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Abstract 

This study explores the implications of portfolio opacity for the design of asset management 

contracts. This is a case of particular interest given the growing importance of ‘alternative’ assets 

like hedge funds and private equity funds in institutional portfolios. The alternative assets are 

often characterized by relatively illiquid or non-publicly traded holdings, proprietary strategies, 

and exemption from mandatory reporting requirements. These features contribute to the relative 

opacity or lack of transparency of the underlying portfolios. We analyze the link between 

portfolio opacity and the optimal portfolio management contract in this context and demonstrate 

that the second-best optimal contract features a convex component. The importance of the 

convex component is an increasing function of the portfolio’s opacity. Furthermore, the 

principal’s utility loss from restricting the weight of the convex component to zero is increasing 

in the portfolio’s opacity.   
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Contracting in Delegated Portfolio Management: The Case of Alternative Assets 

Alternative assets including hedge funds and private equity funds have attracted increasing 

interest from institutional investors in recent years.  In contrast to traditional investments such as 

mutual funds, the ‘alternative’ investments are often characterized by relatively illiquid or non-

publicly traded portfolio holdings. 1  Furthermore, they engage in proprietary trading and 

investment strategies and are generally exempt from the type of mandatory reporting 

requirements that traditional investment funds are subject to. These characteristic features in 

turn, contribute to the relative opacity or lack of transparency of the alternative portfolios. This 

makes the task of performance evaluation/benchmarking considerably harder for alternative asset 

investors. A question of interest in this context is: “How does the opaque nature of the 

underlying portfolio impact the portfolio management contract in the case of alternative assets.” 

The goal of this paper is to provide some answers to the question by analyzing the link between 

portfolio opacity and the optimal portfolio management contract.    

Specifically, the paper seeks to examine how the form of the optimal portfolio management 

contract is influenced by the opacity of the underlying portfolio, in a sense to be made precise 

below. The opacity of the alternative asset portfolios makes it considerably harder for an investor 

to benchmark their performance, making the principal-agent problem harder to resolve. With an 

increase in the difficulty of benchmarking performance, a more flexible form of contract 

becomes desirable.      

We consider a prototypical delegated portfolio management problem in which the agent (the 

portfolio manager) manages a portfolio that is invested in a single risky asset and a risk free 

asset. As discussed above, a particular setting of interest is the case when the portfolio manager 

invests in illiquid or non-public assets or is engaged in proprietary strategies that are not subject 

to disclosure, making the portfolio relatively ‘opaque’. To examine how the asset opacity 

impacts the form of the contract, we model the degree of transparency or opacity of a portfolio of 

assets via the correlation of the portfolio’s returns with the appropriate publicly observed 

benchmark.2     

                                                 
1 Current SEC guidelines allow a mutual fund to invest up to a maximum of 15% of its assets in illiquid securities.  
Many funds voluntary adopt even lower limits on such investments, and most mutual funds avoid them entirely. 
2 For example, in the extreme case, an equity index fund is likely to have a correlation close to one with respect to 
say, the S&P 500 index. 
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The case when the investor’s information about the returns of the underlying assets in the 

portfolio is less than perfect is modeled by treating the correlation between the risky asset and 

the benchmark as being strictly less than one. We show that in this case the agent’s allocation to 

the actively managed risky asset is less than in the first-best case. In other words, the presence of 

a noisy benchmark, which is itself a byproduct of the characteristics of the underlying assets, 

leads to effort shirking by the portfolio manager relative to the first-best outcome.  

Our analysis suggests two major results. One, the second-best optimal contract in this setting 

features a convex component in addition to a component that is linear in performance. Two, the 

relative importance of the convex component is an increasing function of the asset’s opacity. In 

particular, the weight of the convex component in the optimal second-best contract increases 

with asset opacity. Furthermore, the principal’s utility loss from restricting the weight of the 

convex component to zero is increasing in the asset’s opacity.  

To understand the intuition behind the above result, note that the key effect of the convex 

component of the contract is to dampen the performance sensitivity of the manager’s 

compensation when the portfolio underperforms the benchmark. Consequently, in the case of 

opaque assets, the underperformance penalty on the manager in the form of lower compensation 

is less severe. Intuitively, as information about the manager’s action becomes less reliable (due 

to portfolio opacity), it becomes more desirable to moderate the underperformance penalty 

imposed on the manager while still providing the appropriate outperformance incentive. 

To highlight the important effect of portfolio opacity, we contrast our main model against the 

case without opacity, i.e., the case in which the underlying portfolio is transparent. We show that 

in the latter case, the moral hazard problem is resolved trivially and the first-best solution is 

achieved. This comparison helps illustrate how portfolio opacity drives a wedge between the 

first-best solution and the second-best solution, and is therefore the source of the welfare loss due 

to the moral hazard problem.  

Holmström and Tirole (1993) emphasize the importance of the liquidity of a firm’s stock for 

structuring managerial incentives within the firm.  However, to our knowledge, our study is the 

first to explicitly examine the impact of portfolio opacity on the contracting solution in the 

delegated portfolio management context.3 More broadly, our study is related to an extensive 

                                                 
3Examples of other studies that focus on fund transparency, or lack thereof, include Gervais and Strobl (2012) who 
analyze a model in which fund managers choose the transparency of their fund at inception to signal their 
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literature that explores the principal-agent problem in this particular setting. Following the 

pioneering work of Holmström and Milgrom (1987), a number of studies have demonstrated the 

optimality of linear contracts in the generic principal-agent setting. By contrast, Stoughton 

(1993) highlights an important shortcoming of linear contracts in the delegated portfolio 

management setting. Based on a similar intuition as Stoughton (1993), Admati and Pfleiderer 

(1997) highlight the limitations of benchmark-linked linear contracts.4 Similarly, Starks (1987) 

finds that a symmetric contract does not eliminate the effort underinvestment problem in a 

setting where the appropriate risk sharing and effort incentives are both of concern. Stoughton 

(1993) and Bhattacharya and Pfleiderer (1985) explore quadratic contracts within a security-

analyst context in which the portfolio manager simply reveals his information to the investor. 

However, as noted by Stoughton (1993), such contracts are not feasible in the more realistic 

delegated portfolio management setting.    

In a recent paper Ou-Yang (2003) demonstrates the optimality of linear contracts in a 

particular form of the delegated management problem.  On the other hand, Li and Tiwari (2009) 

adopt Stoughton’s (1993) framework to show that an appropriately designed option-type bonus 

fee contract can in fact be used to improve efficiency and such a contract dominates all 

symmetric contracts. The present paper extends the literature along two dimensions. One, our 

study highlights the link between portfolio opacity and the contract form.  This analysis helps 

explain the observed differences in the qualitative nature of the portfolio management contracts 

across different kinds of investment vehicles. Notably, it helps explain the existence of 

asymmetric option-type contracts in the alternative asset universe including hedge funds and 

private equity funds, without appealing to market frictions such as high entry costs and imperfect 

competition in the industry.5, 6  Two, it helps clarify the conditions under which the first-best 

                                                                                                                                                             
investment skill. Easley, O’Hara, and Yang (2012) examine the impact of ambiguity regarding hedge fund trading 
strategies on market efficiency and aggregate welfare.   
4Interestingly, Gómez and Sharma (2006) show that in the presence of short-selling constraints, linear performance-
adjusted contracts do provide portfolio managers with the appropriate incentives. 
5 In related work, Das and Sundaram (2002) show that in a framework with differential managerial ability and 
imperfect competition in the market for managers/advisors, investor welfare is generally higher under a regime 
where only the option type “bonus” performance incentive fee is allowed in the contract relative to a regime where 
only the “fulcrum” fee is allowed.  Studies that focus exclusively on the risk taking incentives include Carpenter 
(2000) and Grinblatt and Titman (1989) while Palomino and Prat (2003) explore a setting which abstracts from the 
risk sharing concern. 
6 While it is not the focus of the present paper, a number of studies have explored the economics of the commonly 
observed high-water mark contracts in hedge funds. These include Goetzmann, Ingersoll, and Ross (2003), Panageas 
and Westerfield (2009), and Lan, Wang, and Yang (2012).     
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outcome may be achieved in the delegated portfolio management setting. As an application, 

since our framework accommodates Ou-Yang’s (2003) model as a special case, we are able to 

demonstrate that his result arises naturally due to the observability of asset returns in the model. 

Importantly, his result is not due to the dynamic nature of the model, as has often been 

interpreted in the literature. The rest of the paper is organized as follows. Section I contains our 

main theoretical results. We examine the contracting problem in the case where the manager’s 

portfolio is invested in relatively opaque assets. The closed form solution for the second best 

contract is derived. The contract solution is compared with the case without opacity. Section II 

presents results from a numerical analysis that examines how the form of the optimal contract 

changes and how the principal’s utility varies with a change in the underlying portfolio’s opacity.  

Concluding remarks are presented in Section III.    

I. The Case of Opaque Assets 

I.A. Model Setup and the Second-best Solution 

For simplicity, we use a single risky asset and a risk free asset to represent the manager’s 

investment opportunity set.  Further, we assume that the risky asset is ‘opaque.’  Specifically, we 

assume that instead of observing the return on the risky asset, the investor can only observe the 

return on a benchmark reference asset that has the same marginal return distribution, but is only 

imperfectly correlated with the risky asset. As described below, the degree of opacity of the 

manager’s portfolio is captured by the correlation,  , between the risky asset and a publicly 

observed benchmark.  Assets that are illiquid or privately held are likely to have a low 

correlation with external benchmarks.  Conversely, assets that are publicly traded in liquid 

markets are likely to display a high correlation with the relevant benchmarks. By examining a 

range of values for the correlation we are able to address the wide range of investment options 

available to investors that are characterized by varying degrees of opacity.        

The model analyzed here is a stationary one. A principal contracts with an agent to manage 

her wealth. We normalize the initial investment to $1. With this assumption, the return and the 

terminal value of the investment are identical. We assume that the rate of return on the risky 

asset follows the geometric Brownian motion, so that the asset payoff is never negative. At the 

beginning of the period, the manager decides the portfolio weights, A, which are held constant 

throughout the period. With the above assumption, the risky asset return has a log-normal 

distribution. The log rate of return for the portfolio, w , is: 
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ff rrrAw  )(  ,                                                       (1) 

where r  is the log return of the risky asset and fr  is the log risk free rate of return. We denote 

the terminal value of the portfolio by W , and we have weW  . We assume that there is a 

benchmark asset, whose return is denoted by br  , and this benchmark asset helps the investor 

track the performance of the risky asset. Specifically, we assume that r  and br , are jointly 

normally distributed with the identical marginal distribution, ),( 2N . We denote the 

correlation between r  and  br  by  , where 10   . Given this distributional assumption, the 

rate of return on the risky asset may be expressed as:  21)1(  brr , where the 

noise term,  , is independent of br  and has a standard Normal distribution.  

The principal is assumed to be risk neutral while the agent is risk averse with the log utility 

function: )log()( CCUa  , where C denotes the agent’s compensation. The agent suffers a 

disutility, )( AV , of managing the portfolio. Overall, the agent’s utility may be expressed as 

)()( AVCUa  , where the agent’s compensation, C, is subject to the restriction cC   to account 

for the limited liability feature. The constant c  is set to be a small positive number.7 The agent’s 

reservation utility is assumed to be, )(pUa , where the constant p  is to be interpreted as the 

agent’s opportunity cost of entering the contract with the principal.  

The first-best portfolio allocation is determined by the following maximization problem: 

)(22

2

1
)(expmaxarg AV

ff
A

FB peArARA 





   ,                                 (2) 

We assume that the agent’s cost function is of the form, 2

2

1
)( kAAV  . We note that such a 

function has the following properties: 0)0()0(  VV , and with a sufficiently large choice of k , 

the objective function in (2) is strictly concave.  

The question we focus on in this section is: what happens when the principal’s information is 

less than perfect, i.e., when 1  .  We begin by noting that in this case the benchmark will not 

be perfect and the first-best solution will not be achieved. Below we examine the form of the 

second-best optimal contract. The contract is dependent on the observables. In particular, we 

                                                 
7 To avoid the singularity of the log function at zero, we bound the compensation away from zero.  
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write the contract as ),( wrC b , a function of the log return on the benchmark asset, rb, and the log 

portfolio value, w. A key to the analysis is the question of how the probability distribution of the 

log portfolio return, w , depends on the portfolio allocation, A , and the observed benchmark log 

return, br . Note that, conditional on observing br , the distribution of the risky asset’s return, r , is 

)1,)1(( 2  brN . We denote bb r  )1( . The conditional distribution of the log 

return of the portfolio, w , is given by ))1(),(( 222   ArArN fbf . The log p.d.f. of the 

terminal portfolio value, W , is given by: 

   
222

2

22

)1(2

)(
)log()1(2log

2

1
);,(log










A

rArw
AwArWf fbf

b .              (3) 

By the likelihood ratio principle (see Holmström (1979)), the solution of the optimal contract 

problem is characterized by the following set of equations that jointly solve for the 

compensation, C , portfolio allocation, A , and parameters,  , and  . First, the optimal contract 

should set the compensation C  to satisfy the following equation:  

 
   

'

'
log ( , ; ) .

,
p

b
a

U W C
f W r A

U C A A
 

 
  


                                     (4) 

Then, the shadow price of the incentive compatibility constraint,   is the solution to the adjoint 

equation, 
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     (5) 

and the value of the parameter   is the solution to the participation constraint: 

 log ( , ; ) ( ) log( )bE C r w A V A p     .                                        (6) 

Finally, the portfolio allocation in the second-best solution is given by the first order condition of 

the agent’s problem: 

   0)();,(log1  AVAwrChE b .                                            (7) 

Note that the contract compensation,C , depends only on br , and w , and not directly on the 

manager’s portfolio allocation, which is of course unobservable to the investor and therefore 
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cannot be directly contracted on. However, through Equation (4), the portfolio allocation, A , in 

the second-best solution, does influence C  as a parameter. Therefore, we use the notation 

);,( ArwC b  to track this dependence in the above equation system. After the portfolio allocation 

A  is determined, its value is plugged in to solve for C . From Equation (4), we have that the 

optimal contract takes the form: 

 
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
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
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       (8) 

A notable feature of the above contract is that the manager’s compensation is based on a 

comparison of the portfolio’s performance, w , against the benchmark: )(*
fbf rAr   . Here, 

*A  is the portfolio allocation in the second-best solution, and it does not vary with the manager’s 

off-equilibrium portfolio allocation. 

 For ease of interpretation, it is helpful to rewrite the contract in (8) in the following form: 

   2** )()()(),( fbffbfbfb rArwrrArwFrwC  
                  

(9) 

with the constraint that the manager’s compensation is no less that a predetermined small 

number, c . Furthermore, */ A . Of course, by definition, the second best contract in (8) is 

also the best contract among all contracts that take the form in Equation (9). Therefore, we can 

identify the second best contract by choosing the parameters F ,   and   in Equation (9) to 

maximize the principal’s objective function while being subject to the manager’s participation 

and incentive compatibility constraints. It is clear from the form of the contract in Equation (9) 

that the second-best contract is convex in the portfolio performance, w . We can interpret the 

first term, F , in the above contract as the fixed salary component. The second component can be 

interpreted as a linear component, and the third component as a convex component. We note that 

the linear component is linear in the portfolio’s performance, w . However, the component is in 

the form of the interaction between the portfolio performance and the performance of the 

benchmark. Therefore, the pay-performance sensitivity in this case varies with the benchmark 

performance.  
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Proposition 1. When the principal’s information is not perfect (i.e., 1 ), the shadow price of 

the incentive compatibility constraint is positive. That is, 0  . The portfolio allocation is lower 

than the first-best allocation, i.e., FBAA * . 

Proof. See Appendix II. 

The above proposition shows that due to imperfect information (i.e., when  is strictly less 

than 1), the manager’s allocation to the actively managed portfolio will be less than that in the 

first-best solution, which is a form of effort shirking in our setting. Hence, the first-best outcome 

is achieved only in the special case with perfect observability of the risky asset’s return, i.e., 

when 1.    This case is discussed in more detail in Section I.B. 

It is worth noting the role of the limited liability assumption in the agent’s compensation. 

Given that the agent has log utility, the limited liability constraint on the agent’s part will always 

be satisfied endogenously in equilibrium in any contractual agreement, because the agent’s 

utility would otherwise be negative infinity. 

In the case of opaque assets, the simple limited liability assumption will in general not be 

sufficient. To see this, consider for example a benchmarked contract under which due to the 

limited liability assumption, the manager will receive zero payment if his performance, measured 

by the log return of the portfolio, is below the benchmark by an amount, X . Given that there is 

the noise term,  , in the manager’s active portfolio that the investor cannot benchmark on, for 

any positive investment in the active portfolio, compared to any feasible benchmark, there is a 

positive probability that the manager’s performance will be lower than the benchmark by X . 

With log utility, such an outcome implies that the manager’s realized utility will be negative 

infinity. This, in turn, means that the contractual relation cannot be established due to the 

manager’s participation constraint. The only exception is the case where the manager invests 

only in the risk-free asset and the benchmark is also based only on the risk-free rate. However, in 

this case, there is no benefit for the investor to delegate the investment decision to the manager. 

We face such a technical complication if we set c equal to zero in the contract specified in 

Equation (8). In order to bypass such a technical complication, we need something stronger than 

the bare minimum limited liability assumption. Accordingly, we choose to bound the agent’s 

compensation, ,C  away from zero by imposing the condition, cC  .  
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I.B. The Case without Opacity and the First-best Solution 

It is worth pointing out that if the effect of opacity is removed, the moral hazard problem will 

be completely resolved. That is, when 1 , there is a contract that will solicit the first-best 

behavior from the manager and achieve the first-best outcome for the principal and the agent. 

Such a result provides a natural benchmark to better understand our main result in Section I.A. 

Specifically, comparing the case with 1 , where there is a real cost due to the moral hazard 

problem, as shown in Proposition 1, with the case where 1 , allows us to highlight the key 

driver of the moral hazard problem in our setting, namely the opacity of the managed portfolio.  

Intuitively, when 1 , we have, rrb  , and thus the investor can in fact observe the risky 

asset return, r . Based on Equation (1), the investor can then infer the manager’s portfolio 

allocation weight, A . Therefore, the manager’s “hidden action” is no longer hidden, and thus the 

first-best solution is achieved. We note that the ability for the investor to infer the manager’s 

allocation, A , from the log of the portfolio wealth ( w ) and the asset returns ( frr  and ) relies on 

the assumption that there is only one risky asset. Interestingly, however, the conclusion that the 

first-best solution is achieved when the asset returns are observed does not depend on such an 

assumption.  

It is worthwhile to demonstrate such a result in a more general case when there are multiple 

risky assets and thus both the asset return, r , and the manager’s allocation choice, A  are vectors, 

and the cost function is .
2

1
)( AkAAV T  With the same condition as noted in the single risky asset 

case above, the objective function for the first-best solution is concave. There is a unique first-

best solution. We denote the agent’s action in the first-best solution by *A , the portfolio’s total 

value by *W , and the principal’s payoff by *
pW . Therefore, the agent’s payoff in the first-best 

solution is ***
pA WWW  . We denote the agent’s compensation contract by S . We have the 

following proposition.   

Proposition 2. The first-best solution is achieved by the following compensation contract: 

* * ,PS W W                                                          (10) 

Proof. The proof is trivial. However, we include it in the detailed derivation in Appendix II.   
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Since the first-best outcome is achieved, we have, **
AWS   , but only in equilibrium.  

However, note the crucial difference between *S  and *
AW , where *S  contains the realized 

portfolio value W  which directly depends on the agent’s action, A, while *
AW  contains the term 

*W . As a result, if the manager considers an off equilibrium allocation, A  (i.e., A  is different 

from *A ), the agent’s payoff under the first-best outcome, *
AW , is by definition, unaffected by the 

manager’s allocation choice.  However, the term *S  does vary with the allocation, A , through its 

dependence on W .   

Implicit in the above result are two key assumptions: (a) the manager’s portfolio allocation is 

not based on private information, and (b) the principal is able to observe the asset returns. These 

assumptions ensure that the principal can determine the appropriate first-best payoff, *
PW  , to be 

demanded from the agent as part of the portfolio management contract, which in turn ensures 

that the first-best portfolio allocation is realized.  It is important to note that the proposition’s 

assumptions still allow for the possibility that the manager’s actions are unobserved by the 

investor. In general, the investor cannot infer the manager’s portfolio allocation ex post. Further, 

the manager alone bears the private cost of his actions. Nevertheless, the moral hazard problem 

is completely resolved under the above assumptions. Intuitively, with perfect observability of 

asset returns, the investor can infer the terminal value of the (first-best) benchmark portfolio and 

therefore can make the agent to bear the full consequence of any deviation from this benchmark 

value. Also, note that the contract specified in (10) is linear in the final outcome, W . In 

particular, under the contract, the manager’s compensation is determined by comparing the 

portfolio’s performance, W , to a benchmark, *
PW .  

We next examine how the second-best outcomes converge to the first-best as the correlation 

between the risky asset and the reference benchmark asset approaches 1.To be comparable with 

the second-best contracts in Section II.A, we constrain the contract ( , )FB bC w r
 
away from zero. 

That is, we consider the contract    crARWcrwC fbFBfbFB  )(exp),( . Note that, 

given this contract, the benefit to the manager from deviating from the first-best solution, is 

bounded by a function of the deviation of his portfolio allocation from the first-best allocation, 

FBAA  . The cost to the manager of deviating from the first-best is the possibility of getting the 

minimum payment, c . For any 0  and  || FBAA , we have the cost increasing to infinity 
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as c  approaches zero uniformly. Therefore, as 0c , the agent’s portfolio allocation choice 

when facing the above contract also approaches the first-best. In other words, when we choose c  

to be sufficiently small, the agent’s portfolio choice is practically the same as the first-best 

solution. Given that the second-best solutions for the cases with 1  should weakly dominate 

the outcome from the contract, FBC  , the second-best solutions will converge to the first-best 

solution as   approaches 1. We summarize the conclusion in the following corollary. 

Corollary 1. As 1 , and 0c , the second-best solution approaches the first-best. 

 

Remarks on the literature: While the intuition behind Proposition 2 is straightforward, it helps 

shed light on some of the recent results in the literature on delegated portfolio management. Ou-

Yang (2003) derives a closed form solution of the optimal contracting problem in a continuous-

time delegated portfolio management setting. His result is often interpreted in the literature as 

justification of the optimality of linear contract in the delegated portfolio management, and the 

tractability that leads to the closed form solution is often attributed to the continuous-time setup, 

an insight originally highlighted by the well-known Holmstrom and Milgrom (1987) study. 

However, we show below that Ou-Yang’s (2003) main results can be quickly derived as 

corollaries to a fuller version of Proposition 2, where the intuition is conveyed in a more general 

setup so that Ou-Yang’s model is strictly a special case. The full derivation is included in the 

Technical Appendix (Appendix I). As is clear from our derivation, the continuous-time setting in 

Ou-Yang (2003) plays no essential role in the key intuition. Consequently, the optimality of 

linear contract in this setting is not due to the intuition illuminated by Holmstrom and Milgrom 

(1987). 

Note that in the setting examined by Ou-Yang (2003), all essential assumptions underlying 

Proposition 2 are satisfied.  In particular, the first-best portfolio allocation is based on public 

information and the principal can observe the asset returns. While Ou-Yang does not present the 

first-best solution, we provide a complete solution in the Technical Appendix. In particular, the 

first-best solution of the optimal portfolio policy at time t in his setting, denoted as tA , is given 

by  

1

* 2( ) ( ) ,a p T
t t

a p

R R
A f t k f t h

R R



 

    
                                      (11) 
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where F  is a constant. The optimal contract follows as a corollary to Proposition 2.9 Combining 

Equation (10) and Equation (12), an optimal contract in this setting can be expressed as 

* * 1

0
( ) diag( ) ,

Tp Ta
T T P T T t t t

a p a p

R R
S W W F W W f t A P dP

R R R R
                      (13) 

which is exactly the same as Equation (10) in Theorem 1 in Ou-Yang (2003, page 185). 

Ou-Yang further develops some other forms of the optimal contract in the case where the 

cost function c is constant. These results are contained in his Theorem 2 (p. 188). For these 

cases, consider the following compensation schedule for the agent: 

* *( ) ( ) ,fS S A A R R                                              (14) 

where   is a non-zero constant. It can be readily shown that all contracts in the form of (14) are 

optimal. The derivation of the above result is provided in Appendix I (See Proposition A.2 in 

Appendix I).  By restricting the value of the parameter,   in Equation (14) to the interval )1,0( , 

we arrive at Theorem 2 in Ou-Yang. It is interesting to note, however, that there is no need to 

restrict the parameter   in an interval as Ou-Yang did, as long as   is not zero. 

From the above discussion, it is evident that the optimal contract derived by Ou-Yang (2003) 

is in principle identical to the contract we derive in Proposition 2. Importantly, the moral hazard 

problem is completely resolved under these assumptions. As a key point of departure, in the 

framework adopted by Stoughton (1993) and Li and Tiwari (2009), the manager expends effort 

to collect private information that is correlated with the asset returns. In the Technical Appendix, 

we use Stoughton’s framework to illustrate the point. Also, it is important to note that the insight 

of Holmström and Milgrom (1987) is based on a framework characterized by asymmetric 

                                                 
8 Following Ou-Yang’s notation, the terms tk  and   are the coefficients in the cost function of managing the 

portfolio, aR  and pR  are the risk aversion coefficients for the agent and the principal, respectively, and h  is the 

vector of the expected excess returns for the risky assets. 
9 While Proposition 2 is derived under some specific assumptions that are not directly applicable to the current 
situation, the same result can also be derived in a completely general setting (Proposition A1 in Appendix I) that 
indeed embeds Ou-Yang’s setup as a specific case. The detailed derivation is provided in Appendix I.  



13 
 

information. In the continuous-time game analyzed by them, the agent incurs a cost and controls 

the mean (  ) of the output diffusion process ( tZ ): 

,t t tdZ dt dB                                                              (15) 

where tB  is a driftless N-dimensional vector standard Brownian motion. An important condition 

that leads to the optimality of a linear contract is the assumption that the principal has coarser 

information about the multi-dimensional Brownian process compared to the agent. This is in 

contrast to the requirement of Proposition 2, where a term in the contract specified by Equation 

(10) is a contingent payoff, *
PW , which serves as the benchmark. It is important to note that *

PW  

does not depend on the agent’s actual actions while it can be written in the form of the agent’s 

first-best actions. The only contactable benchmark payoff in the Holmström and Milgrom (1987) 

framework that does not depend on the agent’s actions is a constant payoff. This is due to the 

fact that the principal in this framework does not observe anything beyond the output process, 

and this output is the result of the agent’s actual actions. Clearly, such a constant payoff cannot 

be equal to *
PW  in the case in which the agent is risk averse. This sufficiently demonstrates that 

the contract in (10), while applying trivially to Ou-Yang (2013), does not apply to the 

Holmström and Milgrom setting.  

In a recent study Edmans and Gabaix (2009) show that the Holmström and Milgrom result on 

the optimality of linear contracts can be achieved in settings that do not rely on assumptions such 

as exponential utility, continuous time framework, and Gaussian noise. It is natural to ask 

whether this generalization extends to the delegated portfolio management setting. A key aspect 

of the Edmans and Gabaix generalization is that it relies on a framework in which information is 

revealed to the agent before the agent’s action is chosen. Furthermore, while the model has a 

multiple period structure, the potential complexity from such a structure is minimized. This is 

achieved through two key assumptions. First, the cost function of the agent’s action is assumed 

to take a pecuniary form. Therefore, the aggregation of the overall cost to the agent of his actions 

in multiple periods can be achieved by adding up the pecuniary cost incurred in each individual 

period. The second assumption is that at the end of each period, the realization of the outcome, 

jointly determined by nature and the agent’s action, is publicly observed. By these assumptions, 

each period’s game is sufficiently independent, and the aggregation through multiple periods can 

be achieved rather mechanically. In stark contrast, as emphasized by Stoughton (1993), the 
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interesting feedback effect of actions in different stage of the game in delegated portfolio 

management is what makes the contracting problem particularly challenging. More specifically, 

the agent in such an environment undertakes costly effort prior to the realization of a noisy 

signal related to future asset payoffs, and he is then required to decide on the asset allocation 

under imperfect information. Hence, the limitations of the Homstrom-Milgrom framework in the 

context of delegated portfolio management, first highlighted by Stoughton (1993), are still valid. 

II. Numerical Analysis 

How do the parameters in the optimal contract, the manager’s portfolio allocation, and the 

principal’s utility change with a change in the correlation between the risky asset and the 

benchmark asset,  ?  In particular, how do the contract parameters, the portfolio allocation and 

the principal’s utility change as  declines substantially below 1, i.e., as the manager’s portfolio 

progressively becomes more opaque? We rely on numerical analyses to address these questions. 

To calibrate the model, we assume that the asset return R  in the model has the same statistical 

characteristics as the broad market index. Using the monthly U.S. T-bill and value-weighted 

market index returns for the period 1963:01-2011:09, we get the following annualized statistics: 

average risk free rate of 5.19%, average market excess return equal to 5.186%, and market 

volatility of 15.6%.10 We further assume that the agent’s reservation utility is equal to 2% of the 

initial assets under management. The cost function parameter, k , is set equal to 1.  

For the purpose of comparison, we study the outcomes under the following three contracts as 

the correlation coefficient,  , varies between 0 and 1: (a) the second-best optimal contract, (b) 

the optimal linear contract, and (c) the practical incentive contract with an option-like bonus fee. 

The last contract is a contract that is similar to the kind of incentive contract observed in practice. 

The second-best optimal contract is as described in (9).  

We impose the constraint, as in our analytical study, that the manager’s compensation is no 

less that a predetermined small number, c , which is set equal to 0001.0 . Such a constraint is 

imposed in all three contracts. To solve for the second best contract, we let   in (9) be the free 

parameter to be determined through optimization. For any given  ,  the parameter F  is 

determined by the manager’s participation constraint, and the parameter   is determined by 

                                                 
10 As a robustness check we also calibrated the model using the market statistics for the following sub-periods: (a) 
1926:07 – 2012:03; (b) 1995:01 – 2012:03; (c) 2000:01 – 2012:03; (d) 1963:01 – 1987:12; and (e) 1988:01 – 
2012:03.  In each case the results are qualitatively similar to the results for our base case presented here.    
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*A  , where *A  is solution of the manager’s incentive compatibility constraint for a given 

contract. We iterate on the solutions for *A  and   till they converge, by initially setting *A  to 

be at the first-best solution. Finally, we optimize the principal’s objective function by choosing 

the parameter,  . This leads to the final identification of the second best contract.  

The linear contract we consider is a contract that relates the manager’s compensation to the 

portfolio performance in a linear fashion. That is, 

( , ) ( ) ,b bC w r F w w                                                         (16) 

where F  is the fixed salary,   is the pay-performance sensitivity, and ffbbb rrrAw  )( . We 

set bA  at the equilibrium allocation. As before, for any given  , the parameter F is determined 

by the manager’s participation constraint. We then iterate on the solution for A  from the 

manager’s incentive compatibility constraint, and set bA  equal to the equilibrium allocation in 

the benchmark, till they converge. We then optimize the principal’s objective function by 

choosing  . This leads to the identification of the optimal linear contract.  

  Finally, for the practical incentive contract, we take the above linear contract as the starting 

point and add a component that resembles the usual option-type bonus fee:  

( , ) ( ) ( ) .b b bC w r F w w w w                                                     (17) 

For any given pair of (  , ), the parameter F  is determined by the manager’s participation 

constraint. We iterate, as in the case of linear contract, the solution A  from the manager’s 

incentive compatibility constraint and set it to be bA  in the benchmark, till they converge. 

Finally, we optimize the principal’s objective function by choosing the pair (  , ). This leads to 

the identification of the optimal practical incentive contract.  

The results of the numerical analysis are reported in Table 1.  In each panel of the table, the 

first column lists the value of the correlation between the benchmark and the risky asset return, 

while the second column reports the principal’s utility in excess of the initial investment and as a 

percentage of the initial investment. The third column shows the corresponding asset allocation 

to the actively managed asset induced by the contract. In the following two (Panel B) or three 

(Panels A and C) columns, the contract parameters ),,( F  are listed under the title “salary,” 

“linear”, and “quadratic” or “option”. The last two columns of Panel A report the relative 

weights of the two contract components: linear versus quadratic. The relative weights are based 
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on the relative variation in the linear and quadratic component of the manager’s compensation as 

the performance of the actively managed asset and the benchmark asset varies across the joint 

distribution of the risky asset return and the benchmark return. For easy comparison, the last row 

of each panel lists the first-best outcomes in terms of the portfolio allocation and the principal’s 

utility.  

Before reporting the results of the numerical analysis we note that, because we have the 

explicit probability density function by assumption, we can base all the numerical calculations on 

numerical integration rather than relying on simulations based on random draws. This is 

important because of the potential concern with respect to the left tail of the agent’s payoff. 

Given that the manager has logarithmic utility and the lower bound on his compensation, c ,  is 

close to zero, the manager has to suffer a very large negative utility in the left tail of the payoff 

distribution. This raises the potential concern that with a random sampling approach, insufficient 

draws will result in substantial sampling error, rendering the outcome unreliable. However, this 

is not a problem with the numerical integration approach because the left tail, as the lower point 

in the integration interval, is always appropriately accounted for in the integration. 

From Panel A, it is clearly seen that under the second-best contract, when the correlation 

coefficient,   , is less than one, there is an underinvestment in the actively managed risky asset. 

In the first-best outcome, the allocation to the risky asset is 146.77% with the resulting 

principal’s utility at 8.75%. The induced allocation in the second-best case when 0  is 

89.08%. The principal’s utility in this case drops to 6.51%, i.e., the principal suffers a utility loss 

of more than twenty five percent as the benchmark asset’s correlation drops from a perfect 1 to 

zero. The underinvestment problem is less severe as the correlation,   increases. Indeed, as   

increases, both the allocation to the risky asset and the resulting principal’s utility increase 

gradually. Furthermore, as   approaches 1, both the risky asset allocation and the principal’s 

utility converge to their corresponding values in the first-best outcome.  

The second-best contract needs to achieve the twin objectives of providing the appropriate 

effort incentive to the manager and achieving the appropriate risk sharing between the two 

parties. As   decreases, the performance of the benchmark reference asset is less informative 

about the manager’s actions, i.e., his risky asset allocation. As a result, as   decreases, i.e., as 

the portfolio becomes increasingly opaque, the linear component of the contract becomes less 
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effective, and the contract relies more on the convex component to motivate the manager to 

invest in the risky asset. Indeed, as seen from Panel A of the table, the relative weight of the 

convex component increases substantially as   decreases.  

When comparing the linear contract outcomes (Panel B) with the second-best outcomes 

(Panel A), we can see that there is substantial utility loss for the principal when   is low. For 

instance, when 0 , the utility decreases from 6.51% in the second-best case to 3.86% in the 

linear contract case – a utility loss of over 40%.  The loss of utility in the case of linear contracts 

is largely due to the underinvestment in the risky asset.  For instance, when 0 , the allocation 

to the risky asset is 89.08% in the case of the second-best solution, while it is only 12.65% in the 

case of the linear contract. As   increases, the allocation to the risky asset in the linear contract 

case increases substantially with the resulting decline in the principal’s utility loss. For example, 

when 98.0 , the utility loss under the linear contract is less than 1% relative to the second-

best case.11 This result highlights the fact that as the underlying portfolio becomes less opaque 

the linear contract becomes more attractive. By Corollary 1, the principal’s utility converges to 

first-best in both cases when c  approaches zero.  

We next consider the outcomes under the practical incentive contract (Panel C) which 

features the option-like component in addition to the linear contract component. We note that the 

underinvestment problem in the linear contract is alleviated to a certain degree by the inclusion 

of the option-type component in the practical incentive contract. In the case when 0 , the 

portfolio allocation to the risky asset increases from 12.65% in the linear contract case to 27.04% 

in the case of the contract with the option-like component. The corresponding investor’s utility 

increases from 3.86% in the linear contract case to 4.33% in the case of the practical incentive 

contract. The gain in the investor’s utility is much less for higher values of  .  Indeed,  when   

gets close to 1, the option-like component is no longer useful. In fact, as seen from Panel C of 

Table I, when 0.90  , the option-like component coefficient is close to zero, and the 

coefficient becomes zero when 95.0  or when 0.98  . This is an interesting result as it 

confirms that as the ‘opacity’ of the manager’s portfolio declines, the option-like component is 

no longer needed to motivate the manager, and the linear contract component suffices.  

                                                 
11 Some residual difference remains due to the constraint that all contract payments have to be larger than a positive 
constant, c . 
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Conversely, it is precisely in the case of non-traditional, relatively ‘opaque’ assets that the 

option-type component is a desirable contract feature.    

III. Concluding Remarks 

This paper analyzes the implications of portfolio opacity for the design of asset management 

contracts. This is an issue that is increasingly relevant given the growing interest in non-

traditional investments such as hedge funds and private equity funds on the part of institutional 

investors. The ‘alternative’ investment portfolios are often invested in relatively illiquid or non-

publicly traded assets while implementing proprietary strategies, and are generally exempt from 

public disclosure requirements. The relative opacity of the portfolios in these cases contributes to 

the benchmarks for such assets being relatively noisy. We examine how the optimal contract 

changes as the correlation between the managed portfolio and the reference benchmark portfolio 

declines. The analysis suggests that in the absence of perfect observability, i.e., when the 

correlation between the managed portfolio and the benchmark portfolio is less than 1, the first-

best outcome is no longer feasible. The second-best optimal contract in this setting features a 

convex component in addition to a component that is linear in performance. Moreover, the 

relative importance of the convex component is an increasing function of the portfolio’s opacity.  

Further, the principal’s utility loss from restricting the weight of the convex component to zero is 

increasing in the asset’s opacity.   
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Table 1 

The table documents the numerical results on the outcomes of using three types of contracts under 
different scenarios where the correlation,  , between the return on benchmark observed by the principal, 
and the return on the portfolio managed by the agent, varies from 0 to 0.98. The table reports, for each 
contract, the principal’s expected utility net of the initial investment (second column) expressed as a 
percentage of the initial investment, the agent’s allocation weight on the actively managed risky portfolio 
(third column), and the contract components. Panels A, B and C correspond to the second-best contract, 
the linear contract, and the practical incentive contract, respectively.  The contracts are described in more 
detail in Section II.  in the text. Columns 4, 5 and/or 6, under the subtitle “Contract”, report the 
coefficients in the contract: coefficient F  under “Salary”, coefficient   under “Linear”, and/or 

coefficient   under “Quadratic” in Panel A and under “Option” in Panel C. To facilitate interpretation, in 
Panel A, we also report the relative weights of the two variable contract components. The relative weights 
are based on the relative (absolute) variation in the linear and quadratic component of the manager’s 
compensation as the performance of the actively managed risky asset and the benchmark asset varies 
across the joint distribution of the risky asset return and the benchmark return. The relative weights are 
reported in Columns 7 and 8 under the subtitle “Relative Weights”. The key inputs for the calibration are 
based on the following annualized U.S. market statistics for the period 1963:01-2011:09: average risk free 
rate of 5.19%, average market excess return equal to 5.186%, and market volatility equal to 15.6%. 
 
Panel A. Second-best Contract 

         Contract   Relative Weights

    Utility Allocation  Salary Linear Quadratic   Linear Quadratic

0   6.51% 89.08%  0.016 0.261 0.293   17% 83%

0.25   6.54% 90.42%  0.016 0.278 0.307   20% 80%

0.5   6.63% 92.23%  0.019 0.310 0.336   31% 69%

0.75   7.00% 104.02%  0.026 0.398 0.382   44% 56%

0.9   7.61% 119.50%  0.038 0.491 0.411   59% 41%

0.95   8.07% 127.26%  0.043 0.541 0.425   67% 33%

0.98   8.41% 127.63%  0.044 0.573 0.449   77% 23%

First-best   8.75% 146.77%          
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Panel B. Linear Contract 

        Contract 

    Utility Allocation   Salary Linear 

0   3.86% 12.65%  0.020 0.120 

0.25   3.88% 13.09%  0.020 0.123 

0.5   3.95% 15.07%  0.021 0.138 

0.75   4.23% 23.21%  0.022 0.185 

0.9   5.06% 44.94%  0.025 0.253 

0.95   6.20% 83.99%  0.039 0.424 

0.98   7.45% 128.36%  0.060 0.579 

First-best   8.75% 146.77%     

 

Panel C. Practical Incentive Contract 

         Contract

    Utility Allocation   Salary Linear Option 

0   4.33% 27.04%  0.019 0.120 0.165 

0.25 4.33% 27.26% 0.019 0.123 0.173 

0.5 4.33% 27.22% 0.019 0.138 0.175 

0.75 4.42% 29.34% 0.020 0.186 0.201 

0.9 5.06% 43.08% 0.024 0.253 0.097 

0.95 6.20% 83.99% 0.039 0.424 0.000 

0.98 7.45% 128.36% 0.060 0.579 0.000 

First-best   8.75% 146.77%     
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Appendix I （The technical appendix) 

Derivation of the results of Section I under a general framework. 

Below, we derive the results corresponding to those of Section I under a general framework. As will 

be demonstrated, our results do not rely on (a) the specific form of a utility function for the principal and 

the agent, (b) assumptions regarding how the agent’s action affects the distribution of a project’s payoff, 

and therefore the distributional assumptions regarding the state variables, and (c) the choice of a dynamic 

framework – namely, whether it is a continuous-time or a discrete-time model. 

Consider an economy in which a principal hires an agent to carry out a business endeavor. The 

outcome of the endeavor is a wealth distribution along state space and time. We assume that the pair of a 

measure space and a sigma algebra, denoted by ),( F , captures all the dimensions and all the relevant 

distinctions in the state space and time within the model. To capture the idea that the agent’s action 

contributes to the outcome, we denote it in functional form as DA :)(W , where A  is the space of all 

feasible actions by the agent, and D  is the space of all possible wealth distributions along state space and 

time. That is, D  consists of real valued F - measurable functions with domain on  , and a feasible 

action AA  by the agent leads to a wealth distribution D)(AW . We assume that the principal has a 

utility function, RU P D: . Such a general utility function ranks all feasible wealth distributions the 

principal potentially gets out of the joint venture.  

The agent has a utility function over the compensation he receives and the action he chooses. 

Formally, RU A AD: . In the principal-agent setting, the agent’s action has to be voluntarily chosen. 

Therefore, an appropriately designed contract is needed to elicit the proper action from the agent. We 

view the contract from the agent’s perspective. As the outcome of any action AA  the agent chooses, 

there are the resulting distributions (on the measure space ),( F ) of the compensation, which we denote 

by D)(AS . That is, similar to )(W , )(S  is a function from A  to D . We denote the space of all 

feasible compensation-based contracts by S .12 The generic contracting problem can be stated as the 

following optimization problem: 

 
, ( )

sup ( ) ( ) ,
e e

e e
p

S A S

U W A S A
 


S A

                                                     (A.1) 

                                                 
12 For a contract to provide motivation, it has to link the compensation with the agent’s action. Given that the agent’s 
action is not observable, this link is in general, not direct. For instance, S  may be determined by A indirectly 
through )( AW . Therefore, depending on the ex post information the principal has, the feasible contract space S  is 

in general a proper subset in the space of all functionals from A  to D .  
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. . ( ) arg max ( ( ), ) ,e
a

A
s t S U S A A




A
A                                                   (A.2) 

( ( ), ) .e e
a aU S A A U                                                          (A.3) 

In the above, aU  is the agent’s reservation utility, and Inequality (A.3) is the agent’s participation 

constraint. Here, we assume that the principal takes the entire surplus and that the agent’s utility is driven 

to the reservation level. The additional constraint (A.2) is the agent’s incentive compatibility constraint. 

The notion of maxarg in (A.2) is to be understood as the set of all solutions to the maximization 

problem. Therefore, eA  is a set-value function such that for any SS , AA )(Se . As a special case, 

if )(SeA  is always reduced to a single point for all candidate contracts, S , then eA  is uniquely 

determined by S  through constraint (A.2). In this case, the only control variable for the optimization 

problem will be S , the choice of the contract. In the way we state the problem in (A.1), we adopt the 

convention that among all actions for which the agent is indifferent, he will choose the one that is most 

beneficial to the principal. Such a convention becomes unnecessary if we adopt the assumption that the 

agent keeps the entire surplus and the principal’s utility is driven to reservation level.  

We assume that a first-best solution exists. That is, the following optimization problem has at least 

one solution.  

 
,

max ( ) ,p
A S

U W A S
 


A D

                                                               (A.4) 

. . ( , ) .a as t U S A U                                                                 (A.5) 

For easy reference, we denote the set of first-best solutions by FBQ : 

 * * * * * *( , ) | , , ( , ) solves the optimization problem in (A.1) and (A.2)FB A S A S A S  Q A D     

(A.6) 

For the following discussion, we will in general use the notations *A  and *S  for the resulting 

quantities in the first-best solution. The first-best solution is typically understood as the optimal solution 

that can be achieved when the agent’s action can be ex post verified and therefore contracted on. 

Although this case is well understood in the literature, we make some remarks in order to facilitate our 

later comparison. Note that with a slight abuse of notation, S  in (A.4) and (A.5) is a point in the space in 

D , and it determines only one compensation distribution for the agent. In contrast, a contract )( AS  in 

(A.1)-(A.3) is a function from A  to D , and different actions by the agent can potentially lead to different 

compensation distributions for him. However, this inconsistency can be easily resolved following the 

general protocol of viewing a constant number as a constant function, by viewing the compensation 

distribution S  (therefore, a point in D ) as equivalent to the constant function that maps any action 
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AA  to the same compensation distribution S , with the understanding that there is an implicit 

dimension of the contract that threatens to punish the manager when his action deviates from the optimal 

action, *A . This dimension of the contract is not explicitly stated in the problem, but it is viewed as 

trivial in intuition.  

Comparing the optimization problems in (A.4)-(A.5) and (A.1)-(A.3), we note that the difference 

stems from the additional constraint, namely, the incentive compatibility constraint (A.2), for the 

contracting problem in (A.1)-(A.3). This constraint is the key factor that can lead to a potential moral 

hazard problem. The potential moral hazard leads to a loss in efficiency if and only if constraint (A.2) is 

binding. For our purpose, a particular set of contracts are of interest. They take the form: 

))(()()( **** SAWAWAS                                                       (A.7) 

for some pair FBSA Q),( ** . We denote the set of contracts taking the form in (A.7) by **S . That is,  

 FBSASAWAWASSS QSS  ),(pair  somefor  ))(()()(  with,)(|)( ****** .            

(A.8) 

It will become clear later that this set of contracts can be intuitively understood as being equivalent to 

the principal “selling” the project to the agent. The key question about set **S  is whether it is empty. In 

case it is not empty, we have the following result: 

Proposition A.1. If there exists a contract, **** SS , then the incentive compatibility constraint in (A.2) 

is not binding and the first-best solution is achieved by this contract. In fact, for any eA  in the set of 

)( **SeA , the pair ))(,( ** ee ASA is a first-best solution. If we assume, in addition, that both )(pU  and 

),( aU  are continuous and strictly increasing in wealth, we have that )( *** SA eA . That is, *A is an 

optimal response to contract **S  for the agent.   

Proof. Given the definition of **S , there exists FBSA Q),( **  such that  

**** )()()( SAWASAW  , for any A.                                         (A.9) 

That is, the distribution of the principal’s payoff, )()( ** ASAW  , does not depend on the agent’s 

action A, and we have   )()()( ** SWUASAWU p
ee

p  , where the right-hand side is by definition the 

solution of the optimization in (A.4)-(A.5). The principal achieves the first-best outcome regardless of the 

agent’s action. For the agent, because eA  is determined by (A.2), we have 

aa
ee

a UAASUAASU  )),(()),(( ****** . In summary, the pair ))(,( ee ASA  satisfies the constraints in 

(A.5) and achieves the maximum value of the objective function in (A.4). It thus qualifies as a solution 
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for the optimization problem in (A.4)-(A.5). The proof of the last claim is also straightforward, but is 

omitted for the sake of briefness. Q.E.D.13 

If the principal can ex post demand the payoff that always matches the first-best outcome, she can 

effectively “sell” the project to the agent in return for a “price” equal to ** AW  . In general, however, 

** AW   is a random variable. Indeed, when the agent is risk averse, the quantity ** AW   should vary 

with the underlying states in such a way that it achieves the optimal risk sharing between the principal and 

the agent at the equilibrium. Nevertheless, this contingent payoff is in no way dependent on the agent’s 

action, A , and is not directly related to the project’s outcome, )( AW . Therefore, in this sense, the 

principal-agent relation is severed at the point when the contract is signed by both parties, and it is also in 

this sense that we may interpret it as the principal “selling” the project to the manager in return for a 

contingent payment of ** AW   at the terminal date.  By doing so, the agent bears all the consequences of 

his action, and therefore the incentive problem is completely addressed.  

As is typical in the moral hazard literature, the manager’s utility can be specified as a function of two 

variables, the wage the manager receives and a private cost due to his action. That is, the utility takes the 

form, ))(),(( AcASUP , where )( Ac  is the private cost incurred by action, A. We next analyze the case in 

which the cost of action to the manager is a constant – that is, 0)( cAc   for some constant, 0c . Under 

this assumption, the manager’s utility is reduced to ))(( ASUP , which is dependent on his action A only 

through the payoff he receives. We denote the set of all feasible wealth distribution of the project by 

)(AW  – that is,  AA  AAWW |)()( . We call the set ( )W A  a manifold if for any R  and any 

two attainable outcomes, )(, 21 AWWW  , the linear combination 213 )1( WWW    is an element in 

)(AW . We have the following proposition: 

Proposition A.2. If, in addition to the assumptions in Proposition A.1, we assume that 0)( cAc   for some 

constant, 0c , and the set )(AW  is a manifold, then all of the following contracts will achieve the first-

best outcome and therefore are optimal contracts:   

))()(()( ** AWAWSAS   , for any fixed R , and any * *( , ) FBA S Q .        (A.10)  

Proof. Fix the pair FBSA Q),( ** . Note that when the manager chooses action, *A , the payoffs for the 

manager and the investor exactly match the respective payoffs under the first-best solution. Therefore, we 

need only to show that, under the contract in (A.10), there is no action AA  that the manager would 

                                                 
13 As this proposition does not assume the uniqueness of the first-best solution, it makes no claim about whether 

*)*,())(,( SAASA ee  . 
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prefer over *A . Assume otherwise, that there exists AeA  such that *))(())(( ASUASU a
e

a  . Because 

)(AW is a manifold, )()1()( *AWAW e    can be implemented by a certain action of the manager, 

which we denote as A . Notice that 

* * * * * **( ) [ ( ) (1 ) ( )] ( ) ( ) ( ) ( ) ,e eS A S W A W A W A S W A W A S A                    (A.11) 

and )()( ***** ASSAS  . Therefore, ))(())(())(())(( ****** ASUASUASUASU aa
e

aa  . This 

contradicts the conclusion in Proposition A.1 that *A  is the optimal strategy for the manager when facing 

the contract, )(** AS . Q.E.D. 

The results in Propositions A.1 and A.2 generalize the results in Section I of the text. 

Derivation of the first-best solution in Ou-Yang’s (2003) setting.  

The fully specified model in Ou-Yang’s paper includes the following assumptions for the price 

processes, the wealth process, the cost function, and the utility functions. The risk-free rate is constant and 

denoted by r. The price-process of the risky assets is described by the following geometric Brownian 

motion, diag[ ]( ( )) ,t tdP P dt dB t    where μ is a constant vector in NR , σ is a constant matrix in 

dNR   with linearly independent rows, and B is a Nd   dimensional standard Brownian motion. The 

wealth process }{ tW  for the portfolio strategy }{ tA  is then given by [ ] ,T T
t t t t tdW rW A h dt A dB  

where 1 rh  , and 1  denotes the unit vector, and tA  is the dollar amount invested in the risky 

asset at time t. The instantaneous cost function is specified as tt
T
ttt WAtkAWAtc  )(

2

1
),,( , where 

)(tk  is an NN  matrix, and   is an constant. The agent’s preference over wealth is described by 

WR

a
a

ae
R

WU 
1

)( , and the principal’s utility is 
WR

p
p

pe
R

WU 
1

)( .   

We state a more detailed version of the result regarding the first-best solution below: 

Proposition A3. The first-best solution of the optimal portfolio policy and the optimal payment to the 

agent are given by  

1

* 2( ) ( ) ,a p T
t t

a p

R R
A f t k f t h

R R



 

    
                                      (A.12) 

and  

* * * * * *

0 0

1
( , , ) ,

2

T TT T
T t t a t t t tS c A W t R g g dt g dB    

                                  (A.13) 
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where ,)1()( )(

r
e

r
tf tTr 

   
** )( t

T

pa

p
t Atf

RR

R
g 


 , and the process }{ *

tW , for ],0[ Tt  is 

given by  

   * ( ) * ( ) *
0 0 0

.
t trT r T s T r T s T

t s s sW e W e A h ds e A dB                            (A.14) 

We further have the investor’s payoff in the first-best solution as 

* * * * 1

0
( ) diag( ) ,

T Ta
P T T t t t

a p

R
W W S F f t A P dP

R R
    

                        (A.15) 

where F  is a constant.  

Proof: Consider the portfolio manager’s expected utility, 

 0),,(
0





 





  

T

ttTatt dttWAcSUEx ,                                     (A.16) 

which is a martingale over the Brownian fields generated by tB . A theorem of Meyer (see Jacod (1977)) 

holds that every martingale over the Brownian fields can be represented as an Ito stochastic integral with 

respect to the driftless Brownian motion: t
T
tt dBdx  , where }0;{ tt  is a d-dimensional adopted 

stochastic process and 
T

t
T
t dt

0
  is almost surely finite. Define the process )}({ t  as   

 ta
a

ta xR
R

xUt   ln
1

)()( 1 .                                               (A.17) 

By Ito’s lemma, we have, 

 
T T

t
T
tt

T
ta dBgdtggRT

0 02

1
)0()( ,                                   (A.18) 

where 
ta

t
t xR

g


 . We further have that 
T

ttT dttWAcST
0

),,()( , and from the participation 

constraint, 0)0(  . Hence, we get the following equivalent representation of the participation 

constraint: 

0

0 0 0

( ) ( , , )

1
( , , ) .

2

T

T t t

T TT T
t t a t t t t

S T c A W t dt

c A W t dt R g g dt g dB

  

    



  
                      (A.19) 

With the participation constraint noted in Equation (A.19), we can state the first-best problem as follows: 
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,
2

1
),,(

;)(

);(

..

)]([sup
}{},{

t
T
tt

T
tatttt

t
T
t

T
ttt

t
d

tt

Tp
gA

dBgdtggRdttWAcdWdN

dBAdthArWdW

dBdtPdP

ts

NUE
tt









                         (A.20) 

where ttt SWN  . Given that tA  and tg  are adapted stochastic processes, };;{ ttt NWP  are controlled 

Markov processes, with tA  and tg being the controls. We define a value function process 

),,,( ttt PNWtV  for the above optimal control problem as  

  Tpt
gA

ttt NUEPNWtV
uu }{},{

sup),,,(  .                                          (A.21) 

The Bellman equation for this dynamic programming problem is as follows: 

VA gA

gA

,

,
sup0  ,                                                            (A.22) 

where gAA ,  stands for the backward generating operator, i.e., 

 

 
.)(diag

)(diag)()(diag)(diagtrace
2

1
2

1
)(

2

1

)(diag
2

1
),,())((,

gPV

APVVPPV

gAAAVgAVggVAAVV

PVggRtWAcVhArWVVVVA

t
T

NP

T
t

T
NP

T
WPt

T
tPP

TTT
WN

T
NN

T
NN

TT
NNWW

tP
T

aN
T

NWt
gA




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













 

         (A.23) 

The first-order conditions of the Bellman equation with respect to the control variables A and g are 

0 ( ) ( 2 ) ( ) ,

( )

T
W N N A WW WN NN WN NN

T d T T
WP NP

V V h V c V V V A V V g

P V V

 



       

 
                  (A.24) 

and  

T
NP

dTT
WNNNNNaN VPAVVgVgRV   )(0 .                                (A.25) 

Conjecture that ),,,( ttt PNWtV  takes the following form: 

  )()()(exp
1

),,,( 321 tfNtfWtfR
R

PNWtV ttp
p

ttt  ,                         (A.26) 
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with the boundary conditions 0)()( 31  TfTf , and 1)(2 Tf . Then we have that )( 1fRVV pW  , 

)( 2fRVV pN  , 
2

1)( fRVV pWW  , 
2

2)( fRVV pNN  , )( 21
2 ffRVV pWN  , and all the derivatives 

with respect to P are zeroes. Substituting all of these into the first-order conditions above, we get  

Aff
fRR

R
g T

pa

p
t )( 21

2




 ,                                           (A.27) 

and 

  htftf
RfR

RR
ktftftfA T

pa

pa
tt

1

2
21

2
221 )()()())()((

















  .                 (A.28) 

To determine the values of )(),( 21 tftf , and )(3 tf , we substitute V back into the Bellman equation: 

1 1 2 2 2 3 1 2 2

2 2
2 1 2 2 1 2

1
0 ( ) ( )

2

1 1
( ) ( ) .

2 2

T T T
t t t t t t a t t

T T T T
p t t p t t p t t

W f f f r f N f f f f A h f A k A R g g

R f g g R f f A A R f f f A g



 

                 

    
        (A.29) 

Notice that both tA  and tg  do not depend on tN  or tW . To eliminate the tN  term from the right-hand 

side of the above equation, we must have 02 f  with the boundary condition, 1)(2 Tf . Therefore, 

1)(2 tf . To eliminate the tW  term, we must have 

  1 1 0 ,f f r r                                                            (A.30) 

with the boundary condition 0)(1 Tf . Therefore,  

).1)(1()( )(
1   tTre

r
tf


                                                 (A.31) 

The function )(tf  in theorem 1 is given by 1)()( 1  tftf . The Bellman equation is satisfied by 

setting  

.
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1
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2212
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
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


















 




                 (A.32) 

The following computation is not necessary for our derivation of the first-best solution and for the 

derivation of the optimal contract. It is presented here solely for the purpose of fully replicating Equation 

(10) in Ou-Yang’s Theorem 1. Given the portfolio strategy }{ *
tA , the wealth process is determined by the 

stochastic differential equation:  
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t
T

t
T

ttt dBAdthArWdW **** )(  .                                       (A.33) 

Using Ito’s lemma, we can rewrite the equation as:  

      t
T

t
tTrT

t
tTr

t
tTr dBAedthAeWed *)(*)(*)(   .                            (A.34) 

Therefore, 
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s
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s
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*)(
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*  , for ],0[ Tt .                   (A.35) 

Notice that  

 

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),,( .                                (A.36)  

We thus have 
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               (A.37) 

We choose the constant, F , as in Ou-Yang (2003), to absorb all the constant terms in the above 

equation, and write the result in short as:  

 




T

tt
T

t
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a
TT dPPAtf

RR

R
FWS

0

1*** )(diag)( .                        (A.38) 

Hence, the proposition is proved.  
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Appendix II 

Proof of Proposition 1. The proof is developed in two steps. First, if 0 , the contract is the constant 

contract. Clearly, the agent will then choose 0A , which is strictly less than the first-best case outcome. 

This contradicts the fact that the shadow price of the incentive compatibility constraint is zero  

(i.e., 0 ). Second, assume that 0 . That is, the shadow price of the incentive compatibility 

constraint is negative. We thus have the agent’s portfolio allocation FBAA * . The contract form is 

specified in Expression (8). The first order derivative for the agent’s objective function at the solution, *A

, is given by: 

0)(),(
),()1(

)( *
222*

2


















AVcrwC
rwCA

rr
E b

b

f


 . 

This contradicts the claim that FBAA * , which is an interior solution. Hence, we conclude that 0 . 

Proof of Proposition 2. Under the assumptions of the proposition, the principal’s payoff in the first-best 

scenario, *
PW , depends on *A , R , and fR . In other words, *

PW  is based only on public information 

given the assumption about the first-best allocation, *A . Therefore, the contract in (10) is feasible. It is 

clear that under the compensation scheme, *S , described in Equation (10), the principal’s payoff, PW , is 

given by, * *
P PW W S W   , which is in fact the first-best outcome. Therefore, the first-best outcome is 

achieved. The fact that the agent chooses the first-best portfolio allocation can be shown accordingly. 

The result in Proposition 2 does not apply to the framework in Stoughton (1993). 

We use Stoughton’s framework to illustrate the point. The manager has access to a risk-free asset 

with gross return fR  and a risky asset with gross return, eR , where   is the mean and thus 

0)( eRE . One of the key assumptions made by Stoughton is that the manager can observe a signal that 

is correlated with the true return:14 

,eI R                                                                     

where all variables are assumed to be jointly normal. Furthermore, 0)( E , and 0)( RE . The 

information precision is captured by, 22 /  R , which is also identified as the manager’s effort. The 

utility functions of the manager and the investor are assumed to be exponential: 

 ( ) exp ( ) ,a A AU W aW V                                                  

                                                 
14 We adopt notation that differs from Stoughton (1993) in order to be consistent with the other part of this paper. 



33 
 

 ( ) exp ,p B BU W bW                                                        

where AW  and BW  are the end-of-period wealth of the agent and the principal, respectively, and )(V  is 

the disutility of effort. At the first-best outcome, the payoff to the principal is the following function of R  

and I :  

*

0 2

1 /
*

(1 / ) (1 / )

1 / * 1 *
( ) ,

(1 / ) (1 / ) * 1

P

f f f
R

b
W W

a b

b a b
W R I R R R

a b ab

 
 

 


   
          

                

where   is a constant such that the manager’s participation constraint is satisfied. All the parameters and 

variables in the last row of the above expression are either known or observable at the end of the game to 

the investor and therefore, can in principle be contracted on, with the exception of the manager’s signal, .I  

Due to this fact, the contract in Equation (10) is not feasible in Stoughton’s (1993) framework. Based on a 

similar setting as Stoughton, Li and Tiwari (2009) show that all forms of symmetric contracts are 

suboptimal. They demonstrate that an appropriately designed option-type bonus fee contract can be used 

to improve efficiency and such a contract dominates all symmetric contracts in this setting. 


