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I. Introduction

Investors today operate in a world with increasing complexity requiring them to process large

amounts of information while making decisions. However, information quality can often be difficult

to judge for investors. As argued by Epstein and Schneider (2008), when faced by information

signals of unknown quality, investors treat the signals as being ambiguous.1 There is now consid-

erable experimental evidence documenting that individuals are ambiguity averse (e.g., Bossaerts,

Ghirardato, Guarnaschelli, and Zame (2010), Ahn, Choi, Gale, and Karivl (2011)) in the sense that

they prefer to bet on events with known, rather than unknown, objective probabilities. However,

empirical evidence of ambiguity aversion in non-experimental settings is relatively scarce. In this

study we provide novel evidence on this issue by examining the response of mutual fund investors

to historical fund performance information.

Mutual funds offer an appealing setting in which to study the role of ambiguity on investor

decisions for a number of reasons. First, mutual funds represent a very substantial component

of U.S. household portfolios.2 Second, the well-documented phenomenon of performance-chasing

by fund investors suggests a natural link between performance-related information and the in-

vestment/divestment decisions of investors.3 Third, funds typically make available performance

statistics including relative rankings measured at various horizons (e.g., 1-year, 3-year, 5-year, and

since-inception) which serve as multiple signals to investors about fund manager skill. These per-

formance statistics are readily available in fund prospectuses and related marketing materials. Each

of the multiple signals reflects the performance of a particular fund relative to the available pool of

funds, albeit over different time horizons. In this sense, the signals are comparable and studying the

response of investors to various signals allows for a natural test of decision making under ambiguity

in a non-experimental setting. Furthermore, as we subsequently discuss, our framework allows us

to distinguish the impact of ambiguity aversion from the implications of standard Bayesian learning

under uncertainty and/or models that allow for behavioral biases such as loss aversion.

1The distinction between risk and ambiguity/uncertainty was highlighted by Knight (1921) who defined uncertain
events as those for which the probability distribution of outcomes is unknown. According to Knight, “The practical
difference between risk and uncertainty, is that in the former the distribution of the outcome in a group of instances
is known (either through calculation a priori or from statistics of past experiences), while in the case of uncertainty
this is not true, the reason being that it is impossible to form a group of instances, because the situation dealt with
is in a high degree unique.” (p. 103).

2According to the 2012 Investment Company Institute Fact Book, 44% of all U.S. households owned mutual funds.
3See, for example, Ippolito (1992); Gruber (1996); Chevalier and Ellison (1997); Sirri and Tufano (1998).
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It is reasonable to believe that individual investors are faced with considerable ambiguity when

it comes to their fund investment decision. Investors face a dizzying array of choices. For ex-

ample, according to the 2012 Investment Company Fact Book, there were more than 4,500 U.S.

equity mutual funds in existence at the end of 2011. Investors are also subjected to a barrage

of performance statistics on the funds. While these performance data provide signals of the fund

manager skill, the investors clearly face a great deal of uncertainty about the quality of the signals.

Past performance is at best a noisy signal of managerial skill. How do ambiguity averse investors

interpret and respond to such signals? The goal of this study is to provide some answers to this

question as a way to further our understanding of mutual fund investor behavior.

We present a simple model of ambiguity averse investors who receive multiple performance-based

signals of uncertain precision about manager skill or fund alpha. The model relies on the framework

of Epstein and Schneider (2008), Klibanoff, Marinacci, and Mukerji (2005), and Ju and Miao (2012).

A key implication of the model is that when investors receive multiple signals of uncertain quality,

they place a greater weight on the worst signal. In practical terms this implies that ambiguity

averse investors are more sensitive to the worst-case scenario when evaluating funds. We find

strong empirical support for this prediction in the data. Specifically, we examine the sensitivity

of fund flows to past performance measured over multiple time horizons: 1 year, 3 years, and 5

years. We find that fund flows display significantly higher sensitivity to the worst performance

measure even after controlling for performance volatility and a host of other relevant explanatory

variables. This heightened sensitivity holds regardless of whether fund performance is measured

by raw return or the Carhart 4-factor alpha. This effect is particularly pronounced in the case of

retail funds whose investors are likely to face a higher degree of uncertainty regarding the quality

of performance-related signals they observe, compared to the institutional fund investors.4

We use a number of fund characteristics as proxies for the degree of ambiguity about fund

performance/manager skill. These include the fund’s investment strategy shifts, return volatility,

fund flow volatility, and family size. We consistently find that in cases with higher degree of

ambiguity as captured by our proxy measures, fund flows display significantly higher sensitivity to

4Instead of using performance measured at different time horizons as signals, in unreported tests we also consider
various performance measures (including the CAPM alpha, Fama-French 3-factor alpha, Carhart 4-factor alpha, raw
return, and Morningstar fund rating) over the identical time horizon (1-, 3-, or 5-year) as performance signals and
obtain qualitatively similar results. These results are available upon request.
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the worst performance measure. Our results are robust to the use of additional controls including

the convexity in the flow-performance relation, Morningstar fund ratings, and fund performance

since inception.

We next examine the implications of the potential differences in the degree of ambiguity faced by

retail and institutional investors. The latter are typically viewed as being relatively sophisticated

investors with a better understanding of the fund industry and who are therefore better able

to interpret performance-related signals. Consequently, such investors face less ambiguity and

may update their beliefs after observing the signals in a manner consistent with Bayes’ rules.

In a recent paper, Huang, Wei, and Yan (2012) show that investor fund flow sensitivity to past

performance is decreasing with fund return volatility. Our analysis confirms their findings. An

increase in fund return volatility implies that past performance is a less precise signal of skill

or ability and hence investors rationally moderate their response to the signal, consistent with

Bayesian learning. The dampening effect of return volatility on flow-performance sensitivity is

more pronounced for institutional investors, which is consistent with the notion of such investors

being more sophisticated.

While high performance volatility is naturally associated with low signal precision, high volatility

could also imply a high degree of ambiguity surrounding the signal for ambiguity averse agents.

Hence, the impact of volatility on the flow-performance sensitivity is likely to reflect not only the

impact of signal precision, but also the ambiguity aversion of the investors.

Interestingly, we find that an increase in performance volatility, while dampening the flow-

performance sensitivity, also leads to an increase in flow sensitivity to the worst performance signal

at the margin for both groups of investors, although the increase is more pronounced for retail

investors. This suggests that investor behavior is best characterized as reflecting both Bayesian

updating and ambiguity aversion with the two groups of investors displaying interesting differences

in their response behavior. Institutional investors appear to behave in a manner more consistent

with Bayesian updating whereas ambiguity aversion appears to play a relatively bigger role in the

fund investment decisions of retail investors.

Our primary contribution is to provide empirical evidence of ambiguity averse behavior in a

non-experimental setting using data on mutual funds. As we discuss in the next section, there is

now an extensive literature which provides theoretical predictions about the impact of ambiguity on
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asset markets. However, there is at best, limited empirical evidence in support of these predictions.

Most of the evidence comes from experimental studies in this area. It is clearly important to

provide evidence on these issues using a setting that captures the richness and complexity of the

decision environment facing the typical market participant. Our study helps address this gap in the

literature. In addition, our paper makes several contributions to the mutual fund literature. One, to

our knowledge, it is the first study that explores the impact of ambiguity on fund investor decisions.

Two, the paper complements recent findings on how fund investors respond to information about

past fund performance.

II. Ambiguity Aversion

The work of Ellsberg (1961) famously provided evidence of individual aversion to ambiguity or

uncertainty (in contrast to risk). Subsequently, a large theoretical literature has evolved to formally

develop models that accommodate ambiguity averse behavior and its implications. The notion of

ambiguity is captured in such models by assuming that the agent considers a range of probability

distributions, rather than a single distribution, for the potential outcomes. Ambiguity averse agents

seek to maximize the minimal expected utility across the range of outcome distributions considered.

Intuitively, an ambiguity averse agent seeks a course of action that is robust to the uncertainty

inherent in the multiple probability distributions of potential outcomes. Examples include the

studies by Gilboa and Schmeidler (1989) and Epstein and Schneider (2003) who provide theoretical

foundations for maxmin expected utility, and Epstein and Wang (1994) who extend the Lucas

(1978) model of asset prices by incorporating ambiguity averse preferences.

A number of subsequent theoretical studies have relied on ambiguity aversion to explain well-

known market phenomena. For example, Illeditsch (2011) considers a setting in which investors

with maxmin preferences receive a public signal with unknown precision. He shows that small

shocks to news about cash flows can cause significant changes in how investors interpret the news

leading to large price movements and the appearance of excess volatility. Further, he shows that

there is a range of prices over which investors are reluctant to deviate from (risky) portfolio positions

that hedge against ambiguity, i.e., they exhibit a form of portfolio inertia. Epstein and Schneider

(2010) show that a sufficiently large increase in uncertainty about asset returns can make it optimal
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for the investor to withdraw from the market altogether, i.e., induce nonparticipation.5

Leippold, Trojani, and Vanini (2008) consider a model of learning under ambiguity in which a

representative investor observes the realized dividends along with a noisy signal. The investor does

not know the dividend-generating process and faces ambiguity regarding the expected dividend

growth rate. The model is able to generate a high equity premium, a low interest rate and excess

volatility for reasonable parameter values. Similarly, Ju and Miao (2012), consider a model in which

an ambiguity averse representative agent seeks to learn about the latent economic state based on

the observed consumption and dividends which follow a hidden Markov regime-switching process.

They show that the calibrated model can match the empirically observed equity premium, the

mean risk-free rate and the volatility of the equity premium. Easley and O’Hara (2009) examine

the impact of regulation when some investors are ambiguity averse. They show that regulation such

as deposit insurance, by limiting the perceived maximum variance of asset payoffs or by improving

the perceived minimum mean payoff, can mitigate the effects of ambiguity. In turn, this can lead

to increased market participation by agents and generate welfare gains.

Another set of papers has explored the link between ambiguity and liquidity. Caballero and

Krishnamurthy (2008) analyze a model in which an increase in Knightian uncertainty or decrease in

the aggregate liquidity available can lead to a flight to quality, in the form of liquidity hoarding, that

is socially costly. Routledge and Zin (2009) consider a model with an ambiguity averse intermediary

who sets bid and ask prices. They show that ambiguity aversion can cause bid-ask spreads to widen

and hence reduce liquidity. Easley and O’Hara (2010) consider a model in which traders are unable

to rank order certain portfolios due to extreme uncertainty following ambiguous shocks to asset

values, e.g., during periods of financial crises. The result is a market freeze during which price

quotes may exist but no trading takes place.

In an experimental setting Bossaerts et al. (2010) find evidence of heterogeneity in investor

attitudes towards ambiguity. In contrast to the above mentioned theoretical and/or experimental

studies, there is limited empirical evidence regarding the ambiguity averse behavior of investors.

Two recent exceptions are the studies by Anderson, Ghysels, and Juergens (2009) and Viale, Garcia-

Feijoo, and Giannetti (2014) that provide empirical evidence of an uncertainty-return trade-off in

equity markets.

5 See also, Cao, Wang, and Zhang (2005), and Epstein and Schneider (2007).

6



Our paper contributes to the ambiguity literature by providing empirical evidence consistent

with ambiguity averse behavior on the part of mutual fund investors. To our knowledge ours is

the first attempt at using an ambiguity aversion framework to study the response of fund investors

to fund performance based signals. An important feature of our study is that the evidence of

ambiguity aversion that we provide is based on the buy/sell decisions of fund investors, rather than

on observed asset prices. As argued by Condie (2008), it is difficult to rely solely on asset price

data to assess the significance of ambiguity aversion since the impact of ambiguity averse investors

on prices is empirically indistinguishable from that of expected utility maximizers with potentially

biased beliefs.6 Our solution to this challenge is to directly examine the decisions of the investors,

in particular, the decision of whether or not to invest with a fund.

III. The Model and Empirical Predictions

In order to formally motivate the empirical analysis that follows we present a model of a

representative ambiguity averse investor who chooses how much to invest in a fund after observing

multiple signals regarding the fund manager’s skill. Here we briefly discuss the intuition underlying

the model and present the details in Appendix A. In the model, the investor receives two noisy

signals related to fund manager’s skill. The investor is uncertain about the precision of the signals.

Specifically, each signal can have either a high or a low precision. Given that there are two signals,

this gives rise to four potential scenarios for the investor to consider. The first scenario is the one

in which both signals have high precision, while the second scenario represents the case in which

both signals have low precision. The third scenario refers to the case in which the first signal has

high precision and the second signal has low precision, while the fourth scenario represents the case

in which the first signal has low precision while the second signal has high precision.

Due to ambiguity aversion, the investor will always worry the most about the worst case scenario

regarding the fund manager’s skill. Given the signal realizations, the worst case across the four

potential scenarios is the one in which the signal with the lower realization has a high precision

6To see this, note that ambiguity averse investors behave as if they have several probability distributions in mind
for the future outcomes. When solving their decision problem, they may attach subjective weights to the potential
distributions. The ambiguity averse investors’ subjective weights can be viewed as being biased, from the perspective
of a rational expected utility (REU) optimizing investor who relies on an ’objective’ distribution of outcomes. In this
sense, the impact of an ambiguity averse investor would be observationally equivalent to that of a REU investor with
biased beliefs.
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while the higher-valued signal has low precision. Such an outcome would imply a lower expected

return from the candidate fund, compared for example, to a scenario in which the higher-valued

signal has high precision while the lower-valued signal has low precision. As a consequence, the

investor’s fund allocation decision is more sensitive to the signal with the lower realization as it

is deemed as being more precise under the worst case scenario. Conversely, the investor’s fund

allocation decision is less sensitive to the higher-valued signal as it is deemed as being less precise.

Thus, a key implication of the model is that when facing multiple signals, ambiguity averse investors

display greater sensitivity to the worst signal, i.e., signal with the lowest realization (Proposition

1, Appendix A). Further, the sensitivity to the worst signal is increasing in the degree of ambiguity

faced by the investors (Corollary 1, Appendix A).

The discussion in Appendix A also contrasts the implications of our model to that of a standard

Bayesian benchmark model with risk averse investors who receive signals of uncertain precision

regarding fund manager skill. Consider the benchmark case with a Bayesian investor who faces

uncertainty regarding the precision of the signals. In this case the investor’s posterior beliefs

will be formed in accordance with the rules of Bayesian updating and a signal with a relatively

lower realized value would not necessarily carry a relatively higher weight in the investor’s decision

process. The model presented in Appendix A formalizes the above intuition. Furthermore, the

analysis confirms that the implications of our model in terms of the investor fund flow-performance

sensitivity are distinct from that of the Bayesian benchmark model as well as models incorporating

behavioral biases like loss aversion or overconfidence.

In this section, we develop several testable hypotheses from the model concerning the impact of

ambiguity aversion on mutual fund investor flow-performance sensitivity. Our model (see Proposi-

tion 1, Appendix A) implies that given signals of unknown quality, ambiguity averse investors’ fund

flow response is more sensitive to the worst signal, i.e., the signal with the worst realization. In our

empirical analysis we use a fund’s past performance measured over different horizons as multiple

signals of the fund manager’s skill.7 Mutual funds typically publicize the performance figures for

each share class over the previous 1 year, 3 years, 5 years, as well as the entire period since inception.

However, the degree to which past performance is informative of fund manager skill is unknown

7Our analysis makes use of the salient performance-chasing pattern in fund flows to examine the investors’ behavior.
We are agnostic on the issue of whether the performance-chasing behavior is justified.
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to investors. Also, these performance data have different realizations since a fund’s performance

may fluctuate over time. Thus, these performance statistics over different time horizons serve as

multiple comparable signals with unknown quality and different realizations from which investors

learn about fund manager skill. Hence, we have the following hypothesis.

HYPOTHESIS 1: When a fund’s past performance is measured over multiple time horizons, fund

flows display additional sensitivity to the minimum performance measure in the presence of ambi-

guity averse investors.

A direct implication of Corollary 1 (Appendix A) is that the marginal fund flow sensitivity

to the worst signal is increasing in the level of signal ambiguity, ceteris paribus. To empirically

test this implication of the model, we consider a number of proxy measures for a fund’s ambiguity

from the perspective of fund investors. Using the different proxy measures allows us to set up the

following testable hypotheses.

HYPOTHESIS 2: Individual investors experience greater ambiguity compared to institutional in-

vestors, as measured by a higher marginal sensitivity to the minimum performance measure.

The above hypothesis reflects the notion that individual (retail) investors are believed to be less

sophisticated compared to institutional investors. As a result, they may be less confident about how

much the past performance is indicative about fund manager skill. They may therefore be subject

to greater ambiguity in terms of interpreting such information. On the other hand, institutional

investors, who are believed to be much more sophisticated, may be more confident about the

precision of signals when they look at past performance measures.8 As a result, consistent with

Corollary 1, we expect to see a higher marginal sensitivity to the minimum performance measure

in the sample of retail investors compared to institutional investors.

HYPOTHESIS 3: Funds that change their investment strategy more aggressively and/or frequently

are characterized by a higher degree of ambiguity. Investor fund flows in such funds will display a

higher marginal sensitivity to the minimum performance measure.

8We note that our comparison of individual investors and institutional investors is based solely on a consideration
of the information environment faced by each group of investors. We make no reference to any potential difference
in their preferences, i.e., whether one type of investor is more ambiguity averse than another type. Instead, if an
investor has higher information processing ability, has more experience, and/or has better knowledge/understanding
of the general information environment, then this investor will face less ambiguity.
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Fund investment strategy changes can be viewed as a proxy for a fund’s ambiguity level. If

a fund constantly switches its investment strategy, e.g., from a passive diversification strategy to

active factor timing or stock selection, investors may find it hard to evaluate its relative performance

and to form a concrete expectation of future return. Thus, the more aggressively and/or frequently

a fund changes its strategy, the more ambiguous it is from the investors’ perspective.

HYPOTHESIS 4: Funds with more volatile cash flows are characterized by a higher degree of ambi-

guity. Investor fund flows in such funds will display a higher marginal sensitivity to the minimum

performance measure.

Fund inflows reflect a general positive view among investors about the fund’s future prospects

and outflows are indicative of a negative view about the fund. Thus, flow volatility can be viewed

as a proxy for the degree of variability or uncertainty of investor opinion with respect to the fund’s

prospects. In this sense, highly volatile investor fund flows imply greater uncertainty about the

fund’s future performance. Hence, funds with more volatile flows are likely to be the ones that are

more ambiguous to investors.

HYPOTHESIS 5: Funds that belong to a smaller family appear more ambiguous to investors. In-

vestor fund flows to such funds will display a higher marginal sensitivity to the minimum perfor-

mance measure.

If a fund belongs to a family with a large asset base, it is more recognizable and enjoys the

reputation built up by the entire fund family. On the other hand, if a fund belongs to a small and

little known family, investors may be more conservative when making their investment decisions. It

may also be harder for them to rely on past performance of such funds in drawing inference about

manager skill. In other words, funds belonging to smaller families may appear more ambiguous to

investors.

IV. Data and Methodology

A. Data

We use data from the Center for Research in Security Prices (CRSP) Survivorship Bias Free

Mutual Fund Database, which includes information on the funds’ total net assets, returns and
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characteristics. We focus on actively managed U.S. equity mutual funds, hence, we exclude index

funds and funds that are closed to new investors. To be consistent with prior studies, we exclude

sector funds, international funds, bond funds, and balanced funds from our analysis. We classify

funds into five categories based on their objective codes:9 aggressive growth, growth, growth and

income, income and others.

We primarily study the period from January 1993 through December 2011, since the CRSP

database does not report 12b-1 fees until 1992 and institutional funds begin to mushroom in the

1990s. However, as a robustness check we confirm that our results are qualitatively unchanged

when we extend the sample to the period: January 1985 through December 2011. We examine

fund flows and other characteristics at the quarterly frequency. Consistent with prior studies, we

define quarterly net flow into a fund as

Flowi,t =
TNAi,t − TNAi,t−1(1 +Ri,t)

TNAi,t−1
, (1)

where Ri,t denotes fund i′s return during quarter t, and TNAi,t is the fund’s total net asset value

at the end of quarter t. Thus, our definition of flows reflects the percentage growth of the fund’s

assets in quarter t. To prevent the potential impact of extreme values of flows resulting from the

errors associated with mutual fund mergers and splits in CRSP mutual fund database, we filter out

the top and bottom 1% tails of the net flow data. To further guard against this issue, we delete

records of funds from our analysis before their total net asset value first hits the $3 million mark.

Table I reports the summary statistics of mutual funds characteristics. We note that since we

are interested in studying the fund flow behavior of retail as well as institutional investors we treat

each fund share class as an individual fund, consistent with the research design employed by Huang,

Wei, and Yan (2007); Huang et al. (2012).10 In 1993, there are 707 distinct fund share classes in

our sample and 63 of them are open only to institutional investors. In 2011, the number of funds in

9We categorize funds according to the following criteria. First, funds with Lipper objective codes G, LCGE,
MCGE, MLGE, SCGE, with Wiesenberger objective codes G, G-S, S-G, GRO, LTG, SCG, or with Strategic Insight
objective codes GRO, SCG are classified as growth funds. Second, funds with Wiesenberger objective code AGG or
with Strategic Insight objective code AGG are classified as aggressive growth. Third, funds with Lipper objective
code GI, with Wiesenberger objective codes G-I-S, G-S-I, I-G, I-G-S, GCI, G-I, I-S-G, S-G-I, S-I-G, GRI, or with
Strategic Insight objective code GRI are classified as growth and income funds. Fourth, funds with Lipper objective
codes EI, EIEI, I, with Wiesenberger objective codes I, I-S, IEQ, ING, or with Strategic Insight objective codes ING
are classified as income funds. Fifth, all the other actively managed equity funds in our sample are classified as others.

10As emphasized in Huang et al. (2007), since our focus is on analyzing fund flows, treating each fund share class
separately will not lead to the double-counting problem. Also, since most of our tests require a separation between
retail shares and institutional shares, we conduct all tests at the fund share class level.

11



our sample grows to 4,242 with 785 institutional funds. In total, our sample includes 7,020 distinct

fund share classes and 216,366 fund share class-quarters. In an average quarter, the sample includes

2,847 fund share classes with average total net assets (TNA) of $678.06 million and an average net

flow of 1.51%. Following Sirri and Tufano (1998) we measure total expense as the expense ratio

plus one-seventh of the front-end load. The 12b-1 fees are the part of fund expenses that cover

distribution expenses and sometimes shareholder service expenses. Distribution expenses include

marketing, advertising, and compensation paid for brokers who sell the funds. As may be seen from

Table I, the 12b-1 fees for retail funds are 0.57%, which is nearly three times of that for institutional

funds.

B. Empirical Methodology

We formally analyze the relationship between fund flows and performance measured over mul-

tiple time horizons when controlling for other factors. We estimate the following model using 76

quarters of fund-level data over the period 1993 to 2011 to test our baseline hypothesis:

Flowi,t =a+ b1Perf 1yri,t + b2Perf 3yri,t + b3Perf 5yri,t + cMin Ranki,t (2)

+ Controls+ εi,t.

Following Sirri and Tufano (1998), the variables Perf 1yr, Perf 3yr, and Perf 5yr represent

fractional performance ranks ranging from 0 to 1 based on fund i′s performance during past 12

months, 36 months, and 60 months, respectively. The variable Min Rank is defined as:

Min Ranki,t = Min (Perf 1yri,t, P erf 3yri,t, P erf 5yri,t) . (3)

Thus, the coefficient c in Equation (2) captures the additional flow sensitivity to performance mea-

sured over the particular horizon during which the fund had the worst performance ranking. This

coefficient is the focus of our tests. The specification here is different from the typical regression

specification used in the fund performance chasing literature, where the purpose of the regression

is often to establish a positive relation between fund flows and past fund performance. Our specifi-

cation on the other hand allows us to examine in greater detail the functional form of the relation

between the fund flows and past fund performance. It resembles in form the renowned Henriksson

and Merton (1981) specification of a regression based test of market timing ability. As we discuss

below, the additional flow-performance sensitivity captured by the coefficient c, is significant in
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both economic and statistical sense in the population of retail investors. We note that in the above

specification we include all three performance rank variables in order to be conservative. If we

change the specification to include any one of the three variables, or include only an average of the

three performance ranks, our results will in fact be stronger. 11

A relevant issue to consider at this stage is the nature of the fund performance related informa-

tion available to the typical retail investor. Mutual funds disclose the net asset value of their shares

on a daily basis. Additionally, firms like Morningstar and Lipper provide performance statistics

that are widely distributed through the financial press and various media outlets. The focus is

on relative performance ranking of funds within the respective categories — primarily based on

returns. For example, the Wall Street Journal publishes a quarterly list of “Category Kings” which

highlights the top 10 mutual funds within the different categories ranked by one-year performance

as of quarter-end. The reported statistics include the 3-year, 5-year, and 10-year annualized returns.

Similarly, Morningstar assigns a rating, commonly called the “star rating”, to funds based on their

within-category rank according to their risk-adjusted returns.12 The statistics available from firms

like Morningstar include the total return figures computed over a historical window including the

past 1-year, 3-year, 5-year, and 10-year periods. Among other statistics, the one-factor fund alpha,

calculated with respect to a standard benchmark like the S&P 500 or a “best-fit” benchmark, is

also included in the detailed fund analysis. Given this information environment, it is reasonable

to believe that the typical retail investor pays attention to returns-based performance rankings

for a fund. On the other hand, institutional investors are likely to rely on additional measures of

performance including multi-factor alphas.

In our analysis we consider two alternative fund performance measures. The first measure is

the average monthly raw return measured over a specified time horizon, i.e., 12 months, 36 months

or 60 months. The second measure is the fund’s factor-adjusted performance using the Carhart

(1997) 4-factor model. In order to estimate the 4-factor model, we first calculate fund i’s factor

loadings in quarter t by regressing the past 60 months’ excess returns on the four factors:

Ri,τ −Rf,τ = αi + βMKT
i MKTτ + βSMB

i SMBτ + βHML
i HMLτ + βUMD

i UMDτ + εi,τ , (4)

11We also note that the 1-year, 3-year, and 5-year performance ranks serve only as control variables in our study,
and are not themselves variables of interest. Furthermore, their correlations are positive but moderate, thereby
mitigating any potential multi-collinearity concerns.

12See http : //www.morningstar.com/help/data.html#RatingCalc for additional details.

13



where Ri,τ is the return for fund i and Rf,τ is the one-month T-bill rate in month τ . The market

factor, MKTτ , represents the monthly excess market return. The factors SMBτ , HMLτ , and

UMDτ represent the monthly returns on the size, value, and momentum factor mimicking portfo-

lios, respectively. We obtain the factor returns from Kenneth French’s website. We then calculate

the fund’s factor adjusted alpha each month using the monthly fund excess returns, and the fac-

tor loadings estimated as above. We compute the average of these monthly alphas over distinct

horizons of 12 months, 36 months, and 60 months, respectively.

To obtain fractional performance ranks (Perf 1yr, Perf 3yr, and Perf 5yr) ranging from 0

to 1, we apply different approaches to rank funds based on the two performance measures. In the

case of the raw return measure, we rank funds every quarter within fund objective categories based

on their average raw returns over each of the three lagged time horizons. For rankings based on

the 4-factor alphas, we rank all funds each quarter according to their Carhart (1997) alphas over

each of the three time horizons considered.

The control variables employed in Equation (2) include a number of fund characteristics that

have been shown to affect fund flows. In particular, we control for the logarithm of one plus

fund age, previous quarter’s flow, previous quarter’s raw return, fund size as measured by the

natural logarithm of fund total net assets in the previous quarter, volatility of monthly raw returns

during the prior 12 months, the lagged total expense ratio, and the maximum drawdown of a

fund’s monthly return over the previous 60 months. Finally, following Sirri and Tufano (1998) we

also include the category flow, defined as the percentage quarterly net asset growth of the fund’s

objective category.

We estimate the model in Equation (2) by conducting a cross-sectional linear regression each

quarter and reporting the time-series means and the related Newey-West t-statistics of the coeffi-

cients following Fama and MacBeth (1973). We follow this approach throughout the paper.

A confounding factor in assessing fund performance is that fund returns are related to business

cycles and general macroeconomic conditions. Note that we rely on relative performance measures

which helps mitigate this concern. In the case of raw returns-based performance ranks, funds are

ranked within their own category. This relative ranking method naturally controls for the influence

of common factors that affect performance within a particular category of funds. For fund rankings

based on the alphas, the 4-factor model serves to control for differences in investment styles across
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funds. Again, the use of relative performance ranks in this case, helps control for the influence of

common factors.

V. Empirical Results

A. Ambiguity Aversion

In this subsection, we test Hypotheses 1 and 2 by studying investor ambiguity aversion behavior

within subsamples of retail funds and institutional funds respectively. Our model implies that in

the presence of ambiguity averse investors, fund flows will display additional sensitivity to a fund’s

minimum performance ranking. This marginal sensitivity is in addition to the general response of

flows to past performance measures.

To test this implication, we estimate the baseline model in Equation (2) for retail funds and

institutional funds separately. According to Hypothesis 2, we expect to see a significant coefficient,

c, for the variable Min Rank for the subsample of retail funds only. The results are reported in

Table II. Columns 1 and 2 report results using raw return as the performance measure and Columns

3 and 4 report results using the Carhart (1997) alpha as the performance measure.

Consistent with Hypothesis 2, we find that the coefficient for Min Rank is positive and signif-

icant at the 1% level for both measures of performance in the retail funds sample. However, for

institutional funds, the coefficient is positive but insignificant. Focusing on the results for retail

funds in Column 1 where the performance is measured in terms of raw returns, the coefficient for

the Min Rank variable is 0.047. The coefficient for performance measured over the 1-year horizon

is 0.037. This implies that for retail funds, a 14% (the average absolute change in the 1-year perfor-

mance ranking for retail funds in our sample) increase in the fund’s 1-year performance rank will

result in a 0.037 × 14% = 0.5% increase in the fund’s assets. However, if the 1-year performance

rank happens to be the worst among the three horizons, a 14% increase in the fund’s (1-year)

ranking results in an inflow equal to (0.047 + 0.037) × 14% = 1.18% of the fund’s assets. Thus, a

14% improvement in the worst performance rank results in a doubling of the fund flows enjoyed

by the fund relative to the normal increase in flows from general performance improvement. The

economic magnitude is quite significant given the average quarterly fund flow in the retail sample

is 1.32%. In Column 3 when performance is measured using Carhart (1997) 4-factor alpha, we
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observe a similar coefficient for the Min Rank. As seen from the results presented in Columns 2

and 4 of Table II, in the case of institutional funds, even though the coefficients for Min Rank are

positive, they are not statistically significant and are much smaller in magnitude than their retail

counterparts.

We note that the coefficients on the other control variables included in Equation (2) are consis-

tent with previous findings in literature. The generally positive and significant coefficients for all

three performance measures in Columns 1 through 4 conform to the performance chasing behavior

as documented in Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others. Sirri

and Tufano (1998) also document the negative impact of volatility on flows. The positive coefficient

on Previous Quarterly F low confirms the persistence in fund flows. Similarly, the negative coeffi-

cients for Total Expense in Columns 1 through 4 are consistent with previous studies by Barber,

Odean, and Zheng (2005) and Sirri and Tufano (1998), among others.

After controlling for above factors, the significant coefficients for Min Rank in Columns 1 and

3 indicate that minimum performance ranks have significant explanatory power for fund flows. In

sum, Table II provides evidence for ambiguity aversion behavior among retail funds investors as

shown by the significant positive coefficient for the minimum performance rank, which is consistent

with Hypotheses 1 and 2. Accordingly, we focus on retail funds in conducting the tests reported

for the remainder of the section.

B. Strategy Changes as a Proxy for Fund Ambiguity

Hypothesis 3 states that fund strategy changes could be viewed as a proxy for a fund’s ambiguity

level. Investors are likely to face a higher degree of ambiguity with regard to a fund that switches its

investment strategy too aggressively/frequently. We adopt two ways to measure a fund’s strategy

shifts. The first measure is the fund’s average absolute change in its factor loadings, while the

second measure is the fund’s R-squared computed from a time series regression using the entire

history of fund returns.

The first proxy is motivated by Lynch and Musto (2003). Each quarter t, we compute a fund’s

factor loadings with respect to the four Carhart (1997) model factors over two non-overlapping

30-month periods, namely, the prior 1-30 and 31-60 month periods. We then compute the average

absolute change in the factor loadings from the initial 30-month period to the most recent 30-month
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period as

LDELi,t =
1

4

∑
f

∣∣∣βfi,t,1−30 − βfi,t,31−60∣∣∣, (5)

for f = MKT,HML,SML and UMD. A higher loading-change indicates a more aggressive shift

in the fund’s strategy.

The second proxy is the fund’s R-squared from a time series regression of the fund’s monthly

returns on the four Carhart (1997) factors. A low R-squared value implies that the 4-factor model

is a poor performance attribution model for the fund. A potential reason could be that the factor

loadings of the fund are not constant over the sample period implying frequent shifts in the factor

exposures or the investment style. Such shifts would make it harder for investors to interpret past

performance related signals and contribute to an enhanced level of ambiguity in interpreting such

signals. Each quarter, we divide the sample of funds into three groups, Low,Mid and High based

on their LDEL or R-squared values. We then we apply the baseline model described in Equation

(2) to each group and report the time-series average of the coefficients. The results are reported in

Table III.

Performance in Table III is measured by raw return (Column 1-3) or the Carhart (1997) 4-factor

model alpha (Column 4-6). Panel A of Table III reports results when strategy changes are measured

using the average absolute change in factor loadings (LDEL). As shown in Column 1, for the group

of funds with low loading-change, an indication of less aggressive strategy shifts, the additional flow

sensitivity to the minimum performance rank, as captured by the Min Rank coefficient, is only

0.014 and it is statistically insignificant. However, for funds which shift their strategies more

aggressively, as shown in Column 3, the marginal sensitivity to minimum performance is nearly

six times higher at 0.058 which is significant at the 1% level. The F -test statistic rejects the null

hypothesis that the Min Rank coefficients across the three groups are equal. Columns 4-6 report

qualitatively similar flow-performance sensitivity results when performance is measured using the

Carhart (1997) 4-factor alpha.

Panel B of Table III presents results using a fund’s 4-factor model R-squared values as a proxy

for the fund’s ambiguity. Columns 1-3 report results when a fund’s performance is measured by the

ranking of its raw return. Flows of funds with low R-squared values show additional sensitivity to

the minimum performance rank as seen by the Min Rank coefficient in Column 1 (0.051), which
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is significant at 1% level. In Column 3, however, flows of funds with high R-squared values, an

indication of relatively stable investment strategy, have marginal sensitivity to minimum perfor-

mance of only 0.023 which is statistically significant only at the 10% level. Columns 4-6 report

qualitatively similar flow-performance sensitivity results when performance is measured using the

Carhart (1997) 4-factor alpha.

In conclusion, the results in Table III show that funds that change investment strategy more

aggressively/frequently are more ambiguous to investors, as evidenced by the greater marginal

sensitivity of investor fund flows to the minimum performance measure.

C. Flow Volatility as a Proxy for Fund Ambiguity

Hypothesis 4 states that the flow volatility could be used as a proxy for a fund’s ambiguity

level. Note that fund flows are the consequence of investors’ asset allocation decisions. A net inflow

is an indication of an overall positive view of the fund while a net outflow represents an overall

negative view. Thus, flow volatility captures the uncertainty about the funds’ future performance

from the perspective of an average investor. In this sense, flow volatility is a direct measure of

the fund’s ambiguity level. We expect to observe stronger ambiguity aversion behavior among

investors of funds with more volatile past flows. We measure flow volatility (Flow V ol) as the

standard deviation of a fund’s previous 12 quarters’ fund flows.

To test this hypothesis, we estimate the following regression model:

Flowi,t =a+ b11Low Flowvoli,t × Perf 1yri,t + b12Mid F lowvoli,t × Perf 1yri,t (6)

+ b13High F lowvoli,t × Perf 1yri,t + b21Low Flowvoli,t × Perf 3yri,t

+ b22Mid F lowvoli,t × Perf 3yri,t + b23High F lowvoli,t × Perf 3yri,t

+ b31Low Flowvoli,t × Perf 5yri,t + b32Mid F lowvoli,t × Perf 5yri,t

+ b33High F lowvoli,t × Perf 5yri,t + c1Low Flowvoli,t ×Min Ranki,t

+ c2Mid F lowvoli,t ×Min Ranki,t + c3High F lowvoli,t ×Min Ranki,t

+ Flow V oli,t + Controls+ εi,t,

where Low Flowvoli,t is a dummy variable that equals one if the fund i′s flow volatility falls

into the bottom tercile in quarter t, Mid F lowvoli,t is a dummy variable that equals one if it

belongs to the medium tercile, and High F lowvoli,t is a dummy variable that equals one if the

flow volatility is ranked in the top tercile. Each quarter we conduct a cross-sectional regression of

flows on the interaction of the three dummy variables with Perf 1yr, Perf 3yr, Perf 5yr and
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Min Rank, respectively, together with the set of control variables and report the time-series mean

and Newey-West t-statistics of the coefficients. The control variables are the same as those in

Equation (2). The coefficients on the interaction terms capture the differential flow sensitivity to a

certain performance horizon or to the minimum performance for funds with low, medium or high

flow volatility. For example, the coefficient of High F lowvol ×Min Rank, i.e., c3, captures the

additional sensitivity to the Min Rank for funds with high flow volatility. Given Hypothesis 4, we

expect a large and positive coefficient for High F lowvol ×Min Rank, and a small coefficient for

Low Flowvol ×Min Rank.

Table IV presents the flow-performance results based on flow volatility as a proxy for fund

ambiguity level. Columns 1 and 3 report results using raw return and Carhart (1997) alpha

as performance measures, respectively. As expected, in Column 1, the coefficients for the three

interaction terms Low Flowvol ×Min Rank, Mid F lowvol ×Min Rank and High F lowvol ×

Min Rank increase monotonically from -0.004 (statistically insignificant) to 0.108 (significant at

the 1% level). The F -test statistic rejects the null that the coefficients of Low Flowvol×Min Rank,

Mid F lowvol ×Min Rank and High F lowvol ×Min Rank are equal. In Column 3 of Table IV,

where fund performance is measured using the Carhart (1997) alpha, we observe a similar increase

in the value of the coefficients of the interaction terms across the three flow volatility terciles.

In conclusion, the results in Table IV are consistent with Hypothesis 4 that funds with more

volatile flow appear to be more ambiguous to investors.

D. Family Size as a Proxy for Fund Ambiguity

Hypothesis 5 states that family size can also be used as a proxy for a fund’s ambiguity level. In

this subsection, we use the sum of total net assets for each fund within a fund family as a measure

of family size. We then test whether a larger family size is associated with a reduction in the

marginal flow sensitivity to a fund’s minimum performance measure.

To test this hypothesis, we estimate the following model:

19



Flowi,t =a+ b11Low Famsizei,t × Perf 1yri,t + b12Mid Famsizei,t × Perf 1yri,t (7)

+ b13High Famsizei,t × Perf 1yri,t + b21Low Famsizei,t × Perf 3yri,t

+ b22Mid Famsizei,t × Perf 3yri,t + b23High Famsizei,t × Perf 3yri,t

+ b31Low Famsizei,t × Perf 5yri,t + b32Mid Famsizei,t × Perf 5yri,t

+ b33High Famsizei,t × Perf 5yri,t + c1Low Famsizei,t ×Min Ranki,t

+ c2Mid Famsizei,t ×Min Ranki,t + c3High Famsizei,t ×Min Ranki,t

+D FamilySizei,t + Controls+ εi,t,

where Low Famsizei,t is a dummy variable that equals one if fund i belongs to a fund family whose

size falls into the bottom tercile in quarter t, Mid Famsizei,t is a dummy variable that equals one if

family size belongs to the medium tercile and High Famsizei,t is a dummy variable that equals one

if the family size is in the top tercile. The variable D Familysizei,t is a dummy variable that equals

1 if the fund family size is above the median value for that quarter. We regress quarterly flows on

the interaction of the three dummy variables with Perf 1yr, Perf 3yr, Perf 5yr and Min Rank,

respectively. The coefficients on the interaction terms represent the differential flow sensitivity

to a certain performance horizon or to the minimum performance rank for funds that belong to

a small-sized family, medium-sized family and large-sized family, respectively. For example, the

coefficient c1 for the variable Low Famsize×Min Rank in Equation (7) captures the additional

flow sensitivity to the minimum performance rank for funds in a small family. Given Hypothesis 5,

we expect a large and positive coefficient for Low Famsize ×Min Rank, but a small coefficient

for High Famsize×Min Rank.

Table V presents results using fund family size as a proxy for the fund’s ambiguity level.

Columns 1 and 3 report results using raw returns and the Carhart (1997) alpha as performance

measures, respectively. Consistent with our expectation, in Column 1, the coefficients for the three

interaction terms Low Famsize×Min Rank, Mid Famsize×Min Rank and High Famsize×

Min Rank decrease monotonically from 0.069 (significant at the 1% level) to 0.018 (significant at

the 10% level). This means that the flow sensitivity to minimum performance rank for funds in a

small family is more than three times that for funds belonging to a large family. The F -test statistic

rejects the null that the coefficients of Low Famsize ×Min Rank, Mid Famsize ×Min Rank

and High Famsize×Min Rank are equal. In Column 3, when performance is measure in terms

of the Carhart (1997) alpha, the coefficient for Low Famsize×Min Rank (0.066) is about twice
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the coefficient for High Famsize×Min Rank (0.034), both significant at the 1% level.

As seen from the estimated coefficients for the variable, D FamilySize, family size has a positive

and significant impact on fund flows, consistent with the findings of Sirri and Tufano (1998). This

suggests that funds belong to bigger families experience a faster growth in assets. As noted by

Gallaher, Kaniel, and Starks (2005), strategic decisions regarding advertising, and distribution

channels are made at the fund family level. Funds that belong to a large family have more resources

in terms of both management and reputation, allowing them to grow at a faster rate. In conclusion,

the results in Table V are consistent with Hypothesis 5 that funds belonging to smaller families

appear more ambiguous to investors. 13

VI. Contrast between the Response of Ambiguity Averse
Investors and Bayesian Investors

Finally, we develop a test to distinguish ambiguity averse investor behavior from the Bayesian

learning benchmark. Following earlier discussion, we argue that a fund’s performance volatility is

another proxy for the fund’s ambiguity level in addition to the flow volatility and family size. The

more volatile the fund’s past performance, the harder it is for investors to learn about the fund’s

future performance. Thus, a fund with a higher degree of performance volatility is more ambiguous

from an investor’s perspective. Accordingly, we expect to observe greater marginal flow sensitivity

to the minimum performance rank for such funds. By contrast, Huang et al. (2012) hypothesize

that the volatility of funds’ past performance should have a dampening effect on flow-performance

sensitivity if investors update their beliefs in Bayesian fashion. As we note below, the two seemingly

contradictory hypotheses can in fact be reconciled.

We want to first document the two effects by performing two separate tests. We apply the

following model to test our baseline hypothesis of ambiguity aversion:

Flowi,t =a+ b1Min Ranki,t + e1Low 3yri,t + e2Mid 3yri,t + e3High 3yr (8)

+ Controls+ εi,t.

For the purpose of comparison, we adopt similar measures and time periods as in Huang et al.

13In unreported tests, we also employ the level of marketing effort, as reflected in the amount of 12b-1 fees borne
by a fund, as a proxy for the fund’s ambiguity. We hypothesize that funds that spend more on marketing appear
to be less ambiguous to investors since investors are likely to be more familiar with funds that advertise more. Our
results confirm that 12b-1 fees spent on marketing and advertising do help reduce the ambiguity of funds from the
investors’ perspective.
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(2012). For example, in this section, we expand our sample to include both retail and institutional

funds. Also, to be consistent with Huang et al. (2012) study, we focus on a fund’s previous 3-year

performance (Perf 3yr), defined as a fund’s performance measured by its raw return rankings

within its objective category over the past 36 months. We define the following fractional perfor-

mance rankings over the low, medium and high performance ranges14. The fractional rank for funds

in the bottom performance quintile (Low 3yr) is Min(Perf 3yr, 0.2), in the three medium quin-

tiles (Mid 3yr) is Min(0.6, P erf 3yr−Low 3yr), and in the top quintiles (High 3yr) is defined as

(Perf 3yr−Mid 3yr−Low 3yr). The variable Min Rank is the same as defined in Equation (2).

We also include the identical set of control variables as in our baseline model specified in Equation

(2).

In the above specification, the coefficient b1 captures the ambiguity aversion effect. We expect

b1 to be positive and significant. The results are presented in Column 1 of Table VI. The coefficient

b1 is estimated to be 0.085 which is highly significant in both statistical and economic terms. It

is worth noting that we do observe the convexity in the flow-performance relationship reflected

in the respective coefficients for the performance ranges (Low 3yr, Mid 3yr and High 3yr). In

particular, the coefficient for the high performance range (0.255) is nearly 10 times the coefficient

for the low performance range (0.026) suggesting a convex flow-performance relationship.

Next, we replicate the Huang et al. (2012) results using the following test:

Flowi,t =a+ cV oli,t × Perf 3yri,t + e1Low 3yri,t + e2Mid 3yri,t + e3High 3yri,t (9)

+ Controls+ εi,t.

The variable V oli,t is the fund i′s previous 36 months’ raw return volatility in quarter t. If the

dampening effect of performance volatility on the flow-performance relationship exists, we expect

to see a significant negative coefficient for the interaction term, V ol × Perf 3yr. As shown in

Column 2 of Table VI, this coefficient is estimated to be -0.969, which is significant at the 1% level.

All of the other coefficients are also qualitatively similar to the values reported by Huang et al.

(2012).

Finally, it is of interest to show that ambiguity aversion and the dampening effect of performance

volatility could co-exist. We distinguish our ambiguity aversion phenomenon using the following

14See, for example, Huang et al. (2007, 2012) and Sirri and Tufano (1998).
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model:

Flowi,t =a+ b1Min Ranki,t + b2Min Indi,t × V oli,t × Perf 3yri,t + cV oli,t × Perf3yri,t (10)

+ e1Low 3yri,t + e2Mid 3yri,t + e3High 3yri,t + fV oli,t + Controls+ εi,t.

In the above specification, the variable Min Indi,t is a dummy variable that equals one if fund i′s

3-year performance happens to be the worst among 1-year, 3-year and 5-year performance measures

in quarter t. The coefficient b1 captures the ambiguity aversion effect. Here b2 captures the effect

of performance volatility on 3-year performance if it happens to be the minimum performance rank

and c captures the impact of performance volatility on the 3-year performance, on average. Under

ambiguity aversion, we expect b2 to be positive and significant, since past performance volatility

is expected to increase the fund’s ambiguity level. However, if investors are Bayesian learners as

modeled in Huang et al. (2012), we also expect to observe a negative value for the coefficient c,

since high signal noise should dampen flow sensitivity, in general.

The results from estimating Equation (10) are reported in Column 3 of Table VI. We find

that the coefficient b2 has a value equal to 0.410 while the coefficient c equals -0.868, and both

coefficients are significant at the 1% level. The coefficients imply, in economic terms, a 1 unit

increase in performance volatility will decrease sensitivity to performance by 0.868 × 1 = 0.868,

on average. However, at the margin, it will increase sensitivity to the minimum performance rank

by 0.410× 1 = 0.410.

These findings show that the dampening effect of performance volatility and the impact of

ambiguity aversion on the flow performance relation are not contradictory to each other and may

actually co-exist. This is intuitive, since it is reasonable to conjecture that there are two distinct

types of fund investors. The first type is the sophisticated investors who have a better understanding

of the mutual fund industry. Upon observing past fund performance, these investors face less

ambiguity and are able to update their beliefs in a manner that is largely consistent with Bayesian

rules. The other type of investors views the situation as being more ambiguous, possibly due to lack

of experience and knowledge of the investment. The behavior of such investors may be influenced

more by their ambiguity aversion. As long as a fund’s investor base includes both types of investors,

the fund flow patterns will reflect both the dampening effect of performance volatility due to the

Bayesian investors, and the sensitivity to the worst performance signal due to the ambiguity averse
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investors. The relative importance of the two effects may depend on the relative population weights

of the two types of investors in a fund’s investor base.

We further examine the above intuition by including a dummy variable Insti, which equals 1

if a fund is only open to institutional investors. We use the following specification to examine the

flow-performance response for the two types of investors:

Flowi,t =a+ b1Min Ranki,t + b2Min Indi,t × V oli,t × Perf 3yri,t + cV oli,t × Perf 3yri,t

+ d1Insti ×Min Indi,t × V oli,t × Perf 3yri,t + d2Insti × V oli,t × Perf 3yri,t + d3Insti

+ e1Low 3yri,t + e2Mid 3yri,t + e3High 3yri,t + Controls+ εi,t. (11)

We expect to observe a stronger volatility dampening effect in institutional fund flows and a weaker

ambiguity aversion effect. The results of this test are presented in Column 4 of Table VI. Similar

to Equation (10), the coefficient, b2, captures the impact of ambiguity aversion for retail investors

and the coefficient, d1, captures the marginal impact of ambiguity aversion for the institutional

investors. The coefficient b2 is estimated to be 0.434 which is significant at the 1% level while d1 is

estimated to be -0.182 which is not significantly different from zero. This implies that, in economic

terms, the impact of ambiguity aversion on the flow performance sensitivity is lowered by nearly

40% for every unit increase in performance volatility for institutional investors compared to retail

investors. The coefficient c, captures the dampening effect of increased performance volatility for

retail investors while d2 captures the marginal volatility dampening effect for institutional investors.

The coefficient c is estimated to be -0.850 which is significant at the 1% level while d2 equals -0.355

which is significant at the 5% level. This implies that the dampening effect of volatility on flow

performance sensitivity is magnified by 42% for institutional investors. Thus, we find stronger

evidence of Bayesian updating behavior on the part of institutional investors compared to retail

investors. On the other hand, we find stronger evidence of ambiguity aversion on the part of retail

investors compared to institutional investors.

In order to more closely match the results of Huang et al. (2012) we repeat our tests using

an identical sample period: 1983-2006. We find qualitatively similar results and report them in
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Columns 5-8 in Table VI.

VII. Robustness

In previous tests we investigated the asymmetric sensitivity of fund flows to performance mea-

sured over 1-, 3-, and 5-year horizons caused by investor ambiguity aversion. In particular, we find

that the more ambiguous a fund appears to its investors, the greater the flow-performance sensitiv-

ity to the minimum performance over the three time horizons. Of course, investors have access to

additional information beyond the above three measures of performance. Other information avail-

able to investors includes the performance of the fund since inception and the Morningstar fund

ratings. In fact, previous studies show that investor flows do respond to Morningstar ratings.15 A

natural question is whether the additional sensitivity to minimum performance documented in our

tests is simply due to the omission of long term performance measures and/or Morningstar ratings.

To address this concern we reexamine the baseline model in Equation (2) while controlling for the

funds’ performance since inception and the Morningstar fund ratings.

We measure a fund’s performance since its inception in the same manner as its 1-, 3- and 5-year

performance. We rank funds based on their average monthly raw returns since inception within

their objective category. The resulting ranking is a number between 0 and 1. In terms of the

Morningstar fund ratings, according to Sharpe (1997), Morningstar ranks funds within four asset

classes before 1996 and within smaller categories thereafter. We replicate the latter rating scheme

because it covers most of our sample period. Since we do not have access to the criteria that

Morningstar uses to classify funds into style categories, we continue to employ the classifications

used for our primary tests. Morningstar rates all funds based on their 3-, 5- and 10-year return

and risk, respectively and then a weighted overall rating is determined. We follow the procedure

described in Nanda, Wang, and Zheng (2004) to replicate the funds’ Morningstar fund ratings.

Our robustness tests are based on the following specification:

Flowi,t =a+ b1Perf 1yri,t + b2Perf 3yri,t + b3Perf 5yri,t + b4Perf Incepi,t+ (12)

b5MorningstarRatingi,t + cMin Ranki,t + Controls+ εi,t,

The Morningstar Rating represents fund i′s rating based on the Morningstar fund rating scheme

in quarter t. The variable Perf Incepi,t captures a fund i′s performance since inception in quarter

15See, e.g., Del Guercio and Tkac (2002).
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t.

Table VII presents results of the robustness tests. We note that the coefficient of Min Rank is

consistently positive and significant for the sample of retail funds when we control for performance

since inception and/or Morningstar rating, while it is insignificant for the institutional sample.

Moreover, the coefficient of Perf Incep is negative and insignificant in all columns. However, the

coefficient for Morningstar Rating is consistently positive and significant. For example, based on

results in Column 5, if a retail fund’s Morningstar rating increases by 1 star, there is a corresponding

increase of 1.6% in terms of fund flows. By contrast, for an institutional fund, a 1 star increase in

the Morningstar rating is associated with a fund flow increase of only 0.7%, based on the results

in Column 6. These results suggest that the Morningstar rating is an important signal for retail

investors when making investment decisions. On the other hand, institutional investors seem to

rely to a much lesser extent on this rating.

One of the most well-known findings in mutual fund literature is the convex relationship between

investor flows and past fund performance. Previous studies (e.g. Sirri and Tufano (1998), Chevalier

and Ellison (1997)) find that investor flows respond strongly to good past performance while being

less sensitive to bad performance. As we note in Appendix A (see footnote 22), in the context of

our model, the flow-performance convexity is potentially complementary to the effect of investor

ambiguity aversion. We now show that our baseline result is robust after controlling for the convex

flow-performance relationship. Table VIII presents results of this test. As in the baseline model in

Equation (2), we regress quarterly flow on past performance measured over 1-, 3-, and 5-year. We

adopt fractional ranks for each of the 1-, 3-, and 5-year performance (same as Low 3yr,Mid 3yr and

High 3yr defined in Equation (8) to capture the convexity in flow-performance relationship. The

results presented in Table VIII confirm that the additional sensitivity to the minimum performance

measure remains positive and significant in the retail fund sample even after controlling for the

convexity of the flow-performance relationship.

Another possible concern is that some time variant factors, such as a change in the fund manager,

may cause differential flow sensitivity to performance measured over different time horizons. To

deal with this issue, in unreported tests, we consider various performance measures calculated over

a fixed time horizon (1-, 3- or 5-year). The various performance measures considered include the

CAPM alpha, Fama-French 3-factor alpha, Carhart 4-factor alpha, raw return, and the Morningstar
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fund rating. The various performance measures calculated over the identical time horizon may be

viewed as multiple performance signals. We find that our results are qualitatively unchanged. In

particular, we find that for each of the three time horizons considered, retail fund flows display

additional sensitivity to the minimum performance measure.

In conclusion, the results of the robustness tests confirm that mutual fund flows display an

additional sensitivity to the minimum performance rank even after controlling for performance since

inception, the funds’ Morningstar star ratings, and convexity in the flow-performance relation.

VIII. Concluding Remarks

This paper presents a model of an ambiguity averse mutual fund investor who faces multiple

signals about the performance of the fund. The model implies that an ambiguity averse investor,

in attempting to learn about manager skill, always puts additional weight on the worst signal. We

empirically test the key implications of the model by using a fund’s past performance measured

over multiple time horizons, as multiple signals about manager skill observed by investors.

We find that consistent with our model, fund flows display heightened sensitivity to the mini-

mum performance measure. Further, we observe this ambiguity averse behavior only among retail

fund investors. By contrast, fund flows in institutional funds appear to be more consistent with

standard Bayesian learning behavior. We also find that funds with more frequent/aggressive strat-

egy changes, funds that have more volatile past flows, and funds belonging to smaller fund families

appear more ambiguous to investors. Furthermore, we distinguish between the effect of increased

performance volatility on ambiguity averse investors and on investors whose behavior is more con-

sistent with Bayesian learning. We find that fund volatility increases ambiguity averse investors’

response to the minimum performance measure while it dampens the Bayesian investors’ sensitivity

to past performance in general. Taken together, these results suggest that fund investor behavior

is best characterized as reflecting both Bayesian learning and ambiguity aversion.
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Table I Summary Statistics of the Equity Mutual Fund Sample

This table reports the time-series averages of quarterly cross-sectional averages of fund characteristics for the
period 1993-2011. TNA is the total net assets. Flow is the percentage change in TNA. Expense Ratio is the
total annual management and administrative expenses divided by average TNA. Total Expense is estimated
as expense ratio plus 1/7 of maximum front-end load. 12-b1 Fee are fees paid by the fund out of fund assets
to cover marketing expenses, distribution expenses and sometimes shareholder service expenses. The 12-b1
fees are only available since 1992. Raw Return is the average monthly raw return during the prior 12 months
and Vol. of Raw Return is the corresponding standard deviation. The statistics are reported for all funds
(i.e., share classes), funds open only to retail investors, and funds available only to institutional investors.

Share Classes

All Funds Retail Shares Institutional Shares

Fund Share Classes 7,020 5,781 1,239
Average # of Fund Share Classes 2,847 2,359 466
Flow (in % per quarter) 1.51 1.32 2.33
Age (in years) 11.60 12.07 8.67
TNA (in millions) 678.06 739.36 330.49
Expense Ratio (in %) 1.41 1.49 0.96
Total Expense (in %) 1.61 1.73 0.99
12b-1 Fee (in %) 0.56 0.57 0.20
Raw Return (in % per month) 0.73 0.72 0.79
Vol. of Raw Return (in % per month) 4.60 4.59 4.66
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Table II Flow-Performance Sensitivity of Retail and Institutional Investors

This table examines the flow-performance sensitivity of both retail and institutional investors during period
1993-2011. The sample is divided into retail shares and institutional shares. Each quarter, funds are assigned
ranks between zero and one according to their performance during the past 12 months (Perf 1yr), 36 months
(Perf 3yr) and 60 months (Perf 5yr) respectively. Performance is measured by the average monthly raw
returns or the Carhart (1997) 4-factor alphas. Funds are ranked based on raw returns within the funds’
objective category while ranks based on alphas are computed across all funds in the sample. Min Rank
is defined as the minimum performance rank among three periods. A linear regression model is estimated
by regressing quarterly flows on funds’ three performance ranks (Perf 1yr, Perf 3yr and Perf 5yr) and the
minimum rank (Min Rank). The control variables include fund age (Age), defined as log (1+age), quarterly
flow in previous quarter (Previous Quarter Flow), previous quarter raw return (Previous Quarter Return),
logarithm of lagged fund TNA (Size), volatility of monthly raw return in prior 12 months (Volatility), lagged
total expense (Total Expense), aggregate flow to the fund’ objective category (Category Flow), and the
maximum drawdown of a fund’s monthly return over the previous 60 months (Maximum Drawdown). Time-
series averages of coefficients and the Newey-West t-statistics (in parentheses) are reported. The symbols *,
**, and *** denote significance at the 10%, 5% and 1% level, respectively.

Performance Measured by Raw Return 4-Factor Alpha

Retail Institutional Retail Institutional

Intercept 0.023∗∗∗ 0.084∗∗∗ -0.005 0.037∗∗∗

(3.35) (4.99) (-0.65) (2.98)
Perf 1yr 0.037∗∗∗ 0.046∗∗∗ 0.018∗∗∗ 0.030∗∗∗

(6.96) (3.16) (3.57 ) (3.26)
Perf 3yr 0.040∗∗∗ 0.039∗∗∗ 0.044∗∗∗ 0.063∗∗∗

(7.50) (2.96) (10.36 ) (5.95)
Perf 5yr 0.013∗∗∗ 0.045∗∗∗ -0.005 0.026∗∗∗

(2.93) (3.34) (-0.81 ) (2.57)
Min Rank 0.047∗∗∗ 0.012 0.057∗∗∗ 0.009

(6.99) (0.63) (9.17) (0.81)
Age -0.016∗∗∗ -0.025∗∗∗ -0.012∗∗∗ -0.018∗∗∗

(-9.36) (-6.77) (-8.82) (-5.48)
Previous Quarter Flow 0.177∗∗∗ 0.143∗∗∗ 0.182∗∗∗ 0.158∗∗∗

(7.51) (5.62) (7.39) (5.35)
Previous Quarter Return 0.246∗∗∗ 0.120∗∗ 0.308∗∗∗ 0.217∗∗∗

(6.49) (2.63) (9.77) (5.17)
Size -0.004∗∗∗ -0.010∗∗∗ -0.004∗∗∗ -0.009∗∗∗

(-6.40) (-7.46) (-7.97) (-7.90)
Volatility -0.066 -0.209 0.307∗ 0.273

(-0.52) (-1.27) (1.90) (1.21)
Total Expense -0.369∗∗∗ -1.823∗∗∗ -0.455∗∗ -1.818∗∗∗

(-2.35) (-3.12) (-2.87) (-3.04)
Category Flow 0.261∗∗∗ 0.089 0.128∗∗ 0.051

(3.41) (0.55) (2.33) (0.41)
Maximum Drawdown 0.261∗∗∗ 0.089 0.128∗∗ 0.051

(3.41) (0.55) (2.33) (0.41)
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Table III Flow-Performance Sensitivity and Changes in Fund Strategy

This table presents results of tests that use a measure of a fund’s strategy changes as a proxy for the fund’s
ambiguity level. The sample includes only the retail funds. Each quarter, the sample is divided into three
groups, Low, Mid, and High based on the value of the strategy change measure. Panel A reports results
when strategy changes are measured by the average absolute change in the fund’s (Carhart (1997) model)
factor loadings between the prior 1-30 and 31-60 months. In Panel B, fund strategy changes are measured
by a fund’s R-squared value over its lifetime based on the Carhart (1997) 4-factor model. The table presents
coefficient estimates obtained by regressing quarterly fund flows on the funds’ 1-year, 3-year, and 5-year
performance ranks (Perf 1yr, Perf 3yr and Perf 5yr) and the minimum rank (Min Rank). Performance is
measured by the average monthly raw returns or the Carhart (1997) 4-factor alphas. The control variables
are identical to those in Table II. Time-series averages of coefficients and the Newey-West t-statistics (in
parentheses) are reported. The symbols *, **, and *** denote significance at the 10%, 5% and 1% level,
respectively.

Panel A: Strategy Changes Proxied by Change in Factor Loadings
Performance Measured by Raw Return 4-Factor Alpha

Low Mid High Low Mid High

Intercept 0.027∗∗ 0.028∗∗∗ 0.016∗ -0.022∗ -0.001 0.007
(2.36) (2.85) (1.75) (-1.96) (-0.12) (0.81)

Perf 1yr 0.039∗∗∗ 0.032∗∗∗ 0.033∗∗∗ 0.018∗∗ 0.014∗∗ 0.020∗∗∗

(4.68) (5.02) (5.19) (2.17) (2.19) (3.63)
Perf 3yr 0.036∗∗∗ 0.032∗∗∗ 0.037∗∗∗ 0.049∗∗∗ 0.043∗∗∗ 0.033∗∗∗

(6.13) (5.73) (4.70) (6.05) (8.52) (4.36)
Perf 5yr 0.032∗∗∗ 0.012∗∗ 0.011∗ 0.011 -0.008 -0.004

(6.19) (2.04) (1.84) (1.53) (-1.08) (-0.97)
Min Ranka 0.014 0.044∗∗∗ 0.058∗∗∗ 0.029∗∗∗ 0.053∗∗∗ 0.060∗∗∗

(1.53) (4.01) (6.06) (2.58) (5.39) (5.36)
Control Variables Yes

Panel B: Panel B: Strategy Changes Proxied by Fund R-Squared Values
Performance Measured by Raw Return 4-Factor Alpha

Low Mid High Low Mid High

Intercept 0.016∗ 0.036∗∗∗ 0.019 0.003 -0.001 -0.019
(1.98) (3.42) (1.62) (0.31) (-0.06) (-1.33)

Perf 1yr 0.036∗∗∗ 0.040∗∗∗ 0.034∗∗∗ 0.019∗∗∗ 0.021∗∗∗ 0.011
(7.61) (5.05) (3.37) (3.66) (3.40) (1.19)

Perf 3yr 0.034∗∗∗ 0.034∗∗∗ 0.049∗∗∗ 0.036∗∗∗ 0.041∗∗∗ 0.060∗∗∗

(4.33) (5.36) (6.36) (4.87) (6.94) (4.89)
Perf 5yr 0.007 0.020∗∗∗ 0.015∗ -0.012∗∗ 0.003 -0.005

(1.46) (3.29) (1.89) (-2.35) (0.58) (-0.53)
Min Rankb 0.051∗∗∗ 0.033∗∗∗ 0.023∗ 0.058∗∗∗ 0.038∗∗∗ 0.043∗∗∗

(5.82) (3.70) (1.70) (6.73) (4.60) (3.40)
Control Variables Yes

aThe value of the F -test statistic (p-value) corresponding to a test of equality of coefficients of Min Rank across
the three groups, Low, Mid, and High, equals 5.16 (0.006 ) when funds are ranked by raw return and it equals 2.64
(0.073 ) for the case when funds are ranked by 4-factor alphas.

bThe value of the F -test statistic (p-value) corresponding to a test of equality of coefficients of Min Rank across
the three groups, Low, Mid, and High, equals 1.81 (0.166 ) when funds are ranked by raw return and it equals 1.06
(0.349 ) for the case when funds are ranked by 4-factor alphas.
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Table IV Flow-Performance Sensitivity and Fund Flow Volatility

This table presents results of tests that use flow volatility as a proxy for a fund’s ambiguity level. The sample
includes only the retail funds. Flow Vol is the standard deviation of quarterly flows over prior 12 quarters.
Each quarter, a dummy variable Low Flowvol equals one if the flow volatility falls in the bottom tercile, a
dummy variable Mid Flowvol equals one if the flow volatility belongs to the medium tercile and a dummy
variable High Flowvol equals one if the flow volatility is in the top tercile. A linear regression is performed
by regressing quarterly flows on funds’ three performance ranks (Perf 1yr, Perf 3yr and Perf 5yr) and the
minimum rank (Min Rank) interacted with the three dummy variables. The control variables are identical
to those in Table II. Time-series averages of coefficients and the Newey-West t-statistics (in parentheses) are
reported. The symbols *, **, and *** denote significance at the 10%, 5% and 1% level, respectively.

Performance Measured by Raw Return t-statistic 4-Factor Alpha t-statistic

Intercept -0.001 (-0.20) -0.020∗∗∗ (-2.81)

Low Flowvol×Perf 1yr 0.034∗∗∗ (8.82) 0.017∗∗∗ (3.83)

Mid Flowvol×Perf 1yr 0.039∗∗∗ (5.99) 0.026∗∗∗ (3.98)

High Flowvol×Perf 1yr 0.059∗∗∗ (6.25) 0.024∗∗∗ (2.78)

Low Flowvol×Perf 3yr 0.027∗∗∗ (6.02) 0.026∗∗∗ (5.16)

Mid Flowvol×Perf 3yr 0.038∗∗∗ (6.90) 0.046∗∗∗ (8.10)

High Flowvol×Perf 3yr 0.048∗∗∗ (4.89) 0.060∗∗∗ (6.71)

Low Flowvol×Perf 5yr 0.037∗∗∗ (9.65) 0.022∗∗∗ (4.32)

Mid Flowvol×Perf 5yr 0.010∗ (1.88) -0.011∗∗∗ (-1.45)

High Flowvol×Perf 5yr -0.031∗∗∗ (-3.72) -0.050∗∗∗ (-5.87)

Low Flowvol×Min Rank1 -0.004 (-0.85) 0.005 (1.02)

Mid Flowvol×Min Rank 0.038∗∗∗ (4.76) 0.040∗∗∗ (4.64)

High Flowvol×Min Rank 0.108∗∗∗ (8.09) 0.124∗∗∗ (8.83)

Flow Vol 0.057∗∗∗ (5.76) 0.040∗∗∗ (4.18)

Control Variables Yes

aThe value of the F -test statistic (p-value) corresponding to a test of equality of coefficients of
Low Flowvol×Min Rank, Mid Flowvol×Min Rank and High Flowvol×Min Rank, equals 35.04 (0.000 ) when funds
are ranked by raw return and it equals 32.03 (0.000 ) for the case when funds are ranked by 4-factor alphas.
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Table V Flow-Performance Sensitivity and Fund Family Size

This table presents results of tests using family size as a proxy for a fund’s ambiguity level. The sample
includes only retail funds. Family size represents the total net assets of all fund share classes that belong to
the same fund family. Each quarter, a dummy variable Low FamSize equals one if fund i belongs to a family
whose size falls into the bottom tercile, a dummy variable Mid FamSize equals one if family size belongs to
the medium tercile, and a dummy variable High FamSize equals one if the family size is in the top tercile.
D FamliySize is a dummy variable that equals one if family size is above the median value for that quarter.
A linear regression is performed by regressing quarterly flows on funds’ three performance ranks (Perf 1yr,
Perf 3yr and Perf 5yr) and the minimum rank (Min Rank) interacted with the three dummy variables. The
control variables are identical to those in Table II. Time-series averages of coefficients and the Newey-West
t-statistics (in parentheses) are reported. The symbols *, **, and *** denote significance at the 10%, 5%
and 1% level, respectively.

Performance Measured by Raw Return t-statistic 4-Factor Alpha t-statistic

Intercept 0.039∗∗∗ (5.53) 0.013 (1.65)

Low Famsize×Perf 1yr 0.032∗∗∗ (5.70) 0.016∗∗ (2.37)

Mid Famsize×Perf 1yr 0.032∗∗∗ (6.17) 0.017∗∗∗ (3.57)

High Famsize×Perf 1yr 0.049∗∗∗ (4.55) 0.026∗∗∗ (3.04)

Low Famsize×Perf 3yr 0.027∗∗∗ (4.80) 0.035∗∗∗ (5.31)

Mid Famsize×Perf 3yr 0.039∗∗∗ (4.58) 0.045∗∗∗ (5.58)

High Famsize×Perf 3yr 0.047∗∗∗ (5.78) 0.051∗∗∗ (7.99)

Low Famsize×Perf 5yr -0.002 (-0.39) -0.015 (-1.63)

Mid Famsize×Perf 5yr 0.010 (1.63) -0.008 (-1.24)

High Famsize×Perf 5yr 0.033∗∗∗ (6.24) 0.016∗∗ (2.48)

Low Famsize×Min Rank1 0.069∗∗∗ (6.26) 0.066∗∗∗ (5.65)

Mid Famsize×Min Rank 0.058∗∗∗ (6.33) 0.065∗∗∗ (5.70)

High Famsize×Min Rank 0.018∗ (1.78) 0.034∗∗∗ (4.48)

D FamilySize 0.008∗∗∗ (4.00) 0.008∗∗∗ (3.32)

Control Variables Yes

aThe value of the F -test statistic (p-value) corresponding to a test of equality of coefficients of
Low Famsize×Min Rank, Mid Famsize×Min Rank and High Famsize×Min Rank, equals 7.02 (0.001 ) when funds
are ranked by raw return and it equals 3.18 (0.043 ) for the case when funds are ranked by 4-factor alphas.
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Table VIII Robustness Test Controlling for Flow-Performance Convexity

This table reexamines the baseline model that studies ambiguity aversion behavior of both retail and in-
stitutional investors when controlling for the convexity in flow-performance relationship during the period
1993-2011. The sample includes all retail and institutional shares. Each quarter, we adopt fractional ranks
for funds’ performance measured over past 1-, 3-, and 5-year horizon. For example, the 1-year performance
of a fund in the bottom quintile (Low 1yr) is defined as Min(Perf 1yr, 0.2), in the three medium quin-
tiles (Mid 1yr) is defined as Min(0.6, Perf 1yr-Low 1yr), and in the top quintiles (High 1yr) is defined as
Perf 1yr-Low 1yr-Mid 1yr. Performance is measured by the ranking within category of the average monthly
raw returns. Min Rank is defined as the minimum performance rank among 1-year, 3-year and 5-year perfor-
mance ranks. A linear regression is performed by regressing quarterly flows on funds’ fractional performance
ranks and the minimum rank. The control variables are identical to those in Table II. Time-series averages
of coefficients and the Newey-West t-statistics (in parentheses) are reported. The symbols *, **, and ***
denote significance at the 10%, 5% and 1% level, respectively.

Performance Measured by Raw return 4-Factor Alpha

Retail Institutional Retail Institutional

Intercept 0.043∗∗∗ 0.125∗∗∗ 0.014 0.061∗∗∗

(5.61) (8.06) (1.44) (4.09)
Low 1yr 0.048∗∗∗ 0.073∗∗ 0.043∗∗ -0.013

(3.19) (2.42) (2.61) (-0.35)
Mid 1yr 0.021∗∗∗ 0.046∗∗∗ 0.006 0.031∗∗

(4.28) (2.82) (1.37) (2.06)
High 1yr 0.209∗∗∗ 0.077∗ 0.165∗∗∗ 0.078∗∗

(8.73) (1.92) (9.18) (2.02)
Low 3yr 0.042∗∗∗ 0.032 0.028∗∗∗ 0.158∗∗

(2.89) (0.52) (2.75) (2.57)
Mid 3yr 0.026∗∗∗ 0.032∗∗ 0.032∗∗∗ 0.050∗∗∗

(4.49) (2.33) (7.09) (4.66)
High 3yr 0.181∗∗∗ 0.142∗∗∗ 0.201∗∗∗ 0.206∗∗∗

(6.45) (2.67) (8.73) (3.36)
Low 5yr -0.036∗∗ -0.172∗∗∗ -0.017 -0.081

(-2.13) (-3.26) (-1.13) (-1.42)
Mid 5yr 0.015∗∗∗ 0.053∗∗∗ -0.003 0.025∗∗

(3.40) (3.48) (-0.37) (2.03)
High 5yr 0.061∗∗ 0.123∗∗∗ 0.022 0.074

(2.50) (2.82) (0.95) (1.58)
Min Rank 0.036∗∗∗ 0.001 0.040∗∗∗ -0.005

(5.00) (0.05) (6.99) (-0.31)
Control Variables Yes
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Appendix A. A Model of an Ambiguity Averse Fund Investor

In this section, we build a model to analyze the important features of the flow-performance

sensitivity for an ambiguity averse mutual fund investor and derive testable empirical predictions.

The Model

We model the potential capital pool for a fund by assuming that there is a representative

investor who has increasing marginal cost of capital. The supply of capital is captured by a strictly

increasing function F (k) with support in [0,∞), where F (k) represents the amount of capital with

the opportunity cost below k. The investor decides how much to invest in a fund by assessing

whether the prospect of future performance of the fund is high enough to justify the opportunity

cost of capital.

The fund’s return, R, is governed by

R = µ+ α+ ε, (A.1)

where α denotes the fund manager skill, µ is the market risk premium given the fund’s risk profile,

and ε ∼ N
(
0, σ2ε

)
represents the noisy component of the fund’s return. The risk-free rate is

normalized to zero. We note that the managerial skill, α, is not directly observable by the investor.

The investor is assumed to have knowledge about the distribution of skill in the population of the

fund managers, i.e., investor knows a priori: α ∼ N
(
µα, σ

2
α

)
. The investor, at the time of making

the fund investment decision, observes two signals, s1 and s2, about managerial ability α. More

specifically, si = (α− µα) + ηi, with

(
η1
η2

)
∼ N

(
0,

(
σ21 0
0 σ22

))
.16 (A.2)

We define the signal-to-noise ratio by Hi = σ2α/σ
2
i which captures the precision of signal i

(i = 1, 2). Through the standard Bayesian updating, we have the posterior distribution of α, after

observing the two signals, as

N
(
µα + βT s, σ2α/H

)
≡ N

(
µp, σ

2
p

)
, (A.3)

where β = (H1/H,H2/H)T , and H = 1 +H1 +H2.

16There may be some potential interest in analyzing the ambiguity of the signal correlation. But this feature is
turned off here by assuming the noise terms in the two signals are uncorrelated.
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What differentiates our model from the standard Bayesian model is that we assume the investor

is uncertain about the precision of the signals. Specifically, the precision of signal i (i = 1, 2),

denoted as Hi, can take on one of two values, denoted as h for high, and l for low, i.e., Hi = h,

or Hi = l (with l < h). Given that there are two signals, this leads to four possible scenarios for

the investor to consider. The first scenario is the one in which both signals have high precision

(i.e., H1 = H2 = h), while the second scenario represents the case in which both signals have low

precision (i.e., H1 = H2 = l). The third scenario refers to the case in which the first signal has

high precision and the second signal has low precision (i.e., H1 = h, and H2 = l), while the fourth

scenario represents the case in which the first signal has low precision while the second signal has

high precision (i.e., H1 = l, H2 = h). For each of the four scenarios, there is a corresponding joint

probability distribution of the two signals, s1 and s2, and the fund return R, which is denoted

in general by the term, πm (m = 1, 2, 3, 4). Hence, the investor faces not one but four candidate

probability distributions for the outcomes. This is the essential source of ambiguity faced by the

investor.

To capture the investor’s attitude about this ambiguity, we adopt the ambiguity model frame-

work in Klibanoff et al. (2005) and Ju and Miao (2012), as described below. In deciding to invest

with a fund, the investor evaluates the perceived return from the fund adjusted for the level of

ambiguity she is facing. We model the investor’s certainty equivalent rate of return, RCEU , as:

RCEU = −γ lnEθ

[
exp

(
−1

γ
Eπm(R)

)]
. (A.4)

This specification deserves some explanation. As described above, due to the presence of ambiguity

about the signals’ precisions, the investor faces an environment with multiple scenarios characterized

by differing perceived precisions of the two signals. The evaluation of the investor’s utility in such

a case can be broken down into two steps. First, the investor calculates the expected return under

each of the four plausible scenarios. This corresponds to the term Eπm(R) in the expression for

the certainty equivalent rate of return above. To the extent that the investor cares only about the

conditional expected return, she behaves in a risk neutral fashion, in this step.

In the second step, the investor weights the outcomes across all of the four plausible scenarios.

To fix the idea, we assume that the investor assigns equal weights, represented by the term θ, to

the four possible cases, as ex ante the investor considers all of them as being plausible. Then,

ii



instead of taking the average of the expected returns across the four cases, the investor averages a

concave function, in this case, the negative exponential function, i.e., − exp(− 1
γ (.)), of the expected

return. The notation Eθ(·) denotes the averaging across scenarios, where the subscript θ indicates

the assigned weights for the four scenarios. The final adjustment, by applying the transformation

−γ ln(−(.)) to the resulting value, which is the inverse function of the negative exponential function,

serves to convert the resulting value back to the returns scale. This calculation yields a constant

return that the investor would view as utility-equivalent to that of the ambiguous return from

investing in the fund.

The investor’s attitude towards the ambiguity in the environment is characterized by the con-

cavity of the negative exponential function, − exp(− 1
γ (.)), in Equation (A.4). Due to Jensen’s

inequality, the effect of inserting a concave function (the negative exponential function in our case)

between the expected return calculation in the first step, and the final averaging across the four

scenarios, is that the certainty equivalent return, RCEU , calculated in Equation (A.4) is lower than

the simple average of the expected returns, Eπm(R), across the four scenarios. In other words, the

investor is averse to the variation in expected returns across the four scenarios.

To gain further insight into the effect of the concave function in Equation (A.4) we may ask the

question: how much weight does each scenario carry in the investor’s decision process? To answer

this question we can examine how the investor’s certainty equivalent return changes in response

to changes in the expected returns, Eπm(R), for the various scenarios. The overall change in the

certainty equivalent return, RCEU , is determined by total differentiation of Equation (A.4). As a

result, the change in the certainty equivalent return can be expressed as a weighted average of the

changes in the expected returns across the four scenarios, with the weight of each scenario, λm,

being negatively correlated with the expected return in that scenario. That is,

dRCEU =
4∑

m=1

λmd [Eπm(R)] , (A.5)

where
∑4

m=1 λm = 1 and λm > λn, if Eπm(R) < Eπn(R).17 This representation of the change in

the certainty equivalent return makes it clear that the investor behaves as if she puts more weight

17Note that, λm =
exp

[
− 1
γ
Eπm (R)

]
∑4
n=1 exp

[
− 1
γ
Eπn (R)

] , via total differentiation of Equation (A.4) and identifying terms from

Equation (A.5). From this expression it may be seen that λm is negatively correlated with the expected return,
Eπm(R).
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on the worst case scenario. In this sense the investor acts conservatively and exhibits ambiguity

aversion. The strength of this effect is directly related to the value of the parameter γ.

As a point of comparison, the maxmin utility approach considers the four possible scenarios,

and then effectively focuses on the case that gives the lowest utility outcome as the only relevant

case. Such an approach captures extreme ambiguity aversion: the investor is so concerned about

the worst case scenario that she completely ignores all other possible cases which she had deemed

plausible ex ante. Here, we follow Klibanoff et al. (2005) by considering a less extreme weighting

scheme to model the investor’s ambiguity aversion. Under our approach the investor behaves as if

she assigns positive, albeit smaller, weights to the cases with outcomes other than the worst case

outcome.

Note that due to the nonlinear function (the negative exponential function) between the two

expectation calculations, namely Eπ and Eθ in Equation (A.4), the investor’s certainty equivalent

return in (A.4) cannot be reduced to a single, composite expectation. In other words, the behavior

of a fund investor with the preference specification in Equation (A.4) cannot be consistently rep-

resented by some form of expected utility function, and therefore, her behavior deviates from the

expected utility paradigm. Such deviation highlights the ambiguity averse behavior captured by the

modeling technique of Klibanoff et al. (2005) that is intrinsically different from the traditional risk

aversion in the expected utility paradigm. Also note that in our context, the degree of ambiguity

faced by the investor is directly related to the difference between the two possible levels of signal

precision, namely h (high) and l (low).18 In the limiting case, as this difference converges to zero,

we have the standard Bayesian learning framework.

The investor’s objective is to maximize the net gain from investing in a fund. The net gain is

the total dollar return from investing in the fund net of the cost of capital invested. The investor’s

optimization problem boils down to choosing an optimal scale of investment in the fund conditional

on the observed signals regarding the fund manager skill. The solution to the problem is provided in

the Appendix B. We note the following proposition regarding the fund flow-performance sensitivity.

PROPOSITION 1: The flow-performance sensitivity is higher for the signal with relatively lower

18In this framework, the investor is unable to learn about the signal precision over time, possibly due to cognitive
or informational constraints. For more detailed discussion and justification of the time-invariant nature of ambiguity,
see Epstein and Schneider (2007).
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realized value:

dF (k?)

ds1
>
dF (k?)

ds2
(A.6)

if and only if s1 < s2, i.e., in relative terms, the signal, s1, conveys bad news, while the signal, s2,

conveys good news.19

Proof: See Appendix B.

Thus, the model implies that ambiguity averse investors’ fund flow is more responsive to the

worst signal. In other words, in the population of ambiguity averse investors that face multiple

signals, we expect to observe heightened flow sensitivity towards the signal that conveys bad news.

Denote the (scaled) gap between the high and low values of the signal precisions, (h− l)/2, by

δ. Clearly, the higher the parameter value for δ, the wider the gap between the two possible values

for the signal precision, and therefore the higher the ambiguity the investor faces. As a result, we

would expect the investor to display stronger ambiguity aversion as the gap between the signal

precisions widens. We have the following corollary.

COROLLARY 1: The extra sensitivity to the worst signal is higher when the level of ambiguity is

higher, keeping the average precision of the signal constant (i.e., (h+ l)/2 is fixed).20 That is:

d

dδ

(
dF

ds1
− dF

ds2

)
> 0 (A.7)

if s1 < s2.

Proof: See Appendix B.

Bayesian Benchmark

Next, we contrast our model with the standard Bayesian benchmark case with risk averse utility.

Bayesian Benchmark with No Signal Precision Uncertainty

Consider first the simplest case of a risk averse investor with exponential utility and risk aversion

19Remark: In the model, the shape of the flow-performance relation (i.e., whether or not it is convex) depends
on the specification of the cumulative distribution function F (k). On the one hand, this implies that the model is
unable to explain why the flow-performance relation has a specific functional form, because such a relation is driven
by direct assumption. On the other hand, the model is flexible enough to allow for such a relation. Our point is that
our key result, namely, that the flow-performance sensitivity is higher for the signal with relatively lower realized
value, is logically consistent and potentially complementary to the convexity in the flow-performance relation.

20It is also straightforward to show that the extra sensitivity to the worst signal is increasing in the degree of
investor ambiguity aversion, γ.
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coefficient a, i.e., U(R) = −eaR, who receives two performance-related signals with known precision.

Specifically, consider the case when h = l ≡ H. The flow-performance sensitivity is captured by

dF (k?)/dsi, where

dF (k?)

ds1
=
dF (k?)

ds2
= F ′ ×

(
H

1 + 2H

)
. (A.8)

From the above expression, it is clear that in this case the flow-performance sensitivity depends

only on signal precision H, and is independent of the level of the signal realization. This implies

we would not expect to observe additional flow sensitivity to the worst signal in the population of

Bayesian investors who do not face signal precision uncertainty.

Bayesian Benchmark with Signal Precision Uncertainty

We next consider the case where risk averse investors are uncertain about the precision of the

realized signals, s1 and s2. Specifically, the precision of each signal may take on one of two values:

h (high) and l (low).

Note that we assume s1 < s2, as in the ambiguity aversion model. In this case, the investor

faces the following possible scenarios: (1) both signal realizations are negative, i.e., s1 < s2 < 0;

(2) both signal realizations are positive; and (3) the signal realizations are opposite in sign, i.e.,

s1 < 0, and s2 > 0.

To explore these cases we numerically analyze the investor flow sensitivity to the respective

performance related signals over a range of plausible values of the signals. We calibrate the key

parameters for this analysis based on the sample of equity mutual funds described in detail in

Section IV. In particular, we set the investor’s prior regarding the average fund manager skill, µα,

equal to zero. The value of the parameter σ2α is set equal to the cross-sectional variance of the

Carhart 4-factor alphas across all funds in the sample. Appendix B provides additional details of

the numerical analysis.

Intuitively, the Bayesian investor’s sensitivity to a signal is a function of the inferred precision

of the observed signal. As a result, the further away a signal is from the investor’s prior regarding

the signal, the lower the signal’s implied precision. Recall, that the investor’s prior beliefs about

the distribution of the signals are centered on zero. Accordingly, if both signal realizations are

negative then the investor attaches a lower precision to the signal further away from zero, i.e., the

more negative (worst) signal s1. On the other hand, if both signal realizations are positive then
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the investor attaches a lower precision to the more positive signal, i.e., s2.

Figure 1 shows the difference in the flow-performance sensitivity of the signal, s1, relative to the

signal, s2, as a function of the respective signal realizations. Panel A displays the case when both

signals have negative realizations, i.e., s1 < s2 < 0. As is evident, in this case the flow-performance

sensitivity to the worst signal, s1, is consistently lower across the entire range of signal realizations.

This is in stark contrast to our earlier result for the case with ambiguity aversion.

Panel B shows the difference in the flow-performance sensitivity of signal s1 relative to the

signal, s2, when both signals have positive realizations, i.e., 0 < s1 < s2. In this case the flow-

performance sensitivity to the worst signal, s1, is higher over a certain range of signal realizations

and it is lower outside of this range. This result is also different from the case with ambiguity

aversion where the flow-performance sensitivity is consistently higher for the worst signal.

Panel C shows the difference in flow-performance sensitivity when s1 < 0 < s2. Consistent with

intuition, the flow-performance sensitivity is always lower for the signal further away from zero. As

a result, there is a certain range of signal realizations in which the flow-performance to the worst

signal is higher. However, outside this range it is lower.

In summary, the results of this subsection confirm that the ambiguity aversion model leads

to predictions that differ from the Bayesian benchmark case with respect to the investor flow-

performance sensitivity to the worst signal. We further confirm that the above contrasting results

for the Bayesian benchmark case are qualitatively unchanged even under extreme values of the risk

aversion parameter (a ≈ 50).

Distinction with Other Behavioral Biases

In the behavioral finance literature, a number of alternatives have been suggested as departures

from the traditional rational agent (Savage utility) paradigm. Examples include loss-averse prefer-

ences as well as behavioral biases such as overconfidence.21 It is worth noting that the hypothesis

developed in Proposition 1 is uniquely attributable to the existence of ambiguity aversion on the

part of investors. In particular, neither loss aversion, nor overconfidence will lead to a differential

sensitivity of investor fund flows to the lower realization signal in the absence of ambiguity aversion.

To illustrate this, we next formally examine the implications of loss aversion and overconfidence

21Bailey, Kumar, and Ng (2011) provide evidence of the impact of behavioral biases including overconfidence, on
the decisions of mutual fund investors.
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respectively, on the behavior of investors who face multiple noisy signals. For this analysis we

abstract from the effect of ambiguity aversion by imposing the restriction that the two signals have

equal precision, i.e., H1 = H2 = H.

First, consider the case of loss-averse utility preferences. The case with habit formation utility

follows in similar fashion. Assume, as in Kahneman and Tversky (1979), the investor displays loss

aversion in her utility function but she is not ambiguous about the signal precision. Thus, given

the posterior distribution of α, we assume the utility function takes the following form:

U(R) = Eπ (α1[0,∞)) + λEπ (α1(−∞, 0)) , (A.9)

where λ > 1. Writing the above equation in explicit form, we have:

U(R) =

∫ ∞
0

α√
2πσ2p

e
−(α−µp)2

2σ2p dα+ λ

∫ 0

−∞

α√
2πσ2p

e
−(α−µp)2

2σ2p dα (A.10)

=
σp(1− λ)√

2π
e

−µ2p
2σ2p ,

where αp and µp are given in Equation (A.3) with H1 = H2 ≡ H. Thus, the flow-performance

sensitivity under the assumption of loss aversion is:

dF (k?)

ds1
=
dF (k?)

ds2
=

(λ− 1)Hµ2p

σp(1 + 2H)
√

2π
F ′e

−µ2p
2σ2p , (A.11)

which is independent of whether or not s1 < s2.

Second, we note that overconfidence cannot by itself result in the asymmetric sensitivity to

signals with different realizations. Overconfidence is the belief on the part of the investor that

a certain signal is more precise than it actually is. For example, suppose that an overconfident

investor receives a signal, s1, from a private channel, while another signal, s2, is publicly available.

She is confident that her private signal, s1, is always more reliable than the public signal, s2. As

a result, when making investment decisions, the investor allocates additional capital to the fund

whenever s1 is sufficiently positive, and conversely she withdraws money from the fund whenever

the signal, s1, is negative. The public signal, s2, on the other hand, regardless of its realization,

will have a lesser influence on the investor’s fund investment decisions. Simply put, under the

assumption of overconfidence, regardless of whether s2 > s1, or s2 ≤ s1, we always have:
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dF (k?)

ds1
>
dF (k?)

ds2
. (A.12)

Obviously under this setting of overconfidence we cannot arrive at Proposition 1. In an environment

devoid of ambiguity, a similar argument would apply to investors who are “under-confident” in the

sense that they believe their private signal is less precise than it actually is.

Appendix B. Proofs

Proof of Proposition 1: Given that F (k) is strictly increasing, the investor’s problem of deciding

how much to optimally invest in a fund is equivalent to determining the cutoff level k, which we

will denote by k?, and then invest an amount equal to F (k?) in the fund. The total cost of capital

of investing an amount F (k?) in the fund is given by the integral,
∫ k?
0 kdF (k). The corresponding

total certainty equivalent gain for the investor is: F (k?)RCEU . Thus, the investor’s overall objective

is to choose the cutoff k? to maximize the gain net of the cost: i.e.,

max
k?

F (k?)RCEU −
∫ k?

0
kdF (k). (B.1)

From Equations (A.1) and (A.3), we have that Eπ(R) = µ+ µα + βT s. Via direct calculation,

the investor’s certainty equivalent rate of return of investing with the fund, defined in Equation

(A.4), is:

RCEU = γ log 4 + µ+ µα − γ log

[
e

−h(s1+s2)
γ(1+2h) + e

−l(s1+s2)
γ(1+2l) + e

−(hs1+ls2)
γ(1+h+l) + e

−(ls1+hs2)
γ(1+h+l)

]
.

The optimization problem in (B.1) is straightforward, and the necessary and sufficient condition

for its unique solution is that the above certainty equivalent return equals the marginal cost of

capital at the cutoff level, k?. That is,

k? = γ log 4 + µ+ µα − γ log

[
e

−h(s1+s2)
γ(1+2h) + e

−l(s1+s2)
γ(1+2l) + e

−(hs1+ls2)
γ(1+h+l) + e

−(ls1+hs2)
γ(1+h+l)

]
. (B.2)

Thus, the amount of capital under the management of the fund is F (k?). Then taking the derivative

of F (k?) with respect to s1 and s2 respectively, we have the flow-performance sensitivity which is

captured by dF (k?)/dsi as
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dF (k?)

dsi
=F ′e

(k?−µ−µα−γ log 4)
γ

[
h

1 + 2h
e
−h(s1+s2)
γ(1+2h) +

l

1 + 2l
e
− l(s1+s2)
γ(1+2l) (B.3)

+
l

1 + h+ l

(
e
− (hs1+ls2)
γ(1+h+l) + e

− (ls1+hs2)
γ(1+h+l)

)
+

h− l
1 + h+ l

e
− (h−l)si+l(s1+s2)

γ(1+h+l)

]
.

As a consequence of Equation (B.3), we have

dF (k?)

ds1
− dF (k?)

ds2
= F ′e

(k?−µ−µα−γ log 4)
γ

(
h− l

1 + h+ l

)[
e

−(hs1+ls2)
γ(1+h+l) − e

−(ls1+hs2)
γ(1+h+l)

]
. (B.4)

When h > l, we have hs1 + ls2 < ls1 + hs2, and thus the above expression is always positive.

Proof of Corollary 1: Taking the derivative of Equation (B.4) with respect to δ, defined as

(h− l)/2 yields:

d

dδ

(
dF

ds1
− dF

ds2

)
=

1

2(1 + h+ l)X
F ′e

[
k?−µ−µα−γ log 4

γ
− (h+l)(s1+s2)

2(1+h+l)γ

] [(
X2 − 1

)
+ δ

s2 − s1
1 + h+ l

(
X2 + 1

)]
>0.

Numerical Analysis of Bayesian Benchmark Case with Signal Precision Uncertainty:

We next provide details for the numerical analysis for the Bayesian benchmark case with signal

precision uncertainty discussed in Appendix A. We assume the investors are risk averse with the

exponential utility function U(R) = −eaR and are uncertain about the precision of the realized

signals, s1 and s2. Specifically, the precision of each signal may take on one of two values: h

and l. This gives rise to the following four potential models: M1: both s1 and s2 have high

precision h, i.e., H1 = H2 = h; M2: both s1 and s2 have low precision l, i.e., H1 = H2 = l;

M3: the worst signal s1 has high precision and s2 has low precision, i.e., H1 = h,H2 = l; M4:

the worst signal s1 has low precision and s2 has high precision, i.e., H1 = l,H2 = h. According

to Bayes’ rule, the posterior probabilities of the four models, denoted as P1 − P4, are as follows:

P1 = A
A+B+C+D , P2 = B

A+B+C+D , P3 = C
A+B+C+D , P4 = D

A+B+C+D , where

A =
h√

1 + 2h
exp

{
− 1

2σ2α

[
h(s21 + s22)−

h2

1 + 2h
(s1 + s2)

2

]}
,

B =
l√

1 + 2l
exp

{
− 1

2σ2α

[
l(s21 + s22)−

l2

1 + 2l
(s1 + s2)

2

]}
,

C =

√
hl√

1 + h+ l
exp

{
− 1

2σ2α

[
hs21 + ls22 −

1

1 + h+ l
(hs1 + ls2)

2

]}
,

D =

√
hl√

1 + h+ l
exp

{
− 1

2σ2α

[
ls21 + hs22 −

1

1 + h+ l
(ls1 + hs2)

2

]}
.
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The investor’s expected utility is thus:

Eπ(U(R)) = P1 × E(U(R)|M1) + P2 × E(U(R)|M2) + P3 × E(U(R)|M3) + P4 × E(U(R)|M4)

= P1 × (−eY1) + P2 × (−eY2) + P3 × (−eY3) + Pt × (−eY4),

where

Y1 = −a
[
µ+ µα +

h

1 + 2h
(s1 + s2)

]
+

1

2
a2
(
σ2ε +

σ2α
1 + 2H

)
,

Y2 = −a
[
µ+ µα +

l

1 + 2l
(s1 + s2)

]
+

1

2
a2
(
σ2ε +

σ2α
1 + 2H

)
,

Y3 = −a
[
µ+ µα +

1

1 + h+ l
(hs1 + ls2)

]
+

1

2
a2
(
σ2ε +

σ2α
1 + 2H

)
,

Y4 = −a
[
µ+ µα +

1

1 + h+ l
(ls1 + hs2)

]
+

1

2
a2
(
σ2ε +

σ2α
1 + 2H

)
.

We have

k∗ =
1

a

[
log(A+B + C +D)− log(AeY1 +BeY2 + CeY3 +DeY4)

]
. (B.5)

The difference in the flow-performance sensitivity to the signal s1 relative to signal s2 is:

dF (k?)

ds1
− dF (k?)

ds2

= F ′ ×
(
dk?

ds1
− dk?

ds2

)
=
F ′

a
×
{
P1

σ2α
(hs2 − hs1) +

P2

σ2α
(ls2 − ls1) +

P3

σ2α

[
(h− l)(hs1 + ls2)

1 + h+ l
+ ls2 − hs1

]
+
P4

σ2α

[
(l − h)(ls1 + hs2)

1 + h+ l
+ hs2 − ls1

]
+
Q1

σ2α
(hs1 − hs2) +

Q2

σ2α
(ls1 − ls2)

+
Q3

σ2α

[
(l − h)(hs1 + ls2)

1 + h+ l
+
aσ2α(h− l)
1 + h+ l

+ hs1 − ls2
]

+
Q4

σ2α

[
(h− l)(ls1 + hs2)

1 + h+ l
+
aσ2α(l − h)

1 + h+ l

+ ls1 − hs2
]}

where Q1 = AeY1/(AeY1 + BeY2 + CeY3 + DeY4), Q2 = BeY2/(AeY1 + BeY2 + CeY3 + DeY4), Q3 =

CeY3/(AeY1 +BeY2 + CeY3 +DeY4), and Q4 = DeY4/(AeY1 +BeY2 + CeY3 +DeY4). We denote

dF (k?)

ds1
− dF (k?)

ds2
≡ F ′

a
×G. (B.6)

Since both F ′ and the degree of risk aversion a are positive, the sign of dF (k?)/ds1 − dF (k?)/ds2

is determined by the sign of the term G.

We next calibrate the key parameters in the term G based on the sample of mutual funds

described in detail in Section IV. In particular, the investor’s prior regarding the average fund
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managers skill, µα, is set equal to zero. The prior variance, σ2α, is set equal to the cross-sectional

variance of the Carhart 4-factor alphas across all funds. We use the cross-sectional average of the

Carhart 4-factor model error variance across all funds as a measure of the noise in the performance-

related signal.We compute this measure for two non-overlapping, equal sub-periods: 1991–2000 and

2001–2010. We set the high signal noise (σ2h) equal to the value of the measure computed over the

period over the period 1991–2000. Similarly σ2l is set equal to the value of the above measure

obtained using data for 2001–2010. Thus, the high signal-to-noise ratio, h = σ2α/σ
2
l , and the low

signal-to-noise ratio, l = σ2α/σ
2
h. Moreover, σ2ε is computed as the cross-sectional average of the

Carhart 4-factor model error variance across all funds from 1983 to 2011. The degree of risk aversion

a is set equal to 2. The market risk premium, µ, is the average market excess return from 1983

to 2011. Finally, the range of the signal realizations, i.e., s1 and s2, is set equal to one standard

deviation, σε, around zero. All parameters are chosen on a monthly basis. Based on the above

discussion, we obtain the following values for the key parameters: σ2α = 0.0007%, σ2l = 0.0282%,

σ2h = 0.0845%, σ2ε = 0.0467%, and µ = 0.5702%. Figure 1 shows the results of this numerical

analysis.
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Figure 1. Difference in Flow-Performance Sensitivity to Signal s1 Relative to s2 across
Different Signal Realizations
This figure plots the difference in the flow-performance sensitivity to the lower-valued signal, s1, relative to
the higher-valued signal, s2. In particular, it graphs the value of the term G in Equation (B.6) as we vary
the signals s1 and s2. Panels A, B, and C plot the difference in the flow-performance sensitivities for three
cases of interest, namely, when (a) s1 < s2 < 0, (b) 0 < s1 < s2, and (c) s1 < 0 < s2, respectively.
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