Strengthened(?) Quadratic Programming Bounds for QAP

Kurt M. Anstreicher University of Iowa

INFORMS Washington DC, October 2008

QAP
$$(A, B, C)$$
: min tr $(AXB + C)X^T$
s.t. $X \in \Pi$,

where A, B and C are $n \times n$ matrices, tr denotes the trace of a matrix, and Π is the set of $n \times n$ permutation matrices.

QAP
$$(A, B, C)$$
: min tr $(AXB + C)X^T$
s.t. $X \in \Pi$,

where A, B and C are $n \times n$ matrices, tr denotes the trace of a matrix, and Π is the set of $n \times n$ permutation matrices.

• Applications in facility location/layout, ergonometric design, nonparametric statistics, etc.

QAP
$$(A, B, C)$$
: min tr $(AXB + C)X^T$
s.t. $X \in \Pi$,

where A, B and C are $n \times n$ matrices, tr denotes the trace of a matrix, and Π is the set of $n \times n$ permutation matrices.

- Applications in facility location/layout, ergonometric design, nonparametric statistics, etc.
- Notoriously difficult to solve to optimality problems of size n=30 still very challenging.

QAP
$$(A, B, C)$$
: min tr $(AXB + C)X^T$
s.t. $X \in \Pi$,

where A, B and C are $n \times n$ matrices, tr denotes the trace of a matrix, and Π is the set of $n \times n$ permutation matrices.

- Applications in facility location/layout, ergonometric design, nonparametric statistics, etc.
- Notoriously difficult to solve to optimality problems of size n = 30 still very challenging.
- Main difficulty is obtaining good bounds in reasonable time.

• Gilmore-Lawler Bound (GLB)

- Gilmore-Lawler Bound (GLB)
- Eigenvalue Bounds (EVB, PB)

- Gilmore-Lawler Bound (GLB)
- Eigenvalue Bounds (EVB, PB)
- LP and Dual-LP Bounds (RLT1, RLT2)

- Gilmore-Lawler Bound (GLB)
- Eigenvalue Bounds (EVB, PB)
- LP and Dual-LP Bounds (RLT1, RLT2)
- Quadratic Programming Bound (QPB)

- Gilmore-Lawler Bound (GLB)
- Eigenvalue Bounds (EVB, PB)
- LP and Dual-LP Bounds (RLT1, RLT2)
- Quadratic Programming Bound (QPB)
- Semidefinite Programming Bounds (SDPB1, SDPB3, ...)

- Gilmore-Lawler Bound (GLB)
- Eigenvalue Bounds (EVB, PB)
- LP and Dual-LP Bounds (RLT1, RLT2)
- Quadratic Programming Bound (QPB)
- Semidefinite Programming Bounds (SDPB1, SDPB3, ...)
- Most successful B&B implementations to date have utilized GLB, RLT1/2 and QPB.

- Gilmore-Lawler Bound (GLB)
- Eigenvalue Bounds (EVB, PB)
- LP and Dual-LP Bounds (RLT1, RLT2)
- Quadratic Programming Bound (QPB)
- Semidefinite Programming Bounds (SDPB1, SDPB3, ...)
- Most successful B&B implementations to date have utilized GLB, RLT1/2 and QPB.
- SDP bounds can be very strong at root, but currently too expensive for implementation in B&B.

Quadratic Programming Bound

Construction of QPB starts with projected eigenvalue bound PB.

Quadratic Programming Bound

Construction of QPB starts with projected eigenvalue bound PB.

Assume C = 0 and let columns of V be an orthonormal basis for $\mathcal{N}(e^T)$. Consider spectral decompositions

$$\hat{A} = V^T A V = W \operatorname{Diag}(\hat{\sigma}) W^T, \quad \hat{B} = V^T B V = U \operatorname{Diag}(\hat{\lambda}) U^T.$$

Quadratic Programming Bound

Construction of QPB starts with projected eigenvalue bound PB.

Assume C = 0 and let columns of V be an orthonormal basis for $\mathcal{N}(e^T)$. Consider spectral decompositions

$$\hat{A} = V^T A V = W \operatorname{Diag}(\hat{\sigma}) W^T, \quad \hat{B} = V^T B V = U \operatorname{Diag}(\hat{\lambda}) U^T.$$

PB =
$$\min_{\hat{X} \in \mathcal{O}} \operatorname{tr} \hat{A} \hat{X} \hat{B} \hat{X}^T + (2/n) \min_{X \in \Pi} (AEB) \bullet X - \gamma$$

= $\langle \hat{\lambda}, \hat{\sigma} \rangle_- + (2/n) \langle Ae, Be \rangle_- - \gamma$,

where $\langle x, y \rangle_{-} = \min_{\pi} \sum_{i=1}^{n} x_i y_{\pi(i)}$, and $\gamma = (e^T A e)(e^T B e)/n^2$.

Theorem (A-W 2000)

$$\langle \hat{\lambda}, \hat{\sigma} \rangle_{-} = \max \operatorname{tr} \hat{S} + \operatorname{tr} \hat{T}$$

s.t. $(\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I) \succeq 0$.

Moreover for any feasible \hat{S} , \hat{T} and orthonormal \hat{X} ,

$$\operatorname{tr} \hat{A}\hat{X}\hat{B}\hat{X}^T = \operatorname{tr} \hat{S} + \operatorname{tr} \hat{T} + \mathbf{vec}(\hat{X})^T \hat{Q} \mathbf{vec}(\hat{X}),$$

where
$$\hat{Q} = (\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I)$$
.

Theorem (A-W 2000)

$$\langle \hat{\lambda}, \hat{\sigma} \rangle_{-} = \max \operatorname{tr} \hat{S} + \operatorname{tr} \hat{T}$$

s.t. $(\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I) \succeq 0.$

Moreover for any feasible \hat{S} , \hat{T} and orthonormal \hat{X} ,

$$\operatorname{tr} \hat{A}\hat{X}\hat{B}\hat{X}^T = \operatorname{tr} \hat{S} + \operatorname{tr} \hat{T} + \operatorname{\mathbf{vec}}(\hat{X})^T \hat{Q} \operatorname{\mathbf{vec}}(\hat{X}),$$

where
$$\hat{Q} = (\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I)$$
.

To compute QPB, use $optimal\ \hat{S},\ \hat{T}$ to define \hat{Q} , then get

QPB =
$$\langle \hat{\lambda}, \hat{\sigma} \rangle_{-} + z(\hat{Q}) - \gamma$$

$$z(\hat{Q}) = \min \quad \mathbf{vec}(\hat{X})^T \hat{Q} \mathbf{vec}(\hat{X}) + (2/n)(AEB) \bullet X$$

s.t. $\hat{X} = V^T X V$
 $Xe = X^T e = e, \ X \ge 0.$

• QPB \geq PB. Improvement at root typically modest - reduction in gap of 15-20%.

- QPB \geq PB. Improvement at root typically modest reduction in gap of 15-20%.
- QPB increases with branching much faster than PB.

- QPB \geq PB. Improvement at root typically modest reduction in gap of 15-20%.
- QPB increases with branching much faster than PB.
- Accurate solution of QP not required; can use F-W in approximate minimization and recover rigorous lower bound from duality.

- QPB \geq PB. Improvement at root typically modest reduction in gap of 15-20%.
- QPB increases with branching much faster than PB.
- Accurate solution of QP not required; can use F-W in approximate minimization and recover rigorous lower bound from duality.
- Dual information associated with solution of QP very helpful for branching decisions.

- QPB ≥ PB. Improvement at root typically modest reduction in gap of 15-20%.
- QPB increases with branching much faster than PB.
- Accurate solution of QP not required; can use F-W in approximate minimization and recover rigorous lower bound from duality.
- Dual information associated with solution of QP very helpful for branching decisions.
- QPB successfully used in first solution of nug30 and several other previously unsolved problems.

- QPB ≥ PB. Improvement at root typically modest reduction in gap of 15-20%.
- QPB increases with branching much faster than PB.
- Accurate solution of QP not required; can use F-W in approximate minimization and recover rigorous lower bound from duality.
- Dual information associated with solution of QP very helpful for branching decisions.
- QPB successfully used in first solution of nug30 and several other previously unsolved problems.
- Main problem: would be desirable to strengthen bound near root where more computation is practical.

To improve QPB could consider "outer" maximization problem that varies \hat{S} , \hat{T} .

QPB⁺ = max tr
$$\hat{S}$$
 + tr \hat{T} - γ + $z(\hat{Q})$
s.t. $\hat{Q} = (\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I) \succeq 0$.

To improve QPB could consider "outer" maximization problem that varies \hat{S} , \hat{T} .

QPB⁺ = max tr
$$\hat{S}$$
 + tr \hat{T} - γ + $z(\hat{Q})$
s.t. $\hat{Q} = (\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I) \succeq 0$.

• For general \hat{S} , \hat{T} , problem QPB⁺ can be written as an SDP.

To improve QPB could consider "outer" maximization problem that varies \hat{S} , \hat{T} .

QPB⁺ = max tr
$$\hat{S}$$
 + tr \hat{T} - γ + $z(\hat{Q})$
s.t. $\hat{Q} = (\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I) \succeq 0$.

- For general \hat{S} , \hat{T} , problem QPB⁺ can be written as an SDP.
- Consider form $\hat{S} = W \operatorname{Diag}(\hat{s}) W^T$, $\hat{T} = U \operatorname{Diag}(\hat{t}) U^T$ corresponding to optimal solution associated with PB.

To improve QPB could consider "outer" maximization problem that varies \hat{S} , \hat{T} .

QPB⁺ = max tr
$$\hat{S}$$
 + tr \hat{T} - γ + $z(\hat{Q})$
s.t. $\hat{Q} = (\hat{B} \otimes \hat{A}) - (I \otimes \hat{S}) - (\hat{T} \otimes I) \succeq 0$.

- For general \hat{S} , \hat{T} , problem QPB⁺ can be written as an SDP.
- Consider form $\hat{S} = W \operatorname{Diag}(\hat{s}) W^T$, $\hat{T} = U \operatorname{Diag}(\hat{t}) U^T$ corresponding to optimal solution associated with PB.

QPB⁺ = max
$$e^T \hat{s} + e^T \hat{t} - \gamma + z(\hat{Q})$$

s.t. $\hat{Q} = (U \otimes W) \operatorname{Diag}(\hat{q})(U^T \otimes W^T)$
 $\hat{q} = (\hat{\lambda} \otimes \hat{\sigma}) - (e \otimes \hat{s}) - (\hat{t} \otimes e) \geq 0.$

• Good: Resulting problem QPB⁺ can be written as a SOCP.

- Good: Resulting problem QPB⁺ can be written as a SOCP.
- Bad: On all problems tested, solution \hat{s} , \hat{t} has $e^T\hat{s} + e^T\hat{t} = \langle \hat{\lambda}, \hat{\sigma} \rangle_{-}$, so maximizer of QPB⁺ is an optimal solution of the original problem associated with PB. (In previous implementation used subgradient steps in attempt to improve QPB among optimal solutions associated with PB.)

- Good: Resulting problem QPB⁺ can be written as a SOCP.
- Bad: On all problems tested, solution \hat{s} , \hat{t} has $e^T\hat{s} + e^T\hat{t} = \langle \hat{\lambda}, \hat{\sigma} \rangle_{-}$, so maximizer of QPB⁺ is an optimal solution of the original problem associated with PB. (In previous implementation used subgradient steps in attempt to improve QPB among optimal solutions associated with PB.)
- Would be nice to prove that this is always the case!

Would be more convenient to work with original A, B as opposed to projected \hat{A} , \hat{B} . However original eigenvalue bound EVB based on A, B is very poor.

Would be more convenient to work with original A, B as opposed to projected \hat{A} , \hat{B} . However original eigenvalue bound EVB based on A, B is very poor.

Well known that certain perturbations of data A, B, C preserve value of QAP. For example, consider

$$A' = A + eg^{T} + ge^{T}$$

$$B' = B + eh^{T} + he^{T}$$

$$C' = C - 2(Aeh^{T} + ge^{T}B + ngh^{T} + (e^{T}g)eh^{T}).$$

Then QAP(A, B, C) = QAP(A', B', C').

Would be more convenient to work with original A, B as opposed to projected \hat{A} , \hat{B} . However original eigenvalue bound EVB based on A, B is very poor.

Well known that certain perturbations of data A, B, C preserve value of QAP. For example, consider

$$A' = A + eg^{T} + ge^{T}$$

$$B' = B + eh^{T} + he^{T}$$

$$C' = C - 2(Aeh^{T} + ge^{T}B + ngh^{T} + (e^{T}g)eh^{T}).$$

Then QAP(A, B, C) = QAP(A', B', C').

Theorem There are g, h so that EVB(A', B', C') = PB(A, B, C).

Would be more convenient to work with original A, B as opposed to projected \hat{A} , \hat{B} . However original eigenvalue bound EVB based on A, B is very poor.

Well known that certain perturbations of data A, B, C preserve value of QAP. For example, consider

$$A' = A + eg^{T} + ge^{T}$$

$$B' = B + eh^{T} + he^{T}$$

$$C' = C - 2(Aeh^{T} + ge^{T}B + ngh^{T} + (e^{T}g)eh^{T}).$$

Then QAP(A, B, C) = QAP(A', B', C').

Theorem There are g, h so that EVB(A', B', C') = PB(A, B, C).

Suggests defining QPB⁺ using perturbed data A', B', C' in an effort to further increase bound . . .