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QAP(A,B,C) : min tr(AXB + C)XT

s.t. X ∈ Π,

where A, B and C are n × n matrices, tr denotes the trace of a
matrix, and Π is the set of n× n permutation matrices.

• Applications in facility location/layout, ergonometric design,
nonparametric statistics, etc.

• Notoriously difficult to solve to optimality - problems of size
n = 30 still very challenging.

•Main difficulty is obtaining good bounds in reasonable time.
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• Gilmore-Lawler Bound (GLB)

• Eigenvalue Bounds (EVB, PB)

• LP and Dual-LP Bounds (RLT1, RLT2)

• Quadratic Programming Bound (QPB)

• Semidefinite Programming Bounds (SDPB1, SDPB3, . . .)

•Most successful B&B implementations to date have utilized
GLB, RLT1/2 and QPB.

• SDP bounds can be very strong at root, but currently too ex-
pensive for implementation in B&B.
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Quadratic Programming Bound

Construction of QPB starts with projected eigenvalue bound PB.

Assume C = 0 and let columns of V be an orthonormal basis for
N (eT ). Consider spectral decompositions

Â = V TAV = W Diag(σ̂)WT , B̂ = V TBV = U Diag(λ̂)UT .

PB = min
X̂∈O

tr ÂX̂B̂X̂T + (2/n) min
X∈Π

(AEB) •X − γ

= 〈λ̂, σ̂〉− + (2/n)〈Ae,Be〉− − γ,

where 〈x, y〉− = minπ
∑n
i=1 xiyπ(i), and γ = (eTAe)(eTBe)/n2.



Theorem (A-W 2000)

〈λ̂, σ̂〉− = max tr Ŝ + tr T̂

s.t. (B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I) � 0.

Moreover for any feasible Ŝ, T̂ and orthonormal X̂ ,

tr ÂX̂B̂X̂T = tr Ŝ + tr T̂ + vec(X̂)T Q̂vec(X̂),

where Q̂ = (B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I).



Theorem (A-W 2000)

〈λ̂, σ̂〉− = max tr Ŝ + tr T̂

s.t. (B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I) � 0.

Moreover for any feasible Ŝ, T̂ and orthonormal X̂ ,

tr ÂX̂B̂X̂T = tr Ŝ + tr T̂ + vec(X̂)T Q̂vec(X̂),

where Q̂ = (B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I).

To compute QPB, use optimal Ŝ, T̂ to define Q̂, then get

QPB = 〈λ̂, σ̂〉− + z(Q̂)− γ

z(Q̂) = min vec(X̂)T Q̂vec(X̂) + (2/n)(AEB) •X
s.t. X̂ = V TXV

Xe = XTe = e, X ≥ 0.
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• QPB ≥ PB. Improvement at root typically modest - reduction
in gap of 15-20%.

• QPB increases with branching much faster than PB.

• Accurate solution of QP not required; can use F-W in approx-
imate minimization and recover rigorous lower bound from du-
ality.

• Dual information associated with solution of QP very helpful
for branching decisions.

• QPB successfully used in first solution of nug30 and several
other previously unsolved problems.

•Main problem: would be desirable to strengthen bound near
root where more computation is practical.
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To improve QPB could consider “outer” maximization problem
that varies Ŝ, T̂ .

QPB+ = max tr Ŝ + tr T̂ − γ + z(Q̂)

s.t. Q̂ = (B̂ ⊗ Â)− (I ⊗ Ŝ)− (T̂ ⊗ I) � 0.

• For general Ŝ, T̂ , problem QPB+ can be written as an SDP.

• Consider form Ŝ = W Diag(ŝ)WT , T̂ = U Diag(t̂)UT corre-
sponding to optimal solution associated with PB.

QPB+ = max eT ŝ + eT t̂− γ + z(Q̂)

s.t. Q̂ = (U ⊗W ) Diag(q̂)(UT ⊗WT )

q̂ = (λ̂⊗ σ̂)− (e⊗ ŝ)− (t̂⊗ e) ≥ 0.
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• Good: Resulting problem QPB+ can be written as a SOCP.

• Bad: On all problems tested, solution ŝ, t̂ has eT ŝ + eT t̂ =
〈λ̂, σ̂〉−, so maximizer of QPB+ is an optimal solution of the
original problem associated with PB. (In previous implementa-
tion used subgradient steps in attempt to improve QPB among
optimal solutions associated with PB.)

•Would be nice to prove that this is always the case!
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What To Do?

Would be more convenient to work with original A, B as opposed
to projected Â, B̂. However original eigenvalue bound EVB based
on A, B is very poor.

Well known that certain perturbations of data A, B, C preserve
value of QAP. For example, consider

A′ = A + egT + geT

B′ = B + ehT + heT

C ′ = C − 2(AehT + geTB + nghT + (eTg)ehT ).

Then QAP(A,B,C) = QAP(A′, B′, C ′).

Theorem There are g, h so that EVB(A′, B′, C ′) = PB(A,B,C).

Suggests defining QPB+ using perturbed data A′, B′, C ′ in an
effort to further increase bound . . .


