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1. Introduction
Does capital structure matter? If so, then how do
firms determine their optimal capital structure and
how fast do they adjust toward it? These ques-
tions have been central to an extensive corporate
finance literature. Many authors examine the relation-
ship between leverage and firm characteristics and
the speed of adjustment (SOA) toward the predicted
leverage emerging from such a relationship. There has
been a large variation in their estimated SOAs arising
predominantly from differences in their methodolo-
gies (see Appendix A), which suggests the need for
new evidence based on new techniques. One common
feature across all previous studies has been that they
rely on the time series of realized leverage changes in
estimating the SOA.

In this paper, we deviate from previous approaches
by providing the first market implied estimates of
SOA. More explicitly, we infer investors’ expectations
of leverage changes implicit in the prices of credit
instruments, namely, corporate bonds and credit
default swap (CDS) contracts, using a generalized
method of moments (GMM) approach. Credit spreads
depend not only on current leverage, but also on the
expected future leverage values (Collin-Dufresne and
Goldstein 2001), and thus contain expectations about

the speed at which investors expect a firm’s lever-
age to change. Our proposed methodology of infer-
ring SOA can be compared to the classical approach
of using option prices to imply stock return volatility,
instead of depending exclusively on realized returns.
This approach circumvents many difficult economet-
ric issues involved in capital structure tests using the
traditional time-series methodology (Shyam-Sunder
and Myers 1999, Chang and Dasgupta 2009, Flannery
and Hankins 2012).

We show that the CDS market implies a fairly rapid
adjustment process with an implied annual SOA of
26% toward the predicted leverage for our aggregate
sample.1 This predicted leverage is calculated from
a cross-sectional model that relates leverage to firm
characteristics and year and industry fixed effects. We
further document a wide variation in SOA toward
the predicted leverage across several partitions where
the interactions of the three major theories of capital
structure—pecking order, market timing, and trade-
off—suggest short-term leverage changes in the same
or opposite direction to long-term predicted leverage

1 An annual speed of adjustment of 26% translates into a half-life
of leverage deviation of 2.3 years (i.e., 41 − 00265203 = 005, or it takes
2.3 years for the firm to move half way toward its target).
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changes. Our results are consistent with an emerg-
ing synthesis of the three major capital structure the-
ories as seen in Fama and French (2005), Kayhan
and Titman (2007), Byoun (2008), and Huang and
Ritter (2009).

More specifically, we use a sample of 6,580 bonds
during 2002 to 2007 and 6,530 CDS contracts during
2000 to 2007 and establish a cross-sectional model of
bond and CDS spreads based on an extensive litera-
ture. To this model we add the (long-term) predicted
leverage as an additional factor. We find two results.
First, the coefficient of (current) leverage is relatively
unaffected. Second, the coefficient of predicted lever-
age is significant and larger than the coefficient of
leverage. On average, a 1% change in the predicted
leverage increases bond and CDS spreads by two to
three basis points in the aggregate sample. The effect
is further confirmed in a matched-bond experiment
that controls for all major determinants of bond risk.
These results are consistent with the evidence in Flan-
nery et al. (2012). However, this study differs from the
latter paper in many respects; in particular, we focus
on providing a methodology for estimating market
implied SOA and its implication for the three major
theories of capital structure.

Assuming a standard partial adjustment process of
(current) leverage to the predicted (long-term) lever-
age, we next derive an expression for the expected
average leverage over the life of a credit instru-
ment. This expression combines leverage and pre-
dicted leverage in proportions that depend on SOA
and time to maturity. We use the expected average
leverage in place of leverage in the credit spread
model, which is consistent with structural models
of dynamic leverage (Collin-Dufresne and Goldstein
2001). Using a GMM approach, we then analyze the
term structure of CDS contracts with one to five
years to maturity to obtain robust estimates of SOA.
Our SOA estimates of 26% annually in the aggre-
gate sample are approximately the middle of SOA
estimates from the previous literature summarized in
Appendix A. Thus, credit market participants seem
to agree neither with Fama and French (2002), who
conclude that the mean reversion of leverage toward
the predicted or target leverage is at a snail’s pace of
as little as 7%, nor with Flannery and Rangan (2006),
who conclude that the mean reversion is at a remark-
ably fast pace of as much as 38%.

We next examine whether leverage expectations
support multiple theories of capital structure. Recent
finance literature views the three major theories listed
above as plausible explanations of how capital struc-
ture evolves over time. These tests are similar in spirit
to those of Faulkender et al. (2012), who also examine
multiple theories. However, an important difference

is that our paper contributes to testing this hypothe-
sis not from the lens of the leverage time series, but
from using credit market expectations about leverage
evolution.

We start by identifying partitions of data based on
the implications of pecking order theory (whether a
firm has a current deficit or surplus), market tim-
ing theory (whether the stock is underpriced or over-
priced), and trade-off theory (whether the leverage is
below or above a target leverage—which we proxy by
the predicted leverage). We find the lowest SOA (13%)
in partitions where both pecking order and market
timing theories suggest (short-term) leverage changes
away from the (long-term) predicted leverage. Simi-
larly, we find medium SOA (30%) in partitions where
either the pecking order or the market timing theory
suggests leverage changes away from the predicted
leverage while the other suggests leverage changes in
the same direction. In the third case where both peck-
ing order and market timing theories suggest leverage
changes in the same direction as the predicted lever-
age, we find the highest SOA (36%). The combined
evidence, detailed in §5, supports our hypothesis that
investors’ expectations are formed in accordance with
all three theories.

We next use our methodology to shed new light
on a current controversy related to the inclusion or
exclusion of firm fixed effects in the predicted lever-
age model to estimate the SOA. Flannery and Rangan
(2006) and Lemmon et al. (2008) argue that firm fixed
effects capture firm-specific heterogeneity not cap-
tured by firm characteristics, which leads to a more
precise estimate of the predicted leverage. In sup-
port of this argument they show that the inclusion
of industry fixed effects explains a greater proportion
of the variability in leverage values and leads to a
higher SOA toward the presumed more precise esti-
mates of predicted leverage. However, others have
argued that the inclusion of firm fixed effects also cre-
ates a look-ahead bias with the traditional time-series
methodology and artificially increases SOA as lever-
age naturally reverts to its mean value based in part
on the future leverage values (Bond 2002, Parsons and
Titman 2009, Hovakimian and Li 2011). In compari-
son, our methodology examines investor expectations
at a given point in time and does not suffer from this
look-ahead bias. In fact, the inclusion of future infor-
mation that is not a part of investors’ expectations
should act like a noise with our methodology and
reduce the SOA toward a noisy predicted leverage.

Our tests based on credit spreads indicate that in
the aggregate sample SOA decreases from 26% to 17%
with the inclusion of firm fixed effects in the predicted
leverage model. This evidence implies that the SOA-
decreasing effects of the look-ahead bias dominate the
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SOA-increasing effects of capturing unobserved firm-
specific heterogeneity. Thus, SOA estimates of studies
employing firm fixed effects and using the traditional
time-series methodology are likely to be overstated.
Furthermore, in the same spirit, we show that SOA
decreases to 5% when initial leverage at the time of
inclusion of a firm in the Compustat database is used
as a measure of the predicted future leverage as sug-
gested by Lemmon et al. (2008).

We present several robustness tests of our proce-
dures. First, we show that all our results are robust
to using observed equity volatility, calculated asset
volatility, and implied equity volatility (from equity
options) in the credit spread models. Second, we show
that our SOA results are similar with different com-
binations of one-year, two-year, and five-year CDS
spreads. Third, one may question the t-statistics of the
implied SOA. To address this concern we use a boot-
strapping procedure. We find that the bootstrapped
values of the implied SOA using partial samples lie
within a small range of the reported values using
full samples. Fourth, we show that our methodology
leads to SOA estimates within size and industry par-
titions that are consistent with our priors.

In summary, our paper provides the first docu-
mented evidence on the implied speed of leverage
adjustment using credit spreads that depend on the
investors’ expectations of future leverage values at a
given point in time. This speed of adjustment toward
a long-term predicted leverage is 26%. In addition, we
provide critical credit-market evidence on the implied
SOA within several partitions to show that the alter-
nate pecking order, market timing, and trade-off theo-
ries all contribute to the evolution of capital structure
in investors’ minds. Finally, we show that the intro-
duction of firm fixed effects in the basic predicted
leverage model does not provide a better measure of
the leverage expectations of credit market investors,
and that the initial leverage is a poor proxy for the
predicted future leverage.

2. Model and Methodology
2.1. Leverage, Credit Spreads, and SOA
Structural models of default use contingent-claims
analysis to determine the value of risky securities.
In Merton’s (1974) model, the face value of a firm’s
debt acts as the strike price of a put option on the
firm’s assets that the bondholders have sold to the
stockholders. He assumes debt to be constant over
the life of the bond. Thus, traditional models specify
the following relation between credit spread (which
includes both bond and CDS spread) and leverage
(which equals the debt value divided by the asset
value):

Credit spread = f 4Leverage1Control variables50 (1)

The coefficient of leverage is always positive as a
higher debt level increases the value of the put option
(Collin-Dufresne et al. 2001, Cremers et al. 2008).

Collin-Dufresne and Goldstein (2001) and Goldstein
et al. (2001) build on the insight of Merton (1974) and
show that if leverage is expected to increase (decrease)
over future periods, then the default risk of bond will
be higher (lower) than what one may estimate by
assuming constant leverage. We combine their insight
with the implications of the capital structure theories.
These theories suggest that there is a certain expected
leverage based on current firm characteristics.2 How-
ever, because of the finite transaction costs of making
leverage changes, this expected or predicted lever-
age is a long-term goal toward which the firms move
gradually over time. Thus, the (long-term) predicted
leverage becomes another factor in the credit spread,
and the modified relation can be written as follows:

Credit spread

=f 4Leverage1Predicted leverage1Control variables50 (2)

The coefficient of predicted leverage should be
positive, because, all else constant, an increase in the
predicted leverage increases the expected leverage
during each period of the life of a credit instrument.
This in turn increases the value of the put option
whose exercise is triggered any time the asset value
falls below the debt value at that time.

We next address the relative coefficients of leverage
and predicted leverage in Equation (2). Intuitively,
these coefficients should depend on the relative
weights of the two factors in determining the aver-
age leverage over the life of the bond. Thus, for a
credit instrument with a constant notional amount at
risk at any time before maturity, Equation (2) can be
rewritten as

Credit spread

= f 4Expected average leverage1Control variables50 (3)

Following an extensive literature, the control vari-
ables for bond spread in Equations (2) and (3) include
the historical volatility of the firm, log total assets,
coupon rate, the number of years to maturity, bond
age, 10-year Treasury bond yield, term spread, default

2 For example, the pecking order theory suggests an increasing
expected leverage for firms with higher deficits typically associ-
ated with lower profitability. Similarly, the market timing theory
suggests an increasing expected leverage for firms with higher
stock valuations often measured by a higher market-to-book ratio.
Finally, the trade-off theory suggests an increasing expected lever-
age for firms with lower debt shields captured by the depreciation
to assets ratio, higher asset tangibility captured by the fixed assets
to total assets ratio, or higher growth opportunities captured by the
market-to-book ratio.
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spread, market volatility, and market return. The con-
trol variables for CDS spread drop coupon, years to
maturity, and bond age from this list. Appendix B
describes the motivation behind each control variable,
and Appendix C describes the calculation of all vari-
ables used in this paper.3

2.1.1. Determining Expected Average Leverage.
The leverage changes implied by a partial adjustment
model to a long-term predicted level can be mod-
eled as

Lev1 = � · PLev1 + 41 −�5 · Lev0 + �13 (4)

Lev0 is the (current) leverage, PLev1 is the (long-term)
predicted leverage estimate prevailing at time 1 based
on firm characteristics at time 0, � is the speed of
adjustment, and �1 is an error term. It follows by sub-
stitution that

Lev2 = �PLev2 +�41−�5PLev1 +41−�52Lev0

+41−�5�1 +�21

···

Levt−1 =
{

�PLevt−1 +�41−�5PLevt−2 +�41−�52PLevt−3

+···+�41−�5t−2PLev19+841−�5t−1Lev0

}

+
{

41−�5t−2�1 +41−�5t−3�2 +41−�5t−4�3

+···+�t−1

}

0 (5)

Standing at time 0 an investor can observe Lev0 and
knows predicted leverage for next period (PLev15.
The investor also knows speed of adjustment (�). We
assume that the investor’s best guess of predicted
leverage at subsequent time points is the same as pre-
dicted leverage at time 1. In other words, E04PLev�5=

PLev1, for all � > 1. It follows that

E04Levt−15 =
{

�+�41−�5+�41−�52
+···+�41−�5t−2

}

·PLev1 +41−�5t−1Lev0

= 41−41−�5t−15PLev1 +41−�5t−1Lev00 (6)

We denote average leverage over the t years starting
at time points 011121 0 0 0 1 t − 1 by Lev01 t−1. It follows

3 Empirical tests of credit spreads usually employ a levels model
specification implied by theory and specified here as Equations (7)
and (8). Sometimes an alternate changes model specification is
employed, in which case the same model is tested with first-order
differences of left- and right-hand variables. A changes model is
necessary if the underlying time series is nonstationary. However,
there is little econometric evidence for nonstationarity of credit
spreads that are sampled at a low frequency, such as quarterly fre-
quency in this paper. In unreported tests we sample BAA and AAA
bond yields at quarterly intervals and reject nonstationarity. Thus,
following Campbell and Taksler (2003), Yu (2005), Cremers et al.
(2008), Duarte et al. (2007), and Zhang et al. (2009), we employ the
levels model specification in this paper.

that the expected average leverage underlying a CDS
contract with t years to maturity can be written as

E04Lev01t−15

=
1
t

{

E04Lev05+E04Lev15+E04Lev25+···+E04Levt−15
}

=
1
t

{

1+41−�51
+41−�52

+···+41−�5t−1
}

Lev0

+
1
t

{

t−81+41−�51
+41−�52

+···+41−�5t−19
}

PLev11

which gives the final expression of

E04Lev01 t−15 =
1 − 41 −�5t

�t
Lev0

+

(

1 −
1 − 41 −�5t

�t

)

PLev10 (7)

Equation (7) shows that an increase in either � (the
speed of adjustment) or t (the time to maturity)
increases the coefficient of PLev1 and decreases the
coefficient of Lev0.

2.1.2. Estimating Implied SOA. We illustrate the
importance of predicted leverage in determining both
bond and CDS spreads as given by Equation (2).
However, for several reasons described in §3.2, we
estimate the implied �, or SOA, only from CDS
spreads. First, we substitute the values for expected
average leverage from Equation (7) into Equation (3).
Second, assuming the usual linear structure for Equa-
tion (3), taking the relevant control variables from pre-
vious literature, and knowing the values of leverage,
predicted leverage, and time to maturity, we use non-
linear GMM to estimate � from a panel data set of
CDS contracts with different maturities using the fol-
lowing system of equations:

CDSt1
= c11efflev ·E04Lev01t1−15+c11vol ·VOL

+c11logast ·LOGAST+c11rf ·RF

+c11trmsprd ·TRMSPRD+c11defsprd ·DEFSPRD

+c11vix ·VIX+c11mktret ·MKTRET+c11const +�t11

CDSt2
= c21efflev ·E04Lev01t2−15+c21vol ·VOL

+c21logast ·LOGAST+c21rf ·RF

+c21trmsprd ·TRMSPRD+c21defsprd ·DEFSPRD

+c21vix ·VIX+c21mktret ·MKTRET+c21const +�t21

000

CDStn
= cn1efflev ·E04Lev01tn−15+cn1vol ·VOL

+cn1logast ·LOGAST+cn1rf ·RF

+cn1trmsprd ·TRMSPRD+cn1defsprd ·DEFSPRD

+cn1vix ·VIX+cn1mktret ·MKTRET

+cn1const +�tn 0 (8)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
5.

24
5.

12
6]

 o
n 

12
 S

ep
te

m
be

r 
20

14
, a

t 0
8:

03
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Elkamhi, Pungaliya, and Vijh: What Do Credit Markets Tell Us About the Speed of Leverage Adjustment?
Management Science 60(9), pp. 2269–2290, © 2014 INFORMS 2273

The firm-specific subscripts have been suppressed in
this system of equations for expositional reasons. We
denote the CDS spreads for contracts with t11 t21 0 0 0 1 tn
years to maturity by CDSt1

1CDSt2
1 0 0 0 1CDStn

; the his-
torical volatility and log assets of the firm by VOL and
LOGAST, respectively; and the 10-year Treasury bond
yield, term spread, default spread, market volatility,
and market return by RF, TRMSPRD, DEFSPRD, VIX,
and MKTRET, respectively. Each control variable is
multiplied by a coefficient with the obvious notation.

2.2. Estimation of Predicted Leverage
An extensive literature on tests of trade-off theory
estimates target leverage by a panel regression of
leverage in period t + 1 on firm characteristics that
proxy for the trade-off between costs and benefits of
leverage in period t (Parsons and Titman 2009). The
typical model specification is as follows:

Leveragei1 t+1 =Xi1 t�+ �i1 t0 (9)

Here Xit is a vector of firm characteristics. Following
Titman and Wessels (1988), Kayhan and Titman (2007),
and Harford et al. (2009), we include the following
firm characteristics as shown in Appendix D: earnings
before interest and taxes (EBIT), market-to-book ratio,
log total assets, depreciation, fixed assets, research and
development (R&D) dummy, R&D expense, selling
expense, and a rated dummy. In addition, we include
various fixed effects as described below. All of these
variables are defined in Appendix C, and their sum-
mary statistics are reported in Appendix D. Parsons
and Titman (2009) describe the motivation behind the
inclusion of each variable in Equation (9) in consider-
able detail. We measure leverage as the sum of total
long-term debt and total debt in current liabilities
scaled by total assets.

Panel B of Appendix D reports three different
empirical estimates of Equation (9) using different
specifications of vector Xit and conventional methodo-
logies. Model (D.1) constitutes our base model em-
ployed throughout this paper, and it includes year and
industry fixed effects in addition to the nine firm char-
acteristics listed above. It employs a Tobit regression
that constrains the leverage to lie between 0 and 1 (fol-
lowing Kayhan and Titman 2007). We use a sample
of 100,945 firm-years for which relevant data exist on
Compustat during 1967 to 2007. We find that the coeffi-
cients of all nine firm characteristics are consistent with
previous literature (Titman and Wessels 1988, Rajan
and Zingales 1995, and Flannery and Rangan 2006; not
all papers include all characteristics). Note that firm
profitability has a negative coefficient, which many
consider to be inconsistent with trade-off theory, and
market-to-book ratio also has a negative coefficient,
which is consistent with both trade-off theory and

market timing theory.4 Using an extensive simulation
analysis, Chang and Dasgupta (2006) show that the
coefficient of profitability is most likely to be explained
by pecking order theory, and the coefficient of market-
to-book ratio is more likely to be explained by mar-
ket timing theory than by trade-off theory. Following
their evidence, one may argue that the fitted values
obtained from model (D.1) are predicted leverage val-
ues rather than target leverage values. Predicted lever-
age is a possible implication of multiple theories.

Model (D.2) next includes all firm characteristics
and year fixed effects but drops industry fixed effects.
It is an intermediate step to the last model, (D.3),
which adds firm fixed effects. Chang and Dasgupta
(2006) and Lemmon et al. (2008) show that indus-
try fixed effects are among the most influential deter-
minants of firm leverage, and it would be hard to
argue that their inclusion creates a significant look-
ahead bias. In comparison, Bond (2002), Parsons and
Titman (2009), and Hovakimian and Li (2011) argue
that the inclusion of firm fixed effects creates a look-
ahead bias in panel data and mechanically increases
SOA. Thus, by testing both models we can separate
the SOA changes resulting from not including indus-
try fixed effects and including firm fixed effects.

Model (D.2) is estimated using a Tobit regression
similar to model (D.1), and model (D.3) is estimated
using the panel regression approach of Flannery and
Rangan (2006). There is considerable similarity of
coefficients between models (D.1) and (D.2). However,
the coefficients in model (D.3) are generally smaller in
magnitude compared to model (D.1), although they
have the same signs except for the R&D dummy (sim-
ilar to results documented by Flannery and Rangan
2006). This finding is consistent with that of Lemmon
et al. (2008), who show that in the presence of firm
fixed effects, the explicitly included firm characteris-
tics explain a lower proportion of the variability in
firm leverage.

3. Data Sources
3.1. Bond Sample
We obtain bond prices and yields from the Trans-
action Reporting and Compliance Engine (TRACE)
database from 2002 to 2007. We follow the cleaning
procedure outlined in Dick-Nielsen (2009). We then

4 The static trade-off theory implies a positive coefficient of prof-
itability because profitable firms can support higher leverage
without distress. Pecking order theory, on the other hand, implies
a negative coefficient of profitability as more profitable firms
either retain their profits or use them to repurchase debt before
equity. In addition, trade-off theory implies a negative coefficient
of market-to-book ratio because growth firms cannot support high
leverage, but market timing theory also implies the same result
because higher market-to-book ratio is associated with greater stock
valuation and stock issues.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
5.

24
5.

12
6]

 o
n 

12
 S

ep
te

m
be

r 
20

14
, a

t 0
8:

03
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Elkamhi, Pungaliya, and Vijh: What Do Credit Markets Tell Us About the Speed of Leverage Adjustment?
2274 Management Science 60(9), pp. 2269–2290, © 2014 INFORMS

merge the cleaned TRACE database with the Mergent
Fixed Income Securities Database to create a working
sample of regular bonds. Bonds that are convertible,
putable, callable, asset backed, have floating coupons
or credit enhancements, are not issued in U.S. dollars,
or are not domiciled in the United States are excluded.
In addition, bonds that are not senior unsecured obli-
gations of the issuing firm or have less than one year
to maturity are also excluded. Although these restric-
tions reduce the sample size, they ensure that bond
yields under consideration are comparable with each
other and their spreads are not explained by unique
bond characteristics.

The TRACE database is constructed by aggregating
bond transactions. Because some bonds trade mul-
tiple times a day whereas others do not trade for
several days, it does not contain bond prices at reg-
ular intervals. We transform the cleaned transaction
database into an end-of-day bond yield database by
trade-weighting the yields of individual transactions
during each trading day (Bessembinder et al. 2009).
Finally, we calculate bond spreads by subtracting con-
stant maturity Treasury yields, which are interpolated
to match with the exact bond maturity.

We merge this cleaned bond spread database with
the quarterly Compustat database. We require that the
necessary variables to estimate the predicted leverage
and the required control variables are available for
included bonds. Finally, we sample bond spreads at
quarterly intervals. We pick the first available bond
spread after the quarterly earnings announcement
date. However, if no bond spread is available within
15 days of the announcement date, we do not include
an observation for that quarter. If a firm has multiple
bonds, then we include all bonds with available bond
spread data. Thus, we control for two-way clustering
across firms and quarters. The final sample contains
6,580 bond-quarters for 1,581 bonds or 331 firms dur-
ing the second quarter of 2002 (2002-Q2) to the fourth
quarter of 2007 (2007-Q4).

3.2. CDS Sample
CDS spread can be defined as the premium paid to
insure the loss of value on the underlying debt obli-
gation against prespecified credit events. This spread
reflects default risk, and it is a function of the prob-
ability of default and the loss-given-default of the
underlying obligation (Longstaff et al. 2005, Ericsson
et al. 2005). This contrasts with the yield spreads of
corporate bonds, which reflect not only default risk,
but also the risk-free benchmark yield and the differ-
ential tax treatment and liquidity of corporate bonds
versus Treasury bonds (Cao et al. 2010). There are sev-
eral additional reasons why CDS contracts are better
suited than bonds for testing some of our hypothe-
ses. First, whereas bonds age over time, CDS spreads

are quoted daily for a fixed term to maturity. Second,
unlike corporate bond spreads that are recorded by
TRACE only when the underlying bond trades, CDS
quotes are available on a daily basis for a large num-
ber of firms. Third, it may be argued that due to
greater liquidity, CDS contracts react faster to new
information than bonds. In summary, the CDS spread
is a cleaner and timelier measure of default risk of the
firm over a given time to maturity than bond spread.
The inclusion of CDS data thus increases the reliabil-
ity of our results.

We collect single-name CDS spreads from a com-
prehensive database compiled by Markit. Daily CDS
spreads reflect the average quotes contributed by
major market participants. This database has already
been cleaned to remove outliers and stale quotes. We
require that two or more banks quote a CDS spread
to include it as an observation (Cao et al. 2010).

Our sample includes U.S. dollar-denominated CDS
contracts on senior unsecured obligations with modi-
fied restructuring (MR), which happen to be the most
liquid CDS contracts in the U.S. market (Duarte et al.
2007). We attempt a fair representation of the term
structure of CDS spreads by including one-year, two-
year, and five-year contracts in our measurement of
implied SOA. Finally, we use the average CDS spread
calculated over five trading days after the quarterly
earnings announcement date. Our final sample con-
tains 6,530 CDS-quarters for 447 firms during 2000-Q4
to 2007-Q4.

3.3. Summary Statistics of the Bond and
CDS Samples

Panel A of Table 1 reports the summary statistics for
the sample of 6,580 bonds during 2002-Q2 to 2007-Q4.
The median bond and firm characteristics are as fol-
lows: bond spread, 84 basis points; time to matu-
rity, 6.0 years; bond age, 4.0 years; coupon, 6.3% per
annum; firm assets, $18.4 billion; and historic equity
volatility, 23.2% annually. The median macroeconomic
variables are as follows: 10-year Treasury bond yield,
446 basis points; term spread, 31 basis points; default
spread, 91 basis points; market volatility, 14.6% annu-
ally; and market return, 14.7%. The median predicted
leverage is 27.5% with an interquartile range of 7.6%.

Panel B of Table 1 shows the sample of 6,530 CDS
contracts with five years to maturity during 2000-Q4
to 2007-Q4. This sample has many firm characteris-
tics and macroeconomic variables similar to the bond
sample. However, the median CDS spread is 56 basis
points (compared to 84 basis points for bonds), and
the underlying firms have median assets of $6.1 bil-
lion (compared to $18.4 billion for bonds). The CDS
spreads are lower because these are mainly compen-
sation for default risk, unlike bond spreads that also
include tax and liquidity effects. The lower firm assets
for the CDS sample suggest that CDS contracts are
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Table 1 Summary Statistics

Variable Mean Q1 Median Q3

Panel A: Bond sample—levels model—6,580 observations
Bond spread—all (basis points) 116 56 84 135
Leverage 4%5 2909 2004 2701 3702
Predicted leverage—no firm fixed effects 4%5 2805 2404 2705 3200
Initial leverage 4%5 1806 108 1305 2805
Historical equity volatility—annualized 4%5 2503 1805 2302 2907
Assets ($ billions) 4509 704 1804 3807
Coupon 4%5 602 503 603 701
Years to maturity (years) 809 303 600 905
Bond age (years) 402 200 400 600
10-year Treasury bond yield (basis points) 449 418 446 473
Term spread (basis points) 75 2 31 152
Default spread (basis points) 89 81 91 94
Market volatility—VIX 4%5 1503 1200 1406 1609
Market return 4%5 1400 904 1407 1900

Panel B: CDS sample—6,530 observations
5-year CDS spread (basis points) 113 30 56 141
Leverage 4%5 2809 1807 2604 3606
Predicted leverage—no firm fixed effects 4%5 2802 2309 2706 3204
Initial leverage 4%5 2109 107 1505 3307
Historical equity volatility—annualized 4%5 3002 2200 2801 3600
Historical asset volatility—annualized 4%5 2608 1908 2408 3104
Implied equity volatility—annualized 4%5 3104 2302 2902 3704
Assets ($ billions) 1209 301 601 1404
10-year Treasury bond yield (basis points) 444 415 445 472
Term spread (basis points) 101 10 69 203
Default spread (basis points) 94 82 91 103
Market volatility 4%5 1703 1208 1504 2002
Market return 4%5 1009 506 1400 1805
1-year CDS spread—5,684 cases 62 9 20 60

(basis points)
10-year CDS spread—5,632 cases 129 44 76 160

(basis points)

Notes. Panel A reports the summary statistics for the bond sample, and
panel B reports the same for the CDS sample. The sample period for bonds
starts in 2002-Q2 and ends in 2007-Q4. We include bonds with all maturities
and credit ratings for which the required quarterly data are available. The CDS
sample period starts in 2000-Q4 and ends in 2007-Q4. We include MR-class
CDS contracts with constant five years to maturity for which the required
quarterly data are available. Appendix C defines the variables analyzed, and
Appendix D describes the models used to estimate predicted leverage. For
brevity, we report only predicted leverage statistics from model (D.1).

also traded on smaller firms with less liquid bonds.
This may explain why the historical equity volatility,
historical asset volatility, and implied equity volatil-
ity of firms underlying the CDS sample equal 28.1%,
24.8%, and 29.2% per annum, respectively, higher
than the historic equity volatility of 23.2% for firms
underlying the bond sample. In the following sections
we present analyses of both bond and CDS spreads.

4. Credit Spreads, Predicted Leverage,
and Speed of Adjustment

4.1. Do Bond and CDS Markets Price
Predicted Leverage?

Table 2 shows three different model specifications for
both bond and CDS spreads. The first sample includes

6,580 bond-quarters for which the relevant data are
available. Given the pooled time-series and cross-
sectional nature of this sample, we base our inferences
on two-way clustered t-statistics. Model (2.1) shows
that previously known and tested firm-specific, bond-
specific, and macroeconomic variables give an R2 of
0.511. In addition, the coefficients of most variables
are in line with previous literature as explained in
§2.2. The coefficient of leverage equals 1.48 with a
t-statistic of 4.05.

Model (2.2) shows that in a univariate regression
predicted leverage is a highly significant determinant
of bond spread with a t-statistic of 3.87 and an R2

of 0.081. Model (2.3) next includes all the variables
from (2.1) based on previous literature plus predicted
leverage. The coefficient of leverage goes down only
slightly from 1.48 to 1.31, significant at 1% level. The
coefficient of predicted leverage equals 2.47, larger
than the coefficient of leverage, and significant at 1%
level. The addition of predicted leverage increases the
R2 from 0.511 to 0.528. Although that is a significant
increase in R2, it understates the contribution of pre-
dicted leverage as the incremental R2 of any variable
in a multivariate regression depends on the order in
which the variables are added to the regression. These
bond market results are consistent with those of Flan-
nery et al. (2012), who use a changes model and find
that bond spreads anticipate future leverage changes.

Models (2.4), (2.5), and (2.6) show a similar but
stronger role for both leverage and predicted lever-
age in CDS spreads. This sample includes 6,530 CDS-
quarters with five years to maturity for which the
relevant data are available. Leverage has a coefficient
of 3.21 in the traditional specification without pre-
dicted leverage in (2.4). In comparison, leverage has a
coefficient of 2.79 and predicted leverage has a coef-
ficient of 3.09 in the enhanced specification of (2.6).
All coefficients are significant at 1% level. The R2

increases from 0.481 with the traditional specification
to 0.501 with the enhanced specification that includes
predicted leverage.

Model (2.3) suggests that, holding other things
constant, and on average, bond spread increases by
2.47 basis points for a 1% increase in predicted lever-
age. Model (2.6) suggests that CDS spread increases
by 3.09 basis points for a 1% increase in predicted
leverage. (Note, however, that predicted leverage has
about half the cross-sectional variance of leverage as
shown in Table 1.) The combined results suggest that
predicted leverage is a significant factor in the pricing
of credit spreads. In other words, credit market partic-
ipants believe that leverage converges to a predicted
value based on a cross-sectional model over some
time horizon. In addition, following Equation (7), the
ratio of coefficients of predicted leverage and leverage
should equal 4�t−41−41−�5t55/41−41−�5t5. Whereas
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Table 2 Does the Credit Market Price Predicted Leverage?

Dependent variable: Dependent variable:
Bond spread CDS spread

Independent variable (2.1) (2.2) (2.3) (2.4) (2.5) (2.6)

Leverage 1048 1031 3021 2079
440055 430965 4100505 490855

Predicted leverage 4088 2047 6058 3009
430875 430795 470505 450715

Historical volatility of firm 5020 4099 6089 6061
480615 480415 4140465 4140585

Log total assets −10033 −13000 −9070 −11088
4−30575 4−40555 4−20655 4−30315

Coupon 17027 13087
450375 440885

Years to maturity 1063 1067
460735 460905

Bond age 0077 1014
400595 400895

10-year Treasury bond yield −0014 −0014 −0008 −0009
4−10095 4−10085 4−00565 4−00635

Term spread −0049 −0045 −0027 −0025
4−60335 4−50975 4−40945 4−40855

Default spread −1003 −0098 −0050 −0054
4−30995 4−30925 4−10465 4−10655

Market volatility 4VIX5 6065 6044 2051 2043
450605 450355 430405 430475

Market return 1017 1010 0087 0082
430295 430095 420615 420615

Constant −11093 −23049 −29046 −44036 −72037 −85071
4−00235 4−00725 4−00595 4−00825 4−30305 4−10625

Adjusted R2 00511 00081 00528 00481 00102 00501
Observations 6,580 6,580 6,580 6,530 6,530 6,530

Notes. This table examines the effect of predicted leverage on bond and CDS spreads using quarterly data. The sample period for bonds starts in 2002-Q2 and
ends in 2007-Q4. We include bonds with all maturities and credit ratings for which the required quarterly data are available. The CDS sample period starts in
2000-Q4 and ends in 2007-Q4. We include MR-class CDS contracts with constant five years to maturity for which the required quarterly data are available.
Models (2.1), (2.2), and (2.3) thus use the bond spread as the dependent variable, and models (2.4), (2.5), and (2.6) use the CDS spread. Appendix C defines
the variables analyzed, and Appendix D describes the models used to estimate the predicted leverage. In this table we use predicted leverage from model (D.1),
which includes industry and year fixed effects, but no firm fixed effects. In parentheses we report two-way clustered t-statistics that adjust for clustering at the
firm and the calendar quarter levels. The t-statistics greater than 2.58, 1.96, and 1.64 are statistically significant at the 1%, 5%, and 10% levels, respectively.

the bond sample contains a mix of bonds with vari-
ous maturities t, the CDS sample has contracts with
a fixed maturity of t = 5 years. Thus, for the CDS
sample it is possible to calculate the speed of adjust-
ment � from the ratio of coefficients, which equals
3009/2079 = 10108. This implies a speed of adjustment
of 0.384, or 38.4% per annum. However, this inference
is subject to a few caveats.

First, this SOA value is obtained by applying an
ordinary least squares (OLS) procedure to CDS con-
tracts of a single five-year maturity. We instead prefer
to estimate SOA by applying the GMM procedure
to CDS contracts of different maturities as shown
by Equation (8). This is because relying on the term
structure of CDS spreads effectively spans the short
and long ends of the maturity spectrum and thus
contains more information on investors’ expectations

than one single maturity. In a parallel context, Pan
and Singleton (2008) show that more reliable implied
parameter values are obtained by effectively span-
ning the term structure of CDS maturities (in their
case, default intensities and recovery rates implied by
credit spreads of sovereign CDS contracts). Second,
although not applicable to our methodology, previous
literature shows that the OLS and GMM approaches
can give different answers even when applied to
a single-equation system, in which case the GMM
approach is preferred. For example, Lemmon et al.
(2008) find that estimating the exact same time-series
model with OLS and GMM gives SOA values of 39%
and 25% (see their Table 6). Third, estimating SOA
from the ratio of coefficients of predicted leverage and
leverage using a single-maturity CDS contract can
also be subject to a large estimation error, especially in
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small subsamples of data, and especially if the coef-
ficient of leverage that appears in the denominator is
relatively small.5

4.2. The Magnitude of Predicted Leverage
Effect Revisited

The regression approach of Table 2 is the most com-
mon approach followed in the literature to test the
cross-sectional determinants of credit spread. Part of
the reason is its tractability and its ability to accom-
modate multiple factors. However, this approach has
the limitation that it assumes a linear specification of
the underlying structural model. It is possible that the
effect of leverage and volatility enters the bond spread
in a nonlinear fashion as in any option pricing model.
For robustness, we report an alternate experiment to
measure the magnitude and statistical significance of
the predicted leverage effect using a matched-bond
experiment.

To understand the matching procedure, consider
panel A of Table 3. We partition the aggregate sam-
ple into four quartiles based on predicted leverage.
The dispersion in predicted leverage across these par-
titions is quite significant, with a mean value of 36.9%
in the top quartile and 21.8% in the bottom quartile
(medians, 35.4% and 22.3%). Next, for each bond in
the bottom quartile, we select a bond of a different
firm in the top quartile that is its closest match on
leverage. This procedure gives 1,810 matched pairs
of bonds with similar leverage but a large differ-
ence between their predicted leverage. For a proper
examination, we also report the distance to default
and credit ratings, the other two determinants of
default risk.

Panel A of Table 3 shows that the bond spread aver-
ages 81.2 basis points for the low predicted leverage
quartile and 155.2 basis points for the high leverage
quartile (medians, 66.0 and 121.9 basis points). The
difference of 74.0 basis points between the average
values and 55.9 basis points between the median val-
ues of bond spread is highly significant in economic
terms, especially compared to the average spread
of 116 basis points for all bonds (median, 84 basis
points). Part of the reason may be that matching on
leverage alone does not match well on the other two
determinants of default risk.

Although leverage is a principal source of default
risk, structural credit risk models suggest that volatil-
ity also has a material impact on bond spreads. Thus,
to correctly account for default risk, both volatility and
leverage should be considered together. Bharath and

5 We confirm this statement by running a Monte-Carlo experiment
that shows that the standard errors in parameter estimates are com-
pounded by taking ratios due to Jensen’s inequality and can lead
to significant variation in the estimated SOA.

Table 3 The Magnitude Issue: How Large Is the Predicted Leverage
Effect on Bond and CDS Spreads After Controlling for Other
Important Determinants of Default Risk?

Low predicted High predicted
leverage quartile leverage quartile

Difference Difference
Variables Mean Median Mean Median in means in medians

Panel A: Matched by leverage (N = 11810)
Predicted 2108 2203 3609 3504

leverage
Leverage 2603 2306 2606 2308
Distance to 1109 1108 605 606

default
Credit rating 709 800 1009 1100
Bond spread 8102 6600 15502 12109 74.0∗ 55.9∗

Panel B: Matched by distance to default (N = 11810)
Predicted 2108 2203 3601 3501

leverage
Distance to 1109 1108 1008 1102

default
Leverage 2603 2306 2303 2109
Credit rating 709 800 908 1000
Bond spread 8102 6600 10300 8901 21.8∗ 23.1∗

Panel C: Matched by credit rating (N = 11469)
Predicted 2200 2205 3806 3806

leverage
Credit rating 806 800 806 800
Leverage 2602 2209 2706 2605
Distance to 1108 1107 707 802

default
Bond spread 8602 7201 11208 10304 26.6∗ 31.3∗

Panel D: Matched by distance to default and credit rating (N = 11469)
Predicted 2200 2205 3801 3605

leverage
Distance to 1108 1107 902 901

default
Credit rating 806 800 806 800
Leverage 2602 2209 2407 2307
Bond spread 8602 7201 10801 9504 21.9∗ 23.3∗

Notes. We start with the sample of bonds as described in Table 1. We mea-
sure the effect of predicted leverage on bond spread after controlling for
other variables known to be strongly associated with default (or bankruptcy)
risk. These variables are leverage, distance to default, and credit ratings. We
do this by controlling for one variable at a time in a matching experiment.
Each quarter we arrange all bonds with relevant information into quartiles
formed by predicted leverage. For each bond in the bottom quartile of pre-
dicted leverage, we then select a bond of a different firm in the top quartile of
predicted leverage that is the closest match on leverage in panel A, distance
to default in panel B, credit rating in panel C, and both distance-to-default and
credit rating in panel D. All variables and their units are defined in Appendix C.
The bond spreads are expressed in basis points. The significance levels of
differences in means and medians are based on a t-test and the Wilcoxon
signed-rank test.

∗Statistically significant at the 1% level.

Shumway (2008) use the distance to default measure
that captures both factors in an option pricing frame-
work. They find that this measure captures the default
risk in bonds. Panel B of Table 3 matches firms on dis-
tance to default, which implicitly matches them rea-
sonably well on leverage and credit rating. However,
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presumably because of the difference between the
predicted leverage of the two subsamples, their bond
spreads continue to differ substantially. The difference
between average bond spreads in the top and bottom
quartiles of predicted leverage equals 21.8 basis points
(median, 23.1 basis points).

Panel C of Table 3 does a similar matching by credit
rating. Given the discrete nature of credit ratings, the
matching is very close in this case. Yet the difference
between the average and median bond spreads equals
26.6 and 31.3 basis points in the top and bottom quar-
tiles of predicted leverage, respectively.

Finally, panel D of Table 3 explicitly matches by
both the distance to default and credit rating, which
implicitly matches by leverage (and volatility) as
well. Despite this close matching on all three previ-
ously known determinants of default risk, the differ-
ences between bond spreads equal 21.9 and 23.3 basis
points, not much different from panels B and C. This
is likely to be the best estimate of the incremental
effect of predicted leverage in a matched-bond set-
ting. An interquartile spread of 3605 − 2205 = 1400% in
predicted leverage is associated with an incremental
bond spread of 22 or 23 basis points. Given a median
time to maturity of six years from Table 1, which may
translate into bond duration of five years, this differ-
ence in spreads corresponds to a difference in bond
prices of the order of 1.10%. The combined results
of Tables 2 and 3 thus provide strong evidence that
higher predicted leverage is associated with higher
default risk of corporate bonds.

4.3. Estimating SOA in the Aggregate Sample
of CDS Contracts

We now estimate SOA toward the predicted leverage,
or �, using a nonlinear GMM approach and combin-
ing CDS contracts of multiple maturities. We estimate
the model summarized by the system of Equations (8)
in §2.1. A question arises as to which CDS contracts
should be included in this system. We argue that it
should be one-year, two-year, and five-year CDS con-
tracts for several reasons. First, although the five-year
CDS contract is the most liquid and the most inves-
tigated CDS contract in previous literature, one-year
and two-year CDS contracts are also fairly liquid. Sec-
ond, we prefer to limit CDS maturity to five years
because the expected gap between leverage and pre-
dicted leverage after five years is quite small (one-
third of the original gap if � = 0020 and one-fourth if
�= 0025). Previous literature argues that due to trans-
action costs, the expected leverage adjustment after
the gap reduces to that level is quite small (Fischer
et al. 1989, Graham and Harvey 2001). Third, using
one-year, two-year, and five-year CDS contracts effec-
tively spans the short and long ends of the matu-
rity spectrum. For expositional reasons, however, we

present our main results relating to SOA with only
one-year and five-year CDS contracts in Tables 4, 6,
and 7. Later in Table 8 we show that the � values
estimated using other combinations of one-year, two-
year, and five-year CDS contracts are similar to the �
values reported for the combination of one-year and
five-year CDS contracts.

Our sample includes 5,828 firm-quarters for which
the data on both one-year and five-year CDS spreads
are available. The results are shown in Table 4. We
find a reasonable similarity between the coefficients
of two firm-specific variables (historical volatility and
log assets) and five macroeconomic variables (Trea-
sury bond yield, term spread, default spread, mar-
ket volatility, and market return) for five-year CDS
spreads estimated using the GMM in Table 4 and the
OLS in Table 2. Furthermore, we find reasonable cor-
respondence between the coefficients of control vari-
ables for one-year and five-year CDS spreads within
Table 4. Finally, the coefficient of effective leverage
(measured by expected average leverage) for five-
year CDS spreads equals 4.50, which is 2.5 times
the coefficient of effective leverage for one-year CDS
spreads. This should be expected since longer-term
CDS spreads are more sensitive to firm leverage due
to the put option feature. Together these observations
add credibility to our GMM estimation procedure.

Table 4 focuses on the implied SOA, which we esti-
mate to be 0.259 in the aggregate sample of CDS
spreads. Notice we have actually estimated a risk-
adjusted value of SOA implicit in the prices of credit
instruments. This is no different from implied stock
price distributions from option prices (Rubinstein
1994), implied financial distress costs from bond
spreads (Almeida and Philippon 2007), or implied
default probabilities and recovery rates from CDS
spreads (Pan and Singleton 2008), all of which are
risk-adjusted estimates of the corresponding true val-
ues. However, there is no reason to believe that in
our case the implied SOA is systematically higher or
lower than the true SOA, or �∗.6

Our estimate of implied SOA is roughly in the mid-
dle of time-series estimates of SOA from previous lit-
erature. It is higher than estimates from Fama and
French (2002), Kayhan and Titman (2007), and Huang

6 Consider the situation where leverage is below predicted lever-
age, and suppose that buyers and sellers of credit risk agree on �∗.
A risk-averse buyer of credit insurance may be afraid that leverage
will not adjust quickly enough, whereas a risk-averse seller may
be afraid that it will adjust too quickly. The former would assess
�< �∗, and the latter would assess �> �∗. If we have no reason to
believe that the buyers are systematically more or less risk-averse
than the sellers, then we would expect �= �∗ to prevail in equi-
librium. A similar situation is expected when leverage is above
predicted leverage, except that in this case the buyers and sellers
are afraid for the opposite reasons.
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Table 4 Implied Speed of Leverage Adjustment 4�5 in the Aggregate Sample Using Nonlinear GMM

Estimated � from one-year and five-year CDS contracts

Independent variable Coefficient (t-statistic) Independent variable Coefficient (t-statistic)

� (risk-neutral speed of leverage adjustment) 00259 (14.17)
c11 efflev 1080 (16.68) c51 efflev 4050 (25.47)
c11 vol 5051 (25.67) c51 vol 7000 (32.10)
c11 logast −2097 (−2.48) c51 logast −8040 (−5.90)
c11 r f −0002 (−0.61) c51 r f −0014 (−3.29)
c11 trmsprd 0002 (1.21) c51 trmsprd −0029 (−13.86)
c11defsprd −0032 (−3.29) c51defsprd −0058 (−5.30)
c11 vix 1024 (3.66) c51 vix 2077 (7.05)
c11mktret 0020 (1.54) c51mktret 0086 (6.17)
c11 const −113005 (−5.24) c51 const −66056 (−2.72)

Adjusted R2 0.440 Adjusted R2 0.494
Observations 5,828 Observations 5,828

Notes. The CDS sample is described in Table 1. In this table we estimate the implied speed of adjustment (�) of current leverage toward the predicted leverage
using one-year and five-year CDS contracts. The partial adjustment model that describes this movement is given as

E04Lev 15= � · P Lev 1 + 41 − �5 · Lev 01 (T4.1)

where Lev 0 denotes the leverage during year 0, and PLev 1 denotes the predicted leverage during year 1. Section 2.1.1 shows that from this the expected
average leverage over the t years starting at time points 011121 0 0 0 1 t − 1 can be written as

E04Lev 01 t−15=
1 − 41 − �5

t

�t
Lev 0 +

(

1 −
1 − 41 − �5

t

�t

)

PLev 10 (T4.2)

We reason that the CDS spread depends on the effective leverage (as measured by the expected average leverage) during its term to maturity in addition to
the control variables from previous literature listed in Table 2. Given the values of all other parameters, we estimate the implied � from the following system of
equations using the nonlinear GMM approach as follows:

CDS t1
= c11 efflev · E04Lev 01 t1−15+ c11 vol · VOL + c11 logast · LOGAST + c11 r f · RF + c11 trmsprd · TRMSPRD + c11defsprd · DEFSPRD + c11 vix · VIX

+ c11mktret · MKTRET + c11 const + �t1 3

CDS t2
= c21 efflev · E04Lev 01 t2−15+ c21 vol · VOL + c21 logast · LOGAST + c21 r f · RF + c21 trmsprd · TRMSPRD + c21defsprd · DEFSPRD + c21 vix · VIX

+ c21mktret · MKTRET + c21 const + �t2 0

(T4.3)

CDS t1
and CDS t2

denote the CDS spreads for t1 and t2 years of coverage; VOL and LOGAST denote the historic volatility and log assets of the firm; and RF,
TRMSPRD, DEFSPRD, VIX, and MKTRET denote the 10-year Treasury bond yield, term spread, default spread, market volatility, and market return, respectively.
Appendix C defines these variables, and Appendix D describes the calculation of predicted leverage that enters Equation (T4.2). We use model (D.1), which
includes industry and year fixed effects, but excludes firm fixed effects. For parsimony of presentation, we show the implied � calculated from one-year and
five-year CDS contracts in this table, so t1 = 1 and t2 = 5. Later in Table 8 we show similar parameters estimated from a system of two-year and five-year
CDS contracts, and another system of one-year, two-year, and five-year CDS contracts. (Using a system of equations to span a fair part of the term structure
of CDS maturities gives better estimates of implied parameters as discussed in §4.3.) The t-statistics are reported in parentheses. The t-statistics greater than
2.58, 1.96, and 1.64 are statistically significant at the 1%, 5%, and 10% levels, respectively.

and Ritter (2009); comparable to the SOA estimates
provided by Lemmon et al. (2008); and lower than
estimates from Flannery and Rangan (2006) and Frank
and Goyal (2007). The last three studies include firm
or CEO fixed effects in the predicted leverage model.
Our base model of predicted leverage in Table 4
includes industry and year fixed effects, but no firm
fixed effects. Below we present additional evidence
on whether or not to include firm fixed effects in the
predicted leverage model. Given our implied SOA
estimates, a firm is expected to reduce 25.9% of its
original gap between leverage and predicted leverage
after 1 year, 41 − 41 − 00259535 = 5903% after 3 years,
77.7% times after 5 years, and 95.0% after 10 years.
This is evidence of fairly rapid adjustment of lever-

age toward the predicted leverage. Our evidence thus
differs from the evidence of Fama and French (2002),
who conclude that the mean reversion of leverage
toward predicted leverage is at a snail’s pace.

5. Alternate Theories of Capital
Structure and Speed of
Leverage Adjustment

Section 2 showed that our model of predicted lever-
age has some elements of all three theories of capital
structure—pecking order, market timing, and trade-
off theories—embedded in it. Section 4 showed that
firms move toward predicted leverage at a fairly
rapid speed, so all theories may contribute in part to
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this movement. In this section we provide stronger
evidence that each theory also separately explains
the capital structure by using an alternate technique
that analyzes the evidence on SOA within partitions
formed by a key implication of each theory.

The key factor in pecking order theory proposed
by Donaldson (1961) and Myers (1984) is whether
the firm has a financial deficit or surplus. If the firm
has a deficit, it issues the safest security first, that is,
debt before equity. Alternately, if the firm has a sur-
plus, it pays down debt rather than repurchase equity.
The key factor in market timing theory proposed by
Baker and Wurgler (2002) is whether the equity is
undervalued or overvalued. If the firm has a deficit, it
issues equity when insiders perceive it to be overval-
ued and debt otherwise. Alternately, if the firm has a
surplus, it repurchases equity when perceived to be
undervalued and debt otherwise. Finally, the key fac-
tor in trade-off theory is whether leverage is below or
above the target or predicted leverage. If below pre-
dicted leverage, the firm issues debt if it faces deficit

Table 5 Interactions of the Three Theories of Capital Structure and Their Implications for Implied Speed of Leverage Adjustment 4�5

Key factors Implications of the three theories of capital structure
Implied speed

Leverage of adjustment
Financing Undervalued deviation toward PLev

Partition deficit or or overvalued from combining all
number surplus equity predicted Pecking order Market timing Trade-off theories

P1 Deficit Lev > PLev Issue debt Issue equity Low
P2 Deficit Lev < PLev Issue debt Issue debt High
P3 Surplus Lev > PLev Repurchase debt Repurchase debt High
P4 Surplus Lev < PLev Repurchase debt Repurchase equity Low

M1 Undervalued Lev > PLev Issue debt or
repurchase equity

Issue equity or
repurchase debt

Low

M2 Undervalued Lev < PLev Issue debt or
repurchase equity

Issue debt or
repurchase equity

High

M3 Overvalued Lev > PLev Issue equity or
repurchase debt

Issue equity or
repurchase debt

High

M4 Overvalued Lev < PLev Issue equity or
repurchase debt

Issue debt or
repurchase equity

Low

PM1 Deficit Undervalued Lev > PLev Issue debt Issue debt Issue equity Very low
PM2 Deficit Undervalued Lev < PLev Issue debt Issue debt Issue debt Very high
PM3 Deficit Overvalued Lev > PLev Issue debt Issue equity Issue equity Medium
PM4 Deficit Overvalued Lev < PLev Issue debt Issue equity Issue debt Medium
PM5 Surplus Undervalued Lev > PLev Repurchase debt Repurchase equity Repurchase debt Medium
PM6 Surplus Undervalued Lev < PLev Repurchase debt Repurchase equity Repurchase equity Medium
PM7 Surplus Overvalued Lev > PLev Repurchase debt Repurchase debt Repurchase debt Very high
PM8 Surplus Overvalued Lev < PLev Repurchase debt Repurchase debt Repurchase equity Very low

Notes. The three theories of capital structure include the pecking order theory, the market timing theory, and the trade-off theory. The key factor in pecking
order theory proposed by Donaldson (1961) and Myers (1984) is whether the firm has a financial deficit or surplus. If the firm has a deficit, it issues the
safest security first, that is, debt before equity. Alternately, if the firm has a surplus, it pays down debt rather than repurchase equity. The key factor in market
timing theory proposed by Baker and Wurgler (2002) is whether the equity is undervalued or overvalued. If the firm has a deficit, it issues equity when
insiders perceive it to be overvalued and debt otherwise. Alternately, if the firm has a surplus, it repurchases equity when perceived to be undervalued and debt
otherwise. Finally, the key factor in trade-off theory is whether leverage is below or above the target leverage, which we measure by the predicted leverage. If
below predicted leverage, then the firm issues debt if it faces deficit or repurchases equity if it faces surplus. Alternately, if above predicted leverage, then the
firm issues equity if it faces deficit and repurchases debt if it faces surplus. This table shows the combined results of these three theories of capital structure
within several partitions formed by relevant firm characteristics and derives implications for the speed of adjustment of leverage toward the predicted leverage.
Lev and PLev are acronyms for (current) leverage and predicted leverage.

or repurchases equity if it faces surplus. Alternately,
if above predicted leverage, the firm issues equity if it
faces deficit and repurchases debt if it faces surplus.

Table 5 partitions the sample based on these key
factors. The first four partitions P1 to P4 consider the
combined implications of pecking order and trade-off
theories, the next four partitions M1 to M4 consider
market timing and trade-off theories, and the last
eight partitions PM1 to PM8 consider all three theo-
ries. The detailed implications are best understood by
looking at the table. The last column summarizes the
bottom-line implications for the speed of adjustment
toward predicted leverage by combining all theories.
For an illustration, consider partition PM1, where the
firm has a financial deficit, its equity is undervalued,
and the leverage is above its target or predicted lever-
age. Both pecking order and market timing theories
imply that the firm will issue debt, which is oppo-
site to what trade-off theory implies, that the firm will
issue equity. Thus, the speed of adjustment in this
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partition will be very low if investors’ expectations
of leverage adjustments are influenced by all three
theories.

Many partitions in Table 5 have similar implications
for speed of adjustment. For example, in P1 the firm
faces a financial deficit, and its leverage is above pre-
dicted leverage. Pecking order theory implies that the
firm will issue debt, whereas trade-off theory implies
that it will issue equity; thus we expect low speed
of adjustment over the term to maturity. In P4, the
key factors are the opposite. The firm faces a financ-
ing surplus and its leverage is below predicted lever-
age, so pecking order theory implies that the firm
will repurchase debt, whereas trade-off theory implies
that it will repurchase equity. Not knowing the rel-
ative strengths of the implications of pecking order
and trade-off theories, the extent of deficit or surplus
versus the deviation from predicted leverage, or the
transaction costs incurred in issues and repurchases
of debt and equity, we join partitions P1 and P4 and
expect a common low implied SOA toward predicted
leverage. Using similar arguments, we also aggregate
P2 and P3, M1 and M4, M2 and M3, PM1 and PM8,
PM3 to PM6, and PM2 and PM7. This process leads
to seven aggregated partitions, which we simply refer
to as partitions in the subsequent analysis.

We measure financial deficit as dividend plus
investments plus change in working capital minus
cash flow, following Frank and Goyal (2003). A neg-
ative financial deficit is surplus. We measure equity
undervaluation or overvaluation by prior-year excess
return calculated as the cumulative stock return over
a 252-day period ending one day before the earn-
ings announcement date minus the cumulative mar-
ket return. A negative excess return is commonly
interpreted in literature as equity undervaluation, and
a positive return as overvaluation (Loughran and
Ritter 1995). This is an alternate measure of overvalu-
ation relative to market-to-book ratio that is included
in the predicted leverage model and may reduce the
concern that the latter is simultaneously a good mea-
sure of growth opportunities.

Table 6 shows a GMM analysis of the system of
Equations (8) applied to one-year and five-year CDS
contracts within the seven partitions described in
Table 5. Despite smaller sample sizes within any par-
tition ranging between 1,268 and 3,117, we observe a
reasonable consistency of coefficients for one-year and
five-year contracts within a partition and across par-
titions for either contract. Models (6.1) and (6.2) show
that the SOA equals 0.173 and 0.339 across the two
partitions formed by the intersection of pecking order
and trade-off theories. The difference in SOA values
of 0.166 is in the expected direction and significant at
the 1% level. Models (6.3) and (6.4) next show that the
SOA equals 0.231 and 0.315 across partitions formed

by the intersection of market timing and trade-off the-
ories, and the difference of 0.084 is in the expected
direction and also significant at the 10% level.

Finally, models (6.5), (6.6), and (6.7) test the com-
bined implications of all three theories. The SOA
equals 0.127, 0.299, and 0.363 across these three par-
titions, following the expected trend. The difference
between the first and second partitions equals 0.172
and is significant at the 1% confidence level, but the
difference between the second and third partitions
equals a statistically insignificant 0.064. To understand
the economic significance of the differences, SOA val-
ues of 0.127, 0.299, and 0.363 translate into half-lives
of leverage adjustment of 5.10, 1.95, and 1.54 years.
We also note that the difference between implied
SOA in models (6.5) and (6.7) equals 0.236, which is
comparable to the sum of differences of 0.166 from
models (6.1) and (6.2) and 0.084 from models (6.3)
and (6.4). This suggests that the effects of pecking
order and market timing theories on implied SOA are
more or less independent of each other as one may
expect.

Despite the smaller subsample sizes resulting from
partitioning the sample, the empirical evidence in
Table 6 follows the expected pattern in Table 5. It is
also interesting that although we have formed parti-
tions by a simple bifurcation of the aggregate sample
using the directional implication of each theory, the
implied SOA is positive in all cases.7 This finding sug-
gests that in the long run leverage moves toward the
predicted leverage as modeled, even though in the
short run pecking order and market timing consider-
ations might take it in the opposite direction. In addi-
tion, it suggests that financing deficit or surplus and
equity undervaluation or overvaluation do not persist
for very long.

In summary, our evidence suggests that the three
prominent theories of capital structure all play a sig-
nificant role in the capital structure decisions of firms.
Using an entirely different methodology that surveys
investors’ expectations of leverage changes implied
by credit spreads, our evidence complements the evi-
dence of Huang and Ritter (2009, p. 238), who con-
clude, “No single theory of capital structure is capable
of explaining all of the time-series and cross-sectional
patterns that have been documented.”

7 Theoretically, a negative speed of adjustment is possible, at least
over some horizon, indicating sustained changes in leverage away
from the predicted leverage. This may occur if one forms more
extreme partitions using the magnitudes of financial deficit or sur-
plus and stock undervaluation or overvaluation. Alternately, a neg-
ative speed of adjustment is also possible if there is a great deal of
persistence in these key factors underlying the pecking order and
market timing theories.
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Table 6 Implied Speed of Leverage Adjustment 4�5 Using GMM in Partitions Formed by the Interactions of the Three Theories of Capital Structure

Partitions formed by → Pecking order and trade-off Market timing and trade-off Pecking order, market timing, and trade-off

Partition numbers from Table 5 → P1, P4 P2, P3 M1, M4 M2, M3 PM1, PM8 PM3, PM4, PM5, PM6 PM2, PM7

Predicted speed of leverage adjustment 4�5→ Low High Low High Very low Medium Very high

Variables ↓ (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7)

� (risk-neutral speed of leverage adjustment) 00173∗ 00339∗ 00231∗ 00315∗ 00127∗ 00299∗ 00363∗

c11 efflev 2006∗ 1044∗ 2008∗ 1028∗ 2084∗ 1038∗ 1021∗

c11 vol 5016∗ 5053∗ 5010∗ 5084∗ 5004∗ 5030∗ 6005∗

c11 logast −2009∗ −4003∗∗∗ −4007∗∗ −1093 −0087 −4065∗ −1032
c11 r f −0006 0001 −0008∗∗∗ 0004 −0011∗∗∗ −0002 0005
c11 trmsprd 0018 0004 0002 0004 0007∗∗∗ −0001 0010∗∗

c11defsprd −0031∗∗ −0029∗∗∗ −0035∗∗ −0027∗∗∗ −0030 −0036∗∗ −0027
c11 vix 0099∗∗ 1013∗∗ 1039∗ 0094∗∗∗ 0026 2005∗ −0005
c11mktret 0030∗∗∗ −0005 0010 0014 0012 0023 −0026
c11 const −98000∗ −109064∗ −75062∗ −145046∗ −98041∗ −91069∗ −140023∗∗

Adjusted R2 00457 00425 00459 00429 00488 00441 00412
Observations 3,012 2,807 3,117 2,702 1,578 2,964 1,268

c51 efflev 4039∗ 4034∗ 5004∗ 3066∗ 5056∗ 3094∗ 3089∗

c51 vol 6051∗ 7019∗ 6063∗ 7037∗ 6051∗ 6070∗ 7082∗

c51 logast −7073∗ −9005∗ −10048∗ −6025∗ −5042∗∗ −11071∗ −3019
c51 r f −0019∗ −0009 −0019∗ −0007 −0024∗ −0014∗∗ −0003
c51 trmsprd −0027∗ −0029∗ −0028∗ −0027∗ −0022∗ −0031∗ −0025∗

c51defsprd −0057∗ −0057∗ −0050∗ −0067∗ −0046∗∗∗ −0062∗ −0072∗

c51 vix 2072∗ 2055∗ 2075∗ 2066∗ 1093∗∗ 3021∗ 1099∗∗

c51mktret 0089∗ 0066∗ 0089∗ 0085∗ 0063∗∗ 0084∗ 0054∗∗∗

c51 const −33067 −77051 −36045 −95026∗∗ −62027 −15003 −138050∗∗

Adjusted R2 00494 00495 00512 00484 00531 00492 00486
Observations 3,016 2,807 3,117 2,702 1,578 2,964 1,268

Notes. The CDS sample is described in Table 1, and the methodology of calculating implied speed of leverage adjustment (�) is described in Table 4. We
use the combination of one-year and five-year CDS contracts to calculate implied � everywhere in this table. The partitions formed by the interactions of the
three theories of capital structure are described in Table 5. These theories are the pecking order theory, the market timing theory, and (a modified form of)
the trade-off theory. We combine the partitions listed in Table 5 as noted in the panel headings of this table. Appendix C defines the variables analyzed.
In particular, it mentions that financing deficit is measured as dividend plus investments plus change in working capital minus cash flow using quarterly data,
and undervaluation/overvaluation is measured by prior-year excess returns defined as difference between stock return and market return over a 250-day period
ending before the quarterly earnings announcement date. The aggregate sample is divided into two halves based on each of whether there is a deficit or a
surplus for pecking order partitions, whether the prior-year excess return is negative (undervalued) or positive (overvalued) for market timing partitions, and
whether (current) leverage is above or below predicted leverage for trade-off partitions. Appendix D describes model (D.1) used to estimate the predicted
leverage. This model includes year and industry fixed effects. We report two-way clustered t-statistics that adjust for clustering at the firm and the calendar
quarter levels in parentheses. The difference between � values across models (6.1) and (6.2) is significant at the 1% level, across models (6.3) and (6.4)
significant at the 10% level, across models (6.5) and (6.6) significant at the 1% level, across models (6.5) and (6.7) significant at the 1% level, and across
models (6.6) and (6.7) insignificant.

∗Statistically significant at the 1% level; ∗∗statistically significant at the 5% level; ∗∗∗statistically significant at the 10% level.

6. Using Speed of Adjustment to Test
Alternate Measures of Predicted
Leverage: The Role of Firm Fixed
Effects and Initial Leverage

In the introductory section we discussed the con-
troversy surrounding the inclusion of firm fixed
effects in the predicted leverage model. Flannery and
Rangan (2006) and Lemmon et al. (2008) argue that
firm fixed effects capture firm-specific heterogeneity
not captured by the included firm characteristics and
lead to more precise estimates of predicted leverage.
In support of this argument they show that the inclu-
sion of firm fixed effects explains a greater propor-
tion of the variability in leverage values and leads
to a higher SOA toward the presumed more precise

estimates of predicted leverage. However, others have
argued that the inclusion of firm fixed effects also
creates a look-ahead bias with the traditional time-
series methodology and may artificially increase SOA
as leverage naturally reverts to its mean value based
in part on the future leverage values. In comparison,
our methodology examines investor expectations at a
given point in time and does not suffer from this look-
ahead bias. In fact, the inclusion of future information
that is not a part of investors’ expectations should act
like a noise with our methodology and reduce the
SOA toward a noisy predicted leverage.

Table 7 presents the evidence to back our conjec-
tures using the aggregate sample. We start with our
base model of predicted leverage that includes indus-
try and year fixed effects and gives an SOA of 0.259.
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Table 7 Variations on the Model of Estimating Predicted Leverage and Implied Speed of Leverage Adjustment 4�5 in the Aggregate Sample of
CDS Contracts Using Nonlinear GMM

Panel A: Effect of adding noise to predicted leverage estimated using industry and year fixed effects

Proportional noise 0000 0025 0050 0075 1000 1050 2000
Implied speed of leverage adjustment (�) 00259 00244 00208 00162 00123 00076 00049

Panel B: Predicted leverage model and speed of leverage adjustment (�)

Row Model � Increase in �

1 (D.1), which includes industry and year fixed effects but excludes firm fixed effects 0.259
2 (D.2), which includes year fixed effects but excludes industry or firm fixed effects 0.196 −00063†

3 (D.3), which includes year and firm fixed effects but excludes industry fixed effects, also includes full panel of data from 1967 to
2007, which captures firm-specific heterogeneity but creates a look-ahead bias

0.170 −00026‡

4 Variation on model (D.3) in row 3: Includes a shorter panel of data from 1997 to 2007, which increases the look-ahead bias 0.132 −00064‡

5 Variation on model (D.3) in row 3: For each CDS observation includes only a subset of observations from 1967 to the year before
the observation, which eliminates the look-ahead bias but also shortens the panel of data as in row 4

0.170 −00026‡

6 Initial firm leverage as an estimate of predicted leverage 0.045 −00214†

Notes. The sample of CDS contracts is described in Table 1, and the methodology of calculating implied speed of leverage adjustment (�) is described in
Table 4. We use the combination of one-year and five-year CDS contracts to calculate implied � everywhere in this table. Panel A examines how implied � is
affected by adding noise to the predicted leverage estimated using model (D.1) in Appendix D. This model includes industry and year fixed effects, but excludes
firm fixed effects. Noise in this panel is a normal random variable with a standard deviation equal to a multiple of the cross-sectional standard deviation of
predicted leverage (which equals 6.58%). Panel B examines implied � when predicted leverage is estimated using alternate models. Two of these alternate
models are presented in full detail as models (D.2) and (D.3) in Appendix D, but the rest are outlined here, although the details are omitted for brevity. Model
(D.2) includes only year fixed effects, and model (D.3) includes both year and firm fixed effects. (Notice that firm fixed effects encapsulate industry fixed effects,
so both cannot both be added in the same model.) Both models exclude industry fixed effects and include the full panel of data from 1962 to 2007. Industry
fixed effects are based on Fama and French (1997) 48-industry classification.

†Relative to model (D.1) in row 1.
‡Relative to model (D.2) in row 2.

Panel A first shows how the addition of a white
noise to the corresponding predicted leverage values
reduces SOA. This noise is a normal random variable
with a standard deviation equal to a multiple of the
standard deviation of predicted leverage in the same
aggregate sample (which equals 6.58%). With multi-
ples of 0.50, 1.00, and 2.00, the SOA reduces to 0.208,
0.123, and 0.049 (a decrease of 0.051, 0.136, and 0.210).
These estimates serve as a benchmark in understand-
ing the effects of model specification changes that fol-
low next.

Row 1 in panel B shows the SOA estimates from
the base model, and row 2 shows the SOA estimates
with predicted leverage estimated using model (D.2).
This model deletes industry fixed effects, but retains
all other variables in the base model. The implied
SOA drops to 0.196, a decrease of 0.063 in absolute
terms and one-fourth in relative terms. From panel
A we estimate that this effect is equivalent to adding
a noise with a standard deviation equal to 0.6 times
the standard deviation of predicted leverage in the
aggregate sample. Row 3 in panel B is important; it
shows that further inclusion of firm fixed effects as
in the predicted leverage model (D.3) decreases the
SOA to 0.170, a further decrease of 0.026 from row 2
and a cumulative decrease of 0.089 from the base
model. This suggests that the inclusion of firm fixed
effects does not refine investors’ expectations about
predicted leverage values; instead it adds noise.

To further examine the role of firm fixed effects,
row 4 uses a shorter panel of data from 1997 to

2007 instead of the full panel from 1967 to 2007 in
row 3. This should increase the look-ahead bias in
our CDS sample that spans 2000 to 2007 (Woolridge
2002). Consistent with this conjecture, we find that
SOA decreases to 0.132. Row 5 next uses only a sub-
set of the full panel of observations, from 1967 to the
year before an observation, which eliminates the look-
ahead bias, but also shortens the panel. This increases
the SOA back to 0.170, the same as in row 3. Coin-
cidentally, this estimate is very similar to the SOA
estimate of 0.169 using only historical panel data in
Hovakimian and Li (2011).

The combined evidence suggests that the SOA-
decreasing effects of the look-ahead bias dominate
the SOA-increasing effects of capturing unobserved
firm-specific heterogeneity. Thus, the SOA estimates
of studies employing firm fixed effects and using the
traditional time-series methodology are likely to be
overstated.

Finally, row 6 of panel B tests another hypothesis
from previous literature. Lemmon et al. (2008) also
suggest that there is considerable persistence in firm
leverage. They argue that a firm’s leverage goes back
to the beginning, in other words, the firm’s initial
leverage at the time of initial public offering is a good
proxy for its predicted leverage 20 years later. How-
ever, DeAngelo and Roll (2011) document a wide vari-
ation in leverage values over any individual firm’s
history. Row 6 shows that using initial leverage as a
proxy for predicted leverage gives an SOA of 0.045
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with our methodology, a steep reduction from the
base model value of 0.259. Consistent with DeAngelo
and Roll (2011), this evidence suggests that initial
leverage from the first time a firm appears on Com-
pustat is not a good proxy for predicted leverage in
later years in the minds of credit market investors.

7. Robustness Tests and
Miscellaneous Results

7.1. Using Historical Asset Volatility and
Implied Equity Volatility in Place of
Historical Equity Volatility

Merton’s (1974) model relates bond prices and
spreads to the asset volatility of the firm. Specifically,
the equity of a firm is viewed as an option on the
firm’s assets as follows:

E = VN4d15+ e−rT F N4d250 (10)

Here E is the market value of equity, V is the mar-
ket value of firm, F is the face value of debt, r is
the risk-free interest rate, T is the time to matu-
rity, N4z5 is the cumulative standard normal distribu-
tion function, d1 = 4ln4V /F 5 + 4r + 005�2

V 5T 5/4�V

√
T 5,

d2 = d1 − �V

√
T , and finally, �V is the asset volatil-

ity. Furthermore, the asset volatility �V and the equity
volatility �E are related as follows:

�E =
V

E
N4d15�V 0 (11)

Although this structural model approach suggests
that credit spread models should include asset volatil-
ity, most empirical researchers include equity volatil-
ity in place of asset volatility (Collin-Dufresne et al.
2001, Campbell and Taksler 2003, Ericsson et al. 2009,
Zhang et al. 2009). This is likely because equity
volatility is directly observed, whereas asset volatility
has to be inferred by making assumptions about the
values of remaining variables of the model. It may
also be that the model itself is a much simplified ver-
sion of the capital structure of a typical firm. Thus,
following an extensive literature, in our main analysis
we presented our results using equity volatility as a
proxy for asset volatility.

We now test the robustness of our results to
using historical asset volatility in place of histori-
cal equity volatility. We estimate asset volatility �V

using an iterative procedure suggested by Bharath
and Shumway (2008) to simultaneously solve Equa-
tions (10) and (11). Furthermore, some researchers
have also suggested that the credit spreads are bet-
ter related to implied equity volatility from equity
options, which is forward looking, than to historical
equity volatility, which is backward looking (Cremers
et al. 2008, Cao et al. 2010). So we also report our test

results using implied equity volatility as defined in
Appendix C.

The first three columns of Table 8 compare the im-
plied SOA or � values using historical equity volatility,
historical asset volatility, and implied equity volatil-
ity. We replicate all of our GMM tests from Tables 4
and 6 and a few additional tests that are described
below. We find a good deal of similarity between SOA
values obtained using any of the three volatility mea-
sures. For example, for the aggregate sample from
Table 4, the SOA values equal 0.259, 0.257, and 0.255
with the three volatility measures. In the remaining
tests the estimates are also quite close despite smaller
sample sizes in partitions. Overall, we infer that our
results related to the implied speed of adjustment
from CDS spreads are robust to alternate measures of
volatility.

7.2. Using CDS Contracts of Different Maturities
to Calculate Implied SOA

Thus far we have presented implied SOA values
using the combination of one-year and five-year CDS
contracts. We now test combinations of other maturi-
ties to see if our results are sensitive to this choice. The
last two columns of Table 8 report the SOA estimates
with alternate combinations of two-year and five-year
CDS contracts and one-year, two-year, and five-year
CDS contracts.

Multiple panels of Table 8 show that the alter-
nate combinations of CDS contracts give results that
are reasonably similar to the original combination in
all cases. For example, for the aggregate sample the
implied SOA values are 0.259 with one-year and five-
year CDS contracts, 0.224 with two-year and five-year
CDS contracts, and 0.228 with one-year, two-year, and
five-year CDS contracts. We thus illustrate that our
estimates are robust to the choice of CDS contracts.

7.3. Bootstrapping the t-Statistics of Implied
SOA Values

Tables 4 and 6 report t-statistics of implied SOA and
other control variables that appear in the system of
Equations (8), which is estimated using the GMM pro-
cedure and all available data. One may ask whether
these t-statistics are driven by a few outlier observa-
tions. So we follow a bootstrap procedure to confirm
the statistical significance of our results. We pick 5,000
observations at random from the sample of CDS con-
tracts and estimate the implied SOA. We repeat this
sampling procedure 100 times and find that the val-
ues of implied SOA lie within a small range, with a
mean of 0.259 and a standard deviation of 0.012 for
the aggregate sample. This upholds the statistical sig-
nificance of our results.
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Table 8 Robustness of Implied Speed of Leverage Adjustment 4�5 Results from Previous Tables and Miscellaneous New Results

Two-year and One-year, two-year,
CDS maturities included in the sample → One-year and five-year five-year and five-year

Historical equity Historical asset Implied equity Historical equity Historical equity
Measure of firm volatility → volatility volatility volatility volatility volatility

(8.1) (8.2) (8.3) (8.4) (8.5)

Description ↓ Implied � Implied � Implied � Implied � Implied �

Panel A: No partitions (Table 4)
Aggregate sample 0.259 0.257 0.255 0.224 0.228

Panel B: Partitions based on implications of pecking order and trade-off theories (Table 6, models (6.1) and (6.2))
Predicted low speed (P1, P4) 0.173 0.164 0.176 0.139 0.141
Predicted high speed (P2, P3) 0.339 0.334 0.332 0.301 0.307

Panel C: Partitions based on implications of market timing and trade-off theories (Table 6, models (6.3) and (6.4))
Predicted low speed (M1, M4) 0.231 0.243 0.228 0.191 0.189
Predicted high speed (M2, M3) 0.315 0.276 0.305 0.289 0.299

Panel D: Partitions based on implications of all three theories (Table 6, models (6.5), (6.6), and (6.7))
Predicted very low speed (PM1, PM8) 0.127 0.136 0.132 0.105 0.101
Predicted medium speed (PM3 to PM6) 0.299 0.288 0.299 0.265 0.270
Predicted very high speed (PM2, PM7) 0.363 0.332 0.360 0.329 0.341

Panel E: Partitions formed by firm size
Small firms below median ($2.8 billion†) 0.212 0.175 0.197 0.180 0.187
Large firms above median ($14.8 billion†) 0.291 0.268 0.263 0.281 0.278

Panel F: Partitions formed by Fama and French five-industry classification
Consumer 0.261 0.385 0.272 0.211 0.217
Health 0.406 0.393 0.418 0.343 0.371
Hi-Tech 0.031 0.004 0.027 0.014 0.009
Manufacturing 0.245 0.282 0.241 0.231 0.220
Other 0.254 0.388 0.277 0.186 0.196

Notes. Panels A to D test the robustness of implied speed of leverage adjustment (�) results from Tables 4 and 6 under two variations. First, we replace
historical equity volatility by historical asset volatility or implied equity volatility while using a combination of one-year and five-year CDS contracts. Second,
we test either a combination of two-year and five-year CDS contracts or a combination of one-year, two-year, and five-year CDS contracts while using historical
equity volatility. The volatility measures are defined in Appendix C. Panels E and F test the speed of leverage adjustment across partitions formed by firm size
and by Fama and French (1997) five-industry classification.

†Median market value of equity for firms included in the subsample.

7.4. Patterns in Implied SOA Across Partitions
Formed by Firm Size

Firm size is a key variable, and it is important to
know how it relates to SOA. This relation is also
important in comparing our results to the results in
previous literature because our firms with traded CDS
contracts tend to be bigger than all Compustat firms
examined in many studies. Large firms face lower
transaction costs, which may increase their SOA.
However, Alti (2006) and Flannery and Rangan (2006)
argue that some small firms grow quickly, which may
reduce their costs of adjusting leverage and increase
their SOA. Empirically, Flannery and Rangan (2006)
divide their sample into four subsets based on firm
size. They report SOA values of 0.273 for subset 1
(largest firms belonging to New York Stock Exchange
deciles 1 and 2), 0.426 for subset 2 (deciles 3 and 4),
0.514 for subset 3 (deciles 5, 6, and 7), and 0.392 for

Subset 4 (deciles 8, 9, and 10). One concern with their
results may be that smaller firms have shorter time
series, which may increase their look-ahead bias as
shown in our Table 7.

Our sample does not include the smallest firms
included in the Flannery and Rangan (2006) sample,
so we form two subsets based on whether the firm
size (market value of equity) is above or below the
median firm size. Panel E of Table 8 shows that the
two subsets have firms with median market values
of equity equal to $2.8 billion and $14.8 billion. The
SOA values equal 0.212 and 0.291 for these subsets of
small firms and large firms using our base model and
methodology. The difference of 0.079 is statistically
significant at the 1% level. We infer that SOA increases
with firm size, consistent with lower transaction costs
of making leverage adjustments facing large firms.
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7.5. Patterns in Implied SOA Across Industries
It is well known that different industries have differ-
ent leverage norms (MacKay and Phillips 2005). So we
examine whether different industries also have differ-
ent SOA toward predicted leverage. We divide our
sample into five Fama and French (1997) industries:
consumer, health, hi-tech, manufacturing, and other.
Within each industry we calculate implied SOA using
different combinations of CDS contracts. The results
are shown in the panel F of Table 8.

Averaged across models (8.1), (8.4), and (8.5), the
implied SOA equals 0.230, 0.373, 0.018, 0.232, and
0.212 for the five industries listed above. Three of
these estimates are close to the SOA estimate for the
aggregate sample—those for consumer, manufactur-
ing, and other industries. But the remaining two are
quite different. The health industry has the highest
SOA of 0.373, and the hi-tech industry has the low-
est SOA of 0.018. These deviations make sense for
the following reason. Health stocks have a low beta
and low volatility (besides high leverage), whereas
the opposite is true of hi-tech stocks.8 Higher volatil-
ity is associated with more frequent undervaluation
or overvaluation of equity and increases the role of
market timing relative to other theories. These results
increase our understanding of how leverage rebalanc-
ing considerations vary from industry to industry.

8. Conclusion
Few issues have attracted as much attention in the
finance literature as capital structure. Three major the-
ories dominate this literature—pecking order, market
timing, and trade-off. A large part of this literature
has been devoted to understanding whether firms
have a target leverage predicted by trade-off theory
and, if so, at what speed firms adjust their lever-
age toward their target leverage in the presence of
transaction costs and the other two theories. More
recent literature argues that the target leverage thus
estimated should be thought of as the simpler pre-
dicted leverage, given that some elements that are
used in deriving the target are also consistent with the
alternate theories. Empirically, researchers have relied
uniquely on the time series of leverage changes to
measure the SOA. Several features of this approach
have been the subject of much criticism. In this paper,
we propose and test a new technique of measuring
SOA that surveys investors’ expectations of future
leverage values built into the prices of credit instru-
ments and is not subject to such criticism.

8 Over the period February 2004 to December 2010, Vanguard Health
Care ETF (ticker VHT) had a beta of 0.66 and an annualized volatil-
ity of 14%. In comparison, Vanguard Information Technology ETF
(ticker VGT) had a beta of 1.13 and an annualized volatility of 21%.

Using a GMM approach we show that in the
aggregate sample of all firms with traded CDS con-
tracts during 2000 to 2007, the SOA equals 26%. This
estimate is robust to alternate specifications of the
sample and of certain variables such as firm volatil-
ity. More importantly, we find that the SOA varies
considerably across several partitions formed by the
intersection of the three capital structure theories as
expected. We therefore conclude that investors’ expec-
tations embedded in the prices of credit instruments
are formed in accordance with the implications of all
three theories of capital structure.

Our methodology also sheds new light on a few
controversial issues in the previous literature. First,
we show that the inclusion of firm fixed effects in the
predicted leverage model leads to noisier estimates
of investors’ expectations concerning the future evo-
lution of firm leverage. Apparently, the look-ahead
bias introduced by firm fixed effects dominates the
benefits of capturing any unspecified and residual
firm-specific heterogeneity. As a result, SOA falls to
17% with the inclusion of firm fixed effects in the
predicted leverage model. Similar to the findings of
Chang and Dasgupta (2009) and Lemmon et al. (2008),
we find that industry-specific information plays an
important role in forming investor expectations about
the evolution of firm leverage. Thus, we recommend
the inclusion of industry fixed effects in the predicted
leverage model. Second, we find that initial leverage
at the time when a firm is first added to the Compu-
stat database is a poor proxy for its predicted lever-
age in later years. This evidence is consistent with the
results of DeAngelo and Roll (2011), who show that
leverage for individual firms varies considerably over
time. Above all, we contribute to a mature but grow-
ing literature on capital structure by illustrating that
one can extract valuable information from investors’
expectations of future leverage changes embedded in
the prices of credit instruments.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287/mnsc.2013.1871.
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Appendix A. Comparison of Speed of Leverage Adjustment Estimates

Panel A: Speed of leverage adjustment estimates based on the time series of realized leverage changes

Fama and French (2002) 7%–18% Lower (upper) estimates for dividend payers (nonpayers)
Flannery and Rangan (2006) 34%–38% Include firm fixed effects
Frank and Goyal (2007) 55% Include CEO fixed effects
Kayhan and Titman (2007) 10% Based on how much leverage deviation persists after five years
Lemmon et al. (2008) 25%–39% Lower number based on GMM and no firm fixed effects; higher number based

on OLS and firm fixed effects
Huang and Ritter (2009) 17% Use a differencing length of eight years
Lockhart (2014) 24%–31% Lower (upper) estimates for firms without (with) access to credit line, with firm

fixed effects
Hovakimian and Li (2011) 17%–36% Lower (upper) estimates for firm fixed effects using historical (full sample) panel

Panel B: Implied speed of leverage adjustment estimates based on expected leverage changes priced into CDS spreads

This study 13%–36% Implied by CDS contracts of different maturities
—25.9% in the aggregate sample with industry and year fixed effects included

in the predicted leverage model
—19.6% in the aggregate sample with the removal of industry fixed effects, which

further reduces to 17.0% with the addition of firm fixed effects (in contrast with
previous literature)

—Varies between 13% and 36% across subsamples formed by whether the three
theories (trade-off, pecking order, and market timing) predict leverage adjust-
ment in the same or opposite directions, with industry and year fixed effects

Appendix B. Control Variables in the Credit Spread
Models and Their Predicted Coefficients
Our complete model of corporate bond spreads is specified
as follows:

Bond spread
= b0 + b1 Leverage+ b2 Predicted leverage

+ b3 Historical volatility of firm + b4 Log total assets
+ b5 Coupon + b6 Years to maturity + b7 Bond age
+ b8 10-year Treasury bond yield + b9 Term spread
+ b10 Default spread + b11 Market volatility 4VIX5

+ b12 Market return + Error term0 (B1)

Leverage and predicted leverage are the two focus vari-
ables, and the remaining variables are control variables.
Below we explain the reasons for including these con-
trol variables and their predicted coefficients from prior
literature.

Historical volatility of equity 4or assets5. In the Merton (1974)
model, asset volatility determines the probability of exercise
of the put option the bondholders sell to the equityhold-
ers. Equity volatility is directly observed, and Campbell and
Taksler (2003) argue that it can serve as a proxy for asset
volatility. We present equity volatility in the main analy-
sis, but we also show that our results are similar with asset
volatility. The coefficient of either variable is predicted to be
positive.

Log total assets. Larger firms have higher name recogni-
tion, less information asymmetry, and hence greater access
to capital markets. This makes the credit risk premium
smaller by reducing investors’ uncertainty. Larger firms also
have more actively traded bonds, and liquidity increases
bond prices.

Coupon. Elton et al. (2001) argue that higher coupon
bonds are less desirable than lower coupon bonds because

they incur higher taxes throughout their life. The coefficient
of Coupon is predicted to be positive. To balance the picture,
Campbell and Taksler (2003) argue that higher coupons
shorten the bond duration, which could reduce the default
risk and hence the bond spread.

Years to maturity. The higher the bond life, the greater the
default risk, so the coefficient of Years to maturity is pre-
dicted to be positive.

Bond age. Recently issued corporate bonds are more liquid
than older bonds. For Treasury bonds this is known as on-
the-run versus off-the-run phenomenon. The coefficient of
Bond age is predicted to be positive.

10-year Treasury bond yield. In structural models, the risk-
free interest rate increases the drift term of the stochas-
tic process for asset value and reduces the probability of
default. Duffee (1998) empirically shows that the 10-year
Treasury bond yield acts as a proxy for the risk-free interest
rate. Its coefficient is predicted to be negative.

Term spread: Collin-Dufresne et al. (2001) argue that a
higher term spread is an indicator of improving economy
as well as increasing future risk-free rates. On both counts
the default risk decreases, so its coefficient is expected to be
negative.

Default spread. This is a measure of the default risk as
well as default risk premium in the bond market, and its
coefficient is predicted to be positive.

Market volatility. We measure market volatility by the VIX
index. This is intended to capture the default risk in the econ-
omy, which summarizes the default risk of individual firms.
It is forward looking, as it is inferred from option prices on
the S&P 500 index. Its coefficient is predicted to be positive.

Market return. The 180-day market return captures the
effect of an improving economy that lowers default risk,
so its coefficient is predicted to be negative. However,
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Campbell and Taksler (2003) motivate their paper by docu-
menting that over the 1990s there was an increase in both
the market level and idiosyncratic volatility. Thus, a higher
market return may also capture increasing asset volatility,
which would predict a positive coefficient.

Finally, when analyzing CDS spreads, we include all con-
trol variables used for bond spreads and listed in model
(B1) except the bond-specific parameters. The revised model

Appendix C. Variable Definitions

Variable Definition (including Compustat variable names in parentheses where applicable)

Asset volatility Calculated using the Merton (1974) model following Bharath and Shumway (2008)
Bond spread Corporate bond yield minus corresponding maturity interpolated constant maturity treasury yield
Coupon Annual coupon expressed as a percentage of par value
Credit rating The most recent S&P credit rating prior to the earnings announcement date; lower numbers represent

lower default risk (AA+ = 4, AA = 5, 0 0 0 , B− = 18, CCC+ = 19, etc.)
Default spread Difference between yield of BAA rated corporate bonds and AAA rated corporate bonds as of the

earnings announcement date
Depreciation/

total assets
Depreciation and amortization/total assets (DP/AT)

Distance to default Distance to default is computed using the Merton (1974) model following Bharath and Shumway (2008)
EBIT/total assets (Interest expense + income taxes + income before extraordinary items)/total assets

(XINT + TXT + IB)/AT
Equity volatility Volatility of daily returns is computed using 254-day period ending one day before the earnings

announcement date, expressed in percent, and annualized
Financing deficit Quarterly financing deficit is computed following Frank and Goyal (2003); it equals dividend plus

investments plus change in working capital minus cash flow
Fixed assets/

total assets
Total property, plant, and equipment/total assets (PPENT/AT)

Implied equity
volatility

Estimated from at-the-money equity put options on the underlying firm closest to 60 days to maturity

Initial leverage Initial leverage is the first nonzero value of leverage for the firm in Compustat, following
Lemmon et al. (2008)

Leverage (Total long-term debt + total debt in current liabilities)/total assets (DLTT + DLC)/AT
Market return One-year value-weighted market return (CRSP VWRETD) computed until one day before the

earnings announcement date
Market-to-book (Total long-term debt + total debt in current liabilities + preferred stock + market value of equity)/

total assets (DLTT + DLC + PSTKL + PRCC_F ∗ CSHO)/AT
Market volatility Chicago Board Options Exchange Volatility Index (VIX) level as of the earnings announcement date
Prior year excess

return
Cumulative stock return over a 252-day period ending one day prior to the earnings announcement

date minus the cumulative market return, expressed in percent
Rated dummy Equals 1 if firm is rated by S&P and 0 otherwise
R&D dummy Equals 1 if R&D expense is missing and 0 otherwise
R&D expense/

total assets
Research and development expense/total assets (XRD/AT)

Selling expense/
sales

Selling, general, and administrative expense/total sales (XSGA/SALE)

Predicted leverage The leverage toward which firm leverage moves over time
Term spread Slope of the yield curve as of the earnings announcement date; 10-year–2-year constant maturity

Treasury yield
Undervaluation/

overvaluation
Measured by prior-year excess return, the difference between stock return and market return over a

250-day period ending before the earnings announcement date

is specified as follows:

CDS spread
= c0 + c1 Leverage+ c2 Predicted leverage

+ c3 Historical volatility of firm + c4 Log total assets
+ c5 10-year Treasury bond yield + c6 Term spread
+ c7 Default spread + c8 Market volatility 4VIX5

+ c9 Market return + Error term0 (B2)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

25
5.

24
5.

12
6]

 o
n 

12
 S

ep
te

m
be

r 
20

14
, a

t 0
8:

03
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Elkamhi, Pungaliya, and Vijh: What Do Credit Markets Tell Us About the Speed of Leverage Adjustment?
Management Science 60(9), pp. 2269–2290, © 2014 INFORMS 2289

Appendix D. Estimating Predicted Leverage

Panel A: Summary statistics of variables analyzed in this table

Variable Mean Q1 Median Q3

Leverage (%) 23.8 8.4 22.0 35.2
Total assets (TA) ($ millions) 1,157 30 101 418
EBIT/ TA 0.083 0.044 0.100 0.155
Market to book 1.479 0.737 1.051 1.679
Depreciation/ TA 0.044 0.025 0.038 0.055
Fixed assets/ TA 0.305 0.148 0.264 0.418
R&D dummy 0.432 0.000 0.000 1.000
R&D expense/ TA 0.028 0.000 0.000 0.032
Selling expense/sales 0.261 0.125 0.207 0.318

Panel B: Estimation of predicted leverage

Dependent variable is Levi, t + 1

Independent variables Xi, t (D.1) (D.2) (D.3)

Log total assets 0.002 0.011 0.019
(5.40) (29.38) (20.18)

EBIT/TA -0.304 -0.281 -0.185
(-57.44) (-52.92) (-35.32)

Market to book -0.010 -0.007 -0.004
(-18.51) (-12.56) (-6.50)

Depreciation/TA -0.446 -0.231 -0.345
(-16.45) (-8.71) (-10.78)

Fixed assets/TA 0.214 0.186 0.157
(48.39) (48.41) (24.82)

R&D dummy 0.012 0.028 -0.004
(7.77) (19.94) (-2.12)

R&D expense/TA -0.445 -0.469 -0.204
(-25.88) (-29.07) (-9.16)

Selling expenses/sales -0.066 -0.013 -0.011
(-16.78) (-3.47) (-2.07)

Rated dummy 0.106 0.097 0.053
(49.95) (45.12) (24.66)

Year fixed effects Yes Yes Yes
Fama and French (1997) 48-industry fixed effects Yes No No
Firm fixed effects No No Yes
N 100,945 100,945 100,945

Notes. We estimate the following model of predicted leverage: Levi, t+1 = Xi, t�+�i, t, where Levi, t+1 denotes the leverage of firm i during period
t + 1 (next year), Xi, t is a vector of firm characteristics during period t (current year), � is the vector of coefficients, and �i, t is the error term.
In panel A we report the firm characteristics, which are defined in Appendix C. Models (D.1) and (D.2) in panel B are estimated using a
pooled Tobit regression model that constrains the dependent variable to lie between 0 and 100 following Kayhan and Titman (2007). Model
(D.3) is estimated using a panel regression technique following Flannery and Rangan (2006). All three models include year fixed effects,
only (D.1) includes industry fixed effects, and only (D.3) includes firm fixed effects. There is no constant term as a result of fixed effects. The
sample includes 100,945 firm-years during 1967 to 2007 with available data on CRSP and Compustat. All models include the full panel of
data. We report t-statistics based on maximum likelihood estimates of the coefficient standard errors in parentheses. The t-statistics greater
than 2.58, 1.96, and 1.64 are statistically significant at the 1%, 5%, and 10% levels, respectively.
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