ௧ ) 

Then ௧ାଵ ௧ାଵ ௧ :  joint density conditional on ௧ ௧ାଵ ௧ :  marginal density of ௧ାଵconditional on ௧ 
can be evaluated via 

     ௧ାଵ ௧ାଵ ௧ ௧ାଵ ௧ାଵ ௧ ௧ ௧ ௧ ௧  
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Filtration uses Bayes’ rule to update ௧ ௧  recursively over 
time, given the latest observation ௧ାଵ: 

௧ାଵ ௧ାଵ ௧ାଵ ௧ାଵ ௧௧ାଵ ௧௧ାଵ ௧ାଵ ௧ ௧ ௧ ௧ ௧௧ାଵ ௧ ௧ ௧ ௧ ௧  

  I.e., ௧ ௧  & ௧ାଵ  ௧ାଵ ௧ାଵ  
Challenges/difficulties 

 How do we summarize the entire univariate function ௧ ௧  across all values of ௧ at each point in time t? 
 How do we update an entire function, and summarize the 

result? 
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1) Approaches:  special analytical cases 

Kalman filtration  

1. If observed ௧ and latent ௧ have a jointly Gaussian 
evolution,  ௧ ௧ is Gaussian and is summarized by its first 
two moments ௧ ௧ ௧ ௧ . 

2. Updating the moments is regression-like and simple. 
 

Markov chains 

1. ௧ can take on a finite number of values ଵ ௌ , with     
filtered probabilities ௧|௧௦ ௧ ௦ ௧], . 

2. Updating these probabilities involves summation rather than  
 integration. 
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2) Approximate approaches 

Use these approaches as approximations 

 “unscented”, “robust” Kalman filtrations:  summarize what 
is known about ௧ as Gaussian even when structure is not 
Gaussian. 
 -update its moments over time. 

 discrete-state approximations to a continuously-distributed 
latent variable ௧. 
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3) Monte Carlo filtration (particle filter) 

1) Summarize ௧ ௧) by a large number (e.g., 10,000) of 
draws from that density -- a random histogram. 
 

2) Update to ௧ାଵ ௧ାଵ) by a large number of draws from ௧ାଵ ௧ , with heavier posterior probability weights 
placed on those draws that make observed ௧ାଵ more 
likely (relatively high ௧ାଵ ௧ାଵ ). 
 

3) Go to step 1. 
 

4) Various refinements (resampling, auxiliary particle filters) 
to deal with distributions with low-probability outliers. 
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4) My approach:  Bayes’ rule for characteristic functions 

Define ௬ାந௫ ௬ାந௫  
as the joint CF (and Fourier transform) of y and x. 

 

The characteristic function ట௫  of x 
conditional upon y can be computed via inverse Fourier 
transforms of F: ି௬ି௬  

Posterior moments:   డீሺట|௬ሻడట టୀ  
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Applied using a form of robust Kalman filtration 

 Start with ௧|௧ ట௫ ௧  associated w/ ௧ ௧  
 Update posterior mean & variance of ௧ାଵ given ௧ାଵ 
 Use two-moment approximate distribution for ௧ାଵ|௧ାଵ  
 Continue 

 

Advantages 

 Don’t typically have analytical ௧ାଵ ௧ାଵ ௧ ௧  or ௧ାଵ ௧ାଵ ௧   But for affine or quadratic  time series 
models, we do have their joint characteristic functions. 

 Can be used both for estimating time series parameters and 
for filtering latent variables. 
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Model-specific implications for volatility filtration 

If ௧ାଵ jumps and ௧ାଵ doesn’t, it is optimal to downweight large ௧ାଵ ’s impact on ௧ାଵ ௧ revisions. (Bates, RFS 2006) 

 
SV:     no ௧ାଵ jumps 
SVJ0:  i.i.d. jumps in ௧ାଵ 
SVJ1:  ௧ାଵ jumps with  
       intensity ଵ ௧ଶ 

 
Filtration is different if ௧ାଵ jumps synchronously 
with ௧ାଵ. 
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Bates (JFE, 2012) two-factor model of variance and crash 
risk evolution ( ௧ ଵ ௧ଶ) 
 ,௧ (half-life = 1 week)ߠ ௧ଶ mean-reverts quickly towardsߪ 
 which mean-reverts towards ̅ߠ (half-life = 1 year). 

 

 ௧ߪ௧ܧ      
 
 
 
 ௧ߠ௧ඥܧ           
 
 
 
 
 
 
 
 ௧൯ߠ൫ඥܦܵ     ௧ሻߪ௧ሺܦܵ   ௧|one‐factor൧ (right scale)ߪ௧ൣܧ	‐	௧|two‐factor൧ߪ௧ൣܧ     
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-Filtration can use other potentially more informative data  
sources.  E.g., high-low ranges, intradaily realized volatility. 
-I use it to assess whether volatilities inferred from index 
option prices (VIX) are accurate. 
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