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QAP(A,B,C): min tr(AXB + C)X'
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where A, B and C are n X n matrices, tr denotes the trace of a
matrix, and II is the set of n X n permutation matrices.

e Applications in facility location/layout, ergonometric design,
nonparametric statistics, etc.

e Notoriously difficult to solve to optimality - problems of size
n = 30 still very challenging.

e Main dificulty is obtaining good bounds in reasonable time.
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e Quadratic Programming Bound (QPB)

e Semidefinite Programming Bounds (SDPB1, SDPB3,; .. .)

e Most successful B&B implementations to date have utilized

GLB, RLT1/2 and QPB.

e SDP bounds can be very strong at root, but currently too ex-
pensive for implementation in B&B.
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Quadratic Programming Bound
Construction of QPB starts with projected eigenvalue bound PB.

Assume C' = 0 and let columns of V' be an orthonormal basis for
N (eT). Consider spectral decompositions

AN AN

A=VTAV = WDiag(6)W', B=V!BV = UDiag(\U".

min tr AXBX' + (2/n) min (AEB) e X — ~

= (\,6)— + (2/n)(Ae, Be)_ — 7,

PB

where (z,y) - = ming %2 TiYr(;), and 7 = (el Ae)(el Be)/n?.
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Theorem (A-W 2000)

(X, 6)_ = max tr S+ tr T
st. (BRA) -—I®8)—(T®I) =0

Moreover for any feasible S 7 T and orthonormal X 7
tr AXBXT =tr S+ tr T + vec(X)! Q vec(X),
where Q= (B A)— (I®S) — (T ® I).
To compute QPB, use optimal S , T to define Q, then get
QPB = (A,6)- +2(Q) — 7

2(Q) = min Yamﬁﬂ@vaxﬁy+@ﬂwumzn.x

st. X=Vixv
Xe:XTe:e, X > 0.
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in gap of 15-20%.

e )PDB increases with branching much faster than PB.

e Accurate solution of QP not required; can use F-W in approx-
imate minimization and recover rigorous lower bound from du-
ality.

e Dual information associated with solution of QP very helptul
for branching decisions.

e OPB successtully used in first solution of nug30 and several
other previously unsolved problems.

e Main problem: would be desirable to strengthen bound near
root where more computation is practical.
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Improving QPB

To improve QPB could consider “outer” maximization problem
that varies S, T'.
QPBT = max trS4+trT — v+ 2 (Q)
st Q= (B@A) (]@S) (T ®I) = 0.

e For general g I T, problem QPB™ can be written as an SDP.
e Consider form S = W Diag(§)W?!, T' = U Diag(£)U! corre-

sponding to optimal solution associated with PB.

QPBJr — max el 3 + elt — v+ z(@)
st. Q= (U W)Diag(¢)(UT @ W)
(=A®06)—(e®3)—(t®e) >0.
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e Bad: On all problems tested, solution s, t has el + el =
(X, 0)—, so maximizer of QPB™ is an optimal solution of the
original problem associated with PB. (In previous implementa-

tion used subgradient steps in attempt to improve QPB among
optimal solutions associated with PB.)

e Would be nice to prove that this is always the case!
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What To Do?

Would be more convenient to work with original A, B as opposed
to projected A, B. However original eigenvalue bound EVB based
on A, B is very poor.

Well known that certain perturbations of data A, B, C preserve
value of QAP. For example, consider

Al = A+egT+geT
B' = B+eh! + hel
C' = C —2(4eh! + ge! B+ ngh' + (el g)en!).

Then QAP(A, B,C) = QAP(A', B", C").
Theorem There are g, h so that EVB(A’, B, C") = PB(A, B, C).

Suggests defining QPB™ using perturbed data A’, B’, C’ in an
effort to further increase bound . ..



