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We consider a nonconvex quadratic programming problem of the
form:

QP : min cTx + xTQx
s.t. x ∈ B ∩ C.

• B = {x | 0 ≤ xi ≤ 1, i = 1, . . . , n}.
• C is given by additional linear or quadratic constraints.
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QP : min cTx + xTQx
s.t. x ∈ B ∩ C.

• B = {x | 0 ≤ xi ≤ 1, i = 1, . . . , n}.
• C is given by additional linear or quadratic constraints.

• For C = <n get the Box–Constrained Quadratic Program

QPB : min cTx + xTQx
s.t. x ∈ B.



QPB is already NP-hard. In particular, by adding an objective
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BQP is a well-studied problem in the discrete optimization litera-
ture. Polyhedral approach to BQP, introduced by Padberg (1989),
is based on studying the Boolean Quadric Polytope

BQPn = conv{xi, yij | yij = xixj, 1 ≤ i < j ≤ n,

xi ∈ {0, 1}, i = 1, . . . , n}.

• BQP is a linear problem over BQPn.

• No terms of the form yii appear in BQPn since xi = x2
i for

xi ∈ {0, 1}.



Relaxations for QPB

To obtain a convex representation of QPB it is natural to follow
a similar approach to that used for BQP. In particular, note that
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Can then write QPB in the form

QPB : min Q̃ • Ỹ
s.t. Ỹ =

 1 xT

x Y

 ∈ QPBn.
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•Good: exact convex representation with linear objective.

•Bad: must be difficult to fully characterize QPBn.

Full characterization of QPBn may be impossible, but sensible
thing to do is to look for valid constraints.



Reformulation-Linearization Technique

If two quantities (such as xi and (1− xj)) are nonnegative, then
their product is also nonnegative. Forming all products based on
the bound constraints 0 ≤ x ≤ e and making the identifications
yij = xixj results in the RLT constraints

yij ≤ xi,

yij ≤ xj,

yij ≥ 0,

yij ≥ xi + xj − 1.
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the bound constraints 0 ≤ x ≤ e and making the identifications
yij = xixj results in the RLT constraints

yij ≤ xi,

yij ≤ xj,

yij ≥ 0,

yij ≥ xi + xj − 1.

Semidefinite Programming

SDP relaxations are based on the observation that Ỹ � 0 (PSD).
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To compare the PSD and RLT conditions it is useful to consider
principal submatrix of Ỹ corresponding to two variables xi and
xj. Taking i = 1 and j = 2, let

Ỹ 12 =
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1 x1 x2
x1 y11 y12
x2 y12 y22
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It is then straightforward to show that the PSD condition Ỹ 12 � 0
is equivalent to the constraints

yii ≥ x2
i , i = 1, 2,

y12 ≤ x1x2 +
√√√√(y11 − x2

1)(y22 − x2
2),

y12 ≥ x1x2 −
√√√√(y11 − x2

1)(y22 − x2
2).
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Easy to see that:

• PSD implies no upper bounds on yii, i = 1, 2 compared to the
RLT upper bounds

yii ≤ xi.

• The PSD lower bounds yii ≥ x2
i , i = 1, 2 dominate the RLT

lower bounds
yii ≥ 0, yii ≥ 2xi − 1.

• The PSD bounds on y12 dominate the RLT bounds on y12 if
y11 − x2

1 and y22 − x2
2 are sufficiently small.



In fact for x1 = x2 = 1/2, the PSD bounds on y12 dominate the
RLT bounds for all yii that satisfy the RLT upper bounds and PSD
lower bounds. In this case can compute that the 3–dimensional
volume of the intersection of the PSD and RLT constraints on
y11, y22, y12 is 1/72, compared to 1/8 for RLT constraints alone.
So for these “midpoint” values of xi, adding PSD decreases volume
by a factor of 9.
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Figure 1: RLT versus PSD∩RLT regions, 0 ≤ x ≤ e, x1 = x2 = .5.



Computing the 3–dimensional volume of the intersection of the
PSD and RLT constraints for general case is a tedious exercise. By
interchanging/complemeting variables can assume x1 ≤ x2 ≤ .5.

Theorem 1 (A. 2009) Suppose that 0 < x1 ≤ x2 ≤ 1/2.
Then the 3-dimensional volume corresponding to the RLT con-
straints on y11, y22, y12 is x2
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Implies that maximum factor reduction in volume occurs for x1 =
x2 = .5, and reduction approaches zero for x2→ 0, x1/x2→ 0.



Figure 2: RLT versus PSD∩RLT regions, 0 ≤ x ≤ e, x1 = .01, x2 = .1.



Can also use Theorem 1 to prove result for five-dimensional vol-
umes of the corresponding feasible regions based on the original
bounds 0 ≤ xi ≤ 1, i = 1, 2.

Theorem 2 (A. 2009) Suppose that 0 ≤ xi ≤ 1, i = 1, 2.
Then the volume of {(x1, x2, y11, y22, y12)} feasible for the RLT
constraints is 1/60, and the volume of {(x1, x2, y11, y22, y12)}
feasible for the RLT and PSD constraints is 1/240.
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Theorem 2 (A. 2009) Suppose that 0 ≤ xi ≤ 1, i = 1, 2.
Then the volume of {(x1, x2, y11, y22, y12)} feasible for the RLT
constraints is 1/60, and the volume of {(x1, x2, y11, y22, y12)}
feasible for the RLT and PSD constraints is 1/240.

So adding PSD to the RLT relaxation removes exactly 75% of the
feasible region corresponding to two of the original variables. In
fact no further improvement is possible:

Theorem 3 (A. and Burer 2007) For n = 2, the set of
Ỹ � 0 such that (x, Y ) are feasible for the RLT constraints
is equal to QPB2.
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full characterization of QPBn. What additional inequalities are
needed?
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inequalities from BQPn.



For n ≥ 3 know that PSD and RLT together do not provide
full characterization of QPBn. What additional inequalities are
needed?

• Yajima and Fujie (1998) show that many known inequalities
for BQPn are also valid for QPBn. Obtain good computa-
tional results for QPB using RLT, cuts based on Ỹ � 0, and
inequalities from BQPn.

• A. and Burer (2007) found 4 valid inequalities for QPB3 that
give deep cuts for certain values of xi, yii.



Figure 3: Effect of added constraints for xi = yii = .5, i = 1, 2, 3.



When written out “longhand,” inequalities from A. and Burer
(2007) are:

y11 + y22 + y33 ≤ y12 + y13 + y23 + 1,

y11 + y22 + y33 + y12 + y13 ≤ 2x1 + x2 + x3 + y23,

y11 + y22 + y33 + y12 + y23 ≤ x1 + 2x2 + x3 + y13,

y11 + y22 + y33 + y13 + y23 ≤ x1 + x2 + 2x3 + y12.



When written out “longhand,” inequalities from A. and Burer
(2007) are:

y11 + y22 + y33 ≤ y12 + y13 + y23 + 1,

y11 + y22 + y33 + y12 + y13 ≤ 2x1 + x2 + x3 + y23,

y11 + y22 + y33 + y12 + y23 ≤ x1 + 2x2 + x3 + y13,

y11 + y22 + y33 + y13 + y23 ≤ x1 + x2 + 2x3 + y12.

If yii = xi, as in BQP3, then inequalities become:

x1 + x2 + x3 ≤ y12 + y13 + y23 + 1,

y12 + y13 ≤ x1 + y23,

y12 + y23 ≤ x2 + y13,

y13 + y23 ≤ x3 + y12.

These are the well-known triangle inequalities for BQP3.
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Burer (2007), it is reasonable to think that PSD, RLT and TRI
might fully characterize QPB3.



It is obvious that BQPn ⊂ proj(QPBn), where proj(Ỹ ) returns
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Theorem 4 (Burer and Letchford 2008) For all n ≥ 2,
proj(QPBn) = BQPn.

Theorem 4 goes a long way to explain the results of Yajima and
Fujie (1998), as well as the inequalities found by A. and Burer
(2007). Note the since BQP3 is given exactly by RLT and TRI
inequalities, and TRI inequalities dominate those found by A. and
Burer (2007), it is reasonable to think that PSD, RLT and TRI
might fully characterize QPB3.

This turns out to be FALSE.
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scalar. Then (vTx + s)(vTx + s − 1) ≥ 0 for binary x. If
resulting inequality is a facet of BQPn then it is also a facet of
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ditions for facets of BQPn to also be facets of QPBn.

• RLT diagonal upper bounds yii ≤ xi are facets of QPBn.

• RLT constraints for off-diagonal terms are facets of QPBn.

• TRI inequalities are facets of QPBn.

• Suppose that vi ∈ {−1, 0, 1}, i = 1, . . . , n and s is an integer
scalar. Then (vTx + s)(vTx + s − 1) ≥ 0 for binary x. If
resulting inequality is a facet of BQPn then it is also a facet of
QPBn.

Note that QPBn is not polyhedral!
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Figure 4: RLT versus PSD∩RLT regions, 0 ≤ x ≤ e, x1 = .1, x2 = .5.



Computational Results

Consider 54 QPB maximization problems with n = 20, 30, 40, 50,
60 from Dieter Vandenbussche. Density of (c,Q) varies from 30%
to 100%. Compare bounds using PSD (with upper bound on diag-
onal components), PSD+RLT and PSD+RLT+TRI. When using
TRI inequalities, generate RLT and TRI inequalities in several
rounds, with decreasing infeasibility tolerance.



Computational Results

Consider 54 QPB maximization problems with n = 20, 30, 40, 50,
60 from Dieter Vandenbussche. Density of (c,Q) varies from 30%
to 100%. Compare bounds using PSD (with upper bound on diag-
onal components), PSD+RLT and PSD+RLT+TRI. When using
TRI inequalities, generate RLT and TRI inequalities in several
rounds, with decreasing infeasibility tolerance.

Exact solution of 50/51 of these problems accomplished using
Branch and Cut by Vandenbussche and Nemhauser (2003), us-
ing up to ≈ 28, 000 LPs and a total of ≈ 500, 000 cuts.



Table 1: Comparison of bounds for indefinite QPB

Objective Value Cuts Added % Gaps to OPT
Problem OPT PSD PSD+RLT PSD+RLT+TRI RLT TRI PSD PSD+RLT PSD+RLT+TRI
20-100-1 706.50 739.39 706.52 706.50 197 55 4.655% 0.002% 0.000%
20-100-2 856.50 900.20 857.97 856.50 184 172 5.102% 0.171% 0.000%
20-100-3 772.00 785.51 772.00 168 1.750% 0.000%
30-060-1 706.00 768.12 714.68 706.00 371 777 8.799% 1.229% 0.000%
30-060-2 1377.17 1426.94 1377.17 381 3.614% 0.000%
30-060-3 1293.50 1370.13 1298.26 1293.50 394 288 5.924% 0.368% 0.000%
30-070-1 654.00 746.43 674.00 654.00 369 784 14.133% 3.058% 0.000%
30-070-2 1313.00 1375.07 1313.00 449 4.727% 0.000%
30-070-3 1657.40 1719.77 1657.57 1657.40 452 442 3.763% 0.010% 0.000%
30-080-1 952.73 1050.76 965.25 952.73 365 718 10.290% 1.315% 0.000%
30-080-2 1597.00 1622.81 1597.00 376 1.616% 0.000%
30-080-3 1809.78 1836.79 1809.78 317 1.492% 0.000%
30-090-1 1296.50 1348.48 1296.50 370 4.009% 0.000%
30-090-2 1466.84 1527.87 1466.84 344 4.160% 0.000%
30-090-3 1494.00 1516.81 1494.00 420 1.527% 0.000%
30-100-1 1227.13 1285.74 1227.13 356 4.777% 0.000%
30-100-2 1260.50 1365.32 1261.11 1260.50 427 465 8.316% 0.048% 0.000%
30-100-3 1511.05 1611.11 1513.15 1511.05 377 265 6.622% 0.139% 0.000%
40-030-1 839.50 876.60 839.50 656 4.419% 0.000%
40-030-2 1429.00 1496.83 1429.00 889 4.747% 0.000%
40-030-3 1086.00 1156.52 1086.00 705 6.494% 0.000%
40-040-1 837.00 956.09 863.09 837.00 710 1966 14.228% 3.117% 0.000%
40-040-2 1428.00 1452.53 1428.00 600 1.718% 0.000%
40-040-3 1173.50 1269.83 1180.85 1173.50 745 1427 8.209% 0.626% 0.000%
40-050-1 1154.50 1276.79 1160.44 1154.50 797 1608 10.592% 0.515% 0.000%
40-050-2 1430.98 1517.51 1436.05 1430.98 788 961 6.047% 0.354% 0.000%
40-050-3 1653.63 1747.31 1653.63 680 5.665% 0.000%



Table 2: Comparison of bounds for indefinite QPB (cont)

Objective Value Cuts Added % Gaps to OPT
Problem OPT PSD PSD+RLT PSD+RLT+TRI RLT TRI PSD PSD+RLT PSD+RLT+TRI
40-060-1 1322.67 1481.96 1352.92 1322.67 696 1722 12.043% 2.287% 0.000%
40-060-2 2004.23 2099.58 2004.23 739 4.758% 0.000%
40-060-3 2454.50 2508.68 2454.50 701 2.207% 0.000%
40-070-1 1605.00 1663.98 1605.00 584 3.675% 0.000%
40-070-2 1867.50 1931.34 1867.50 650 3.418% 0.000%
40-070-3 2436.50 2522.71 2436.50 828 3.538% 0.000%
40-080-1 1838.50 1936.17 1838.50 615 5.312% 0.000%
40-080-2 1952.50 2012.92 1952.50 639 3.094% 0.000%
40-080-3 2545.50 2638.34 2545.89 2545.50 755 742 3.647% 0.015% 0.000%
40-090-1 2135.50 2262.51 2135.50 763 5.948% 0.000%
40-090-2 2113.00 2268.86 2113.75 2113.00 731 336 7.376% 0.035% 0.000%
40-090-3 2535.00 2594.26 2535.00 598 2.338% 0.000%
40-100-1 2476.38 2557.23 2476.38 673 3.265% 0.000%
40-100-2 2102.50 2216.62 2106.37 2102.50 707 1251 5.428% 0.184% 0.000%
40-100-3 1866.07 2037.31 1908.19 1866.07 664 1732 9.176% 2.257% 0.000%
50-030-1 1324.50 1389.09 1324.50 903 4.877% 0.000%
50-030-2 1668.00 1755.68 1671.33 1668.00 831 233 5.257% 0.200% 0.000%
50-030-3 1453.61 1565.76 1454.88 1453.61 830 180 7.715% 0.087% 0.000%
50-040-1 1411.00 1483.01 1411.00 1017 5.103% 0.000%
50-040-2 1745.76 1881.33 1749.46 1745.76 868 509 7.766% 0.212% 0.000%
50-040-3 2094.50 2176.98 2094.50 1081 3.938% 0.000%
50-050-1 1198.41 1417.77 1302.24 1200.14 723 1531 18.304% 8.664% 0.144%
50-050-2 1776.00 1942.53 1789.58 1776.00 867 667 9.377% 0.765% 0.000%
50-050-3 2106.10 2268.04 2121.93 2106.10 937 933 7.689% 0.752% 0.000%
60-020-1 1212.00 1297.42 1212.00 1199 7.048% 0.000%
60-020-2 1925.50 2010.57 1925.50 1319 4.418% 0.000%
60-020-3 1483.00 1604.60 1491.06 1483.00 1040 735 8.200% 0.543% 0.000%

Average: 5.969% 0.499%



Range Reduction/Fixing Variables

If branching on continuous variables is necessary, range reduction
can provide very significant benefits (BARON). Logic for range
reduction can be based on a diagonal constraint

yii ≤ xi ⇐⇒ xi − yii ≥ 0.

Assume tight, with Lagrange multipler (dual slack variable) λi >
0. Let ∆ be gap between current bound and known objective value
for feasible solution. Then optimal Y = xxT must have

λi(xi − x2
i ) ≤ ∆.



Range Reduction/Fixing Variables

If branching on continuous variables is necessary, range reduction
can provide very significant benefits (BARON). Logic for range
reduction can be based on a diagonal constraint

yii ≤ xi ⇐⇒ xi − yii ≥ 0.

Assume tight, with Lagrange multipler (dual slack variable) λi >
0. Let ∆ be gap between current bound and known objective value
for feasible solution. Then optimal Y = xxT must have

λi(xi − x2
i ) ≤ ∆.

If λi > 4∆, conclude that

xi /∈ (.5− δi, .5 + δi) where δi =
1

2

√√√√√√√√
λi − 4∆

λi
.

Note that for QPB, can set δi = .5 for any i such that qii ≤ 0.
Indicate such i in tabular output by writing −δi.



Example: Consider problem 30-060-3 with PSD and RLT con-
straints. Gap to optimality is 0.37%.



Table 3: Solution output for 30-060-3 using PSD and RLT

x zd zl zu δ l u
0.9994 90.8803 0 0.0010 -0.4447 0 1
0.9996 42.7392 0 0.0012 0.3727 0 1
0.8994 44.7452 0 0 -0.3794 0 1
0.7672 38.2900 0 0 -0.3550 0 1
0.9800 60.3003 0 0 -0.4139 0 1
0.9988 99.7733 0 0.0005 -0.4499 0 1
0.9844 41.4727 0 0 0.3682 0 1
0.9991 95.5775 0 0.0007 -0.4476 0 1
0.1477 23.5807 0 0 -0.2207 0 1
0.9881 27.2218 0 0.0001 0.2750 0 1
0.2371 15.8647 0 0 0 0 1
0.9991 90.5048 0 0.0006 -0.4445 0 1
0.9565 25.5004 0 0 -0.2527 0 1
0.9999 98.1925 0 0.0042 0.4491 0 1
0.0285 1.1118 0 0 0 0 1
0.1784 41.0107 0 0 -0.3664 0 1
0.9853 49.4844 0 0 -0.3925 0 1
0.9997 62.0796 0 0.0017 -0.4166 0 1
0.4921 18.4713 0 0 0 0 1
0.1046 21.0579 0 0 0.1568 0 1
0.0449 32.2790 0 0 0.3209 0 1
0.0011 33.7484 0.0005 0 -0.3307 0 1
0.0344 33.8963 0 0 -0.3316 0 1
0.9969 33.5803 0 0.0002 -0.3296 0 1
0.0971 3.2503 0 0 0 0 1
0.0173 41.1413 0 0 0.3669 0 1
0.9748 48.3384 0 0 -0.3896 0 1
0.9749 56.0286 0 0 0.4065 0 1
0.9758 79.3920 0 0 -0.4361 0 1
0.9112 26.7175 0 0 0.2690 0 1
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For BQP, fixing logic based on max-cut formulation developed
by Helmberg (2000). Logic can be extended to QPB but results
are not encouraging.



Would also like to be able to do range reduction without branching.
Requires Lagrange multipliers for tight bound constraints.

• Bounds 0 ≤ xi ≤ 1 are redundant with PSD or RLT con-
straints added. Even if explicitly included, multipliers are zero
until gap is nearly zero.

• Could use RLT constraints li ≤ xi ≤ ui with li > 0 or ui < 1,
but get changes in both variable coefficients and right-hand-side
values.

•With PSD, tight constraints correspond to vectors in N (Ỹ ).
For BQP, fixing logic based on max-cut formulation developed
by Helmberg (2000). Logic can be extended to QPB but results
are not encouraging.

What to do?



Dumb idea: Add explicit bounds ε ≤ xi ≤ 1− ε, ε > 0.
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Figure 5: Tightened bound constraints using ε = .05.
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are tight can recover rigorous bound using Lagrange multipliers.



• Using ε > 0 is restriction of original problem, but if constraints
are tight can recover rigorous bound using Lagrange multipliers.

• Tight constraint with multiplier λi > 0 implies xi ≥ ∆/λi or
xi ≤ 1−∆/λi.



• Using ε > 0 is restriction of original problem, but if constraints
are tight can recover rigorous bound using Lagrange multipliers.

• Tight constraint with multiplier λi > 0 implies xi ≥ ∆/λi or
xi ≤ 1−∆/λi.

• Logic can be combined with excluded range based on δi. For
variables with δi = .5 allows for fixing at 0/1 values.



• Using ε > 0 is restriction of original problem, but if constraints
are tight can recover rigorous bound using Lagrange multipliers.

• Tight constraint with multiplier λi > 0 implies xi ≥ ∆/λi or
xi ≤ 1−∆/λi.

• Logic can be combined with excluded range based on δi. For
variables with δi = .5 allows for fixing at 0/1 values.

Consider 30-060-3 with ε = .02. Gap increases from 0.37% to
0.57%, but can fix 7 variables at 0/1 values and reduce the range
of 2 more.



Table 4: Solution output for 30-060-3 using PSD and RLT, ε = .02

x zd zl zu δ l u
0.9800 122.0003 0 66.5356 -0.4352 1 1
0.9800 68.0193 0 72.3112 0.3759 0.8978 1
0.8624 44.0950 0 0 -0.2870 0 1
0.6876 39.7575 0 0 -0.2531 0 1
0.9678 70.5789 0 0.0001 -0.3811 0 1
0.9800 122.5487 0 27.3048 -0.4355 1 1
0.9758 72.6318 0 0.0004 0.3850 0 1
0.9800 82.2755 0 60.2789 -0.4002 1 1
0.1965 27.3298 0 0 0 0 1
0.9711 42.5011 0 0.0002 0.2758 0 1
0.2380 22.5653 0 0 0 0 1
0.9800 91.9245 0 25.5476 -0.4118 1 1
0.9608 41.0645 0 0.0001 -0.2646 0 1
0.9800 51.3008 0 85.3841 0.3254 0.9134 1
0.0569 10.6306 0 0 0 0 1
0.2358 46.1886 0 0 -0.2999 0 1
0.9689 66.6622 0 0.0002 -0.3730 0 1
0.9800 51.3913 0 27.077 -0.3258 1 1
0.4823 26.9097 0 0 0 0 1
0.1110 26.7362 0 0 0 0 1
0.0852 38.1760 0 0 0.2374 0 1
0.0200 39.6029 15.4382 0 -0.2517 0 0
0.0756 33.6005 0 0 -0.1732 0 1
0.9800 71.7403 0 25.4883 -0.3834 1 1
0.1066 22.5000 0 0 0 0 1
0.0281 52.8366 0.0002 0 0.3318 0 1
0.9532 63.3240 0 0.0001 -0.3651 0 1
0.9519 70.3034 0 0.0001 0.3806 0 1
0.9639 77.2046 0 0.0001 -0.3928 0 1
0.8712 29.5291 0 0 0 0 1



Example: Consider problem 50-050-1 with PSD, RLT and TRI
constraints. Optimal value 1198.41, bound 1200.14 (gap=0.144%).
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for solution x is only 639. Max eigenvalue of Ỹ is 19.6, but 17
other eigenvalues of magnitude > .05.
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Example: Consider problem 50-050-1 with PSD, RLT and TRI
constraints. Optimal value 1198.41, bound 1200.14 (gap=0.144%).

• Only one i with xi < .05 or xi > .95. Actual objective value
for solution x is only 639. Max eigenvalue of Ỹ is 19.6, but 17
other eigenvalues of magnitude > .05.

• Re-solve with ε = .10. Can fix 5 variables at 0/1 values.

• Fix variables and re-solve with ε = 0. Get exact optimal solu-
tion.

•Maybe this is not such a dumb idea after all!



What next?

•Would be very nice to obtain explicit characterization of QPB3
without additional variables. (A. and Burer (2007) obtain com-
plete disjunctive representation for QPB3 using triangulation
of the cube.)



What next?

•Would be very nice to obtain explicit characterization of QPB3
without additional variables. (A. and Burer (2007) obtain com-
plete disjunctive representation for QPB3 using triangulation
of the cube.)

• Application to problems with constraints. Expect good effect of
cuts fromBQPn on problems where multiple bound constraints
are tight.
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